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Abstract 19 

Stomatal conductance (gs) affects the fluxes of carbon, energy and water between the 20 

vegetated land surface and the atmosphere. We test an implementation of an optimal stomatal 21 

conductance model within the Community Atmosphere Biosphere Land Exchange (CABLE) 22 

land surface model (LSM). In common with many LSMs, CABLE does not differentiate 23 

between gs model parameters in relation to plant functional type (PFT), but instead only in 24 

relation to photosynthetic pathway. We constrained the key model parameter “g1”, which 25 

represents plant water use strategy, by PFT, based on a global synthesis of stomatal 26 

behaviour. As proof of concept, we also demonstrate that the g1 parameter can be estimated 27 

using two long-term average (1960-1990) bioclimatic variables: (i) temperature and (ii) an 28 

indirect estimate of annual plant water availability. The new stomatal model, in conjunction 29 
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with PFT parameterisations, resulted in a large reduction in annual fluxes of transpiration 30 

(~30 % compared to the standard CABLE simulations) across evergreen needleleaf, tundra 31 

and C4 grass regions. Differences in other regions of the globe were typically small. Model 32 

performance against upscaled data products was not degraded, but did not noticeably reduce 33 

existing model-data biases. We identified assumptions relating to the coupling of the 34 

vegetation to the atmosphere and the parameterisation of the minimum stomatal conductance 35 

as areas requiring further investigation in both CABLE and potentially other LSMs. We 36 

conclude that optimisation theory can yield a simple and tractable approach to predicting 37 

stomatal conductance in LSMs.  38 

 39 
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1 Introduction 55 

Land surface models (LSMs) provide the lower boundary conditions for the atmospheric 56 

component of global climate and weather prediction models. A key role for LSMs is to 57 

calculate net radiation available at the surface and its partitioning between sensible and latent 58 

heat fluxes (Pitman, 2003). To achieve this, LSMs calculate latent heat exchange between the 59 

soil, vegetation and the atmosphere. This latent heat exchange involves a transfer of water 60 

vapour to the atmosphere; for vegetated surfaces this transfer (i.e. transpiration) occurs mostly 61 

through the stomatal cells on the leaves as they open to uptake CO2 for photosynthesis, but 62 

also includes interception losses from the canopy. Transpiration from the vegetation has been 63 

estimated to account for 60-80% of evapotranspiration (ET) across the land surface (e.g., 64 

Miralles et al. 2011; Jasechko et al. 2013; Schlesinger and Jasechko, 2014, but see Schlaepfer 65 

et al. 2014). The stomata are thus the principal control over the exchange of water and the 66 

associated flux of carbon dioxide (CO2) between the leaf and the atmosphere. Stomatal 67 

conductance (gs) plays a significant role in the global carbon, energy and water cycles, hence 68 

it modulates climate feedbacks and plays a critical role in global change (Henderson-Sellers et 69 

al., 1995; Pollard and Thompson, 1995; Cruz et al., 2010; Sellers et al. 1996; Gedney et al. 70 

2006; Betts et al. 2007; Cao et al. 2010).  71 

 72 

In both ecosystem and land surface models, it is common to represent gs with empirical 73 

models (Jarvis, 1976; Ball et al. 1987; Leuning, 1995; see Damour et al. 2010 for a review). 74 

In a recent inter-comparison study, 10 of the 11 ecosystem models considered applied some 75 

form of the “Ball-Berry-Leuning” approach (De Kauwe et al. 2013a). The empirical nature of 76 

these models means that we cannot attach any theoretical significance to differences in model 77 

parameters across datasets or among species. As a consequence, models which use these 78 

schemes commonly either assume the model parameters only vary with photosynthetic 79 

pathway, or tune the parameters to match a specific experiment where necessary. Whilst more 80 

mechanistic gs models have been proposed (e.g. Buckley et al. 2003; Wang et al. 2012), they 81 

have not been widely applied due to their relative complexity and the need to obtain 82 

additional model parameters, for which we have no (or limited) observational data across a 83 

variety of PFTs.  84 

 85 
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An alternative approach, originally proposed by Cowan and Farquhar (1977) and Cowan 86 

(1982), is to model stomatal conductance using an optimisation framework (Hari et al. 1986; 87 

Lloyd, 1991; Arneth et al. 2002; Katul et al. 2009; Schymanski et al. 2009; Medlyn et al. 88 

2011). This approach hypothesises that optimal stomatal behaviour occurs when the carbon 89 

gain (photosynthesis, A) is maximised, whilst minimising water loss (transpiration, E) over 90 

some period of time (t2-t1). Therefore, optimal stomatal behaviour is the result of maximising: 91 

! ! − !!" ! !!"
!!

!!

 
(1) 

where ! (mol-1 C mol-1 H2O) is the marginal carbon cost of water use.  92 

 93 

Medlyn et al. (2011) recently proposed a tractable model that analytically solves the 94 

optimisation problem. This model has great potential because it combines a simple functional 95 

form, similar to current empirical approaches, with a theoretical basis. Biological meaning 96 

can be attached to the parameters, which can then be hypothesised to vary with climate and 97 

plant water use strategy (Medlyn et al. 2011; Héroult et al. 2013; Lin et al. 2015). In addition, 98 

the behaviour of this model has been widely tested at the leaf scale and it has been shown to 99 

perform at least as well, if not better than, the more widespread empirical approaches 100 

currently used (Medlyn et al. 2011; De Kauwe et al. 2013a; Duursma et al. 2013; Medlyn et 101 

al. 2013; Héroult et al. 2013). We also note that it is possible to implement a numerical 102 

solution of this optimisation problem into a LSM (Bonan et al. 2014).   103 

 104 

Here, we present an implementation of the Medlyn et al. (2011) optimal stomatal conductance 105 

model within the Community Atmosphere Biosphere Land Exchange (CABLE) LSM (Wang 106 

et al. 2011). CABLE is the LSM used within the Australian Community Climate Earth 107 

System Simulator (ACCESS, see http://www.accessimulator.org.au; Kowalczyk et al. 2013), 108 

a fully coupled earth system model used as part of the Coupled Model Intercomparison 109 

Project (CMIP-5), which in turn informed much of the climate projection research 110 

underpinning the 5th assessment report of the Intergovernmental Panel on Climate Change.  111 

CABLE currently implements an empirical representation of gs following Leuning et al. 112 

(1995). The existing CABLE parameterisation of stomatal conductance, similar to other 113 
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LSMs, including the Community Land Model version 4.5 (CLM4.5: Oleson et al. 2013) and 114 

the ORganizing Carbon and Hydrology in Dynamic EcosystEms model (ORCHIDEE: 115 

Krinner et al. 2005), only characterises differences in stomatal behaviour relating to 116 

photosynthetic pathway, rather than PFT. The implementation assumes that all PFTs can be 117 

adequately described by three parameters, two of which vary with photosynthetic pathway. 118 

Simulated latent heat (LE) by CABLE has been shown to be sensitive to these parameters (Lu 119 

et al. 2013), but the origin of this parameterisation has not been well documented in the 120 

literature. In contrast, here we seek to constrain the new Medlyn model implementation with 121 

data derived from a recent global synthesis of stomatal behaviour (Lin et al. in 2015). We first 122 

test the implementation of the new gs scheme at a series of flux tower sites and then undertake 123 

a series of offline simulations to examine the model’s behaviour at the global scale. 124 

 125 

 126 

 127 
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 137 

 138 
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2 Methods 139 

2.1 Model description 140 

The CABLE LSM has been used extensively for both coupled (Cruz et al. 2010; Pitman et al. 141 

2011; Mao et al. 2011; Lorenz et al. 2014) and offline simulations (Abramowitz et al. 2008; 142 

Wang et al. 2011; Kala et al. 2014) at a range of spatial scales. CABLE represents the canopy 143 

using a single layer, two-leaf canopy model separated into sunlit and shaded leaves (Wang 144 

and Leuning, 1998), with aerodynamic properties simulated as a function of canopy height 145 

and leaf area index (LAI) (Raupach 1994; Raupach et al. 1997). The Richards’ equation for 146 

soil water and heat conduction is numerically integrated using six discrete soil layers, and up 147 

to three layers of snow can accumulate on the soil surface. A complete description can be 148 

found in Kowalczyk et al. (2006) and Wang et al. (2011). The source code can be accessed 149 

after registration at https://trac.nci.org.au/trac/cable. 150 

 151 

2.2 Stomatal model and parameterisation. 152 

In CABLE, gs (stomatal conductance, mol m-2 s-1) is modelled following Leuning (1995): 153 

!! = !! + !
!!!!"

!! − !Γ 1+ !
!!

 
(2) 

where A is the net assimilation rate (µmol m-2 s-1), Cs (!mol mol-1) and D (kPa) are the CO2 154 

concentration and the vapour pressure deficit at the leaf surface, respectively, Γ (!mol mol-1) 155 

is the CO2 compensation point of photosynthesis, and g0 (mol m-2 s-1), D0 (kPa) and a1 are 156 

fitted constants representing the residual stomatal conductance as net assimilation rate reaches 157 

zero, the sensitivity of stomatal conductance to D and the slope of the sensitivity of stomatal 158 

conductance to assimilation, respectively. In CABLE, the fitted parameters g0 and a1 vary with 159 

photosynthetic pathway (C3 vs C4) but not PFT, and D0 is fixed for each PFTs. g0 is scaled 160 

from the leaf to the canopy by accounting for LAI, following Wang and Leuning (1998). ! 161 

represents an empirical soil moisture stress factor: 162 

! = ! ! − !!!!" − !!
; !![0,1] (3) 
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where ! is the mean volumetric soil moisture content (m3 m-3) in the root zone, !! is the 163 

wilting point (m3 m-3)  and !!" is the field capacity (m3 m-3). 164 

 165 

In this study we replaced Eq. (2) with the gs model of Medlyn et al. (2011) using the same ! 166 

factor as above: 167 

!! = !! + 1.6 1+ !!!!!
!
!!

 
(4) 

where g1 (kPa0.5) is a fitted parameter representing the sensitivity of the conductance to the 168 

assimilation rate. In this formulation of the gs model, the g1 parameter has a theoretical 169 

meaning and is proportional to: 170 

!! ∝
Γ∗
! ! 

(5) 

where λ is defined by Eq. (1) and  Γ* (!mol mol-1) is the CO2 compensation point in the 171 

absence of mitochondrial respiration. As a result, g1 is inversely related to the marginal 172 

carbon cost of water, λ (Medlyn et al. 2011).  173 

 174 

Figure 1 shows the stomatal sensitivity to D predicted by the two models in the absence of 175 

soil water stress. In this comparison, the Medlyn model has been calibrated using least 176 

squares against gs values predicted by the Leuning model, where D varies between 0.05 and 3 177 

kPa. The Leuning model was parameterised in the same way as the CABLE model, for C3 178 

species: a1 = 9.0, D0 = 1.5 kPa and for C4 plants: a1 = 4.0, D0 = 1.5 kPa. The calibrated 179 

parameters for the Medlyn model were g1 = 3.37 kPa0.5 and g1 = 1.10 kPa0.5 for C3 and C4 180 

species, respectively. Over low to moderate D ranges (<1.5 kPa), the gs calculated by the 181 

Medlyn model declines more steeply than the Leuning model. There is then a crossover 182 

between the two models, such that at high D the Leuning model predicts gs to be more 183 

sensitive to increasing D than the Medlyn model. We use this calibration of the Medlyn model 184 

(MED-L) to the Leuning model (LEU) throughout this manuscript, in order to distinguish 185 

structural difference between the models from differences resulting from model 186 

parameterisation (MED-P) based on a global synthesis of stomatal behaviour (see below). 187 

 188 
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Lin et al. (2015) compiled a global database of stomatal conductance and photosynthesis from 189 

314 species across 56 field studies, which covered a wide range of biomes including Arctic 190 

tundra, boreal, temperate forests and tropical rainforest. We estimated parameter values for g1 191 

for each of the 10 PFTs in CABLE (Fig. 2) by fitting Eq. (4) to this dataset, using the non-192 

linear mixed-effects model approach presented by Lin et al. (2015).  We used only data from 193 

ambient field conditions, excluding elevated [CO2], temperature, or other treatments. The 194 

model was fit to data for each PFT separately, using species as a random effect on the g1 195 

parameter (to account for correlation of observations within species groups). For all mixed-196 

effects models, we used the lme4 package in R version 3.1.0 (R Core Development Team 197 

2014). For this fitting, we set the parameter g0 equal to zero. The reasons for this choice, and 198 

the consequences, are discussed in detail below.   199 

 200 

The dataset compiled by Lin et al. (2015) did not have measurements from the deciduous 201 

needleleaf PFT. As Lin et al. hypothesised that the high marginal cost of water in evergreen 202 

conifers is a consequence of the lack of vessels for water transport in conifer xylem, we 203 

assumed that the marginal cost of water for deciduous needleleaf trees would be similar to 204 

that of evergreen needleleaf.  205 

 206 

Lin et al. (2015) also demonstrated a significant relationship (r2 = 0.43) between g1 and two 207 

long-term average (1960-1990) bioclimatic variables: temperature and a moisture index 208 

representing an indirect estimate of plant water availability. First, they estimated g1 for each 209 

species separately using non-linear regression, and then they fit the following equation to 210 

these individual estimates of g1: 211 

log !! = ! + !!×!" + !×! + !×!"×! (6) 

where a, b, c, and d are model coefficients, !!is the mean surface air temperature during the 212 

period of the year when the surface air temperature is above 0°C, MI is a moisture index 213 

calculated as the ratio of mean precipitation to the equilibrium evapotranspiration (as 214 

described in Gallego-Sala et al. 2010). Equation 6 was fit using a linear mixed-effects model, 215 

where PFT was used as random intercept, because we assume g1 observations were 216 

independent observations for a given PFT.  217 

 218 
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We derived global MI and ! values from Climate Research Unit (CRU) CL1.0 climatology 219 

data set (1961-1990), interpolating the 0.5 degree data to 1.0 degree to match the resolution of 220 

the global offline forcing used, using a nearest neighbour approach. We masked land surface 221 

areas in the CRU data which did not correspond to one of CABLE 10 PFTs. In addition, we 222 

also masked pixels where MI and ! estimates were not available (40 out of a possible 54,000 223 

pixels). To directly evaluate the differences in g1 responses to the two climatic variables 224 

amongst PFTs, we modified Eq. (6): 225 

log !! = ! + !×!" + !×! + !×!"×! + !!×PFT (7) 

where a, b, c, d and e are model coefficients (Table, 2). We fitted Eq. (7) to the individual 226 

estimates of g1 by species (see above), but this time with a linear regression model (because 227 

PFT here is assumed to be a fixed effect). We then used the model coefficients to predict g1 228 

values (MED-C) based on the PFT, MI and ! values for each pixel. In the MED-C 229 

simulations therefore the predicted g1 values vary within a PFT as a function of the 230 

bioclimatic indices. Standard errors of the prediction were calculated with standard methods 231 

for linear regression. Finally, we masked pixels where MI or ! values are outside the range 232 

(MI > 3.26; ! > 29.7°C) covered by the gs synthesis database (126 out of a possible 54,000 233 

pixels) to avoid extrapolation of the model.  234 

 235 

2.3 Model simulations 236 

In addition to the control simulation using the Leuning model (LEU), we carried out three 237 

model simulations using the Medlyn model, testing the impact of model structure (MED-L), 238 

parameterisation synthesised from experimental data (MED-P) and parameterisation based on 239 

a set of climatic indices (temperature and aridity) (MED-C) (Table 3). Simulations were first 240 

carried out at 6 flux sites selected from the FLUXNET network (http://www.fluxdata.org/) to 241 

cover a range of PFTs included in CABLE: (i) deciduous broadleaf forest; (ii) evergreen 242 

broadleaf forest; (iii) evergreen needleaf forest; (iv) C3 grassland; (v) C4 grassland; and (vi) 243 

cropland (Table 4).  In both site and global simulations, each site/pixel contained only a single 244 

PFT type. Site data were obtained through the Protocol for the Analysis of Land Surface 245 

models (PALS; pals.unsw.edu.au; Abramowitz, 2012) which has previously been pre-246 

processed and quality controlled for use within the LSM community. This process ensured 247 
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that all site-years had near complete observations of key meteorological drivers (as opposed 248 

to significant gap-filled periods). CABLE simulations at the 6 flux sites were not calibrated to 249 

match site characteristics; instead default PFT parameters were used for the appropriate PFT 250 

for each site. 251 

 252 

Next, we performed global offline simulations using the second Global Soil Wetness Project 253 

(GSWP-2; Dirmeyer et al. 2006a) multi-model, 3-hourly, offline, meteorological forcing 254 

(precipitation (rain and snowfall), downward shortwave and longwave radiation, surface air 255 

temperature, surface specific humidity, surface wind speed and surface air pressure) over the 256 

period 1986-1995 at a resolution of 1o by 1o with a 30-year spin-up. Although CABLE has the 257 

ability to simulate carbon pool dynamics, this feature was not activated for this study, given 258 

the relatively short simulation periods. For both the site-scale and global simulations, LAI 259 

was prescribed using CABLE’s gridded monthly LAI climatology derived from Moderate-260 

resolution Imaging Spectroradiometer (MODIS) LAI data. In all simulations, we used the 261 

standard soil moisture stress function, !, defined in Eq. (3).  262 

 263 

The GSWP-2 driven simulation used the soil and vegetation parameters similar to those 264 

employed when CABLE is coupled to the ACCESS coupled model, rather than those 265 

provided by the GSWP-2 experimental protocol. This was to ensure that any discrepancies 266 

between different CABLE simulations could be attributed to the differences in the stomatal 267 

model only. When CABLE is coupled to ACCESS model, differences in surface fluxes and 268 

temperature as simulated by CABLE with different stomatal models can also influence the 269 

surface forcing fields provided by the atmospheric model, which further modify the 270 

simulation results by CABLE. Therefore, to ensure that the results here are comparable to 271 

future ACCESS coupled simulations, we use the same soil and vegetation parameters using 272 

by CABLE within ACCESS, rather than those specified by the GSWP-2 protocol.  273 

 274 

 275 

 276 
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2.4 Data sets for global evaluation 277 

2.4.1 LandFlux-EVAL ET 278 

The LandFlux-EVAL dataset (Mueller et al. 2013) provides a comprehensive ensemble of 279 

global ET estimates at a 1o by 1o resolution over the periods 1989-1995 and 1989-2005, 280 

derived from various satellites, LSMs driven with observationally based forcing, and 281 

atmospheric re-analysis. We used the ensemble combined product (i.e. all sources of ET and 282 

associated standard deviations) over the period 1989-1995 (that overlaps with the GSWP-2 283 

forcing period). The rationale for comparing the simulated ET against the LandFlux-EVAL 284 

ET was to test that the uncertainties propagated to the ET estimates based on the 285 

parameterisation of g1, were within the uncertainty range of the ensemble of existing models 286 

and observational estimates.   287 

 288 

2.4.2 GLEAM ET 289 

While zonal mean comparisons provide a useful measure of uncertainty, it is also useful to 290 

identify regions where the model deviates more strongly from more observational ET 291 

estimates. We therefore compared the gridded simulated seasonal ET against the latest 292 

version of the GLEAM ET product (Miralles et al. 2014). This product is an updated version 293 

of the original GLEAM ET (Miralles et al. 2011), that is part of the LandFlux-EVAL 294 

ensemble (Mueller et al. 2013). The GLEAM product assimilates multiple satellite 295 

observations (temperature, net radiation, precipitation, soil moisture, vegetation water 296 

content) into a simple land model to provide estimates of vegetation, soil and total 297 

evapotranspiration. Although estimates of vegetation transpiration are available, we only use 298 

the total ET product, as the latter has been vigorously evaluated against flux-tower 299 

measurements (Miralles et al. 2011, 2014).   300 

2.4.3 Upscaled FLUXNET data 301 

To estimate the influence of the new gs parameterization on gross primary productivity (GPP), 302 

we compared our simulations against the up-scaled FLUXNET model tree ensemble 303 

(FLUXNET-MTE) dataset of Jung et al. (2009). This dataset is generated by using outputs 304 

from a dynamic global vegetation model (DGVM) forced with gridded observations as the 305 
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surrogate truth to upscale site-scale quality controlled observations. The product is more 306 

reliable where there is a high density of high quality observations, mostly restricted to North 307 

America. Nonetheless, the DGVM used to generate this product is one of the most extensively 308 

evaluated biosphere models (Jung et al. 2009). The FLUXNET dataset provides two versions 309 

of up-scaled GPP, which differ slightly in the way they are derived. We use the mean of the 310 

two products.  311 

 312 

 313 

 314 

 315 

 316 

 317 

 318 

 319 

 320 

 321 

 322 

 323 

 324 

 325 

 326 

 327 

 328 

 329 
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3 Results 330 

3.1 Flux-site results 331 

Figure 3 shows a site-scale comparison during daylight hours (8 am – 7 pm) between 332 

observed and predicted GPP, LE and transpiration (E) at 6 FLUXNET sites. Table 5 shows a 333 

series of summary statistics (RMSE, bias and index of agreement) between modelled and 334 

observed LE.  335 

Impact of model structure 336 

Figure 3 shows that the differences in simulated fluxes due to model structure, shown by 337 

comparing LEU with MED-L, are small across the 6 flux tower sites. Differences due to the 338 

structure of the model, shown by comparing LEU with MED-L in Fig. 3, are small across 339 

sites. These small differences indicate that the replacement of the Leuning model with the 340 

Medlyn model (calibrated to the Leuning model, MED-L) does not significantly alter CABLE 341 

simulations.  342 

Impact of new g1 parameterisation 343 

Differences introduced by the PFT parameterisation, shown by comparing MED-P with LEU, 344 

are also typically small across sites (Fig. 3), with the exception of Howard Springs (discussed 345 

below) and the LE and E fluxes at Hyytiälä. At Hyytiälä, the parameterisation of a 346 

conservative water use strategy for needleleaf trees leads to a reduction in both E and LE 347 

fluxes (see Table 1); the change in LE is consistent with measured FLUXNET data. At 348 

Bondville and Cabauw, MED-P predicts marginally higher peak fluxes as a result of a less 349 

conservative water use strategy parameterisation of C3 grasses and crops, respectively. 350 

Finally, for the two other sites represented by tree PFTs, Harvard and Tumbarumba, the 351 

differences between modelled fluxes are negligible. The impact of gs on LE fluxes is 352 

noticeably smaller than the impact on E because modelled (and observed) LE also includes a 353 

flux component from the soil.  354 

 355 

The PFT parameterisation (MED-P) does not have a noticeable impact on predicted fluxes of 356 

GPP, with the exception of Howard Springs. GPP is insensitive to the stomatal 357 

parameterisation because of the non-linear relationship between gs and A. When stomata are 358 
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fully open, A is limited by the rate of ribulose-1,5-bisphosphate (RuBP) regeneration, and is 359 

relatively insensitive to the changes in Ci caused by small reductions in stomatal conductance.  360 

 361 

The differences between models at Howard Springs do not stem from the new g1 362 

parameterisation (MED-P), but instead result from the large positive g0 parameter assumed for 363 

C4 grassland in CABLE. The assumed g0 of 0.04 mol m-2 leaf s-1 is multiplied by LAI 364 

meaning that the minimum canopy stomatal conductance at this site can be as high as 0.1 mol 365 

m-2 ground s-1. By contrast, in the MED-P model we assumed g0 = 0, meaning that gs goes to 366 

zero under low light and, importantly, high VPD conditions.  367 

 368 

Figure 4 shows that at Howard Springs, high afternoon VPD caused stomatal closure, 369 

represented by reduced E, in the MED-P model but not the MED-L or LEU models (Fig. 4), 370 

due to the assumption of a high g0 as A tends towards zero. Consequently, daily fluxes are 371 

significantly lower in the MED-P when compared to the LEU and MED-L models.  372 

Decoupling factor 373 

The relative insensitivity of modelled fluxes to the new gs parameterisation (MED-P) results 374 

from CABLE’s assumptions about the coupling of the vegetation to the surrounding 375 

atmosphere boundary layer. In CABLE, transpiration from the vegetation to the atmosphere is 376 

controlled by several resistances operating in series, both above (aerodynamic) and within the 377 

canopy (stomatal and leaf boundary layer), and a longwave radiative balance through 378 

radiative conductance on net available energy (Leuning et al. 1995; Kowakczyk et al. 2006). 379 

These resistances in serial, result in a relatively weak coupling between the canopy surface 380 

and the atmosphere.  381 

 382 

Figure 5 shows the average seasonal cycle of gs and the decoupling coefficient (Jarvis and 383 

McNaughton, 1985; McNaughton and Jarvis, 1991) simulated by CABLE at the 6 flux tower 384 

sites. The decoupling coefficient (Ω) represents how well coupled the vegetation is to the 385 

surrounding atmosphere, with a value of 0 representing fully coupled behaviour, where 386 

transpiration is controlled by gs, and a value of 1 representing completely decoupled 387 

behaviour, where transpiration is controlled by the available energy. The moderate to high Ω 388 
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at all sites, with the exception of Hyytiälä, explains the lack of sensitivity in the E, LE and 389 

GPP fluxes to changes in gs. At Hyytiälä, Ω is low, and becomes lower when g1 is reduced in 390 

the MED-P model, resulting in an effect on E is more apparent than at the other sites (see Fig. 391 

3). 392 

 393 

3.2 Global results 394 

Global maps of g1  395 

To facilitate global comparisons, we have derived global maps of the g1 parameter. Figure 6a 396 

shows a clear latitudinal gradient, with lower values of g1, which represent a more 397 

conservative water use strategy, found in mid-latitudes (20-60°N), whilst higher values of g1 398 

are located towards more tropical regions. When within-PFT variation with bioclimatic 399 

indices is included (Fig. 6b) there is more variability in g1, particularly across the tropics, due 400 

to spatial variability in temperature. Parameter uncertainty maps (± 2 standard errors) of the g1 401 

parameter are shown in Fig. S1. These maps indicate considerable uncertainty in deriving the 402 

g1 parameter as a function of these climate relationships (Fig. S1c,d), particularly for C3 403 

grasses (mean (µ) range = 1.42−8.80) and C3 crops (µ range = 3.99−8.89) PFTs. 404 

 405 

Impact of model structure on simulated  GPP and E   406 

We next extend our comparison by examining the impact of different stomatal conductance 407 

models on the simulated seasonal and annual GPP and E, the fluxes most directly impacted by 408 

gs in the model. Figures 7 and 8 show mean seasonal (December–January–February: DJF, and 409 

June–July–August: JJA) difference maps of predicted GPP and E, respectively. Tables 6 and 410 

7 summarise changes in GPP and E in terms of mean annual totals across all the GSWP-2 411 

years. Similar to Fig. 3, changes in simulated fluxes due to the different model structure 412 

(shown by LEU−MED-L, Figs. 7a, b and 8a, b), are typically small (µ change in GPP and E 413 

relative to the control (LEU) < 7 %, with the exception of the shrub PFT, which has µ ~12 %). 414 

The largest differences (relative to the LEU) in GPP occur over grass (C3 GPP µ = 47.7 gC m-415 
2 y-1, µ change = 4.6 %; C4 GPP µ = 93.0 gC m-2 y-1, µ change = 5.6%) and shrub PFTs (GPP 416 

µ = 69.3 gC m-2 y-1, µ change = 12 %), where the LEU model predicts higher fluxes (Figs. 417 
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7a,b). Figures 8a and b shows that the largest differences (relative to the LEU) in E occur 418 

across the tropics, where fluxes in broadleaf forest PFTs are higher (E µ = 34.3 mm y-1, µ 419 

change = 5.5 %) in the MED-L model. These differences are consistent with the different 420 

sensitivities of the modelled stomatal conductance to D, as show in Fig. 1. The LEU model 421 

would tend to predict higher gs fluxes at low to moderate D (<2 kPa), whereas the calibrated 422 

MED-L model would predict higher gs fluxes at moderate to high D (>2kPa).  423 

 424 

Impact of empirically fitted g1 parameterisation on the simulated GPP and E 425 

The key differences introduced by the MED-P model (Figs. 7c, d and 8c, d) are 29 % 426 

reduction in E relative to the control (MED-C) simulation for evergreen needleleaf, C4 grass 427 

and Tundra PFTs. Fluxes were reduced across the boreal zone (E µ = 76.1 mm y-1), over C4 428 

grass areas (GPP µ = 302.9 gC m-2 y-1, µ change = 16.5 %; E µ = 107.7 mm y-1, µ change = 429 

27.1 %) and the tundra PFT (E µ = 24.1 mm y-1, µ change = 28.5 %). Fluxes are also 430 

predicted to decrease over deciduous needleleaf PFTs, but this result should be viewed with 431 

caution, as this was the PFT for which there were no synthesis data available. As such, this 432 

result just reflects the assumption that these PFTs behave in the same way as evergreen 433 

needleleaf PFTs. The MED-P model also predicts increases over regions of C3 crop (GPP µ = 434 

64.9 gC m-2 y-1, µ change = 5.5 %; E µ = 30 mm y-1, µ change = 10.9 %) and C3 grasses (GPP 435 

µ = 66.8 gC m-2 y-1, µ change = 5.9 %; E µ = 17.4 mm y-1, µ change = 7.6 %).  436 

 437 

Impact of predicted g1 parameterisation on the simulated GPP and E  438 

Figures 7e,f and 8e,f show the predicted fluxes when g1 is allowed to vary within a PFT 439 

according to climate indices. Generally, the changes are in line with the changes introduced 440 

by the MED-P parameterisation. The largest change is a 32 % reduction in E relative to the 441 

control simulation for evergreen needleleaf pixels. The notable difference compared to the 442 

MED-P simulation occurs over C4 grass pixels. The MED-C model predicts fluxes that are 443 

approximately half those predicted by the MED-P model for both GPP and E. This suggests a 444 

less conservative water use strategy than is obtained through the PFT-specific 445 

parameterisation alone, i.e. MED-P. 446 
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3.3 Comparison with benchmarking products 447 

Global simulations by the CABLE model using different models of stomatal conductance 448 

were compared to the FLUXNET-MTE GPP and GLEAM ET data products (not shown). 449 

Differences between these data products and CABLE simulations generally are much larger 450 

than the differences among different CABLE simulations with different stomatal conductance 451 

model (MED-P/C). Both products suggest that CABLE over-predicts GPP across the globe 452 

and ET across mid-latitudes (20-60°N). The MED-P/C models slightly improve agreement 453 

with the FLUXNET-MTE GPP (Table 8) and GLEAM ET for the evergreen needleleaf PFT 454 

(Table 9). Agreement is also improved for C4 grasses and Tundra PFTs. However, when 455 

considering all PFTs, the MED-P/C models do not noticeably improve agreement with the 456 

GLEAM or FLUXNET-MTE products.  457 

 458 

Figure 9 shows zonal means by latitude for DJF and JJA compared to the upscaled 459 

FLUXNET-MTE GPP and LandFlux-EVAL ET products. As described above, across all 460 

latitudes, the differences between the GPP from the data products and those fluxes predicted 461 

by the models (LEU, MED-P and MED-C) are generally large and the impact of the new 462 

stomatal scheme is typically negligible (Figs. 8a,b). By contrast, the comparison with ET 463 

from the observational data product (Figs. 8c,d) is broadly consistent across all latitudes. 464 

Notably, in JJA, the lower ET fluxes predicted by the MED-P/C models across mid (20-60°N) 465 

to high latitudes (> 60°N) are in agreement with the LandFlux-EVAL product, though the 466 

modelled ET from the MED-L model is not outside the uncertainty envelope of the product. 467 

In DJF, the MED-P model also predicts lower GPP and ET fluxes across the tropics (20°S- 468 

20°N) which would be towards the low end of the uncertainty envelope from the LandFlux-469 

Eval product, but still falls outside the uncertainty range of FLUXNET-MTE. 470 

 471 

 472 

 473 

 474 

 475 

 476 
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4 Discussion 477 

4.1 Optimisation theory in LSMs 478 

In this study we have implemented a simple stomatal conductance model, which was derived 479 

using optimisation theory, into a LSM. By calibrating parameters to match the existing 480 

parameterisation of the original empirical stomatal model (MED-L), we were able to show 481 

that the new model structure for stomatal conductance does not degrade overall model 482 

performance. This result is similar to that of Bonan et al. (2014), who implemented the 483 

optimal stomatal conductance scheme into the CLM LSM, following Williams et al. (1996). 484 

In their implementation they solve the optimisation problem numerically (Eq. 1), with the 485 

additional assumption that leaf water potential cannot fall below a minimum value, effectively 486 

replacing the empirical soil water scalar used here (Eq. 3). Our results and those of Bonan et 487 

al. (2014) demonstrate that model performance using the optimisation scheme was 488 

comparable to the original empirical stomatal conductance (Ball et al. 1987) scheme. 489 

 490 

Optimisation of key plant attributes is a viable alternative to empirical or overly complex 491 

mechanistic model algorithms (Dewar et al. 2009). Optimisation is readily achieved via 492 

numerical methods, but these are typically computationally intensive, which is a concern for 493 

models used in long-term climate projections. Analytical approximations to optimisation such 494 

as the stomatal conductance model used here (Medlyn et al. 2011) provide an operational 495 

alternative.  In this instance, the analytical solution is preferable to the numerical optimisation 496 

because it correctly captures stomatal responses to rising atmospheric CO2 concentration, 497 

whereas the full numerical solution does not. In the full numerical solution, optimal stomatal 498 

behaviour differs depending on whether RuBP regeneration or Rubisco activity is limiting 499 

photosynthesis, and the predicted CO2 response is incorrect when Rubisco activity is limiting, 500 

unless the stomatal slope g1 is assumed to vary with atmospheric CO2 (Katul et al. 2010; 501 

Medlyn et al. 2013). The analytical solution, in contrast, assumes that stomatal behaviour is 502 

regulated as if photosynthesis were always RuBP-regeneration-limited, which yields the 503 

correct CO2 response.   504 

 505 
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The advantage of using an analytical model based on optimisation theory rather than an 506 

empirical model is that it provides a basis for model parameterisation. Our implementation of 507 

the optimal model has one key parameter, g1, which is related to the marginal carbon cost of 508 

water. It is possible to use theoretical considerations to predict how this parameter should 509 

vary among PFTs and with mean annual climate (e.g. Prentice et al. 2014; Lin et al. 2015). 510 

The parameter can also be readily and accurately estimated from data, meaning that the 511 

predicted parameter values can be tested. For example, Héroult et al. (2013) predicted and 512 

demonstrated a negative correlation between the g1 parameter and wood density, and a 513 

positive correlation with the root-to-leaf hydraulic conductance. Lin et al. (2015) examined 514 

these relationships with their global stomatal dataset and concluded that such a relationship is 515 

consistent across angiosperm tree species but not gymnosperm species. 516 

  517 

In this study we extended the work of Lin et al. (2015) by predicting g1 values as a function of 518 

bioclimatic variables (temperature and aridity) (MED-C). The estimated parameter values 519 

were employed in the LSM and resulted in large changes to predicted fluxes in evergreen 520 

needleleaf and C4 vegetation. We have highlighted how the key stomatal conductance 521 

parameter could in theory be predicted, rather than calibrated, or, alternatively, linked to other 522 

traits (wood density) in the model. This work paves the way for broader implementations of 523 

optimisation theory in LSMs and other large-scale vegetation models.   524 

 525 

As g1 represents plant water use strategy, there is also potential to hypothesise how it may 526 

vary during drought. Inadequate simulation of soil moisture availability by LSMs is often 527 

identified as a key weakness in surface flux prediction (Gedney et al. 2000; Dirmeyer et al. 528 

2006b; Lorenz et al. 2012; De Kauwe et al. 2013b). In LSMs, as soil moisture declines, gas 529 

exchange is typically reduced through an empirical scalar (Wang et al. 2011) accounting for 530 

change in soil water content, but not plant behaviour (isohydric vs. anisohydric) (Egea et al. 531 

2011). Bonan et al. (2014) showed that during drought periods, the formulation of the soil 532 

moisture stress scalar was likely to be the cause of error in gs calculations, rather than the gs 533 

scheme itself. Zhou et al. (2013, 2014) demonstrated that the g1 parameter could be linked to 534 

a more theoretical approach to limit gas exchange during water-limited periods, by 535 

considering differences in species water use strategies.  536 
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4.2 Performance of the new model and parameterisation 537 

We tested an implementation of a new stomatal conductance model within the CABLE LSM, 538 

at site and global scales to assess the impact on the simulated carbon, water and energy fluxes. 539 

We utilised a dataset that synthesised stomatal behaviour across the globe in order to 540 

constrain g1 for each PFT (MED-P). In addition, we demonstrated that g1 can be predicted 541 

from bioclimatic temperature and aridity datasets and tested the impact of model simulations 542 

using this parameterisation (MED-C).  543 

 544 

Introducing the Medlyn gs model with g1 parameterisations (MED-P/C) to the CABLE LSM 545 

resulted in reductions in E of ~30 % compared to the standard CABLE simulations across 546 

evergreen needleleaf, tundra and C4 grass regions (Figs. 7c-f and 8c-f). This large difference 547 

represents the conservative behaviour of these PFTs as reported by Lin et al. (2015), currently 548 

not captured by the standard CABLE parameters. In other regions of the globe, the differences 549 

between fluxes predicted by the models was typically small (Figs. 7, 8 and Tables 6 and 7). 550 

Changes of ~30% in E across evergreen needleleaf, tundra and C4 grass PFTs has the 551 

potential to affect regional and conceivably global scale climate. 552 

 553 

In comparison to the LandFlux-EVAL ET product, across mid to high latitudes, the ET 554 

predicted by the MED-P/C models is closer to the mean of the LandFlux-EVAL products, 555 

though the LEU simulations were still within the uncertainty range of the ensemble (Fig. 9). 556 

Across the tropics, the MED-P model predicted a reduction in ET fluxes when compared with 557 

LandFlux-EVAL estimate and the LEU model, however simulations were still within the 558 

uncertainty envelope. Interestingly, over this region the MED-C scheme predicted fluxes 559 

closer to the LEU model than the MED-P. Lorenz et al. (2014) showed that CABLE, when 560 

coupled to ACCESS, predicted excessive ET across much of the northern hemisphere, leading 561 

to unrealistically small diurnal temperature ranges. The new stomatal parameterisation 562 

predicts reduced transpiration across northern latitudes (Figs. 8d and 9d). We note that this 563 

only results in a small improvement in the spatial agreement when compared with the 564 

GLEAM ET product (Table 9), suggesting that there are other causes not related to gs for the 565 

model-data bias.  566 

 567 
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Across all latitudes, the changes introduced by the new stomatal scheme did not degrade the 568 

agreement with the FLUXNET-MTE GPP data product (Table, 8), although it was notable 569 

that CABLE over-predicted (outside the uncertainty range) GPP across the tropics. The MED-570 

P model did predict lower GPP fluxes for this region and the direction of the change was 571 

supported by the data product, but the change in fluxes was small and still outside the 572 

uncertainty range of the FLUXNET-MTE product. Data from Lin et al. (2015) for 3 species in 573 

the Amazon suggests that a g1 value of 4.23 kPa0.5 would be appropriate, which is close to the 574 

PFT derived evergreen broadleaf value used in MED-P simulations (4.12 kPa0.5). This line of 575 

evidence, in combination with the GPP over-prediction, would tend to suggest that the 576 

mismatch between model and data stems from other biases (in model and/or forcing) 577 

unrelated to gs. Zhang et al. (2013) previously identified a bias in predicted ET and runoff 578 

fluxes from CABLE over the Amazon region, but argued that this bias was unlikely to result 579 

from the meteorological forcing data.  580 

 581 

Another avenue of potential bias may relate to the use of a prescribed (as is typical in LSMs) 582 

MODIS LAI climatology, which has been reported to be inaccurate over forested regions 583 

(Shabanov et al. 2005; De Kauwe et al. 2011; Sea et al. 2011; Serbin et al. 2013). The 584 

sensitivity to stomatal parameterisation may be larger when using prognostic LAI. In 585 

prognostic LAI simulations there may be feedbacks from changes in gs to LAI that could 586 

cause larger differences between the Medlyn and the standard Leuning model, both in terms 587 

of the different timings of predicted flux maximums and associated feedbacks on carbon and 588 

water fluxes. We cannot resolve these wider issues of model bias here, but these issues 589 

warrant further investigation.  590 

 591 

4.3 Implications for other models 592 

We anticipate that the new stomatal model could also be readily incorporated into other 593 

LSMs. However, other LSMs may show more or less sensitivity to the introduction of a new 594 

stomatal model and parameters, depending on how they represent boundary layer 595 

conductance. Models with low boundary layer conductance will have low stomatal control of 596 

fluxes, and highly decoupled canopies, whereas models with relatively high boundary layer 597 

conductance will have strong stomatal control and highly coupled canopies.  598 
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 599 

De Kauwe et al. (2013) previously showed decoupling to be a key area of disagreement 600 

between 11 ecosystem models. In this comparison, CABLE appeared as a relatively 601 

decoupled model because it considers multiple conductances in series, including aerodynamic 602 

(above the canopy), boundary layer (within the canopy), and a radiative conductance, 603 

accounting for differences in longwave radiation balance between isothermal and non-604 

isothermal conditions (Wang and Leuning, 1998). In comparison, some other LSMs, for 605 

example the Joint UK Land Environment Simulator (JULES; Best et al. 2011; Cox et al. 606 

1999) and O-CN (Zaehle and Friend, 2010), only consider a bulk aerodynamic conductance 607 

term, and thus would typically predict considerably more coupling. Therefore, such LSMs 608 

would predict a larger influence of changes in stomatal conductance than CABLE. This 609 

sensitivity was demonstrated by Booth et al. (2012), who used the Met Office Surface 610 

Exchange System (MOSES; from which JULES was developed) to highlight that the stomatal 611 

conductance parameter was a key driver of uncertainty in future estimates of the atmospheric 612 

concentration of CO2 from a coupled carbon cycle model (HadCM3C). They showed that by 613 

perturbing the stomatal slope parameter (i.e. g1 in our notation), their model predicted a large 614 

uncertainty in the 1900 to 2100 atmospheric CO2 change of between 380 to 850 ppm. The 615 

Ecosystem Demography model v2 (ED2; Medvigy et al. 1999) is another relatively coupled 616 

model, with high sensitivity to gs. Dietze et al. (2014) estimated that that ~10 % of the 617 

uncertainty in net primary productivity (NPP) predicted by the ED2 model across North 618 

America Biomes was directly due to the stomatal slope parameter (i.e. g1). This uncertainty 619 

was found to be largest in the evergreen PFTs (~21 %), whereas estimates of NPP from 620 

grassland PFTs were largely insensitive. It is clear that levels of coupling between the canopy 621 

and the atmosphere vary between LSMs and this presents a key area of model uncertainty.    622 

 623 

Determining the appropriate level of decoupling is not a trivial task. Previous estimates of the 624 

decoupling coefficient (Ω) based on flux data have either estimated the aerodynamic 625 

resistance from the wind speed and the friction velocity u* (e.g. Lee and Black 1993; Hasler 626 

and Avissar, 2006), or from wind speed, stand height and roughness length (e.g. Stoy et al. 627 

2006); both approaches ignore within-canopy turbulence. Launiainen et al. 2010 reported an 628 

average (1997-2008) July-August Ω = 0.32 (standard deviation = 0.07) for the Hyytiälä site. 629 

By comparison, CABLE predicted a more coupled canopy, July-August (1996-2006) Ω = 630 
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0.21 (standard deviation = 0.11) from the standard Leuning model. Other literature studies for 631 

coniferous forests suggest a lower Ω ~ 0.1-0.2 (Jarvis 1985; Jarvis and McNaughton 1986; 632 

Lee and Black, 1993; Meinzer 1993). Ranges suggested for other PFTs are typically broad; 633 

between 0.5-0.9 for broadleaf tropical forest species (Meinzer 1993; Meinzer et al., 1997; 634 

Wullschleger et al. 1998; Cienciala et al. 2000) and 0.4-0.9 for crops (Meinzer 1993). This 635 

broad range in Ω makes it difficult to conclude which LSM most correctly simulates coupling. 636 

However, as a major source of disagreement among models, we emphasise that coupling 637 

strength is an important issue to address.  638 

 639 

4.4 Minimum stomatal conductance, g0 640 

The empirical Leuning gs model includes a minimum stomatal conductance term, g0. This 641 

term can also be added to the optimal Medlyn model. The value of this parameter can have a 642 

significant impact on predicted ecosystem fluxes, as we found at the Howard Springs site 643 

(Figs. 3 and 4). The values used in the standard CABLE model (g0 = 0.01 and 0.04 mol m-2 s-1 644 

for C3 and C4 species respectively) were taken from the Simple Biosphere Model version 2 645 

(SiB2) (Sellers et al. 1996), but the original source of these parameter values is unclear. 646 

Replacing these values with zeroes had a large impact on predicted fluxes, particularly under 647 

high VPD conditions at the C4-dominated Howard Springs. This result agrees with a recent 648 

study by Barnard and Bauerle (2013), who concluded that g0 was in fact the most sensitive 649 

parameter for correctly estimating transpiration fluxes. It is clear that further investigation is 650 

needed on the impact of different g0 assumptions in land surface and ecosystem models. Here 651 

we offer some thoughts about the directions such investigations could take.  652 

First, it will be important to query the way in which g0 is incorporated into the stomatal 653 

model. Adding a g0 term as a model intercept, as is currently done, is not based on theory, and 654 

has the unintended consequence that it affects predicted stomatal conductance at all times, not 655 

only when photosynthesis approaches zero, resulting in high sensitivity to this model 656 

parameter. Alternative model structures incorporating g0 can be derived depending on what g0 657 

is assumed to represent. If we assume, for example, that g0 represents a physical lower limit to 658 

stomatal conductance, below which it is not possible for gs to fall, the optimal behaviour 659 

would be for g0 to be a lower bound to stomatal conductance predicted by the standard model. 660 

Thus, an alternative model structure to consider would be the maximum of g0 and the optimal 661 
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gs, rather than the sum of the two.   662 

It will also be important to carefully consider how to parameterise the value of g0. Some 663 

authors suggest using night-time stomatal conductance values (e.g. Zeppel et al. 2014). 664 

However, minimum stomatal conductance values measured during the day are considerably 665 

lower than measured night-time values (Walden-Coleman et al. 2013). We extracted the 666 

minimum gs values for each species from the dataset of Lin et al. (2015) and plotted them as a 667 

function of the minimum recorded photosynthesis values (Fig. S2). It can be seen that the 668 

minimum gs values tend to zero with minimum recorded A, and are much lower than the 669 

values currently assumed in CABLE and the night-time gs values estimated from the literature 670 

by Zeppel et al. (2014). Consequently, we suggest that values of g0 used in the stomatal model 671 

applied during the day should be estimated from daytime, rather than night-time 672 

measurements.   673 

 674 
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Figure Captions 1089 

Figure 1: Stomatal sensitivity to increased vapour pressure deficit (D). The Leuning model 1090 

has been parameterised in the same way as the CABLE model, for C3 species: a1 = 9.0, D = 1091 

1.5 kPa and for C4 plants: a1 = 4.0, D0 = 1.5 kPa. The Medlyn model has been fit to output 1092 

generated by the Leuning model using least squares for D ranging from 0.05 to 3 kPa. The 1093 

calibrated parameters for the Medlyn model were g1 = 3.37 and g1 = 1.09 for C3 and C4 1094 

species, respectively. 1095 

 1096 

Figure 2: Map showing the plant functional types (PFTs) currently used in CABLE 1097 

(Lawrence et al. 2012). CABLE also has C4 crop, wetland and urban PFTs, however these are 1098 

currently not operational.  1099 

 1100 

Figure 3: A comparison of the modelled average seasonal cycle of gross primary productivity 1101 

(GPP), latent heat flux (LE), transpiration (E) and the observed (OBS) LE flux at 6 1102 

FLUXNET sites during approx. daylight hours (8 am – 7 pm). Timeseries have been averaged 1103 

across all years as described in Table 4 to produce seasonal cycles. Light blue shading 1104 

indicates the uncertainty in predicted fluxes from the Medlyn model (MED-P), accounting for 1105 

± 2 standard errors in the site g1 parameter value. 1106 

 1107 

Figure 4: Mean diurnal modelled gross primary productivity (GPP), latent heat flux (LE), 1108 

transpiration (E) and the observed (OBS) LE flux at the Howard Springs Fluxnet sites during 1109 

daylight hours (8 am – 7 pm). Timeseries have been averaged across all years as described in 1110 

Table 2 to produce diurnal seasonal cycles. Light blue shading indicates the uncertainty in 1111 

predicted fluxes from the Medlyn model (MED-P), accounting for ± 2 standard errors in the 1112 

site g1 parameter value. 1113 

 1114 

Figure 5: Average seasonal cycles of the simulated decoupling coefficient (Ω), total boundary 1115 

layer conductance (gb) and stomatal conductance (gs) at 6 Fluxnet sites during daylight hours 1116 

(8 am – 7 pm). Timeseries have been averaged across all years as described in Table 2 to 1117 

produce seasonal cycles. Light blue shading indicates the uncertainty in predicted fluxes from 1118 
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the Medlyn model (MED-P), accounting for ± 2 standard errors in the site g1 parameter value. 1119 

 1120 

Figure 6: Global maps showing how the g1 model parameter varies across the globe. Panel (a) 1121 

shows the fitted g1 parameter values for each PFT based on the data, panel (b) shows the 1122 

predicted g1 parameter values considering the influence of climate indices. In total, 126 out of 1123 

a possible 54,000 pixels have been masked from panel (b), representing pixels where the 1124 

temperature range and moisture index extended outside the range of the database of Lin et al. 1125 

(2015). 1126 

  1127 

Figure 7: Mean seasonal (December-January-February: DJF and June-July-August: JJA) 1128 

difference maps of gross primary productivity (GPP) calculated across the 10 years of the 1129 

Global Soil Wetness Project2 (GSWP-2) forcing (1986-1995) period. Panels (a) and (b) show 1130 

the difference between the standard CABLE (LEU) model and the Medlyn model fit to the 1131 

Leuning model (MED-L), panels (c) and (d) show the difference between the LEU model and 1132 

the Medlyn model with the g1 PFT parameterisation (MED-P), and finally, panels (e) and (f) 1133 

show the difference between the LEU model and the Medlyn model with the g1 parameter 1134 

predicted as a function of climate indices (MED-C). In total, 126 out of a possible 54,000 1135 

pixels have been masked from panels (e) and (f), representing pixels where the temperature 1136 

range and moisture index extended outside the range of the synthesis gs database. ata shown 1137 

in panels (b), (c), (d), (e), (f) have been clipped, with the maximum ranges extending to (-1.6–1138 

0.36), (-1.28–3.03), (-1.19–3.82), (-1.2–2.9) and (-1.05–3.7) and this affects 1, 64, 34, 42 and 1139 

147 pixels, respectively. 1140 

 1141 

Figure 8: Mean seasonal (December-January-February: DJF and June-July-August: JJA) 1142 

difference maps of transpiration (E) calculated across the 10 years of the Global Soil Wetness 1143 

Project2 (GSWP-2) forcing (1986-1995) period. Panels (a) and (b) show the difference 1144 

between the standard CABLE (LEU) model and the Medlyn model fit to the Leuning model 1145 

(MED-L), panels (c) and (d) show the difference between the LEU model and the Medlyn 1146 

model with the g1 PFT parameterisation (MED-P), and finally, panels (e) and (f) show the 1147 

difference between the LEU model and the Medlyn model with the g1 parameter predicted as 1148 
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a function of climate indices (MED-C). In total, 126 out of a possible 54,000 pixels have been 1149 

masked from panels (e) and (f), representing pixels where the temperature range and moisture 1150 

index extended outside the range of the synthesis gs database. Data shown in panels (c), (d), 1151 

(e), (f) have been clipped, with the maximum ranges extending to (-0.3–1.12), (-0.33–1.27), (-1152 

0.63–0.84) and (-0.64–1.31) and this affects 36, 251, 8 and 444 pixels, respectively. 1153 

 1154 

Figure 9: Latitudinal average (December-January-February: DJF and June-July-August: JJA)  1155 

of mean annual (a,b) gross primary productivity (GPP) and (c,d) evapotranspiration (ET) 1156 

predicted by the CABLE model compared to the upscaled FLUXNET and LandFlux-EVAL 1157 

products. CABLE model simulations are shown are from the standard CABLE (LEU), the 1158 

Medlyn model fit to the Leuning model (MED-L), Medlyn model with the g1 PFT 1159 

parameterisation (MED-P) and the Medlyn model with the g1 parameter predicted as a 1160 

function of climate indices (MED-C). The shading represents ± 1 standard deviation in the 1161 

data product and ± 2 standard errors in the MED-P and MED-C models. Data shown cover the 1162 

10 years of the Global Soil Wetness Project2 (GSWP-2) forcing (1986-1995) period. In total, 1163 

126 out of a possible 54,000 pixels have been masked from the zonal average of the MED-C 1164 

model, which represents pixels where the temperature range and moisture index extended 1165 

outside the range of the synthesis gs database. Missing data areas in the both data products 1166 

have been also been excluded from any comparisons (for example over the Sahara Desert, see 1167 

Zhang et al. 2013). 1168 

 1169 

Figure S1: Global maps showing the uncertainty of the g1 model parameter. Panel (a) shows –1170 

2 standard errors (SE) and (b) + 2 SE for the fitted g1 for each of CABLE's PFTs. Panel (c) 1171 

shows –2 standard errors (SE) and (e) + 2 SE for predicted g1 parameter values considering 1172 

the influence of climate indices. In total, 126 out of a possible 54,000 pixels have been 1173 

masked from panels (c) and (d), representing pixels where the temperature range and moisture 1174 

index extended outside the range of the synthesis gs database. 1175 

 1176 

Figure S2: Minimum measured stomatal conductance (gs) as a function of corresponding 1177 

photosynthesis rate, for each dataset in the Lin et al. (2015) synthesis gs database with 1178 

minimum photosynthesis rate < 5 mol m-2 s-1. Data are separated into C3 (131 datasets) and 1179 
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C4 species (22 datasets). Also shown for comparison are the default g0 values used in 1180 

CABLE, as well as average night-time g0 values for C3 and C4 plants, calculated from Figure 1181 

2 in a review by Zeppel et al. (2014). 1182 

 1183 

  1184 
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Tables 1185 

Table 1: Fitted g1 values based on the CABLE PFTs using data from Lin et al. (2015). 1186 

PFT g1 mean 

(kPa0.5) 

g1 standard error 

(kPa0.5) 

Evergreen needleleaf 2.35 0.25 

Evergreen broadleaf 4.12 0.09 

Deciduous needleleaf 2.35 0.25 

Deciduous broadleaf 4.45 0.36 

Shrub 4.70 0.82 

C3 grassland 5.25 0.32 

C4 grassland 1.62 0.13 

Tundra 2.22 0.4 

C3 cropland 5.79 0.64 

 1187 

Table 2: Model coefficients used in mixed effects model to predict g1 from two long-term 1188 

average (1960-1990) bioclimatic variables: temperature and a moisture index representing an 1189 

indirect estimate of plant water availability. 1190 

PFT a b c d e 

Evergreen needleleaf 1.32 0.03 0.02 0.01 -0.97 

Evergreen broadleaf 1.32 0.03 0.02 0.01 -0.67 

Deciduous needleleaf 1.32 0.03 0.02 0.01 -0.97 

Deciduous broadleaf 1.32 0.03 0.02 0.01 -0.37 

Shrub 1.32 0.03 0.02 0.01 -0.29 

C3 grassland 1.32 0.03 0.02 0.01 -0.1 

C4 grassland 1.32 0.03 0.02 0.01 -1.35 

Tundra 1.32 0.03 0.02 0.01 -0.73 
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C3 cropland 1.32 0.03 0.02 0.01 0.0 

 1191 

Table 3: A summary of model simulations 1192 

Model 

Simulation 

Description 

LEU Control experiment, standard CABLE model with the Leuning gs 

model. 

MED-L Medlyn model with parameters (g0 and g1) calibrated against an offline 

Leuning model.  

MED-P Medlyn model with the g1 parameter calibrated by PFT constrained by 

a global synthesis of stomatal data.  

MED-C Medlyn model with the g1 parameters predicted from a mixed effects 

model considering the impacts of temperature and aridity. 

 

 1193 

 1194 

Table 4: Summary of flux tower sites. 1195 

Site FLUXNET 

Vegetation Type  

CABLE 

PFT 

Latitude  Longitude Country Years Reference 

Bondville Cropland  C3 Crop 40.00 N -88.29 W US 1997-2006  

Cabauw  Grassland  C3 Grass 51.97 N 4.93 E Holland 2003-2006  

Harvard Deciduous 

broadleaf  

Deciduous 

broadleaf 

42.54 N -72.17 W US 1994-2001  

Howard 

Springs 

Woody Savannah  C4 grass -12.49 

S 

131.15 E Australia 2002-2005  
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Hyytiala Evergreen 

needleleaf 

Evergreen 

needleleaf 

61.85 N 23.29 E Finland 2001-2004  

Tumbarumba Evergreen 

broadleaf   

Evergreen 

broadleaf 

-35.66 

S 

148.15 E Australia 2002-2005  

 1196 

Table 5: Summary statistics of modelled and observed LE at the 6 FLUXNET sites during 1197 

daylight hours (9 am – 18 pm) and over the peak-growing season (for Northern hemisphere 1198 

sites, from June–July–August and for Southern Hemisphere sites, from December–January–1199 

February). 1200 

Site RMSE Bias Index of Agreement  

 LEU MED-L MED-P LEU MED-L MED-P LEU MED-L MED-P 

Bondville 109.91 102.74 109.78 -12.92 -9.50 -5.80 0.81 0.83 0.84 

Cabauw 82.13 78.65 82.76 -13.54 -13.15 -12.75 0.78 0.80 0.79 

Harvard 59.17 55.51 58.51 8.35 4.10 7.10 0.94 0.95 0.95 

Howard 

Springs 

105.92 105.72 138.57 -4.86 1.16 -61.25 0.83 0.84 0.62 

Hyytiala 58.90 54.62 47.33 21.00 16.26 -0.24 0.89 0.89 0.89 

Tumbarumba 130.91 124.28 124.84 -15.06 -14.30 -13.22 0.76 0.78 0.78 

 1201 

Table 6: Mean and 1 standard deviation difference in annual GPP between the LEU and 1202 

MED-L model, the LEU and MED-P models and the LEU-C models for each of CABLE’s 1203 

PFTs. Where standard deviations are large relative to the mean it suggests large variability 1204 

between the LEU and other models within a PFT. 1205 

PFT GPP: LEU!− MED-L 

(g C m-2 y-1) 

GPP: LEU!− MED-P 

(g C m-2 y-1) 

GPP: LEU!− MED-C 

(g C m-2 y-1) 

Evergreen needleleaf -3.08 ± 18.39 39.05 ± 34.18 43.45 ± 24.2 

Evergreen broadleaf 36.1 ± 51.93 76.12 ± 61.99 73.70 ± 65.08 

Deciduous needleleaf -1.84 ± 5.14 24.06 ± 5.35 34.03 ± 5.75 

Deciduous broadleaf -31.48 ± 57.77 -17.31 ± 38.0 -46.3 ± 69.01 
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Shrub -69.28 ± 32.31 -45.46 ± 17.61 -35.39 ± 17.41 

C3 grassland -47.73 ± 46.83 -66.76 ± 41.55 -62.79 ± 50.02 

C4 grassland -93.04 ± 45.95 302.94 ± 113.93 115.53 ± 89.29 

Tundra 0.3 ± 12.63 16.61 ± 14.16 13.36 ± 11.02 

C3 cropland -26.85 ± 36.51 -64.93 ± 36.58 -65.45 ± 58.21 

 1206 

Table 7: Mean and 1 standard deviation difference in annual E between the LEU and MED-L 1207 

model, the LEU and MED-P models and the LEU-C models for each of CABLE’s PFTs. 1208 

Where standard deviations are large relative to the mean it suggests large variability between 1209 

the LEU and other models within a PFT. 1210 

PFT E: LEU!− MED-L 

(mm y-1) 

E: LEU!− MED-P 

(mm y-1) 

E: LEU!− MED-C 

(mm y-1) 

Evergreen needleleaf 16.55 ± 9.78 76.27 ± 36.34 81.72 ± 29.36 

Evergreen broadleaf 34.34 ± 14.34 27.31 ± 14.7 22.66 ± 48.16 

Deciduous needleleaf 10.5 ± 6.18 54.36 ± 17.07 67.03 ± 17.83 

Deciduous broadleaf 11.15 ± 13.61 0.56 ± 8.45 -10.16 ± 34.36 

Shrub -11.14 ± 5.2 -4.81 ± 5.51 -1.68 ± 6.21 

C3 grassland 0.34 ± 10.68 -17.37 ± 8.63 -15.51 ± 19.63 

C4 grassland -11.99 ± 5.67 107.77 ± 41.88 47.34 ± 32.21 

Tundra 5.9 ± 3.87 24.13 ± 14.38 20.96 ± 11.75 

C3 cropland 0.8 ± 12.37 -30.07 ± 12.36 -28.56 ± 30.11 

 1211 

Table 8: Summary statistics for December–January–February (DJF) June–July–August (JJA), 1212 

describing the root mean squared error (RMSE) and bias between the FLUXNET-MTE GPP 1213 

product and the CABLE model.  1214 

PFT LEU (JJA; DJF) MED-P (JJA; DJF) MED-C (JJA; DJF) 
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 RMSE Bias RMSE Bias RMSE Bias 

Evergreen 

needleleaf 

3.23; 0.4 2.73; 0.11 2.98; 0.39 2.42; 0.1 2.92; 0.39 2.37; 0.1 

Evergreen 

broadleaf 

2.31; 2.29 1.87; 1.57 2.14; 2.16 1.66; 1.36 2.12; 2.09 1.68; 1.36 

Deciduous 

needleleaf 

4.41; 0.00 4.37; 0.00 4.17; 0.00 4.13; 0.00 4.07; 0.00 4.03; 0.00 

Deciduous 

broadleaf 

2.33; 1.81 1.75; 1.27 2.33; 1.88 1.78; 1.33 2.35; 1.97 1.82; 1.42 

Shrub 0.98; 0.86 0.72; 0.51 1.10; 0.95 0.84; 0.61 1.08; 0.91 0.82; 0.57 

C3 

grassland 

1.86; 1.44 1.37; 0.85 2.09; 1.57 1.67; 0.97 2.06; 1.59 1.61; 0.99 

C4 

grassland 

3.15; 2.36 2.55; 1.73 2.43; 1.67 1.77; 0.94 

 

2.94; 2.16 2.24; 1.43 

Tundra 2.48; 0.29 1.79; 0.03 2.31; 0.27 1.62; 0.03 

 

2.34; 0.27 1.66; 0.03 

C3 

cropland 

1.96; 1.25 1.33; 0.83 2.18; 1.39 1.64; 0.94 2.13; 1.43 1.59; 0.96 

 1215 

 1216 

 1217 

Table 9: Summary statistics for December–January–February (DJF) June–July–August (JJA), 1218 

describing the root mean squared error (RMSE) and bias taking the GLEAM ET product as 1219 

reference.  1220 

PFT LEU (JJA; DJF) MED-P (JJA; DJF) MED-C (JJA; DJF) 

 RMSE Bias RMSE Bias RMSE Bias 

Evergreen 2.37; 1.83 0.79; 0.24 2.28; 1.83 0.31; 0.23 2.27; 1.83 0.26; 0.23 
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needleleaf 

Evergreen 

broadleaf 

2.17; 2.32 -0.05; -

0.25 

2.18; 2.34 -0.12; -

0.32 

2.17; 2.32 -0.1; -0.31 

Deciduous 

needleleaf 

1.45; 0.69 1.15; -0.02 1.19; 0.69 0.75; -0.02 1.13; 0.69 0.65; -0.0 

Deciduous 

broadleaf 

2.69; 2.43 0.79; 0.58 2.69; 2.43 0.77; 0.58 2.69; 2.43 0.78; 0.61 

Shrub 1.25; 1.34 0.29; 0.47 1.24; 1.34 0.29; 0.46 1.25; 1.34 0.29; 0.45 

C3 

grassland 

1.66; 1.49 0.53; 0.34 1.67; 1.5 0.55; 0.36 1.67; 1.5 0.54; 0.37 

C4 

grassland 

1.37; 1.38 0.33; 0.29 1.32; 1.35 0.2; 0.09 1.35; 1.35 0.29; 0.2 

Tundra 2.35; 1.88 0.74; 0.37 2.31; 1.88 0.55; 0.36 2.31; 1.88 0.57; 0.36 

C3 

cropland 

1.8; 1.38 0.9; 0.29 1.85; 1.39 0.98; 0.3 1.84; 1.39 0.97; 0.3 

 1221 

 1222 
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