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Abstract

Studies of climate change impacts on the terrestrial biosphere have been completed without
recognition of the integrated nature of the biosphere. Improved assessment of the impacts of
climate change on food and water security requires the development and use of models not
only representing each component but also their interactions. To meet this requirement the Joint5

UK Land Environment Simulator (JULES) land surface model has been modified to include a
generic parametrisation of annual crops. The new model, JULES-crop, is described and evalu-
ation at global and site levels for the four globally important crops; wheat, soybean, maize and
rice. JULES-crop demonstrates skill in simulating the inter-annual variations of yield for maize
and soybean at the global and country level, and for wheat for major spring wheat producing10

countries. The impact of the new parametrisation, compared to the standard configuration, on
the simulation of surface heat fluxes is largely an alteration of the partitioning between latent
and sensible heat fluxes during the later part of the growing season. Further evaluation at the
site level shows the model captures the seasonality of leaf area index, gross primary production
and canopy height better than in standard JULES. However, this does not lead to an improve-15

ment in the simulation of sensible and latent heat fluxes. The performance of JULES-crop from
both an earth system and crop yield model perspective is encouraging. However, more effort is
needed to develop the parameterisation of the model for specific applications. Key future model
developments identified include the introduction of processes such as irrigation and nitrogen
limitation which will enable better representation of the spatial variability in yield.20

1 Introduction

Understanding how climate variability and change will impact upon crop production systems is
a research challenge of utmost importance to society. To date, studies of climate change impacts
on the terrestrial biosphere have been completed without recognition of the integrated nature of
the biosphere. Crop simulation models are widely utilised as they incorporate many known ef-25

fects of how changes in atmospheric conditions can impact upon crop growth, development and
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yield. However, they do not simulate the wider interactions of crops and the environment. For
example, climate change will impact upon water resources which will in turn impact upon the
water available for irrigation of crops. Betts et al. (2013) used the Hadley Centre Earth System
Model (HadGEM2-ES) to evaluate climate impacts on the terrestrial biosphere under a range of
emission scenarios. By doing so they were able to assess several elements of the terrestrial sys-5

tem in a way that was fully integrated and consistent with the climate projections. However, they
were only able to include natural systems as crops are not yet included in the model. Including
a representation of crops within land surface models will facilitate a more comprehensive, inte-
grated and internally-consistent simulation of the impacts of climate change and variability on
the full land system, accounting for interactions between different components and processes.10

This will ultimately enable improved projections of the impacts of climate change on food and
water security, including interactions between the two. There is increasing evidence that the
cultivation of crops affects weather and climate on local scales. Crop-lands now occupy 12 %
of the Earth’s ice-free land surface and in several regions of the world are the dominant vege-
tation type on the land surface (e.g. mid-West USA, Indo-Gangetic Plain). This extensification15

of agriculture has altered the biophysical characteristics of the land surface potentially altering
regional climate. Therefore, there is reasoning to consider crops and climate as a truly coupled
system and hence motivation to develop models which can fully represent the coupled feedbacks
between them.

Efforts to simulate the environmental impacts on crop production is commonly thought to20

have begun in the 1960s at Wageningen (van Ittersum et al., 2003). Since then crop modelling
has grown and there are now many models available in the research and agronomic domains.
Such models have been deployed both as decision support tools, and to research the impacts
of climate change on future crop production. Recent advances in crop modelling include the
application of crop models, traditionally developed at the field level, to cover the globe on a25

gridded basis (Deryng et al., 2011; Osborne et al., 2013), and inter-comparison of many crop
models in simulating the same crop and the same set of conditions (Asseng et al., 2013).

The investigation of how crop-lands affect weather and climate is much less mature. Initial
expansion of crop-land area came at the expense of forests and the impact of this deforesta-
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tion has received considerable research attention. However, crop-lands have also replaced more
similar native grasslands. For example, McPherson et al. (2004) showed that the near-surface
climate over the now intensively cultivated winter wheat belt in Oklahoma, USA, is signifi-
cantly different to that over adjacent grasslands. McPherson et al. (2004) identify the differ-
ences in phenology between managed crop-lands and natural grasslands as the determinant of5

the differences.
The increase in understanding of how crop-lands might differentially impact the climate com-

pared to natural vegetation has led to a recent surge in model development whereby land surface
or global vegetation models have been extended to include explicit parametrisations of crops,
in place of the use of grasslands as a surrogate (see review of Levis, 2010). Some developments10

have been motivated by improving the carbon and water budget of land surface modelling (Bon-
deau et al., 2007), others to include crop-lands in global or regional climate models to better
represent their impact on the atmosphere (Lokupitiya et al., 2009; Chen and Xie, 2012; Levis
et al., 2012), while others have been motivated to consistently simulate both yield and environ-
mental impacts (Kucharik and Brye, 2003).15

The aim of this model development was to develop a combined land surface and crop model
capable of simulating both the impacts of climate variability on crop productivity, as well as the
impact of crop-lands on the climate. To achieve this we have added a crop-specific parametri-
sation to the Joint UK Land Environment Land Surface land surface model (JULES). JULES
is the land surface scheme of the UK Met Office Unified Model and the next generation UK20

Earth System Model (UKESM) and therefore, can be in time coupled to a state of the art cli-
mate model. A full description of JULES can be found in Best et al. (2011) and Clark et al.
(2011). JULES does not currently include an explicit parametrisation of crops, instead over
cropped regions the C3 or C4 grass plant functional type are used. Previous work has included
crops in the model. Osborne et al. (2007) included a crop parametrisation in MOSES (i.e. in the25

fully coupled land-surface – climate model) based on the groundnut version of the crop model
GLAM. More recently, Van den Hoof et al. (2011) extended JULES to include a parametrisation
of wheat based on the crop model SUCROS. Neither Osborne et al. (2007) nor Van den Hoof
et al. (2011) developed a generic representation of crops suitable for the examination of differ-
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ent crops throughout the globe something that is important from an Earth System Modelling
perspective. Therefore, the objective of this study was to develop a generic parametrisation of
crops applicable to many crop types and at the global scale. However, the model has been de-
signed to be flexible meaning users can re-parametrize the model depending on requirements5

(e.g. to represent different crop cultivars).
The following Section describes the model development, Sects. 3 and 4 present evaluation

of the new model when applied at global and site levels, respectively, followed by a Discussion
(Sect. 5).

2 Model description10

The essence of JULES-crop is illustrated in Fig. 1. The additional model equations required to
simulate crops essentially partition the carbon uptake of vegetation already simulated by JULES
in to several crop organs and the size of the crop, important for land surface-atmosphere feed-
backs, is derived from the organ biomass using allometric equations. The pattern of partitioning
of assimilated carbon to the crop organs is affected by the crop development rate which itself is15

influenced by temperature. In addition to the new equations describing crop growth and devel-
opment, changes to the model structure were also required to accommodate the additional plant
functional types. New equations describing crop growth and development were added to the
model. Each crop is considered as an additional plant functional type and a distinction is made
between natural and crop plant functional types within the model, with the crop plant functional20

types requiring extra parameters to be specified. The detailed description of the crop parametri-
sation is split in to three parts. Firstly, the equations that determine the start and duration of the
crop growing season are described. Secondly, the equations determining the rate of crop growth
are described. Lastly, the changes to model structure are outlined. A full listing of new model
parameters and variables can be found in Tables 1 and 2, respectively.25
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2.1 Growing season and development

The crop growing season begins when the crop is sown. This date can either be prescribed (i.e.
if it is known) or calculated dynamically based on environmental criteria. In the latter case,
sowing only occurs when the soil is wet enough (θ2 > θc,2, where θ2 is the soil moisture content
in the second layer and θc,2 is the critical soil moisture content in the second layer), it is warm5

enough (Tsoil,3 > Tb + 2K, where Tsoil,3 is the temperature in the third soil layer and Tb is the
base temperature), and days are not rapidly shortening (dP/dt >−0.02 hours per day, where P
is the day length). We wish to make users aware of this sowing option however, we feel it needs
further optimizing and so results using the dynamic sowing date will not be included here. The
use of sub-surface soil moisture and temperature variables prevents sowing occurring too early10

in response to short term fluctuations in weather. The rate of day length criteria ensures that
crops are not sown too late in the year when conditions for growth are deteriorating.

Once sown, the crop develops through three stages: sowing to emergence, emergence to flow-
ering, and flowering to maturity. Harvest is assumed to occur at crop maturity. The rate of crop
development is related to thermal time. Given the 1.5 m tile temperature (T ), an effective tem-15

perature (Teff) is calculated based upon the crop-specific cardinal temperatures (Tb,To,Tm - see
Table 1 for description).

Teff =


0 for T < Tb

T −Tb for Tb ≤ T ≤ To

(To−Tb)
(

1− T −To

Tm−To

)
for To < T < Tm

0 for T ≥ Tm

(1)

Teff is greatest, and hence development fastest, at T = To. As temperature falls below, or rises20

above To the rate of development linearly decreases until no development occurs when either
T ≤ Tb or T ≥ Tm. For the sowing to emergence phase, Teff is not affected by Tm or To (i.e.
Teff = T−Tb). This equation is a “standard” way of calculating effective temperature (Challinor
et al., 2004). An important difference to other available models, is that JULES-crop simulates

6
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a decline of Teff above the maximum temperature, whereas others keep Teff at the maximum25

value no matter how high temperatures get.
For some crops, progress towards flowering is slowed if the day length (P ) is less than

(greater than) a crop-specific critical photoperiod (Pcrit) for long-day (short-day) crop types.
The degree of sensitivity to photoperiod is represented by the parameter Psens which is positive
for short-day plants and negative for long-day plants. This conceptual approach was motivated5

by Loomis R.S. (1992). Therefore, to slow development Teff is multiplied by the relative pho-
toperiod effect (RPE), which is defined as follows:

RPE = 1− (P −Pcrit)Psens (2)

The status of crop development is represented by the Development Index (DVI) which takes10

the value of −1 upon sowing, increasing to 0 on emergence, 1 at the end of vegetative stage
and 2 at crop maturity. The rate of increase of DVI is calculated as follows where TTemr is the
thermal time between sowing and emergence, TTveg is the thermal time between emergence
and flowering and TTrep is the thermal time between flowering and harvest:

dDVI
dt

=



Teff

TTemr
for −1≤ DVI< 0(

Teff

TTveg

)
RPE for 0≤ DVI< 1

Teff

TTrep
for 1≤ DVI< 2

(3)15

The growing season ends when DVI = 2 at which time the prognostic variables related to crop
growth (L,h,Croot,Charv,Cresv) are reset to minimal values close to zero. To prevent growing
seasons continuing indefinitely when conditions are no longer suitable the crop is also harvested
if the soil temperature in the second soil layer falls below Tb at any time after DVI = 1 or if20

LAI> 15. Vernalisation, a cold temperature requirement for development in some crops, is not
included in this model version.

7
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2.2 Growth

To simulate crop growth, Net Primary Productivity (Π) is accumulated over a day and then par-
titioned between five carbon pools: root (Croot), structural stem (Cstem), stem reserves (Cresv),
leaves (Cleaf), and harvested organs (Charv). The original formulation for Π in JULES includes
assumptions about the sizes of the leaf, stem and root carbon pools in order to estimate respi-5

ration loses. Stem carbon is a function of leaf area index (Eq. 42 of Clark et al., 2011) and root
carbon is set to equal leaf carbon. Because these carbon pools are now explicitly simulated, Π
is recalculated for the crop types the with following equation based on an algebraic reduction
of the set of equations used in JULES:

Π = 0.012(1− rg)
(
Ac−Rdc

(
Croot +Cstem

Cleaf

))
(4)10

where rg is the fraction of Gross Primary Productivity less maintenance respiration that is as-
signed to growth respiration, Ac is the net canopy photosynthesis, and Rdc is the rate of non-
moisture stressed canopy dark respiration. Cleaf, Cstem and Croot are the carbon content of leaf,
stem and root, respectively.15

The carbon in Π is accumulated over a day and then divided into five crop components ac-
cording to “partition coefficients”, one for each of the four root, stem, leaf and harvest pools
defined above and a reserve pool. These components are added to the (state variable) pools of

8
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carbon describing the crop.

dCroot

dt
= prootΠ20

dCleaf

dt
= pleafΠ

dCstem

dt
= pstemΠ(1− τ)

dCharv

dt
= pharvΠ

dCresv

dt
= pstemΠτ (5)

where τ is the fraction of stem carbon that is partitioned in to the reserve pool. proot + pleaf +
pstem + pharv = 1.0.

Partition coefficients for a given crop are typically pre-defined in process-based crop models5

according to either the length of time since emergence, or to crop development stage (DVI, i.e.
a function of thermal time since emergence). They are represented by fixed values for a given
period of time (or thermal time) since emergence, and these values are listed in a look-up table
and referenced for each iteration of the model (e.g. WOFOST, van Ittersum et al., 2003).

Here we define the partition coefficients as a function of thermal time using 6 parameters to10

describe continuously varying partition coefficients over the duration of the crop cycle. We use

9
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a multinomial logistic to define this function:

proot =
eαroot+(βrootDVI)

eαroot+(βrootDVI) + eαstem+(βstemDVI) + eαleaf+(βleafDVI) + 1

pstem =
eαstem+(βstemDVI)

eαroot+(βrootDVI) + eαstem+(βstemDVI) + eαleaf+(βleafDVI) + 1

pleaf =
eαleaf+(βleafDVI)

eαroot+(βrootDVI) + eαstem+(βstemDVI) + eαleaf+(βleafDVI) + 1
15

pharv =
1

eαroot+(βrootDVI) + eαstem+(βstemDVI) + eαleaf+(βleafDVI) + 1
(6)

where α and β are empirically derived parameters describing the shape of the thermal time
varying partition coefficient for leaves, roots and stems, and DVI is the development index. Thus
for only six parameters (which is also the absolute minimum number of parameters needed to20

define partition coefficients for four carbon pools) we can define a much wider range of shapes
of thermal time varying partition coefficients. What’s more, these six parameters can be more
feasibly calibrated than a larger number of ’look-up’ partition coefficients. This parametrisation
is illustrated in Fig. 2 overlaid with example observed partitioning fractions from de Vries et al.
(1989).

Following the formulation of de Vries et al. (1989), once carbon is no longer partitioned to
stems, carbon from the stem reserve pool is mobilised to the harvest pool at a rate of 10 % a
day:

Charv = Charv + (0.1Cresv)
Cresv = 0.9Cresv

}
for pstem < 0.01. (7)5

Leaf senescence is treated simplistically by mobilising carbon from the leaf to the harvest
pool at a rate of 0.05d−1 once DVI has reached 1.5 This equation was inspired by Eq7, but
based the period for which senescence starts on a specific DVI value (1.5) rather than waiting

10
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for partitioning to leaves to cease since for some crop types this does not happen. :10

Charv = Charv + (0.05Cleaf)
Cleaf = 0.95Cleaf

}
for DVI> 1.5. (8)

At the end of each growth time step (24 h), the amount of carbon in the leaves is related to
leaf area index (L) by:

L=
Cleaf

fC
SLA (9)15

where

SLA = γ (DVI + 0.06)δ (10)

The values of γ and δ were determined by fitting the relationship to the paired values of DVI20

and SLA reported in de Vries et al. (1989).
The amount of carbon in the stem is related to the crop height by (Hunt, 1990):

h= κ

(
Cstem

fC

)λ
(11)

The values of κ and λ were determined by fitting the relationship to the paired values of h25

and Cstem at the Mead FLUXNET site (Verma et al., 2005).
Equations (9) and (11) are rearranged to derive the carbon content of leaves and stems, re-

spectively, before each growth time step.
Because root biomass increases during the crop growing season the fraction of roots in each

JULES soil layer varies according to the equation of Arora and Boer (2003) which defines the
fraction of roots at depth z as:

f = 1− e−
z
a (12)5

11
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where

a= dr

(
Croot

fC

)rdir

(13)

where dr is 0.5 for all crop types, and rdir is a crop-specific parameter.10

To ensure crop establishment, the growing season is curtailed if the sum of root, leaf, stem
and reserve carbon falls below the initial seed carbon content (or zero) if the sowing date is
determined dynamically.

2.3 Changes to JULES code structure

The standard version of JULES represents the land surface as a combination of up to 9 sur-15

face types including five plant functional types: broad-leaf trees, needle-leaf trees, C3 grass, C4
grass, shrubs, bare-soil, inland lakes, snow and ice. Surface fluxes of heat, moisture and mo-
mentum are determined independently for each tile before being combined to a single set of
fluxes according to the relative fractions of each tile. Each crop type is considered as a different
tile. Therefore, it is possible to simulate many crops or crop varieties at a site or grid box in a20

single integration of JULES, in addition to the standard five plant functional types. The parame-
ters required to represent vegetation within JULES were extended to the crop tile(s). The values
were copied across from the JULES default parameters for C3 and C4 grass, depending on the
crop photosynthetic capacity (see Table 3).

The values of the parameters required in Eqs. (1)–(13) determine which crops are being25

simulated and can be varied according to different user requirements e.g crop species (e.g. maize
or wheat), generic crop type (e.g. C3 cereals) or cultivar (e.g. Soy bean PS123121 or Soy bean
21h321). Each parameter is described in Table 1. Values for each parameter can determined
by calibration against relevant observational data such as leaf area index, biomass, yield from
agricultural field stations. For this study such an exercise was not performed. Instead, suitable
values were determined from either the literature or by tuning to fit site level data in order to5

establish a model version that could be evaluated at site and global scales.

12
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3 Global simulation

3.1 Model set-up

To evaluate the potential of JULES-crop as a global gridded crop model, simulations for the
period 1960 to 2010 were performed over the global domain. Four crop types were simulated;10

wheat, soybean, maize and rice. Parameter values are in Table 4 and were either taken from
the crop science literature or calibrated as described below. Specifically, the values for the par-
tition parameters αroot,stem,leaf and βroot,stem,leaf and the specific leaf area coefficients γ and δ
were calibrated against data in de Vries et al. (1989). The allometric coefficients κ and λ were
determined by calibration against paired crop height and stem biomass data from FLUXNET15

sites. The cardinal temperatures (Tb, To, and Tm) were specified values in line with the range of
values reported in the literature (see Porter and Gawith (1999) and Sanchez et al. (2014)). The
effect of photoperiod was not included (by setting Pcrit to 24) due to our method of determining
thermal time between emerging and flowering (TTveg) and thermal time between flowering and
harvest (TTrep) (see below).20

The parameter rdir was set to zero for all crop types which effectively removes the effect
of increasing root carbon on the vertical distribution. Early tests of the model revealed that
including an effect of increasing root carbon led to high levels of water stress at the start of
the crop growing season leading to poor crop growth. Therefore, the effect was “turned-off”.
The parametrisation was left in the model to allow other model users to experiment further with25

dynamic root growth.
The global model runs were driven by the CRU-NCEPv4 climate data extended to include

2012 (N. Viovy, personal communication, 2013) as used by the Global Carbon Project (Le Quéré
et al., 2013). This was regridded to a n96 grid (1.875 degrees longitude x 1.25 degrees lati-
tude) and used with ancillaries from HadGEM2-ES (Collins et al., 2011; Jones et al., 2011) to
evaluate the performance of the model in a Earth System Model set-up. A multi-layer canopy
radiation scheme was used, accounting for direct/diffuse radiation components including sun-
flecks (can_ran_mod= 5). The main run was from 1960 to 2010 and the spin up consisted of5

repeating the first ten years five times. The sowing dates were taken from Sacks et al. (2010),
13
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and a value for each land gridbox was obtained using nearest-neighbour extrapolation. The
values of TTveg and TTrep were allowed to vary spatially and determined such that, when
used with the CRU-NCEP temperature climatology 1990–2000 and the Sacks et al. (2010)
sowing date, the crop reached DVI = 2.0 at the Sacks et al. (2010) harvesting dates, with10

x= TTveg/(TTveg + TTrep) = 0.5,0.45,0.6,0.6 for soybean, maize, wheat, rice respectively.
Photoperiod sensitivity was not considered.This is because including it would have made cal-
culating TTveg and TTrep almost impossible, because three variables would need calibrating
at each grid cell (total TT, critical photoperiod, and sensitivity to photoperiod) from one ob-
servation (growing season duration). For comparison a control run was completed using the15

same model set-up but with the crop code switched off. This run is used to assess performance
against the standard land surface scheme in the Met Office Hadley Centre Earth System Model
– HadGEM2-ES.

Figure 3 shows the planting date of Sacks et al. (2010) and the derived maps of TTveg and
TTrep. Sacks et al. (2010) derived gridded planting dates from national or district level reported20

planting dates which are given in months rather than days. Therefore, there is little spatial or
temporal variation in the sowing date which might well be expected due to variations in lo-
cal climate and management practices. However, the data serves a purpose in global modelling
studies by providing an approximate start point for the growing season at the right time of year.
Our method of calculating the crop thermal time requirements produces considerable spatial25

variability which is determined in reality by variation in the choice of crop cultivar chosen.
Other global crop modelling studies have approached the issue of specifying these require-
ments at the global scale in different ways. Osborne et al. (2013) chose three sets of thermal
time requirements and applied them over the globe allowing for assessment of which were most
suitable after the simulations, whereas Deryng et al. (2011) related thermal time requirements
(calculated from Sacks et al. (2010) in a similar manner to this study) to the annual accumulated
thermal time and then used that relationship to determine thermal time requirements under fu-
ture climate. The approach in this study was chosen as the simplest and most likely to achieve5

growing seasons of lengths close to observed. Due to the absence of a vernalisation parametri-
sation in the model only spring wheat was considered. The crop fractions were taken from

14
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Monfreda et al. (2008) and re-gridded to the n96 HadGEM2-ES resolution. Monfreda et al.
(2008) provide observations in the year 2000 which were used to described the crop coverages
for the whole integration period due to a lack of available data sets covering this time period.10

3.2 Evaluation

The simulated grid box annual yield for each crop averaged over the 50 years is shown in
Fig. 4 along side global gridded observations for circa 2000 (Monfreda et al., 2008). Fig. 4
shows that in general the model is under-estimating yields in arid, irrigated regions and over-
estimating them in tropical regions. In particular simulated maize yields are significantly larger15

than observations in tropical regions. Given that the model does not include any information on
the yield gap (the difference between actual farm level yield and potential yield) or important
land management such as irrigation the spatial variability of model output should not be too
closely compared to that of observed yield. Instead, a greater appreciation of model performance
can be gained from examining the year to year fluctuations in yield, given that the effects of20

changes in management and technology materialise over several years.
Figures 5 and 6 show the simulated global and country level yield for wheat, soybean, maize

and rice between 1960–2008 compared to the reported yields of FAO (2014). Simulated global
yield was determined by multiplying the simulated annual maximum yield at each grid cell by
the observed harvested area from Monfreda et al. (2008) regridded to the HadGEM2-ES spatial25

resolution. This grid cell estimate of production was summed over all grid cells to produce an
estimate of global production which was then divided by the total harvested area to provide
an estimate of global yield. Grid cell yields were determined from the annual maximum value
of Charv which was multiplied by 2 to convert from carbon mass to total biomass, by 1.16 to
account for grain moisture content, and by 10 to convert from kg m−2 to Mg ha−1. Not all grid
cells were included in the analysis. Cells were excluded if the annual maximum DVI was less
than 1.5 which was possible if the growing season was curtailed if LAI> 15 or tsoil,2 < Tbse. A
similar analysis was conducted to determine country level yields with averages taken over all5

gridcells within a particular country.
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The average simulated yield for maize is over-estimated however, the model does a reason-
able job of reproducing the inter-annual variability at the global (r = 0.48) and country scale
(Fig. 6 a). For soybean, average yield is again much greater then observed but year on year
variability is correlated with observations (r = 0.37) providing some confidence in the model’s10

ability to simulate the observed response of soybean yield to climate. Regionally, in countries
such as USA (r = 0.39) and India (r = 0.52) JULES-crop is able to reasonably capture inter-
annual variability of yields (Fig. 6 b). For rice, yield levels are higher than reported, variability
is overestimated and not correlated with observations (r = 0.24). At the country level, model
simulations in India (r = 0.57) correlate with observations (Fig. 6 c). The average simulated15

yield level for wheat is similar to the most recent observations but when comparing the year to
year fluctuations in yield, the correlation between simulated and observed is low (r = 0.019).
Because JULES-crop only simulates spring wheat then the comparison to reported wheat yields
is slightly unfair given that the majority of wheat produced globally is from winter varieties. It
is encouraging that the best agreement between simulated and observed yield fluctuations at the20

national level is for Turkey (r = 0.46) and Australia (r = 0.53), in which spring wheat varieties
dominate.

For all crops there is a tendency for JULES-crop to simulate larger variability than observed.
This may in part be explained by the lack of certain processes in the model (particularly those
to do with land management). For example not including a representation of irrigation in the25

model may explain why the model predicts lower yields than observations as irrigation would
act to reduce the extent of crop failure in drought years. The model also does not include the
impacts of pests and disease which may reduce overall yields in some years. Importantly, the
model does not as yet include a nitrogen cycle which may reduce overall GPP bringing the
simulations in line with observations.

To evaluate the impact of including the crop parametrisation on JULES, output from the
simulation with crops included is compared to a control simulation of the standard JULES
configuration with grass plant functional types taking the land fraction of crops. Impacts on the
land surface will be mostly mediated via direct changes to the vegetation structure and also via5

indirect effects on state variables, most obviously the soil moisture content. To begin to examine

16



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

the potential for impact, the changes to a key vegetation variable leaf area index (LAI) are shown
in Fig. 7 for four major crop producing countries. To produce the country averages, grid cell
LAI are combined by weighting by the grid cell contribution to total country crop area. In the
USA and China each crop growing season occupies the similar set of summer months, whereas10

for India and Brazil the wheat cropping season is distinct from the other three crops. Peak LAI
is greatest in Brazil and lowest in China which is most likely a reflection of the absence of
irrigation in the model and the relative abundance of rainfall in each country. In comparison to
the standard JULES configuration the addition of crops adds a seasonality to LAI as there is no
default seasonality to vegetation characteristics in JULES. The annual variation of crop LAI is15

dampened when aggregated with the other plant functional types which explains the non-zero
LAI in the non-growing season in the JULES-crop simulation. Fig. 7 shows that the inclusion
of crops alters the gridbox net primary production (NPP) in terms of the timing of peak fluxes.
There are also lower fluxes in winter due to the more reaslitic treatment of LAI at this time.
Therefore, including a representation of crops in JULES may help improve the seasonality of20

LAI and which affects carbon fluxes.
Figure 8 shows that the impact of these differences in vegetation size during the year is

greatest for the surface moisture flux and sensible heat flux rather than the components of the
radiation balance. The largest impacts are on the sensible heat flux towards the end of the crop
growing season which is higher with the inclusion of crops. For India there is a concomitant25

decrease in the surface moisture flux implying that the total available energy at the surface
is unaltered but is partitioned differently between sensible and latent heat fluxes. The impact
of JULES-crop on the energy balance is however minimal. In this configuration the model is
forced by prescribed meteorology at screen height. This has the tendency to damp the model in
comparison to a full atmospheric simulation in which the boundary layer state is able to evolve.
It may therefore be expected that a GCM may be more sensitive to changes in the surface state.5
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4 Site simulation

4.1 Model set-up

To further understand the impact of adding crops to JULES, site level simulations were also
performed. Evaluation was restricted to sites at which crops were grown and with availability of
suitable meteorological data to drive the model and biological and flux data for evaluation. The10

sites selected were are all in the USA; Mead in Nebraska (Verma et al., 2005), and Bondville
and Fermi, Illinois. For each site three simulations were performed; the standard configuration
of JULES, standard JULES with the existing phenology parametrisation turned on, and the
full JULES-crop parametrisation. For the JULES-crop simulation the fractional coverage of the
relevant crop type was set to 1 with all other functional types set to 0. For the JULES (non-15

crop) simulations, the fractional coverage of the relevant grass functional type (i.e. C3 grass for
soybean, C4 for maize) was set to 1. All crop parameters were prescribed the same value as in
the global simulations. The sowing date, and thermal time requirements were taken from the
relevant grid cell for each site.

4.2 Evaluation20

Figures 9 and 10 compares JULES-crop simulations for the soybean crop type with standard
JULES C3 grass plant functional type with and without phenology, and with observations where
available. The crop parametrisation captures the evolution of leaf area index (LAI) and canopy
height across the season, although the model underestimates these growth variables. The model
also simulates lower gross primary production (GPP) fluxes compared to observations which25

leads to an under estimation of crop yields. The standard C3 grass with phenology configuration
of JULES also simulates growth and decay of vegetation cover but over a longer period of time
than the observed growing season. Without the phenology routine the LAI is set to the default
for C3 grass of 2.0 all year. Interestingly, the more realistic simulation of vegetation cover
does not lead to improved simulation of surface fluxes. At all sites similar characteristics of
the simulations are evident. During winter all three configurations simulate similar latent and
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sensible heat fluxes in line with observations (Fig 10) . Towards the start of the growing season5

the standard configuration of JULES with constant LAI = 2.0 overestimates latent heat flux due
to an unrealistically large vegetation coverage. The simulations with phenology and crops have
lower vegetation cover and simulate lower latent heat flux but are still noticeably greater than
observations. At around the peak of crop cover all simulations underestimate the latent heat flux
and over estimate the sensible heat flux due to lower simulated LAI compared to observations.10

Site level simulations for the maize crop type are shown in Figures 11 and 12. The crop
parametrisation is reasonably successful in capturing LAI and canopy height of maize at all
evaluation sites although again does not simulate maximum values. Again GPP and yields are
lower than observed although the seasonal pattern of GPP is close to observations. Overall,
model simulations broadly capture the patterns of latent and sensible heat fluxes although again15

there are no major improvements in model performance with the explicit inclusion of crops.
At Fermi in 2006 the crop specific simulation captures the observed evolution of LAI reason-
ably well with peak LAI slightly closer to observations than the standard JULES simulations.
However, this again does not improve the simulation of heat fluxes.

All model configurations overestimate the partitioning of energy in to latent heat before the20

growing season begins and underestimate it during the crop growing season, despite widely
varying LAI values. This could be due to the realtively weak LAI-surface conductance relation-
ship found in JULES (Lawrence and Slingo, 2004). This is reflected in the low sensitivity to LAI
between fixed and grass phenology. In these simulations we would therefore not expect a large
response to an alternative representation of crop LAI phenology. This comparison serves as a25

reminder that improving the realism of a model may not guarantee improved performance in the
model in other aspects. The results also show that JULES (crop and standard configurations) is
not able to capture the magnitude of observed GPP fluxes. This suggests that using the standard
physiological parameters for C3 and C4 grasses is not appropriate when representing crops par-
ticularly as JULES does not include nitrogen fertilization explicitly. Tuning of parameters that
describe leaf nitrogen for example may improve fluxes of GPP and hence overall yields. It is
worth also noting that the parameters used for the crop model in the site simulations are from5

the global set-up and hence are probably not optimal for site simulations.
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5 Discussion and Conclusions

When designing JULES-crop we took a flexible approach in acknowledgement of the different
requirements of the science community. This means the model can be used to address a range
of science questions for example (a) to assess global climate impacts on crop functional types10

over long integrations with climate model output, (b) to represent a number of crop cultivars
of the same crop type at the site scale forced with weather observations and (c) to assess how
crops may impact on biogeophysical feedbacks to climate including albedo, partitioning of
turbulent fluxes and seasonality of LAI. In this paper we present results from a generic, crop
functional type parametrisation implemented at both global and site scale to show how this15

model performs in an Earth System Model context. Having the aim of generality necessarily
means that the model loses out in terms of specificity. However, with further effort it should
be possible to tailor the model set-up for more specific applications but with the requirement
that attention is given to the choice of parameter values. Default values are provided here as a
starting point for model development and initial evaluation.20

These results demonstrate the importance of evaluating the performance of JULES-crop in
a holistic sense, assessing both its ability to simulate land surface fluxes in addition to crop
growth and development dynamics and to recognise that identified biases in performance are the
result of the combined JULES-crop model, not just the added crop component. Adding a crop
parametrisation has increased the complexity of JULES. However, this has not led to an imme-25

diate improvement in the model’s simulation of surface fluxes, at least at the measurement sites
examined. More effort needs to go into developing the parameter sets for crops within JULES
particularly the existing set of plant functional type parameters which control productivity.

Comparing the regional patterns of yield to observations gives useful insight into the existing
limits of the model. It is clear that some important processes are missing particularly irrigation
(although this model development will shortly be submitted for release). Developing a nitrogen
cycle for JULES (model development also in progress) should also improve the model simula-
tions as introducing nitrogen limitation has been shown to reduce overall productivity in earth
system models (Thornton et al., 2009). JULES-crop will still exclude many management fac-5
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tors which affect regional yields. Licker et al. (2010) estimated global yield gaps and showed
they were greatest in tropical regions. Although not directly comparable with our simulations
this study shows us that JULES-crop simulations are likely to over-estimate yields in tropical
regions compared with oberservations. However, we have deliberately not introduced a yield
gap adjustment as it would not be physically based and as such would be difficult to apply to10

future simulations. It is however, important to capture regional differences due to management
as they will effect patterns in productivity and hence feedbacks to the climate. In an earth sys-
tem model context it is better to represent these management processes explicitly were possible
as they effect not only crop growth but also may well influence the local climate directly (e.g.
irrigation (Sacks et al., 2009)).15

As a yield simulation model, there are encouraging signs that JULES-crop can simulate vari-
ability in yield associated with climate fluctuations. However, it is clear that JULES-crop over-
estimates the magnitude of this variability. Whilst the absence of irrigation is most likely a
contributing factor to the over-estimation of yield variability, the implication that the model is
too sensitive to changes in environmental conditions should also be investigated further.20

Including crops in JULES gives a more realistic seasonal cycle of leaf area index which
affects the seasonality of carbon fluxes (timing of peak flux and lower winter fluxes). This
was seen at both the global and site level. The impact of crops on the energy balance was to
alter the partitioning of latent and sensible heat fluxes particularly in winter which led to small
impacts on temperature in some countries. These impacts were marginal at the country and site25

scale despite quite large differences in LAI. It is possible that the relationship between LAI
and evaporation is too weak in JULES (Lawrence and Slingo, 2004) which may explain why
more realistic representation of LAI did not improve the energy fluxes. We may expect a higher
sensitivity in fully coupled atmosphere model.

Crop production systems are by their very nature heavily influenced by humans. This rep-
resents a challenge to the JULES model which, to date, assumed vegetation to be static and,
within each vegetation tile, homogeneous by the use of global constants for parameter values.
The level to which this approach can be extended to crops is limited. Whilst some processes
might be considered fundamental (i.e. photosynthesis) others can vary from place to place for5
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the same crop (e.g. sensitivity of development rate to daylength). Further still, human inter-
ference can alter the fundamental process, for example the application of fertiliser to increase
leaf nitrogen contents impacting on photosynthesis. For applications of JULES-crop that rely
on accurate yield simulations the inclusion of either a yield gap variable, or the factors that
determine it such as fertilizer applications, pest control, soil fertility, should be a priority for10

future model development. Inclusion of winter wheat is also high priority for JULES-crop. This
is important for use of JULES-crop as a yield simulation model but also an earth system model
as the additional presence of vegetation cover from autumn to spring would impact on surface
characteristics (albedo, heat capacity etc).
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Table 1. Crop model parameters used in JULES-crop.

Parameter Unit Equation Description

Tb
◦C Eq.(1) Base temperature

To
◦C Eq.(1) Optimum temperature

Tm
◦C Eq.(1) Maximum temperature

TTemr
◦C d Eq.(3) Thermal time between sowing and emergence

TTveg
◦C d Eq.(3) Thermal time between emergence and flowering

TTrep
◦C d Eq.(3) Thermal time between flowering and maturity/harvest

Pcrit h Eq.(2) Critical photperiod
Psens h−1 Eq.(2) Sensitivity of development rate to photoperiod
rdir – Eq.(13) Coefficient determine relative growth of roots vertically and horizontally
αroot – Eq.(6) Coefficient for determining partitioning
αstem – Eq.(6) As above
αleaf – Eq.(6) As above
βroot – Eq.(6) As above
βstem – Eq.(6) As above
βleaf – Eq.(6) As above
γ m2 kg−1 Eq.(10) Coefficient for determining specific leaf area
δ – Eq.(10) As above
τ – Eq.(5) Fraction of stem growth partitioned to Cresv
fC – Eqs.(9), (11), (13) Carbon fraction of dry matter
κ – Eq.(11) Allometric coefficient which relates Cstem to h
λ – Eq.(11) As above
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Table 2. Crop model variables in JULES-crop.

Variable Unit Equation Description

New variables

Teff
◦C Eqs.(1), (3) Effective temperature

DVI – Eqs.(3), (6), (8), (10) Development Index
Cleaf kg C m−2 Eqs.(4), (5), (8), (9) Leaf carbon pool
Cstem kg C m−2 Eqs.(4), (5), (11) Stem carbon pool
Croot kg C m−2 Eqs.(4), (5), (13) Root carbon pool
Charv kg C m−2 Eqs.(5), (7), (8) Harvested organ carbon pool
Cresv kg C m−2 Eqs.(5), (7) Stem reserve carbon pool
pleaf – Eqs.(5), (6) Fraction of NPP partitioned to Cleaf
pstem – Eqs.(5), (6), (7) Fraction of NPP partitioned to Cstem
proot – Eqs.(5), (6) Fraction of NPP partitioned to Croot
pharv – Eqs.(5), (6) Fraction of NPP partitioned to Charv
P h Eq.(2) Photoperiod (day length)
RPE – Eqs.(2), (3) Relative Photoperiod Effect

Existing variables

T ◦C Eq.(1) 1.5 m temperature on each tile
L m2 m−1 Eq.(9) Leaf area index
SLA m2 kg−1 Eqs.(9), (10) Specific Leaf Area
h m Eq.(11) Canopy Height
Π kg C m−2 Eqs.(4), (5) Net primary productivity
Ac kg C m−2 Eq.(4) Net carbon assimilation
Rdc kg C m−2 Eq.(4) Canopy dark respiration
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Table 3. JULES plant functional type parameters extended to represent crop types wheat, soybean, maize
and rice.

Crop type Wheat Soybean Maize Rice

c3 1 1 0 1
dr 0.5 0.5 0.5 0.5
dqcrit 0.1 0.1 0.075 0.1
fd 0.015 0.015 0.025 0.015
f0 0.9 0.9 0.8 0.9
neff 8.00× 10−4 8.00× 10−4 4.00× 10−4 8.00× 10−4

nl(0) 0.073 0.073 0.06 0.073
σl 0.032 0.032 0.025 0.032
Tlow 0 0 13 0
Tupp 36 36 45 36
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Table 4. Parameter values used to represent crop types wheat, soybean, maize and rice. See Table1 for
parameter definitions.

Crop type Wheat Soybean Maize Rice

Tb 0 5 8 8
To 20 27 30 30
Tm 30 40 42 42
TTemr 35 35 80 60
TTveg See Fig.3
TTrep See Fig.3
Pcrit 24 24 24 24
Psens 0.00 0.00 0.00 0.00
rdir 0.0 0.0 0.0 0.0
αroot 18.5 20.0 13.5 18.5
αstem 16.0 18.5 12.5 19.0
αleaf 18.0 19.5 13.0 19.5
βroot −20.0 −16.5 −15.5 −19.0
βstem −15.0 −14.5 −12.5 −17.0
βleaf −18.5 −15.0 −14.0 −18.5
γ 27.3 25.9 22.5 20.9
δ −0.0507 −0.1451 −0.2587 −0.2724
τ 0.40 0.18 0.35 0.25
fC 0.5 0.5 0.5 0.5
κ 1.4 1.6 3.5 1.4
λ 0.4 0.4 0.4 0.4
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Figure 1. Schematic of JULES-crop
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Figure 2. Fraction of daily accumulated net primary productivity partitioned to roots (purple), stems
(blue), leaves (yellow) and harvested parts (red) of the crop as a function of development index (DVI;
0=emergence, 1=flowering, 2=maturity) for wheat, rice, soybean and maize.
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Figure 3. Global distribution planting date from Sacks et al. (2010), interpolated to NCEP grid, and the
thermal time from emergence to flowering (TT_veg)) and from flowering to harvest (TT_rep) for each
crop type. See text for details of calculation.
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(a) Observations

(b) JULES-crop

Figure 4. Global distribution of average wheat, soybean, maize and rice yield (Mg per ha) in a) ob-
servations (Monfreda et al., 2008) regridded to n96 resolution and b) JULES-crop global simulations
(assuming a moisture content of 16% and a carbon fraction of 0.5)
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Figure 5. Simulated (red) and observed (black) global yield of wheat, soybean, maize and rice between
1961-2008. Values in the top right are results of a correlation between observations and JULES-crop
simulations
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Figure 6. Simulated (red), observed (black dashed) and de-trended observed (black) country level yields
of a) Maize, b) Soybean, c) Rice and d) Wheat between 1961-2008. Values in the top right are results of
a correlation between de-trended observations and JULES-crop simulations
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Figure 7. Country crop area weighted annual cycle of crop type (top) and grid-box mean (middle) leaf
area index (LAI) and grid-box mean (bottom) Net Primary Production (NPP). Area averages weighted
by crop area in top panel, and total plant functional type area in middle and bottom panels. Vertical bars
indicate standard deviation of monthly values.
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Figure 8. Country crop area weighted average mean annual cycle of surface moisture flux (E), sensible
heat flux (H), net short wave radiation (SWnet) and upward long wave radiation (LWup) from JULES-
crop simulation (red) and standard JULES simulation (black) forced with CRU-NCEP meteorological
driving data. Vertical bars indicate standard deviation of monthly values.
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Soybean
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Figure 9. Simulated (solid lines) and observed (dots) Leaf Area Index (LAI), Canopy Height (CANHT),
Gross Primary Production (GPP) and Harvest Carbon (HARVC) at a range of fluxnet sites and years.
Simulations performed with JULES-crop crop type Soybean (red), standard JULES C3 grass plant func-
tional type with phenology (green), and standard JULES C3 grass plant functional type without phenol-
ogy (blue).
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Soybean

Figure 10. Simulated (solid lines) and observed (dots) Latent (LE) and Sensible (H) heat fluxes at a
range of fluxnet sites and years. Simulations performed with JULES-crop crop type Soybean (red), stan-
dard JULES C3 grass plant functional type with phenology (green), and standard JULES C3 grass plant
functional type without phenology (blue).
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Maize
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Figure 11. Simulated (solid lines) and observed (dots) Leaf Area Index (LAI), Canopy Height (CANHT),
Gross Primary Production (GPP) and Harvest Carbon (HARVC) at a range of fluxnet sites and years.
Simulations performed with JULES-crop crop type Maize (red), standard JULES C3 grass plant func-
tional type with phenology (green), and standard JULES C3 grass plant functional type without phenol-
ogy (blue).
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Maize

Figure 12. Simulated (solid lines) and observed (dots) Latent (LE) and Sensible (H) heat fluxes at a
range of fluxnet sites and years. Simulations performed with JULES-crop crop type Maize (red), stan-
dard JULES C3 grass plant functional type with phenology (green), and standard JULES C3 grass plant
functional type without phenology (blue).
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