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Abstract

Terrestrial ecosystem models are employed to calculate the sources and sinks of car-
bon dioxide between land and atmosphere. These models may be heavily parame-
terised. Where reliable estimates are unavailable for a parameter, it remains highly un-
certain; uncertainty of parameters can substantially contribute to overall model output
uncertainty. This paper builds on the work of the terrestrial Carbon Cycle Data Assim-
ilation System (CCDAS), which, here, assimilates atmospheric CO, concentrations to
optimise 19 parameters of the underlying terrestrial ecosystem model (Biosphere En-
ergy Transfer and Hydrology scheme, BETHY). Previous experiments have shown that
the identified minimum may contain non-physical parameter values. One way to combat
this problem is to use constrained optimisation and so avoid the optimiser searching
non-physical regions. Another technique is to use penalty terms in the cost function,
which are added when the optimisation searches outside of a specified region. The
use of parameter transformations is a further method of avoiding this problem, where
the optimisation is carried out in a transformed parameter space, thus ensuring that the
optimal parameters at the minimum are in the physical domain. We compare these dif-
ferent methods of achieving meaningful parameter values, finding that the parameter
transformation method shows consistent results and the other two provide no useful
results.

1 Introduction

The response of the global carbon cycle to future changes in climate is highly uncertain.
It has been proposed that there is a positive climate-carbon cycle feedback that might
significantly accelerate climate change; the study of Friedlingstein et al. (2006) used
eleven Earth System models with an interactive carbon cycle and two simulations with
each model, to isolate the feedback between climate change and the carbon cycle.
All of the models showed that future climate change would reduce the efficiency of
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the Earth system and in particular the land biosphere to absorb the anthropogenic
carbon perturbation, with an additional CO, of between 20 and 200 ppm between the
two most extreme models by 2100. Friedlingstein et al. (2006) estimated that this rise
in CO, would lead to a further warming of 0.1°C to 1.5°C.

The sources and sinks of carbon dioxide between land and atmosphere can be cal-
culated using terrestrial ecosystem models (TEMs). State of the art TEMs, such as the
Biosphere Energy Transfer and Hydrology (BETHY) scheme (Knorr, 2000), encapsu-
late large numbers of biogeochemical processes and hence involve a large number of
parameters. Results from TEMs can diverge markedly, indicating limited understand-
ing and representation of the processes involved. The study of Sitch et al. (2008) used
five Dynamic Global Vegetation Models (DGVMs) to model the contemporary terrestrial
carbon cycling. They coupled the DGVMs to a fast “climate analogue model” based on
the Hadley Centre General Circulation Model, and ran the coupled models to the year
2100 using four Special Report Emissions Scenarios. The most extreme projections
differed by up to 494 PgC of cumulative land uptake across the DGVMs over the 21st
Century (over 50yr of anthropogenic emissions at current levels; Sitch et al., 2008),
although they remained consistent with the contemporary global land carbon budget.
Furthermore, Huntingford et al. (2013) explored uncertainties of potential future carbon
loss from tropical forests. They found that the DGVM response uncertainty dominated
over variation between emission scenarios and climate models.

There are various sources of uncertainty within the model, for example structural un-
certainty, which depends on the formulation of individual processes and their numerical
representation. Another source of uncertainty is parametric uncertainty, which results
from the uncertainty of the process parameter values used in the models’ parameter-
isation, either due to a lack of knowledge or to upscaling to larger spatial domains.
Model parameter values are commonly based on “expert knowledge”. Where little in-
formation is known, this can be just an educated guess. If estimates are unavailable for
a parameter, it remains highly uncertain. Uncertainty of parameters can substantially
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contribute to overall model output uncertainty. In this case, parameter estimation to
constrain the model against observations can be very useful.

Many parameter estimation methods, such as gradient-based, Kalman Filter, Monte
Carlo inversion, Levenberg—Marquardt and genetic algorithm, use the Bayesian ap-
proach (Tarantola, 1987, 2005), which combines probability density functions (pdfs) of
observational information, prior information and the model dynamics. Four-dimensional
variational (4D-Var) schemes use the gradient of the model for the optimisation of pa-
rameters; this is usually provided by the adjoint. These approaches are generally com-
putationally efficient but unlike some other variational data assimilation methods, for
example the Markov Chain Monte Carlo method, it is possible to identify only a lo-
cal minimum. Another weakness of 4D-Var schemes is that they concentrate only on
the optimal solution without considering uncertainties. However, there are some 4D-
Var schemes, such as the one used in the Carbon Cycle Data Assimilation System
(CCDAS) (Rayner et al., 2005), which are able to approximate posterior parameter un-
certainties using the inverse of the second order derivative of the cost function with
respect to the parameters (Hessian) at the global minimum.

Generally, Gaussian distributions are assumed for the prior probability distributions
of the parameters. This is not always a good assumption as sometimes parameters
are restricted to certain values; many are positive, for example and some are restricted
between two values, such as a fraction between 0 and 1. Another example, is the
terrestrial carbon parameter Q,,, which regulates the response of the decomposition
rate of organic material to changes in temperature and is known to be greater than 1
(“A rule of thumb widely accepted in the biological research community is that...the
Q4o of decomposition is two” Davidson et al., 2006). Where parameters are limited to
certain values, optimal solutions can contain non-physical parameter values, as has
been seen in Koffi et al. (2012) when using CCDAS (Rayner et al., 2005) without at-
tempting to limit the parameter space. Here, the optimal value of one of the parameters
in the photosynthesis scheme was negative, which is unrealistic and would lead to a re-
versed photosynthesis. Kaminski et al. (2012) used, in addition, quadratic and double
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bounded transformations to achieve a limited parameter space. Further, in Trudinger
et al. (2007), an optimisation inter-comparison study of parameter estimation methods
in terrestrial biogeochemical models, and in Fox et al. (2009), another inter-comparison
project, the parameter space needed to be limited to avoid non-physical values.

A simple method of avoiding these non-physical values would be to place hard con-
straints within the search algorithm. Byrd et al. (1995) described a limited memory
quasi-Newton algorithm for solving large nonlinear optimisation problems, which can
be applied to parameter estimation.

Alternatively, it is possible to modify the cost function formulation by adding a so-
called penalty term associated with some of the parameters. The penalty term is zero
when the parameter is within its specified limits and increases as the parameter goes
further away from these limits. This has been implemented in a study to estimate the
turnover time of terrestrial carbon (Barrett, 2002). A genetic algorithm was used to
improve consistency between estimated model parameters and data. All of the param-
eters were limited between two values and a penalty term was added whenever they
violated these constraints.

A further option to avoid these non-physical values would be to alter the estima-
tion problem by using a parameter transformation (i.e. a nonlinear change of param-
eters’ pdfs) so that the parameter limits can never be reached. Simon and Bertino
(2009) performed a twin experiment with a coupled ocean ecosystem model (HYCOM-
NORWECOM) with an ensemble Kalman filter (EnKf), with and without parameter
transformations to limit parameters to positive values. The study compared EnKF with
parameter transformations and the plain EnKf with post-processing of results, where
negative values are increased to zero. These two methods led to similar results, how-
ever, the parameter transformations had an advantage in efficiency. In this work they
use the term “Gaussian anamorphosis”, however, we will continue to use the term “pa-
rameter transformation”.

Within CCDAS, a parameter transformation from a Gaussian prior parameter distri-
bution to a log-normal prior parameter distribution is already routinely in use for some
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selected parameters such as the Q,, parameters. Koffi et al. (2012) showed that the
choice of prior parameter distribution can have a great effect on the parameter’s un-
certainty and the resulting flux field. In their experiments a log-normal pdf on prior
parameters reduced the sensitivity of net CO, exchange flux (net ecosystem produc-
tivity, NEP) to the observational network as well as the transport model. In the study,
the differences in NEP between two configurations are quantified by calculating the root
mean square difference (rmsd) over all the grid cells and all months in the study period.
After applying the log-normal pdf, the rmsd between the observational networks went
from 4290m2yr_1 to 16ng2yr‘1.

This paper builds upon the findings of Koffi et al. (2012) and systematically investi-
gates the ability of the above mentioned three different methods to limit the parameter
space within CCDAS.

The outline of the paper is as follows:

First, we give an overview of the data assimilation system and the model, going on
to describe the parameter limiting methods and the experiments (Sect. 2). Section 3
describes the results and discussion. We finish with Sect. 4, providing some concluding
remarks.

2 Methodology

CCDAS employs a terrestrial ecosystem model BETHY (Knorr, 2000) and an atmo-
spheric tracer transport model, along with prescribed CO, fluxes constituting land-use
change, sea surface-atmosphere exchange flux and fossil fuel emission (Rayner et al.,
2005; Scholze et al., 2007) that are not calculated by the BETHY model. The bio-
sphere model parameters are estimated using the variational approach. The configu-
ration of CCDAS has been comprehensively described by Scholze et al. (2003), Rayner
et al. (2005) and Ziehn et al. (2011b). Here, we provide a brief summary and an expla-
nation of the points where we differ.
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2.1 Data assimilation system

There are two steps to the data assimilation in CCDAS as can be seen in Fig. 1. The
first uses the full version of BETHY to assimilate space-borne remote sensing data
of vegetation activity to optimise the model's phenology and hydrology. The second
is a simplified form of BETHY and uses the optimised leaf area index (LAI) and soil
moisture fields from the full version as input.

This paper focuses on the soil carbon balance, a simplified part of the second step.
This simplification of the model keeps parameters that control net primary productivity
(NPP) fixed; previous studies (Rayner et al., 2005; Scholze et al., 2007) have demon-
strated that atmospheric CO, data constrain these parameters only moderately. The
NPP parameters are calculated by an additional forward simulation covering the full
25yr simulation period after the first step. They are then used as input, similar to soil
moisture from the first step.

Posterior parameter values are obtained via iterative minimisation of a cost func-
tion J(x). The cost function yields the mismatch between the parameter vector x and
their priors x, and modelled concentrations M(x) and observations ¢, where each is
weighted by the uncertainties CX0 and C,, of the prior and the observations, respectively
(Rayner et al., 2005):

J06) = 5 (K= X0) €5 0x = x0) + (M) ~ €7 C (M(x) - ©) (1)

The formulation of the cost function uses a Bayesian approach (Tarantola, 1987, 2005)
and reflects an assumption of Gaussian probability distributions on the observed con-
centrations and the prior information on the parameters (explained further in Ziehn
et al., 2012). Minimisation of the cost function uses the gradient of J with respect to the
parameters x at each iteration. Transformation of Algorithms in Fortran (TAF) (Giering
and Kaminski, 1998; Kaminski et al., 2003) is used to generate derivative code from
the model’s source code.
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At the minimum in the cost function, the Hessian approximates the inverse covari-
ance of the parameter uncertainties (Tarantola, 1987) and can therefore be used to
estimate the posterior uncertainties in the process parameters. Calculation of the Hes-
sian is done by using TAF once more to differentiate the gradient vector in forward
mode with respect to the process parameters. Although there is a significant reduction
of the cost function within a few tens of iterations, for the Hessian assumptions to hold,
many more iterations are required to achieve the near zero gradient of a cost function
minimum.

When using the gradient-based approach, it is possible that only a local minimum is
identified. Therefore, an ensemble of optimisations is performed, with each optimisation
starting in slightly varied points in parameter space. In this way, if they all converge to
the same minimum, we have confidence that we have found a minimum that is more
likely to be a global minimum within the physical parameter space.

Using the atmospheric tracer transport model TM2 (Heimann, 1995), calculated
fluxes from BETHY are mapped onto atmospheric concentrations for comparison with
measurements of observations of CO, obtained from the GLOBALVIEW database
(GLOBALVIEW-CO,, 2008). As in previous studies (Rayner et al., 2005), we are using
global monthly mean atmospheric CO, concentration data from 41 sites but here, we
use data from over 25yr (1979-2003).

As the interest of this study is the natural CO, exchange flux between land—
atmosphere, the remaining fluxes contributing to the atmospheric CO, content are
added separately. We use the estimates of Houghton (2008) for the land-use flux, with-
out seasonality or interannual variability, following the procedure of Rayner et al. (2005).
The flux pattern and magnitude of ocean CO, exchange is taken from Takahashi
et al. (1999) and estimations of inter annual variability from Le Quéré et al. (2007).
Background fluxes for fossil fuel emissions, based on the flux magnitudes from Boden
et al. (2009), are described by the method of Scholze et al. (2007).
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2.2 Terrestrial biosphere model and parameters

BETHY, a process-based model of the terrestrial biosphere (Knorr, 2000), simulates
carbon uptake and soil respiration within a full energy and water balance and phenology
scheme. The grid resolution of BETHY in this study is 2° x 2 ° with the global vegetation
mapped onto 13 Plant Functional Types (PFT) based on Wilson and Henderson-Sellers
(1985). Each grid cell can contain up to three PFTs. The amount of present PFTs within
a grid cell is specified by their fractional coverage. Figure 2 represents the dominant
PFT per grid cell.
In BETHY, NEP is defined as

NEP = NPP — R, = NPP — (Rg ¢ + Rs) )

Where Rg¢ and RAg; are respiration fluxes from the slowly and rapidly decomposing
soil carbon pools. Soil respiration is simulated to be soil moisture and temperature
dependent assuming the following functional dependencies:

Rst=(1-15)kiC; 3)
Rss = ksCs (4)
where C; and C, represent sizes of the fast and slow carbon pool, respectively, and f,

the fraction of decomposition from the fast pool to the long-lived soil carbon pool. The
rate constants are

7,/10

ki =&)"Q1o{f /T (5)
T,/10

ke = @"010{3 /s (6)

where @ is the dimensionless plant available soil moisture, i.e. divided by the field ca-
pacity of the soil in the respective grid cell (a value between 0 and 1), T, air temperature,
k a soil moisture dependence parameter, Q44 ; and Q4 5, temperature dependence pa-
rameters for the fast and slow pool, 7; and 7 the pool turnover times at 25 °C.
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A parameter can either be global or differentiated by certain criteria (in this study,
PFT). In this simplified version with NPP kept fixed, there are 6 controlling parameters;
five are global and one, the B parameter, is PFT dependent. There is an additional
parameter, the offset, representing the carbon dioxide concentration at the beginning
of the optimisation, giving 19 process parameters, as can be seen in Table 2. The
five global parameters are Q4o¢ and Q44 5, the temperature dependence parameters
for the fast and slow pool, 7; the fast pool turnover time at 25°C, f, the fraction of
decomposition from the fast pool to the slow decomposing soil carbon pool and « the
soil moisture dependence parameter. The PFT dependent parameter G, described in
Eqg. (7) and in more detail in Ziehn et al. (2012), is the carbon balance parameter and
determines whether a PFT is a long-term source (6 > 1) or sink (0 < 8 < 1):

NEP = NPP(1 - 3) (7)

note that the vertical lines above denote the temporal average value over the full 25yr
simulation period at each subgrid cell. The @ parameter is strictly positive and, whilst
it has no physical upper bound, it shouldn’t be unrealistically large; a value of 10, for
example, would indicate that locations covered by this PFT have a net flux, NEP, 9
times that of NPP as described in Ziehn et al. (2011a). Therefore, an upper bound
of 2 is a reasonable selection and is the value we have chosen when bounding this
parameter.

We distinguish between the physical model parameters p; and the parameters as
seen by the optimisation routine, the control variables x;. Control variables have vari-
ance 1, in this sense, all the parameters are on the same dimensionless scale and so
a change of 1 in that scale to the value of each parameter contributes equally to the
value of the cost function. Furthermore, the control variables have probability density
functions assuming a Gaussian distribution, as mentioned above. To obtain the control
variables and to achieve the unit uncertainty, physical parameter values are divided by
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their prior standard deviation.

j= L (®)
O—:00,/'

X

2.3 Limiting the parameter space

Itis not always the case that the physical parameters are distributed in a Gaussian way.
For example, this gives positive probability of negative values and as mentioned, some
model parameters are only physically meaningful with strictly positive values. Three
methods of avoiding these non-physical parameter values are examined in this paper.
Two of the methods incorporate the bounding directly into the optimisation. The first,
constrained optimisation, seeks a solution within the physically meaningful parameter
space. The second adds a penalty term to the cost function when the optimiser be-
gins to search the non-physical domain. This encourages it to stay within the physically
meaningful parameter space. The final method investigated in this paper, parameter
transformations, performs the optimisation in a transformed parameter space, which
ensures that, when back-transformed, the minimum is always in the physically mean-
ingful parameter space. In addition to testing these three methods, we go on to inves-
tigate the effect of different parameter transformations on the inferred target quantities
and their posterior uncertainties. One particular transformation, the log transformation
has already been used in CCDAS and found to have a large impact on the optimised
parameter values and also the resulting flux fields as explained above (Koffi et al.,
2012). In addition to this log-normal transformation we propose two other transforma-
tions: quadratic and double bounded log. The quadratic and log transformations are
used to provide a lower bound on a parameter and the double bounded log can be
used to provide an upper and lower bound on a parameter. We will examine the ef-
fect of using these different parameter transformations on parameter values and their
uncertainties.
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2.3.1 Constrained optimiser

When using the constrained optimisation, the optimiser can only choose from amongst
a restricted well-defined set. Minimisation of the cost function is done via a gradient
based algorithm updating an approximation of the Hessian through the L-BFGS-B
method (Byrd et al., 1995; Zhu et al., 1997), which limits the control parameter space
to the restricted set. This is a variant of the Davidon—Fletcher—Powell (DFP) formula
(Fletcher and Powell, 1963; Press et al., 1996).

2.3.2 Penalty term in the cost function

For the penalty term optimisation, we use BFGS but add a penalty term to the cost
function when the optimiser begins to search a non-physical region in the form of

J06) =5 (1= x0) €3 (X = x0) + (M(3) - &) (M(x) - )

R 9)
+ > P(D,g,6.1,), r=1,...,R =19 (i.e. the number of parameters)

r=1
where D, is a penalty factor that scales the penalty function, g, is the threshold function,
6, invokes the penalty when the threshold is violated and , determines the sensitivity
of the penalty function to threshold violation (with even, integer values).
P, = Dré\rgfr (10)
gr(ar) = (O’;—O’,) (11)

Where a, is the current value of the rth parameter and a; is the threshold value, the
value beyond which the threshold is violated and the penalty imposed.

(12)

5 - 1, if threshold violated
7o, ifthreshold not violated
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2.3.3 Parameter transformations

Depending on the transformation used on the parameter, different equations are used
to convert them from the model parameters p; into the control variables x;. The equa-
tions give control variables with a variance of 1. Where no transformation is used (i.e.
the prior is assumed to have a Gaussian distribution), the parameters are just nor-
malised using Eq. (8) as mentioned above. p; is the prior value of the /th model
parameter and o), is its prior uncertainty. As further options we have a log-normal,
a quadratic and a double-bounded transformation. Minimisation of the cost function
is achieved via a gradient-based algorithm updating an approximation of the Hessian
through the Broyden—Fletcher—Goldfarb—Shannon formula (Fletcher and Powell, 1963;
Press et al., 1996), a Quasi-Newton method.

2.4 Experiments

We performed a total of five experiments investigating the impact of the three param-
eter space restriction methods on the results of the optimisation. Table 1 provides an
overview of the experiments and how they differ.

Previous experiments with this reduced version of CCDAS using no parameter trans-
formations indicated three B parameters (8, 13, 18) that were either negative or ex-
tremely high, so in this paper, unless otherwise stated, they have all been limited be-
tween 0 and 2 using a double bounded log transformation. The rest of the G param-
eters have been left untransformed (i.e., assumed Gaussian), as they did not require
any bounding since their posterior values already lied between 0 and 2.

To explore the effect that parameter transformations have in the model, the Q4 ; pa-
rameter’s treatment was varied between Gaussian, Log and Quadratic, whilst keeping
all but the three G parameters’ (8, 13 and 18) treatments Gaussian. (Experiments PTG,
PTL and PTQ.)

For the default penalty term optimisation, we only added a penalty term when the
B parameter for crops (parameter 18) became negative. We chose D,g = 10* as the
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penalty factor and u4g = 4 for the sensitivity value in Eq. (10). The other two 8 param-
eters (8 and 13) were still transformed using the double bounded log transformation.
(Experiment PEN.)

In the default constrained optimisation, the three g parameters (8, 13 and 18) were
restricted between 0 and 2 by the hard limits imposed by the constrained optimiser.
(Experiment CONS.)

For each of the experiments above, four extra optimisations (building together an
ensemble of five optimisations) were performed with the default prior parameter val-
ues randomly perturbed by up to 10 %. This ensures that if most of the optimisations
converge to the same minimum we have found a robust solution.

3 Results and discussion

We present the results of the different experiments, with a focus on the parameter
transformations, as these are the experiments that successfully located a minimum
within the physical parameter space. The other two methods were not successful and
so are of limited use. We commence with the constrained optimisation (CONS), then
briefly discuss the penalty term experiment (PEN) and finish with the results from the
parameter transformations (PTG, PTL, PTQ).

CONS: here, for the default prior parameter values, the optimisation did not converge
and reached the maximum number of iterations (5000). At this point there had been
a significant reduction in the cost function by around a factor of 550 but the bounded
parameters (8,13, 18) were exactly at their bounds of 0 or 2. The other four ensemble
members terminated after fewer iterations (10-382) without finding a minimum. There
was some reduction in the cost function by between a factor of around 20 and 400 but
there was still a very large gradient of at least 4000 and all of these four ensembles
had negative values for the soil moisture dependence parameter, «.

Since this method of limiting the parameter space was unsuccessful for this problem,
uncertainties have not been calculated.
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PEN: the optimisation converged but did not achieve the parameter bounding, as the
limited B parameter (parameter 18) was slightly negative (-0.024). We performed fur-
ther experiments adding a penalty to parameter 8 as well, with no successful bounding
of these parameters. We also increased the penalty term by a factor of 100 but still the
B parameter was slightly negative. Again, uncertainties have not been calculated due
to the unsuccessful optimisation of the parameters.

PTG, PTL, PTQ: using the parameter transformations we were able to successfully
constrain the parameter space. An overview of the optimisation results is presented
in Table 2. In this case, the transformation of Q44 did not seem to have an effect
on the final value of the cost function. Of the 15 (3 x 5) optimisations, 12 converged
to the same minimum in the cost function of J = 9667 and took between 174 and
876 iterations. The other three (one from each of the Gaussian, Log and Quadratic)
converged to a different value of 9515, but were outside of the physical parameter
space since another of the @ parameters (parameter 9) was negative (-0.057), and
are therefore not relevant. Having been reduced from over 10’ to 1072, the gradient
of the minimum in the cost function can be considered to be sufficiently small enough
to indicate that a minimum has been located for all three parameter transformation
experiments. We calculate posterior parameter uncertainties and also propagate these
uncertainties onto the net carbon flux using a linearisation of the model (Kaminski et al.,
2003).

Prior and optimised parameter values for all the parameter transformation experi-
ments are shown in Table 3. The global parameters behave in a consistent way to
previous studies (Ziehn et al., 2011a). The temperature dependence parameter of the
fast carbon pool, Q1O,f, is somewhat reduced to 1.07 compared to its initial value of
1.5, although this change is within the range of the prior parameter uncertainty. The
temperature dependence parameter of the slow pool, Q¢ s is increased from its initial
value of 1.5 to 1.82, which again lies within the one sigma range of the parameter’s
prior uncertainty. The two Q,, parameters posterior uncertainties are lowered by more
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than one order of magnitude, which confirms the result of Scholze et al. (2007) that
atmospheric CO, data constrain the parameters of soil respiration relatively well.

The fast pool turnover time 7; is also within the prior uncertainty range of one stan-
dard deviation increasing from 1.5 to 3.46. As is the soil moisture dependence parame-
ter, k, which is reduced from 1 to 0.57. The small posterior uncertainty of this parameter
indicates that it is also well constrained by the data. The optimised parameter value of
the fraction, 75, however is outside of the prior uncertainty range, increasing from 0.2 to
0.74. It behaves similarly to previous studies (Ziehn et al., 2011a). Again, the posterior
uncertainty is very small. Lastly, the offset parameter also behaves in a consistent way
to Ziehn et al. (2011a). The posterior uncertainties for all the global parameters are
reduced by over 95 % compared to their prior uncertainty. This is due in part to the
fact that moderately large prior parameter uncertainty values are used and is further
explained by the fact that the global atmospheric CO, network strongly observes those
parameters that act globally at all subgrid cells.

For the PFT-dependent @ parameters, the uncertainty reduction varies between 5—
90 % and so is clearly less than for the global parameters. This is partly due to the
parameter being differentiated by PFT, which means each PFT is less well observed
by the atmospheric network.

The cost function reduction of all of the five experiments is shown in Fig. 3 up to
the first 400 iterations on a log scale. By 400 iterations, all of the parameter transfor-
mations (PTG, PTL, PTQ) and the penalty term optimisation (PEN) had converged,
the constrained optimisation (CONS) had not. The rest of the constrained optimisa-
tion’s performance is shown inlaid in Fig. 3 on a linear scale. The majority of the cost
function reduction (around 2 orders of magnitude) is within the first 30 iterations. After
this, convergence is slower but the optimisation continues until a near zero gradient is
achieved, which indicates that we have found a minimum. Only at the minimum can the
inverse of the Hessian be used to estimate the posterior parameter uncertainty.

The gradient value for all five optimisations is shown in Fig. 4, again up to 400 it-
erations, where we can see that the parameter transformations and the penalty term
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experiments have converged. The constrained optimisation has not been included up
to its full 5000 iterations; it continues in much the same way after this and does not
achieve a near-zero gradient.

Figure 5 shows a time-series of our target output quantity of global mean NEP, along
with uncertainties. We calculated the values for all three of the parameter transforma-
tion experiments but as they are all within the same numerical limits only the Gaussian
case has been shown. The global mean NEP time-series and their uncertainties re-
semble that of Ziehn et al. (2011b). This is because we are using exactly the same
set-up with identical forcing and assimilation data.

We also show the covariance between the flux uncertainties, which, as in Ziehn
et al. (2011b), we express using the uncertainty correlation matrix of diagnostics, Ry,
defined as follows:

ij

R/ = _d 13
d 7 g0 (13)

Where C;" is element J, j of the error covariance matrix of global net CO, exchange
flux (NEP) per year and o; the posterior uncertainty of parameter / obtained from the
diagonal element C' of the matrix Cy4. For global NEP for the Gaussian case this
uncertainty correlation matrix is shown in Fig. 6. Again there is no significant difference
between the transformations as can be seen in Fig. 7, which shows the differences
in the uncertainty correlation matrix between Gaussian and Log and Gaussian and
Quadratic.

4 Conclusions

We systematically investigated the effects of different methods of limiting the param-

eter space, which is an emerging issue in parameter optimisation studies. In our sim-

plified set-up of CCDAS, we saw that two of the methods were not successful; both
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the constrained and the penalty term optimisation had values outside of the physically
meaningful parameter space and in fact, the former did not converge to a minimum
at all. Parameter transformations however, were successful in locating an optimal so-
lution within the limits. All of the physically meaningful ensembles converged to the
same minimum, so we can be confident that this is the global minimum. We tested two
parameter transformations against standard scaling and found that these three experi-
ments all reached the same minimum, indicating that the transformation does not alter
the optimisation problem. This is in contrast to the study of Koffi et al. (2012) however
we note that in this study a more complex system was used. A future experiment of
interest may involve systematically investigating parameter transformations within the
fully complex model.

In our experience, we would therefore recommend the parameter transformations as
the most suitable solution to the problem of limiting parameter spaces. As the parame-
ter transformations are applied outside of the optimisation routine this would be a good
general method for any problem involving restricted parameter sets. As for CCDAS, the
quadratic transformation is slightly preferred to the log as it may have a lower range for
the number of iterations required to achieve convergence.

5 Code availability

For obtaining the code, please contact M. Scholze (marko.scholze @ nateko.lu.se).
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Table 1. Experiments performed to investigate the impact of different methods of limiting the

parameter space on the optimisation.

Experiment Default set-up: No Param- Parameter Transformation Parameter Transformation Constrained Penalty Term

eter Transformation of Qo;  of Q4o (Log) of Q4o (Quadratic)

(Gaussian)
Optimiser used BFGS BFGS BFGS L-BFGS-B BFGS
Parameters treated with a Pa- 8,13,18: double bounded 8,13,18: double bounded 8,13,18: double bounded none 8,13: double bounded
rameter Transformation log log log log
Treatment of Qo in Parameter  No transformation (assum-  Logarithmic transformation ~ Quadratic transformation none none
Transformation experiments ing Gaussian PDF)
Parameters Constrained none none none 8,13,18: constrained none

between 0 and 2

Parameters with a Penalty Term  none none none none 18: penalty term added
added when negative
Abbreviation PTG PTL PTQ CONS PEN
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Table 2. Values of the cost function, the contributions from data and parameters, the gradient,
the number of iterations to achieve convergence and how many optimisations from the ensem-
ble of 5 converged to this value for the different parameter transformations of @,y and the
constrained and penalty term experiments.

Parameter Treatment Used for @,y  Constrained Penalty term

Gaussian  Log Quadratic
Value of the Optimised Cost Function 9666.8 9667.0 9666.9 9613.6 9639.0
Data Contribution 9584.3 9584.3 9584.3 9571.
Parameter Contribution 82.5 82.7 82.6 67.1
Final Gradient Value 23x107° 16x10™ 1.2x10° 498 5.2 x 10
Number of Iterations 224 319 365 5000 154
Range of Number of Iterations 174-876  319-595 232478  10-5000 154-208
Number of Optimisations That Successfully Converged 4 4 4 0 0
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Table 3. Controlling parameters and their initial and optimised values for each parameter treat- parameter space in
ment of Q44 and their initial uncertainty and reduction in uncertainty after the optimisation. CCDAS
O
Parameter Initial Value Optimised Value Initial Uncertainty Percentage Reduction in % S Kemp et al
Uncertainty = ’ ’
Gaussian Log Quadratic g-
1 Qyoy 1.5 1.069 1.069  1.069 0.75 97.899 %
37 1.5 3.435 3436  3.435 3.0 95.993 =
4k 1 0.571 0571 0571 9.0 99.877 = - -
57, 0.2 0.735 0735  0.735 0.2 98.073
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Fig. 1. CCDAS structure. Top arrows indicate the parameters to be optimised and the observa-

tional data used in the various steps.
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Fig. 2. Distribution of the dominant Plant Functional Type (PFT) per grid cell, taken from Rayner

et al. (2005).
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Fig. 3. Cost function value for all five experiments in log scale for the first 400 iterations and
cost function value for constrained optimisation from 400 to 5000 in linear scale (dark blue:
Gaussian, green: log, red: quadratic, light blue: constrained, purple: penalty).
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Fig. 4. Gradient value for all five experiments in log scale up to 400 iterations (dark blue:
Gaussian, green: log, red: quadratic, light blue: constrained, purple: penalty).
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Fig. 5. Time series of global mean net ecosystem productivity (NEP) with posterior uncertainty.
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Fig. 6. Uncertainty correlation matrix of global mean NEP.
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Fig. 7. Differences in the uncertainty correlation matrices of the Gaussian prior and of the

(a) log and (b) quadratic.
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