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We would like to thank both the referees for their reviews of this manuscript and their constructive 1 
comments. Below is a response to each comment (the referee’s comments have been included in 2 
italics). Following on from this is a copy of the revised manuscript with all relevant changes 3 
highlighted in red.  4 
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Reply to anonymous referee 1: 1 

 2 

“if	
  one	
  assumes	
  a	
  Gaussian	
  prior	
  that	
  extends	
  into	
  negative	
  values	
  when	
  these	
  make	
  no	
  physical	
  3 
sense,	
   and	
   a	
   negative	
   assumption	
   is	
   provided	
   by	
   the	
   scheme,	
   we	
   need	
   to	
   interpret	
   this	
   as	
   a	
  4 
consistent	
  solution	
  (consistent	
  with	
  the	
  model	
  as	
  it	
  stands,	
  and	
  with	
  the	
  prior	
  description).”	
  5 
	
  6 
The	
  negative	
  assumption	
  is	
  a	
  solution	
  however	
  it	
  is	
  not	
  useful	
  in	
  this	
  context	
  since	
  it	
  breaks	
  7 
the	
  physical	
  laws.	
  And	
  it	
  is	
  a	
  solution	
  to	
  an	
  ill-­‐posed	
  problem	
  because	
  we	
  know	
  that	
  for	
  the	
  8 
real	
   problem	
  a	
  negative	
   value	
   is	
  not	
   a	
   viable	
   solution.	
  But	
  we	
  agree	
   that	
   it	
   is	
   a	
   consistent	
  9 
solution	
  with	
  the	
  current	
  model	
   formulation	
  together	
  with	
  the	
  prior	
  and	
  data	
   information.	
  10 
Still,	
  we	
  can	
  learn	
  from	
  this:	
  	
  11 
-­‐	
  If,	
  for	
  a	
  certain	
  process	
  in	
  the	
  model,	
  the	
  posterior	
  parameter	
  value	
  takes	
  on	
  an	
  unrealistic	
  12 
value	
   (either	
   non-­‐physical	
   or	
   even	
  physically	
   correct	
   but	
   non-­‐sensible,	
   e.g.	
   a	
  Q10	
   value	
   of	
  13 
>10)	
   this	
   may	
   hint	
   to	
   an	
   incorrect	
   model	
   formulation	
   or	
   even	
   a	
   missing	
   process	
   in	
   the	
  14 
description	
  of	
  the	
  model.	
  The	
  occurrence	
  of	
  unrealistic	
  posterior	
  parameter	
  values	
  therefore	
  15 
always	
  requires	
  an	
  analysis	
  of	
  the	
  course	
  of	
  the	
  optimisation	
  and	
  the	
  residuals.	
  One	
  way	
  to	
  16 
resolve	
  this	
  could	
  be	
  further	
  model	
  development	
  and	
  include	
  missing	
  processes	
  in	
  the	
  model	
  17 
formulation.	
   But	
   this	
   is	
   not	
   always	
   feasible	
   and	
   therefore	
   we	
   use	
   the	
   current	
   model	
  18 
formulation	
   with	
   parameter	
   transformations	
   to	
   ensure	
   physically	
   meaningful	
   parameter	
  19 
values.	
  20 
-­‐	
   A	
   process-­‐based	
   terrestrial	
   ecosystem	
   model	
   contains	
   many	
   non-­‐linear	
   functional	
  21 
relationships	
   and	
   large	
   number	
   of	
   parameters	
   such	
   that	
   the	
   parameter	
   space	
   is	
   a	
   highly	
  22 
complex	
  multi-­‐dimensional	
  space.	
  In	
  a	
  strictly	
  mathematical	
  sense	
  it	
  could	
  well	
  be	
  the	
  case	
  23 
that	
   an	
   optimum	
   point	
   is	
   found	
   at	
   a	
   non-­‐physical	
   value	
   if	
   the	
   definition	
   intervals	
   of	
   the	
  24 
respective	
   parameters	
   are	
   not	
   restricted	
   (through	
   either	
   parameter	
   transformations	
   or	
  25 
constrained	
  optimisation).	
  26 
	
  27 
“I	
  think	
  that	
  instead	
  of	
  looking	
  at	
  the	
  MAP	
  value	
  of	
  a	
  particular	
  parameter,	
  we	
  need	
  to	
  address	
  28 
the	
  whole	
  distribution,	
  and	
  maybe	
  decide	
  that	
  if	
  the	
  prior	
  has	
  a	
  very	
  large	
  amount	
  of	
  weight	
  in	
  29 
the	
  non-­‐physical	
  space,	
  it	
  should	
  be	
  narrowed	
  or	
  modified.”	
  30 
	
  31 
In	
  fact,	
  we	
  do	
   look	
  at	
  the	
  distribution	
  and	
  not	
  only	
  the	
  posterior	
  optimum	
  value	
  (or	
  MAP).	
  32 
But	
  this	
  does	
  not	
  circumvent	
  the	
  fact	
  that	
  when	
  assuming	
  a	
  Gaussian	
  PDF	
  (which	
  is	
  the	
  case	
  33 
in	
  our	
  Bayesian	
  parameter	
  estimation	
  framework)	
  parameter	
  values	
  are	
  not	
  restricted	
  to	
  a	
  34 
certain	
   interval.	
   The	
   parameter	
   transformations	
   transform	
   the	
   whole	
   PDF	
   such	
   that	
   the	
  35 
relative	
  weight	
  of	
  each	
  parameter	
  is	
  not	
  changed.	
  We	
  could	
  narrow	
  the	
  uncertainty	
  but	
  we	
  36 
want	
  it	
  to	
  be	
  realistic	
  and	
  as	
  little	
  is	
  known	
  about	
  some	
  of	
  the	
  parameters,	
  we	
  would	
  like	
  to	
  37 
start	
  with	
  a	
   larger,	
   realistic	
  uncertainty.	
   	
  We	
  have	
  clarified	
   in	
   the	
  manuscript	
   that	
   “as little 38 
information is known about some of the parameters, we have chosen to start with larger, realistic 39 
uncertainties”.	
  40 
	
  41 
	
  42 
“The	
  authors	
  pursue	
  some	
  parameter	
  space	
  limitation	
  strategies.	
  The	
  first	
  one	
  is	
  the	
  addition	
  of	
  43 
an	
   extra	
   "penalty	
   constraint".	
   This	
   approach	
   has	
   problems,	
   as	
   it	
   basically	
   changes	
   the	
   prior	
  44 
term	
   to	
   something	
   different.	
   The	
   resulting	
   cost	
   function	
   is	
   also	
   dependent	
   on	
   a	
   number	
   of	
  45 
parameters	
  (D18,	
  µ18	
  in	
  the	
  paper,	
  Eq.	
  10).	
  These	
  choices	
  have	
  implications	
  (you	
  are	
  solving	
  a	
  46 
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different	
  problem	
  after	
  all),	
  which	
  the	
  authors	
  do	
  not	
  address	
  (despite	
  the	
  fact	
  that	
  the	
  method	
  1 
didn’t	
  work!)”	
  2 
	
  3 
When	
  we	
   limit	
   the	
   parameter	
   space,	
  we	
   actually	
   do	
   change	
   the	
   optimisation	
   problem.	
   So,	
  4 
yes,	
   the	
   penalty	
   term	
   experiment	
   optimises	
   a	
   slightly	
   different	
   problem,	
   but	
   so	
   does	
   the	
  5 
parameter	
  transformation	
  experiments.	
  The	
  constrained	
  experiment	
  uses	
  the	
  same	
  problem	
  6 
but	
  the	
  search	
  space	
  is	
  restricted.	
  We	
  chose	
  D18	
  to	
  be	
  on	
  the	
  same	
  order	
  of	
  magnitude	
  as	
  the	
  7 
cost	
  function	
  at	
  the	
  minimum	
  of	
  previous	
  experiments	
  and	
  µ18	
  had	
  to	
  be	
  positive	
  but	
  we	
  did	
  8 
not	
  want	
  to	
  use	
  2	
  as	
  we	
  use	
  the	
  2nd	
  derivative	
  to	
  calculate	
  posterior	
  uncertainties.	
  9 
	
  10 
“The	
  authors	
  do	
  not	
  address	
  why	
  the	
  optimiser	
  boundary	
  experiments	
  fail	
  to	
  converge.	
  It	
  would	
  11 
be	
  interesting	
  to	
  know	
  the	
  reasons	
  behind	
  their	
  results,	
  as	
  it’s	
  the	
  most	
  logical	
  way	
  for	
  users	
  to	
  12 
impose	
  constraints	
  (for	
  example,	
  how	
  does	
  the	
  bounded	
  space	
  relate	
  to	
  the	
  prior	
  pdf?)”	
  13 
	
  14 
For	
   the	
   constrained	
   experiments,	
   four	
   out	
   of	
   the	
   five	
   optimisations	
   failed	
   to	
   converge	
  15 
because	
  of	
  internal	
  overflow	
  problems	
  within	
  the	
  optimiser	
  and	
  the	
  fifth	
  one	
  (started	
  from	
  16 
the	
  default	
  prior	
  parameter	
  values)	
   stopped	
  because	
  of	
   reaching	
   the	
  maximum	
  number	
  of	
  17 
iterations	
  (5000,	
  which	
  is	
  about	
  10	
  times	
  more	
  than	
  the	
  average	
  number	
  of	
  iterations	
  for	
  the	
  18 
parameter	
  transformation	
  experiments).	
  Also,	
  for	
  this	
  optimisation,	
  the	
  selected	
  parameters	
  19 
for	
  bounding	
  were	
  exactly	
  at	
  their	
  limits,	
  which,	
  at	
  least	
  in	
  the	
  case	
  of	
  0	
  for	
  a	
  beta	
  parameter,	
  20 
does	
  not	
  make	
  sense.	
  21 
	
  22 
The	
  constrained	
  approach	
  produces	
  a	
  prior	
  of	
  Gaussian	
  shape	
  inside	
  the	
  bounds	
  and	
  a	
  zero	
  23 
probability	
  outside	
  the	
  bounds.	
  	
  24 
	
  25 
“The	
   transformations	
   are	
   useful,	
   but	
   their	
   form	
   (the	
   double	
   bounded	
   transformation)	
   is	
   not	
  26 
included!	
  This	
   is	
  a	
  major	
  oversight!	
  Please	
   include	
  the	
  transformations	
  you	
  used	
   in	
  the	
  paper	
  27 
(was	
  it	
  a	
  simple	
  linear	
  transformation,	
  or	
  a	
  more	
  complicate	
  transformation?	
  We	
  don’t	
  know).”	
  	
  28 
	
  29 
We	
  have	
  included	
  in	
  the	
  manuscript	
  the	
  equations	
  explaining	
  how	
  the	
  transformations	
  are	
  30 
made.	
  31 
“Where a parameter has a lower and upper bound, a and b, the parameter transformation from 32 

optimisation space to physical space is given by an equation of the form: 33 

p(x) = (b− a) (1+ e−x )+ a       (13) 34 

For the log transformation with only a lower bound of a, this simplifies to an equation of the form: 35 

p(x) = ex + a         (14) 36 

The quadratic transformation with lower bound a is computed by a function like this: 37 

axxp += 2)(         (15)” 38 

	
  39 
	
  40 
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“Additionally,	
  why	
  not	
  calculate	
  the	
  uncertainties	
  in	
  transformed	
  space	
  and	
  transform	
  back	
  e.g.	
  1 
the	
   5-­‐95%	
  CI?	
   This	
   should	
   hopefully	
   result	
   in	
   uncertainties	
   that	
   are	
   now	
   bounded,	
   and	
   thus	
  2 
more	
  realistic.”	
  3 
	
  4 
In	
  fact,	
  that	
  is	
  our	
  normal	
  procedure	
  to	
  calculate	
  posterior	
  parameter	
  uncertainties.	
  We	
  have	
  5 
included	
  the	
  one-­‐sigma	
  confidence	
  interval	
  in	
  physical	
  space	
  in	
  Table	
  3	
  in	
  the	
  manuscript.	
  6 
	
  7 
“Finally,	
   Section	
  2.2	
   should	
  be	
   shortened,	
   as	
  most	
  details	
   are	
  of	
   little	
   relevance	
   to	
   this	
   study.	
  8 
Figure	
  2	
  is	
  unnecessary.	
  Figs	
  6	
  is	
  superficially	
  discussed,	
  and	
  Fig	
  7	
  should	
  be	
  better	
  presented:	
  9 
as	
  it	
  is,	
  it	
  looks	
  like	
  an	
  optometrists	
  test!”	
  10 
	
  11 
As	
   the	
   second	
   reviewer	
  has	
   asked	
   for	
   extra	
   details	
   in	
   section	
  2.2,	
  we	
  have	
  decided	
  not	
   to	
  12 
shorten	
  this	
  section.	
  Figure	
  2	
  has	
  been	
  removed	
   from	
  the	
  manuscript	
  as	
  well	
  as	
  Fig.	
  7;	
  we	
  13 
agree	
  with	
  the	
  second	
  reviewer	
  that	
  it	
  does	
  not	
  add	
  any	
  new	
  information.	
  Figure	
  6	
  (now	
  Fig.	
  14 
5)	
  is	
  discussed	
  in	
  more	
  detail	
  as	
  we	
  have	
  added	
  the	
  following	
  paragraph	
  to	
  the	
  manuscript:	
  15 
“There	
  are	
  a	
  large	
  number	
  of	
  negative	
  correlations,	
  which	
  is	
  the	
  reason	
  for	
  a	
  relatively	
  small	
  16 
overall	
  uncertainty	
  for	
  the	
  global	
  mean	
  NEP	
  over	
  the	
  whole	
  period	
  1979	
  to	
  2003.	
  However,	
  17 
the	
  uncertainty	
  for	
  the	
  global	
  mean	
  NEP	
  for	
  a	
  single	
  year	
  (as	
  shown	
  in	
  Fig	
  4)	
  is	
  substantially	
  18 
larger.	
  It	
  is	
  worthwhile	
  to	
  note	
  that,	
  between	
  the	
  different	
  parameter	
  transformations,	
  there	
  19 
is	
   no	
   difference	
   in	
   the	
   uncertainty	
   correlation	
   matrix	
   and	
   thus	
   also	
   in	
   the	
   posterior	
  20 
parameter	
  covariances.”	
  21 
	
  22 
	
  23 
	
  “Finally,	
  a	
  table	
  with	
  the	
  prior	
  extents	
  would	
  be	
  useful	
  (see	
  comments	
  above)	
  to	
  compare	
  the	
  24 
boundaries	
  of	
  the	
  parameter	
  to	
  the	
  true	
  extent	
  of	
  the	
  prior.”	
  25 
	
  26 
We	
  are	
  not	
  completely	
  confident	
  that	
  we	
  have	
  understood	
  this	
  comment.	
  We	
  have	
  included	
  27 
in	
  Table	
  3	
  the	
  prior	
  and	
  posterior	
  parameter	
  uncertainties.	
  28 
	
  29 
  30 
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Reply to anonymous referee 2: 1 
 2 
“• What is the temporal resolution of CCDAS?” 3 
 4 
The temporal resolution of CCDAS in the version used here is daily. 5 
 6 
“• page 667 equation 3 and 4: How are the carbon pools fed. This should be made clear as well 7 
as the dependence on pools sizes, NPP and beta parameters (eq 7).” 8 
 9 
As described in Rayner et al. (2005), input to the fast pool is parameterised by the annual course 10 
of LAI for deciduous PFTs and the constant fraction of the leaf carbon pool for evergreen PFTs. 11 
The relationship between the slow respiration flux and long term mean NPP determines the overall 12 
carbon balance. 13 
 14 
“• page 668 line 21ff: Does this hold for all kind of experiments or only for the Gaussian one?” 15 
 16 
This holds for all experiments.  17 
 18 
“• section 2.3.3: The transformation should be given as formula, otherwise one of the core aspects 19 
of this work is not reproducible.” 20 
 21 
We have included the equations explaining the transformations in the paper. 22 
 23 
“It would be also good the have a more descriptive discussion of the implications of the different 24 
transformations (and other methods) on the interpretation of the results, given the underlying 25 
Bayesian paradigm. How do the different methods influence the interpretation of the posterior 26 
results as a joint probability? Is there a justification to prefer one method or are the proposed 27 
transformation purely pragmatic solutions?” 28 
 29 
We have added the following paragraph to the manuscript to describe the differences in the 30 
transformations: “The essential difference between the three approaches is the form of the prior 31 
(and thus posterior) pdfs in (physical) parameter space. Both the constrained and the penalty term 32 
approaches produce a prior of Gaussian shape inside the bounds/the non-penalised region. 33 
Outside, the constrained approach produces a zero probability while the penalty approach 34 
produces a non-zero probability consisting of a gradual reduction of the Gaussian probability with 35 
increasing distance from the bounds. The parameter transformation approach produces a zero 36 
probability outside the bounds and a non-zero but non-Gaussian probability within the bounds.” 37 
 38 
Obviously, we recommend (as stated in the manuscript) the parameter transformations as the 39 
preferred method, however there is no objective criteria to prefer either the quadratic or the 40 
logarithmic transformation. 41 
 42 
“• page 671 line 27ff: Is there a reason why to chose those values and no others.” 43 
 44 
We chose a value of 10^4 for the penalty factor as it is on the same order of magnitude as the cost 45 
function at the previous minimum we had found. We need a value large enough to affect the 46 
optimisation but not so large that it dominates. We chose the sensitivity value to be 4 as it needs to 47 
be even, as mentioned in the text, but we did not want 2 as we want to have a non-constant second 48 
derivative. 49 
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 1 
“• page 672 line 7ff: Were the 5 starting points for the different experiments the same or did they 2 
also change within the experiments? And why were they changed by 10” 3 
 4 
One of the starting points was the same for each of the experiments (that which used the prior 5 
parameter values). The other 4 optimisations for each experiment had different starting points. The 6 
starting points were varied by +/- 10% to allow some variation to the starting points but not so 7 
much that they were too far away from the prior parameter values. 8 
 9 
“• Fig 2: Not necessary” 10 
 11 
We agree and this has been removed. 12 
 13 
“The authors state that the unsuccessful experiments are of little use. But in the context of this 14 
work, where strategies to avoid non-physical parameters are investigated, an understanding of the 15 
failure of the methods would help to interpret the results and increase its relevance for other 16 
similar studies. One method does not converge, one method and at least 1 out of 5 starting points 17 
of the other methods still yield non-physical parameter values.” 18 
 19 
The manuscript includes now a more complete description of the unsuccessful experiments. In 20 
fact, for the penalty experiments, all five optimisations did converge and found a minimum in a 21 
mathematical sense (zero or at least close to zero gradient) but still the parameter that had been 22 
selected for bounding (parameter 18) had a non-physical value and therefore we discarded this 23 
method. For the constrained experiments, four out of the five optimisations failed to converge 24 
because of internal overflow problems within the optimiser and the fifth one (started from the 25 
default parameter values) stopped because of reaching the preset maximum number of iterations 26 
(5000, which is about 10 times more than the average number of iterations for the parameter 27 
transformation experiments). Also, for this optimisation, the selected parameters for bounding 28 
were exactly at their limits, which at least in the case of 0 for a beta parameter does not make 29 
sense. 30 
 31 
“Interestingly these last cases show a smaller cost compared to the successful experiments. This 32 
could be interpreted such that the optimal solution is only found with non-physical parameters. 33 
Maybe the application of a parameter transformation is not the one solution to the problem.” 34 
 35 
It is possible that the global minimum is within the non-physical space because the model is 36 
highly non-linear with a complex, 19-dimensional parameter space and from a purely 37 
mathematical point of view a smaller minimum can be found outside the physically meaningful 38 
parameter space.  However, this does not constitute a solution for our optimisation problem. 39 
Another possible reason for finding a minimum outside the physically valid parameter space is 40 
that the model, as it stands, is missing or does not fully describe a relevant process and therefore 41 
the optimisation has to compensate for this missing process by choosing non-physical parameter 42 
values. One way to resolve this could be further model development and include missing 43 
processes in the model formulation. But this is not always feasible and therefore we use the 44 
current model formulation with parameter transformations to ensure physically meaningful 45 
parameter values. 46 
 47 
“For sake of completeness, I also suggest to add the penalty and constrained cases to table 3.” 48 
 49 
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The penalty and constrained parameter values have been added to Table 3. 1 
 2 
“As already mentioned by the authors themselves, the results of Koffi et al. (2012), that the 3 
parameter transformation change the results is not found here. What is the authors view on this. 4 
Why is this the case for this relatively similar systems? What can be learned from this 5 
discrepancy? 6 
 7 
While Koffi et al. (2012) use a relatively similar system there are some important differences to 8 
our system. Firstly, they use in their experiment the full CCDAS including the photosynthesis and 9 
autotrophic respiration processes in the optimisation. Hence they are optimising 57 parameters. 10 
We use here a simplified version of CCDAS, which only includes the heterotrophic respiration 11 
and carbon balance processes in the optimisation and optimises altogether 19 parameters, a factor 12 
of 3 less parameters resulting in a factor of 3 less dimensions in the parameter space. Secondly, in 13 
the experiments of Koffi et al. (2012) the optimisations did not converge to a minimum, they have 14 
stopped the optimisation iterations after a certain reduction of the cost function value without 15 
obtaining a near zero gradient. In our experiments for this manuscript here, all the optimisations 16 
with parameter transformations have converged to a minimum with a final gradient approaching 17 
zero. 18 
In the manuscript we have clarified the differences between the two studies with the following: “in 19 
this study a more complex system was used that involved 57 parameters compared to our 19. 20 
Furthermore, in Koffi et al. (2012), the optimisations do not converge to a minimum and have 21 
been stopped after a certain reduction in the cost function value, without obtaining a near zero 22 
gradient. In our experiments, for this manuscript, all the optimisations with parameter 23 
transformations have converged to a minimum with a final gradient approaching zero.” 24 
 25 
“• Figure 7 could be omitted. If I interpret this correctly, the differences are several orders of 26 
magnitudes smaller then the correlations themselves. It would be enough to only mention this in 27 
the text. Otherwise, this needs to be discussed in more detail.” 28 
 29 
Figure 7 has been omitted; the differences are indeed several orders of magnitudes smaller than 30 
the correlations. 31 
 32 
“• The discussion of the convergence (figure 4) should be extended. Why do the different methods 33 
converge differently fast. How do the different starting points behave? Are their robust 34 
interpretation of the convergence behaviour?” 35 
 36 
Thank you for this suggestion, we have picked up this point and added a discussion on this in the 37 
manuscript by adding the following: “The different methods and also the minimisations from 38 
different starting points converge differently as they are solving different problems. Each change 39 
in the formulation of the cost function results in a different optimisation problem. When an 40 
optimisation begins at a different starting point in the control space, it follows a different 41 
trajectory to find a minimum.” 42 
 43 
“• It would be good to add to figure 5 also NEP obtained with the prior parameters and also that 44 
of CONS and PEN. Then the differences should be interpreted. Otherwise figure 5 does not 45 
provide additional and necessary information.” 46 
 47 
Our terrestrial biosphere model assumes a balanced carbon budget over the simulation period (i.e. 48 
a long-term mean NEP value of 0) for the prior parameter values. A dedicated parameter (beta) 49 
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scales the product of the size of the slow decomposing soil carbon pool and its turnover time to 1 
adjust for the terrestrial sources and sinks of CO2. This has already been described in the original 2 
CCDAS paper by Rayner et al. (2005).  Therefore, we don’t think it makes sense to include prior 3 
NEP in figure 5. Furthermore, as the parameter values from the CONS and PEN experiments are 4 
reasonably similar to the values from the parameter transformation experiments, the plots of NEP 5 
are imperceptibly different (around 2-4%) so these will not be added. 6 
 7 
“• Table 2: For completeness I suggest to add the values obtained with the prior parameters as 8 
well.” 9 
 10 
Whilst we don’t think it would make sense to include the values obtained with the prior parameter 11 
values in Table 2, we have included the cost function value obtained from the prior parameter 12 
values in the text. 13 
 14 
“page 664 line 19: Which transport model is used?” 15 
 16 
The transport model is TM2, it was stated later in the text. We have included this at the first 17 
mention of the transport model. 18 
 19 
“page 665 line 11: "NPP parameters" should only be NPP?” 20 
 21 
This has been changed. 22 
 23 
“page 668 line 5: This should be table 3” 24 
 25 
This has been corrected. 26 
  27 
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Abstract 12 

Terrestrial ecosystem models are employed to calculate the sources and sinks of carbon dioxide 13 

between land and atmosphere. These models may be heavily parameterised. Where reliable 14 

estimates are unavailable for a parameter, it remains highly uncertain; uncertainty of parameters 15 

can substantially contribute to overall model output uncertainty. This paper builds on the work of 16 

the terrestrial Carbon Cycle Data Assimilation System (CCDAS), which, here, assimilates 17 

atmospheric CO2 concentrations to optimise 19 parameters of the underlying terrestrial ecosystem 18 

model (Biosphere Energy Transfer and Hydrology scheme, BETHY). Previous experiments have 19 

shown that the identified minimum may contain non-physical parameter values. One way to 20 

combat this problem is to use constrained optimisation and so avoid the optimiser searching non-21 

physical regions. Another technique is to use penalty terms in the cost function, which are added 22 

when the optimisation searches outside of a specified region. The use of parameter 23 

transformations is a further method of avoiding this problem, where the optimisation is carried out 24 

in a transformed parameter space, thus ensuring that the optimal parameters at the minimum are in 25 

the physical domain. We compare these different methods of achieving meaningful parameter 26 

values, finding that the parameter transformation method shows consistent results and the other 27 

two provide no useful results. 28 

 29 
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1 Introduction 1 

The response of the global carbon cycle to future changes in climate is highly uncertain. It has 2 

been proposed that there is a positive climate-carbon cycle feedback that might significantly 3 

accelerate climate change; the study of Friedlingstein et al. (2006) used eleven Earth System 4 

models with an interactive carbon cycle and two simulations with each model, to isolate the 5 

feedback between climate change and the carbon cycle. All of the models showed that future 6 

climate change would reduce the efficiency of the Earth system and in particular the land 7 

biosphere to absorb the anthropogenic carbon perturbation, with an additional CO2 of between 20 8 

and 200ppm between the two most extreme models by 2100. Friedlingstein et al. (2006) estimated 9 

that this rise in CO2 would lead to a further warming of 0.1°C to 1.5°C. 10 

 11 

The sources and sinks of carbon dioxide between land and atmosphere can be calculated using 12 

terrestrial ecosystem models (TEMs).  State of the art TEMs, such as the Biosphere Energy 13 

Transfer and Hydrology (BETHY) scheme (Knorr, 2000), encapsulate large numbers of 14 

biogeochemical processes and hence involve a large number of parameters. Results from TEMs 15 

can diverge markedly, indicating limited understanding and representation of the processes 16 

involved. The study of Sitch et al. (2008) used five Dynamic Global Vegetation Models (DGVMs) 17 

to model the contemporary terrestrial carbon cycling. They coupled the DGVMs to a fast ‘climate 18 

analogue model’ based on the Hadley Centre General Circulation Model, and ran the coupled 19 

models to the year 2100 using four Special Report Emissions Scenarios. The most extreme 20 

projections differed by up to 494 PgC of cumulative land uptake across the DGVMs over the 21st 21 

Century (over 50 years of anthropogenic emissions at current levels; Sitch et al., 2008), although 22 

they remained consistent with the contemporary global land carbon budget. Furthermore, 23 

Huntingford et al. (2013) explored uncertainties of potential future carbon loss from tropical 24 

forests. They found that the DGVM response uncertainty dominated over variation between 25 

emission scenarios and climate models. 26 

 27 

There are various sources of uncertainty within the model, for example structural uncertainty, 28 

which depends on the formulation of individual processes and their numerical representation. 29 

Another source of uncertainty is parametric uncertainty, which results from the uncertainty of the 30 

process parameter values used in the models' parameterisation, either due to a lack of knowledge 31 

or to upscaling to larger spatial domains. Model parameter values are commonly based on “expert 32 
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knowledge”. Where little information is known, this can be just an educated guess. If estimates are 1 

unavailable for a parameter, it remains highly uncertain. Uncertainty of parameters can 2 

substantially contribute to overall model output uncertainty. In this case, parameter estimation to 3 

constrain the model against observations can be very useful. 4 

 5 

Many parameter estimation methods, such as gradient-based, Kalman Filter, Monte Carlo 6 

inversion, Levenberg-Marquardt and genetic algorithm, use the Bayesian approach [Tarantola, 7 

1987, 2005], which combines probability density functions (PDFs) of observational information, 8 

prior information and the model dynamics. Four-dimensional variational (4D-Var) schemes use 9 

the gradient of the model for the optimisation of parameters; this is usually provided by the 10 

adjoint. These approaches are generally computationally efficient but unlike some other 11 

variational data assimilation methods, for example the Markov Chain Monte Carlo method, it is 12 

possible to identify only a local minimum. Another weakness of 4D-Var schemes is that they 13 

concentrate only on the optimal solution without considering uncertainties. However, there are 14 

some 4D-Var schemes, such as the one used in the Carbon Cycle Data Assimilation System 15 

(CCDAS) (Rayner et al., 2005), which are able to approximate posterior parameter uncertainties 16 

using the inverse of the second order derivative of the cost function with respect to the parameters 17 

(Hessian) at the global minimum. 18 

Generally, Gaussian distributions are assumed for the prior probability distributions of the 19 

parameters. This is not always a good assumption as sometimes parameters are restricted to certain 20 

values; many are positive, for example and some are restricted between two values, such as a 21 

fraction between 0 and 1. Another example, is the terrestrial carbon parameter Q10, which 22 

regulates the response of the decomposition rate of organic material to changes in temperature and 23 

is known to be greater than 1 (“A rule of thumb widely accepted in the biological research 24 

community is that... the Q10 of decomposition is two” Davidson et al., 2006). Where parameters 25 

are limited to certain values, optimal solutions can contain non-physical parameter values, as has 26 

been seen in Koffi et al. (2012) when using CCDAS (Rayner et al., 2005) without attempting to 27 

limit the parameter space. Here, the optimal value of one of the parameters in the photosynthesis 28 

scheme was negative, which is unrealistic and would lead to a reversed photosynthesis. Kaminski 29 

et al. (2012) used, in addition, quadratic and double bounded transformations to achieve a limited 30 

parameter space. Further, in Trudinger et al. (2007), an optimisation inter-comparison study of 31 

parameter estimation methods in terrestrial biogeochemical models, and in Fox et al. (2009), 32 



 12 

another inter-comparison project, the parameter space needed to be limited to avoid non-physical 1 

values. 2 

 3 

A simple method of avoiding these non-physical values would be to place hard constraints within 4 

the search algorithm. Byrd et al. (1995) described a limited memory quasi-Newton algorithm for 5 

solving large nonlinear optimisation problems, which can be applied to parameter estimation.  6 

 7 

Alternatively, it is possible to modify the cost function formulation by adding a so-called penalty 8 

term associated with some of the parameters. The penalty term is zero when the parameter is 9 

within its specified limits and increases as the parameter goes further away from these limits. This 10 

has been implemented in a study to estimate the turnover time of terrestrial carbon (Barrett, 2002). 11 

A genetic algorithm was used to improve consistency between estimated model parameters and 12 

data. All of the parameters were limited between two values and a penalty term was added 13 

whenever they violated these constraints. 14 

 15 

A further option to avoid these non-physical values would be to alter the estimation problem by 16 

using a parameter transformation (i.e. a nonlinear change of parameters’ PDFs) so that the 17 

parameter limits can never be reached. Simon and Bertino (2009) performed a twin experiment 18 

with a coupled ocean ecosystem model (HYCOM-NORWECOM) with an ensemble Kalman filter 19 

(EnKf), with and without parameter transformations to limit parameters to positive values. The 20 

study compared EnKF with parameter transformations and the plain EnKf with post-processing of 21 

results, where negative values are increased to zero. These two methods led to similar results, 22 

however, the parameter transformations had an advantage in efficiency. In this work they use the 23 

term “Gaussian anamorphosis”, however, we will continue to use the term “parameter 24 

transformation”. 25 

 26 

Within CCDAS, a parameter transformation from a Gaussian prior parameter distribution to a log-27 

normal prior parameter distribution is already routinely in use for some selected parameters such 28 

as the Q10 parameters. Koffi et al. (2012) showed that the choice of prior parameter distribution 29 

can have a great effect on the parameter’s uncertainty and the resulting flux field. In their 30 
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experiments a log-normal PDF on prior parameters reduced the sensitivity of net CO2 exchange 1 

flux (net ecosystem productivity, NEP) to the observational network as well as the transport 2 

model. In the study, the differences in NEP between two configurations are quantified by 3 

calculating the root mean square difference (rmsd) over all the grid cells and all months in the 4 

study period. After applying the log-normal PDF, the rmsd between the observational networks 5 

went from 42 gCm2/yr to 16 gCm2/yr. 6 

 7 

This paper builds upon the findings of Koffi et al. (2012) and systematically investigates the 8 

ability of the above mentioned three different methods to limit the parameter space within 9 

CCDAS. 10 

 11 

The outline of the paper is as follows: 12 

First, we give an overview of the data assimilation system and the model, going on to describe the 13 

parameter limiting methods and the experiments (Sect. 2). Section 3 describes the results and 14 

discussion. We finish with Sect. 4, providing some concluding remarks. 15 

 16 

2 Methodology 17 

CCDAS employs a terrestrial ecosystem model BETHY (Knorr, 2000) and an atmospheric tracer 18 

transport model TM2 (Heimann, 1995), along with prescribed CO2 fluxes constituting land-use 19 

change, sea surface-atmosphere exchange flux and fossil fuel emission (Rayner et al., 2005; 20 

Scholze et al., 2007) that are not calculated by the BETHY model. The biosphere model 21 

parameters are estimated using the variational approach. The configuration of CCDAS has been 22 

comprehensively described by Scholze et al. (2003), Rayner et al. (2005) and Ziehn et al. (2011b). 23 

Here, we provide a brief summary and an explanation of the points where we differ. 24 

2.1 Data assimilation system 25 

There are two steps to the data assimilation in CCDAS as can be seen in Fig. 1. The first uses the 26 

full version of BETHY to assimilate space-borne remote sensing data of vegetation activity to 27 

optimise the model’s phenology and hydrology. The second is a simplified form of BETHY and 28 

uses the optimised leaf area index (LAI) and soil moisture fields from the full version as input.  29 



 14 

 1 

This paper focuses on the soil carbon balance, a simplified part of the second step. This 2 

simplification of the model keeps parameters that control net primary productivity (NPP) fixed; 3 

previous studies (Rayner et al., 2005; Scholze et al., 2007) have demonstrated that atmospheric 4 

CO2 data constrain these parameters only moderately. The NPP parameters are calculated by an 5 

additional forward simulation covering the full 25-year simulation period after the first step. They 6 

are then used as input, similar to soil moisture from the first step. 7 

 8 

Posterior parameter values are obtained via iterative minimisation of a cost function J(x). The cost 9 

function yields the mismatch between the parameter vector x and their priors x0 and modelled 10 

concentrations M(x) and observations c, where each is weighted by the uncertainties Cx0  and Cc 11 

of the prior and the observations, respectively (Rayner et al., 2005):   12 

J(x) = 1
2
(x − x0 )

TCx0
−1(x − x0 )+ (M(x)− c)

TCc
−1(M(x)− c)( )    (1) 13 

The formulation of the cost function uses a Bayesian approach (Tarantola, 1987, 2005) and 14 

reflects an assumption of Gaussian probability distributions on the observed concentrations and 15 

the prior information on the parameters (explained further in Ziehn et al. (2012)). Minimisation of 16 

the cost function uses the gradient of J with respect to the parameters x at each iteration. 17 

Transformation of Algorithms in Fortran (TAF) (Giering and Kaminski, 1998; Kaminski et al., 18 

2003) is used to generate derivative code from the model’s source code. 19 

 20 

At the minimum in the cost function, the Hessian approximates the inverse covariance of the 21 

parameter uncertainties (Tarantola, 1987) and can therefore be used to estimate the posterior 22 

uncertainties in the process parameters. Calculation of the Hessian is done by using TAF once 23 

more to differentiate the gradient vector in forward mode with respect to the process parameters. 24 

Although there is a significant reduction of the cost function within a few tens of iterations, for the 25 

Hessian assumptions to hold, many more iterations are required to achieve the near zero gradient 26 

of a cost function minimum. 27 

 28 
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When using the gradient-based approach, it is possible that only a local minimum is identified. 1 

Therefore, an ensemble of optimisations is performed, with each optimisation starting in slightly 2 

varied points in parameter space. In this way, if they all converge to the same minimum, we have 3 

confidence that we have found a minimum that is more likely to be a global minimum within the 4 

physical parameter space.  5 

 6 

Using the atmospheric tracer transport model TM2, calculated fluxes from BETHY are mapped 7 

onto atmospheric concentrations for comparison with measurements of observations of CO2 8 

obtained from the GLOBALVIEW database (GLOBALVIEW-CO2, 2008). As in previous studies 9 

(Rayner et al., 2005), we are using global monthly mean atmospheric CO2 concentration data from 10 

41 sites but here, we use data from over 25 years (1979-2003). 11 

 12 

As the interest of this study is the natural CO2 exchange flux between land-atmosphere, the 13 

remaining fluxes contributing to the atmospheric CO2 content are added separately. We use the 14 

estimates of Houghton (2008) for the land-use flux, without seasonality or interannual variability, 15 

following the procedure of Rayner et al. (2005). The flux pattern and magnitude of ocean CO2 16 

exchange is taken from Takahashi et al. (1999) and estimations of inter annual variability from Le 17 

Quéré et al. (2007). Background fluxes for fossil fuel emissions, based on the flux magnitudes 18 

from Boden et al. (2009), are described by the method of Scholze et al. (2007). 19 

 20 

2.2 Terrestrial biosphere model and parameters 21 

BETHY, a process-based model of the terrestrial biosphere (Knorr, 2000), simulates carbon 22 

uptake and soil respiration within a full energy and water balance and phenology scheme. The grid 23 

resolution of BETHY in this study is 2° × 2° with the global vegetation mapped onto 13 Plant 24 

Functional Types (PFT) based on Wilson and Henderson-Sellers (1985). Each grid cell can 25 

contain up to three PFTs. The amount of present PFTs within a grid cell is specified by their 26 

fractional coverage.  27 

 28 

In BETHY, NEP is defined as 29 
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NEP =NPP− Rs =NPP− (RS,s + RS, f )    (2) 1 

Where RS,s and RS,f are respiration fluxes from the slowly and rapidly decomposing soil carbon 2 

pools. Input to the fast pool is parameterised by the annual course of LAI for deciduous PFTs and 3 

the constant fraction of the leaf carbon pool for evergreen PFTs. Soil respiration is simulated to be 4 

soil moisture and temperature dependent assuming the following functional dependencies: 5 

  6 

    (3) 7 

     (4) 8 

where Cf and Cs represent sizes of the fast and slow carbon pool, respectively, and fs the fraction of 9 

decomposition from the fast pool to the long-lived soil carbon pool. The rate constants are 10 

     (5) 11 

     (6) 12 

where ω is the dimensionless plant available soil moisture, i.e. divided by the field capacity of the 13 

soil in the respective grid cell (a value between 0 and 1), Ta air temperature, κ a soil moisture 14 

dependence parameter, Q10,f and Q10,s, temperature dependence parameters for the fast and slow 15 

pool, τf and τs the pool turnover times at 25 °C.  16 

 17 

A parameter can either be global or differentiated by certain criteria (in this study, PFT). In this 18 

simplified version with NPP kept fixed, there are 6 controlling parameters; five are global and one, 19 

the β parameter, is PFT dependent. There is an additional parameter, the offset, representing the 20 

carbon dioxide concentration at the beginning of the optimisation, giving 19 process parameters, 21 

as can be seen in Table 3. Also shown in Table 3 are the prior uncertainties. As little information 22 

is known about some of the parameters, we have chosen to start with larger, realistic uncertainties. 23 

The five global parameters are Q10,f and Q10,s, the temperature dependence parameters for the fast 24 

and slow pool, τf the fast pool turnover time at 25°C, fs the fraction of decomposition from the fast 25 

pool to the slow decomposing soil carbon pool and κ the soil moisture dependence parameter. The 26 

PFT dependent parameter β, described in Eq. (7) and in more detail in Ziehn et al. (2012), is the 27 

carbon balance parameter and determines whether a PFT is a long-term source (β>1) or sink (0< 28 

β<1):  29 

RS, f = (1− fs )k fCf

RS,s = ksCs

k f =ω
κQ10, f

Ta 10 τ f

ks =ω
κQ10,s

Ta 10 τ s
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NEP =NPP(1−β)       (7) 1 

note that the vertical lines above denote the temporal average value over the full 25 year 2 

simulation period at each subgrid cell. The β parameter is strictly positive and, whilst it has no 3 

physical upper bound, it shouldn’t be unrealistically large; a value of 10, for example, would 4 

indicate that locations covered by this PFT have a net flux, NEP, 9 times that of NPP as described 5 

in Ziehn et al. (2011a). Therefore, an upper bound of 2 is a reasonable selection and is the value 6 

we have chosen when bounding this parameter. 7 

 8 

We distinguish between the physical model parameters pi and the parameters as seen by the 9 

optimisation routine, the control variables xi. Control variables have variance 1, in this sense, all 10 

the parameters are on the same dimensionless scale and so a change of 1 in that scale to the value 11 

of each parameter contributes equally to the value of the cost function.  Furthermore, the control 12 

variables have PDFs assuming a Gaussian distribution, as mentioned above. To obtain the control 13 

variables and to achieve the unit uncertainty, physical parameter values are divided by their prior 14 

standard deviation.  15 

     (8) 16 

 17 

2.3 Limiting the parameter space 18 

It is not always the case that the physical parameters are distributed in a Gaussian way. For 19 

example, this gives positive probability of negative values and as mentioned, some model 20 

parameters are only physically meaningful with strictly positive values. Three methods of 21 

avoiding these non-physical parameter values are examined in this paper. Two of the methods 22 

incorporate the bounding directly into the optimisation. The first, constrained optimisation, seeks a 23 

solution within the physically meaningful parameter space. The second adds a penalty term to the 24 

cost function when the optimiser begins to search the non-physical domain. This encourages it to 25 

stay within the physically meaningful parameter space. The final method investigated in this 26 

paper, parameter transformations, performs the optimisation in a transformed parameter space, 27 

which ensures that, when back-transformed, the minimum is always in the physically meaningful 28 

parameter space. In addition to testing these three methods, we go on to investigate the effect of 29 

xi =
pi
σ p0 i
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different parameter transformations on the inferred target quantities and their posterior 1 

uncertainties. One particular transformation, the log transformation has already been used in 2 

CCDAS and found to have a large impact on the optimised parameter values and also the resulting 3 

flux fields as explained above (Koffi et al., 2012). In addition to this log-normal transformation we 4 

propose two other transformations: quadratic and double bounded log. The quadratic and log 5 

transformations are used to provide a lower bound on a parameter and the double bounded log can 6 

be used to provide an upper and lower bound on a parameter. We will examine the effect of using 7 

these different parameter transformations on parameter values and their uncertainties. 8 

 9 

The essential difference between the three approaches is the form of the prior (and thus posterior) 10 

PDFs in (physical) parameter space. Both the constrained and the penalty function approaches 11 

produce a prior of Gaussian shape inside the bounds/the non-penalised region. Outside, the 12 

constrained approach produces a zero probability while the penalty approach produces a non-zero 13 

probability consisting of a gradual reduction of the Gaussian probability with increasing distance 14 

from the bounds. The parameter transformation approach produces a zero probability outside the 15 

bounds and a non- zero but non-Gaussian probability within the bounds. 16 

 17 

 18 

2.3.1 Constrained optimiser 19 

When using the constrained optimisation, the optimiser can only choose from amongst a restricted 20 

well-defined set. Minimisation of the cost function is done via a gradient based algorithm updating 21 

an approximation of the Hessian through the L-BFGS-B method [Byrd et al., 1995; Zhu et al., 22 

1997], which limits the control parameter space to the restricted set. This is a variant of the 23 

Davidon-Fletcher-Powell (DFP) formula (Fletcher and Powell, 1963; Press et al., 1996).  24 

 25 

2.3.2 Penalty term in the cost function 26 

For the penalty term optimisation, we use BFGS but add a penalty term to the cost function when 27 

the optimiser begins to search a non-physical region in the form of  28 
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J(x) = 1
2
(x − x0 )

TCx0
−1(x − x0 )+ (M(x)− c)

TCc
−1(M(x)− c)( )+ Pr (Drgrδrµr )

r=1

R

∑  , 1 

r=1,...,R=19 (i.e. the number of parameters)       (9) 2 

where Dr is a penalty factor that scales the penalty function, gr is the threshold function,  3 

invokes the penalty when the threshold is violated and  determines the sensitivity of the penalty 4 

function to threshold violation (with even, integer values). 5 

      (10) 6 

     (11) 7 

Where  is the current value of the rth parameter and  is the threshold value, the value beyond 8 

which the threshold is violated and the penalty imposed. 9 

 10 

 𝛿! =
1  , if  threshold  violated    

            0  , if  threshold  not  violated     (12) 11 

 12 

2.3.3 Parameter transformations 13 

Depending on the transformation used on the parameter, different equations are used to convert 14 

them from the model parameters pi into the control variables xi. The equations give control 15 

variables with a variance of 1. Where no transformation is used (i.e. the prior is assumed to have a 16 

Gaussian distribution), the parameters are just normalised using Eq. (8) as mentioned above. 𝑝!! is 17 

the prior value of the ith model parameter and 𝜎!!! is its prior uncertainty. As further options we 18 

have a double-bounded log, a lower-bounded log, and a quadratic transformation.  19 

Where a parameter has a lower and upper bound, a and b, the parameter transformation from 20 

optimisation space to physical space is given by an equation of the form: 21 

p(x) = (b− a) (1+ e−x )+ a       (13) 22 

For the log transformation with only a lower bound of a, this simplifies to an equation of the form: 23 

p(x) = ex + a         (14) 24 

The quadratic transformation with lower bound a is computed by a function like this: 25 

δr

µr

Pr = Drδrgr
µr

gr (αr ) = (αr
* −αr )

αr αr
*
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axxp += 2)(         (15) 1 

Minimisation of the cost function is achieved via a gradient-based algorithm updating an 2 

approximation of the Hessian through the Broyden-Fletcher-Goldfarb-Shannon formula (Fletcher 3 

and Powell, 1963; Press et al., 1996), a Quasi-Newton method. 4 

 5 

2.4 Experiments 6 

We performed a total of five experiments investigating the impact of the three parameter space 7 

restriction methods on the results of the optimisation. Table 1 provides an overview of the 8 

experiments and how they differ. 9 

 10 

Previous experiments with this reduced version of CCDAS using no parameter transformations 11 

indicated three β parameters (8, 13, 18) that were either negative or extremely high, so in this 12 

paper, unless otherwise stated, they have all been limited between 0 and 2 using a double bounded 13 

log transformation. The rest of the β parameters have been left untransformed (i.e., assumed 14 

Gaussian), as they didn’t require any bounding since their posterior values already lied between 0 15 

and 2. 16 

 17 

To explore the effect that parameter transformations have in the model, the Q10,f parameter’s 18 

treatment was varied between Gaussian, Log and Quadratic, whilst keeping all but the three β 19 

parameters’ (8, 13 and 18) treatments Gaussian. (Experiments PTG, PTL and PTQ.) 20 

 21 

For the default penalty term optimisation, we only added a penalty term when the β parameter for 22 

crops (parameter 18) became negative. In Eq. (10), we chose D18=104 as the penalty factor, since 23 

this is on the same order of magnitude as the cost function minimum from previous experiments, 24 

and =4 for the sensitivity value, as it has to be positive but we do not use 2 since we use the 25 

second derivative to calculate posterior uncertainties. The other two β parameters (8 and 13) were 26 

still transformed using the double bounded log transformation. (Experiment PEN.) 27 

 28 

µ18



 21 

In the default constrained optimisation, the three β parameters (8, 13 and 18) were restricted 1 

between 0 and 2 by the hard limits imposed by the constrained optimiser. (Experiment CONS.) 2 

 3 

For each of the experiments above, four extra optimisations (building together an ensemble of five 4 

optimisations) were performed with the default prior parameter values randomly perturbed by up 5 

to 10%. This ensures that if most of the optimisations converge to the same minimum we have 6 

found a robust solution. 7 

 8 

 9 

3 Results and discussion 10 

We present the results of the different experiments, with a focus on the parameter transformations, 11 

as these are the experiments that successfully located a minimum within the physical parameter 12 

space. The other two methods were not successful and so are of limited use. We commence with 13 

the constrained optimisation (CONS), then briefly discuss the penalty term experiment (PEN) and 14 

finish with the results from the parameter transformations (PTG, PTL, PTQ). An overview of the 15 

optimisation results is presented in Table 2. 16 

 17 

CONS: Here, for the default prior parameter values, the optimisation did not converge and reached 18 

the preset maximum number of iterations (5000). We did not continue this optimisation as the 19 

number of iterations was already about 10 times more than the average number of iterations for 20 

the parameter transformation experiments. At this point there had been a significant reduction in 21 

the cost function by around a factor of 550 but the bounded parameters (8,13,18) were exactly at 22 

their bounds of 0 or 2, which at least in the case of 0 for a beta parameter does not make sense. 23 

Furthermore, there was not a near zero gradient. The other four ensemble members terminated 24 

after fewer iterations (10-382), without finding a minimum because of internal numerical 25 

problems within the optimiser. There was some reduction in the cost function by between a factor 26 

of around 20 and 400 but there was still a very large gradient of at least 4000 and all of these four 27 

ensembles had negative values for the soil moisture dependence parameter, κ. 28 

Since this method of limiting the parameter space was unsuccessful for this problem, uncertainties 29 

have not been calculated. 30 



 22 

 1 

PEN: All of the five optimisations converged and found a minimum in a mathematical sense (zero 2 

or at least close to zero gradient). However, they did not achieve the parameter bounding, as the 3 

limited β parameter (parameter 18) was slightly negative (-0.024), contributing a penalty term of 4 

0.8 to the cost function. As the penalty was non-zero, the experiment was not successful in our 5 

aim of limiting the parameter. The optimisation is able to offset this small negative penalty 6 

contribution by achieving a smaller input to the cost function from the data and the parameters. 7 

We performed further experiments adding a penalty to parameter 8 as well, with no successful 8 

bounding of these parameters. We also increased the penalty term by a factor of 100 but still the β 9 

parameter was slightly negative. Again, uncertainties have not been calculated due to the 10 

unsuccessful optimisation of the parameters to physically meaningful values. 11 

 12 

PTG, PTL, PTQ: Using the parameter transformations we were able to successfully limit the 13 

parameter space. In this case, the transformation of Q10,f did not seem to have an effect on the final 14 

value of the cost function. Of the 15 (3 x 5) optimisations, 12 converged to the same minimum in 15 

the cost function of J = 9667 (reduced from an initial value of 5294051 when using the prior 16 

parameter values) and took between 174 and 876 iterations. The other three (one from each of the 17 

Gaussian, Log and Quadratic) converged to a different value of 9515, but were outside of the 18 

physical parameter space since another of the β parameters (parameter  9) was negative (-0.057), 19 

and are therefore not relevant. Having been reduced from over 107 to 10-3, the gradient of the 20 

minimum in the cost function can be considered to be sufficiently small enough to indicate that a 21 

minimum has been located for all three parameter transformation experiments. We calculate 22 

posterior parameter uncertainties and also propagate these uncertainties onto the net carbon flux 23 

using a linearisation of the model (Kaminski et al., 2003).  24 

 25 

Prior and optimised parameter values for all the parameter transformation experiments are shown 26 

in Table 3. Also shown are prior and posterior uncertainties and percentage reduction in 27 

uncertainty. The 3 β parameters that were double bounded show their upper and lower percentiles, 28 

equivalent to one standard deviation. The global parameters behave in a consistent way to 29 

previous studies (Ziehn et al., 2011a). The temperature dependence parameter of the fast carbon 30 

pool, Q10,f, is somewhat reduced to 1.07 compared to its initial value of 1.5, although this change 31 

is within the range of the prior parameter uncertainty. The temperature dependence parameter of 32 
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the slow pool, Q10,s is increased from its initial value of 1.5 to 1.82, which again lies within the 1 

one sigma range of the parameter’s prior uncertainty. The two Q10 parameters posterior 2 

uncertainties are lowered by more than one order of magnitude, which confirms the result of 3 

Scholze et al. (2007) that atmospheric CO2 data constrain the parameters of soil respiration 4 

relatively well.  5 

The fast pool turnover time τf is also within the prior uncertainty range of one standard deviation 6 

increasing from 1.5 to 3.46. As is the soil moisture dependence parameter, κ, which is reduced 7 

from 1 to 0.57. The small posterior uncertainty of this parameter indicates that it is also well 8 

constrained by the data. The optimised parameter value of the fraction, fs, however is outside of 9 

the prior uncertainty range, increasing from 0.2 to 0.74. It behaves similarly to previous studies 10 

(Ziehn et al., 2011a). Again, the posterior uncertainty is very small. Lastly, the offset parameter 11 

also behaves in a consistent way to Ziehn et al. (2011a). The posterior uncertainties for all the 12 

global parameters are reduced by over 95% compared to their prior uncertainty. This is due in part 13 

to the fact that the global atmospheric CO2 network strongly observes those parameters that act 14 

globally at all subgrid cells and is further explained by the fact that moderately large prior 15 

parameter uncertainty values are used. 16 

 17 

For the PFT-dependent β parameters, the uncertainty reduction varies between 5-90% and so is 18 

clearly less than for the global parameters. This is partly due to the β parameter being 19 

differentiated by PFT, which means each PFT is less well observed by the atmospheric network. 20 

 21 

The cost function reduction of all of the five experiments is shown in Fig. 2 up to the first 400 22 

iterations on a log scale. By 400 iterations, all of the parameter transformations (PTG, PTL, PTQ) 23 

and the penalty term optimisation (PEN) had converged, the constrained optimisation (CONS) had 24 

not. The rest of the constrained optimisation’s performance is shown inlaid in Fig. 2 on a linear 25 

scale. The majority of the cost function reduction (around 2 orders of magnitude) is within the first 26 

30 iterations. After this, convergence is slower but the optimisation continues until a near zero 27 

gradient is achieved, which indicates that we have found a minimum. Only at the minimum can 28 

the inverse of the hessian be used to estimate the posterior parameter uncertainty. 29 

 30 



 24 

The gradient value for all five optimisations is shown in Fig. 3, again up to 400 iterations, where 1 

we can see that the parameter transformations and the penalty term experiments have converged. 2 

The constrained optimisation has not been included up to its full 5000 iterations; it continues in 3 

much the same way after this and does not achieve a near-zero gradient. The different methods 4 

and the minimisations from different starting points converge differently as they are solving 5 

different problems. Each change in the formulation of the cost function results in a different 6 

optimisation problem. When an optimisation starts at a different point in the parameter space, it 7 

follows a different trajectory to find a minimum. 8 

 9 

Figure 4 shows a time-series of our target output quantity of global mean NEP, along with 10 

uncertainties. We calculated the values for all three of the parameter transformation experiments 11 

but as they are all within the same numerical limits only the Gaussian case has been shown. The 12 

global mean NEP time-series and their uncertainties resemble that of Ziehn et al. (2011b). This is 13 

because we are using exactly the same set-up with identical forcing and assimilation data. We also 14 

calculated NEP using the parameter values obtained form the constrained and the penalty 15 

experiments. Per year, NEP from these two cases does not differ much from the parameter 16 

transformations (between 2-4%), so we have not added this to Fig. 4. The resulting NEP fields 17 

look very similar to each other as do the posterior parameter values but since each of the 18 

constrained and penalty experiments yielded at least one unphysical value, we shall not consider 19 

these any further. The effect of these unphysical parameters does not show up in aggregated 20 

quantities such as annual global values or even annual grid cell values since the NEP of a grid cell 21 

is also the sum of the NEP of the individual PFTs within that grid cell. 22 

 23 

 24 

We also show the covariance between the flux uncertainties, which, as in Ziehn et al. (2011b), we 25 

express using the uncertainty correlation matrix of diagnostics, Rd, defined as follows: 26 

 27 

    (16) 28 

 29 

Rd
i, j=

Cd
i, j

σ iσ j



 25 

Where Cd
i,j is element i,j of the error covariance matrix of global net CO2 exchange flux (NEP) per 1 

year and σi the posterior uncertainty of parameter i obtained from the diagonal element Cd
i,i of the 2 

matrix Cd. For mean global NEP for the Gaussian case this uncertainty correlation matrix is shown 3 

in Fig. 5. There are a large number of negative correlations, which is the reason for a relatively 4 

small overall uncertainty for the global mean NEP over the whole period 1979 to 2003. However, 5 

the uncertainty for the global mean NEP for a single year (as shown in Fig 4) is substantially 6 

larger. It is worthwhile to note that, between the different parameter transformations, there is no 7 

difference in the uncertainty correlation matrix and thus also in the posterior parameter 8 

covariances. 9 

 10 

It seems in general, that a lower cost function value can be achieved when the optimiser is allowed 11 

to search the whole space. For example, in one of each of the parameter transformation 12 

experiments the cost function at the minimum was 9515 but one of the β parameters (parameter 9) 13 

was negative (-0.057). It is possible that the global minimum is within the non-physical space 14 

because the model is highly non-linear with a complex, 19-dimensional parameter space and from 15 

a purely mathematical point of view, a smaller minimum can be found outside the physically 16 

meaningful parameter space.  However, this does not constitute a solution for our optimisation 17 

problem. Another possible reason for finding a minimum outside the physically valid parameter 18 

space is that the model, as it stands, is missing or does not fully describe a relevant process and 19 

therefore the optimisation has to compensate for this missing process by choosing non-physical 20 

parameter values. The analysis of such non-physical parameter values can provide useful 21 

information for further model development. However, this is not always feasible and therefore 22 

limiting the parameter space with parameter transformations seems to be the most effective way to 23 

ensure physically meaningful parameter values. 24 

 25 

4 Conclusions 26 

We systematically investigated the effects of different methods of limiting the parameter space, 27 

which is an emerging issue in parameter optimisation studies. In our simplified set-up of CCDAS, 28 

we saw that two of the methods were not successful; both the constrained and the penalty term 29 

optimisation had values outside of the physically meaningful parameter space and in fact, the 30 

former did not converge to a minimum at all. Parameter transformations however, were successful 31 

in locating an optimal solution within the limits. All of the physically meaningful ensembles 32 



 26 

converged to the same minimum, so we can be confident that this is the global minimum.  We 1 

tested two parameter transformations against standard scaling and found that these three 2 

experiments all reached the same minimum, indicating that the transformation does not alter the 3 

optimisation problem. This is in contrast to the study of Koffi et al. (2012) however, we note that 4 

in this study a more complex system was used that involved 57 parameters compared to our 19. 5 

Furthermore, in Koffi et al. (2012), the optimisations do not converge to a minimum and have 6 

been stopped after a certain reduction in the cost function value, without obtaining a near zero 7 

gradient. In our experiments, for this manuscript, all the optimisations with parameter 8 

transformations have converged to a minimum with a final gradient approaching zero. A future 9 

experiment of interest may involve systematically investigating parameter transformations within 10 

the fully complex model. 11 

 12 

In our experience, we would therefore recommend the parameter transformations as the most 13 

suitable solution to the problem of limiting parameter spaces. As the parameter transformations 14 

are applied outside of the optimisation routine this would be a good general method for any 15 

problem involving restricted parameter sets. As for CCDAS, the quadratic transformation is 16 

slightly preferred to the log as it may have a lower range for the number of iterations required to 17 

achieve convergence. 18 

 19 

5 Code availability 20 

 21 

For obtaining the code, please contact M. Scholze (marko.scholze@nateko.lu.se). 22 

23 
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 31 

 Table 1: Experiments performed to investigate the impact of different methods of limiting the parameter space on the 1 
optimisation. 2 

Experiment Default set-up: 

No Parameter 
Transformation of Q10,f          

(Gaussian) 

Parameter 
Transformation 

of Q10,f            

(Log) 

Parameter 
Transformation 

of Q10,f  

(Quadratic) 

Constrained Penalty 
Term 

Optimiser used BFGS BFGS BFGS L-BFGS-B BFGS 

Parameters treated with a 
double bounded parameter 

transformation 

8,13,18 8,13,18 8,13,18 none 8,13 

Treatment of Q10,f in 
parameter transformation 

experiments 

No transformation 
(assuming Gaussian PDF) 

Logarithmic 
transformation 

Quadratic 
transformation 

none none 

Parameters constrained none none none 8,13,18: 
constrained 
between 0 

and 2 

none 

Parameters with a penalty 
term added 

none none none none 18: penalty 
term added 

when 
negative 

Abbreviation PTG PTL PTQ CONS PEN 

  3 
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Table 2. Values of the cost function, the contributions from data and parameters, the gradient, the number of iterations 1 
to achieve convergence and how many optimisations from the ensemble of 5 converged to this value for the different 2 
parameter transformations of Q10,f and the constrained and penalty term experiments. 3 

 4 

 Parameter Treatment Used for Q10,f Constrained Penalty term 

Gaussian Log  Quadratic 

Optimised cost function 

value 

9666.8       9667.0 9666.9        9613.6  9639.0     

Data contribution 9584.3      

 

9584.3  

 

9584.3  

 

9552.8 9571.0 

Parameter contribution 82.5     82.7     82.6  60.8 67.1 

Final gradient value 2.3x10-3 1.6x10-4 1.2x10-3 49.8 5.2 x 102 

Number of iterations 224 319 365    5000 154 

Range of number of 
iterations 

174-876 319-595 232-478 10-5000 154-208 

Number of optimisations 

that successfully converged  

4 4 4 0 0 

 5 

  6 
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 1 

Table 3. Controlling parameters and their initial and optimised values for each experiment and parameters’ initial and 2 
posterior uncertainty (equivalent to one standard deviation) and percentage reduction in uncertainty (relative to the 3 
upper standard deviation) after the optimisation for the parameter transformation experiments. For the three β 4 
parameters that were transformed using the double-bounded log transformation, upper and lower percentiles, 5 
equivalent to one standard deviation, are shown. 6 

Parameter 
Initial 

Value 

Optimised Value 
Initial 

Uncertainty 

Optimised 

Uncertainty 

 

Percentage 

Reduction in 

Uncertainty CONS PEN PTG PTL PTQ 

1 Q10,f 1.5 1.071 1.068 1.069 1.069 1.069 0.75 0.016 97.899 

2 Q10,s 1.5 1.81 1.811 1.817 1.816 1.816 0.75 0.019 97.492 

3 τf 1.5 3.456 3.417 3.435 3.436 3.435 3.0 0.12 95.993 

4 κ 1 0.574 0.574 0.571 0.571 0.571 9.0 0.011 99.877 

5 fs 0.2 0.734 0.735 0.735 0.735 0.735 0.2 0.004 98.073 

6 β(TrEv) 1 0.803 0.807 0.796 0.796 0.796 0.25 0.017 93.387 

7 β(TrDec) 1 0.889 0.896 0.926 0.926 0.926 0.25 0.043 82.999 

8 

β(TmpEv) 
1 0 0.284 0.29 0.29 0.29 0.25 0.071/0.089 37.231 

9 

β(TmpDec) 
1 0.075 0.101 0.037 0.037 0.037 0.25 0.05 79.889 

10 β(EvCn) 1 1.274 1.278 1.272 1.272 1.272 0.25 0.023 90.774 

11 

β(DecCn) 
1 0.36 0.398 0.325 0.325 0.325 0.25 0.121 51.785 

12 

β(EvShr) 
1 0.151 0.171 0.196 0.196 0.196 0.25 0.095 61.899 

13 

β(DecShr) 
1 2 1.912 1.913 1.913 1.913 0.25 0.024/0.019 48.949 

14 β(C3Gr) 1 1.508 1.509 1.485 1.485 1.485 0.25 0.029 88.468 

15 β(C4Gr) 1 1.138 1.131 1.129 1.129 1.129 0.25 0.024 90.508 

16 β(Tund) 1 0.866 0.866 0.876 0.876 0.876 0.25 0.05 79.816 

17 β(Wetl) 1 2.241 2.165 2.211 2.211 2.211 0.25 0.238 4.9 

18 β(Crop) 1 0 -0.024 0.066 0.066 0.066 0.25 0.013/0.017 54.095 

19 offset 338 336.423 336.421 336.421 336.421 336.421 1.0 0.049 95.099 
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 2 

Figure 1. CCDAS structure. Top arrows indicate the parameters to be optimised and the 3 

observational data used in the various steps. 4 
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 1 

 2 

Figure 2. Cost function value for all five experiments in log scale for the first 400 iterations and 3 

cost function value for constrained optimisation from 400 to 5000 in linear scale (dark blue: 4 

Gaussian, green: log, red: quadratic, light blue: constrained, pink: penalty). 5 

  6 
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 2 

Figure 3. Gradient value for all five experiments in log scale up to 400 iterations (dark blue: 3 

Gaussian, green: log, red: quadratic, light blue: constrained, pink: penalty). 4 
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Figure 4. Time series of annual global mean net ecosystem productivity (NEP) with posterior 3 

uncertainty.  4 
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Figure 5. Uncertainty correlation matrix of global mean NEP. 3 
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