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We would like to thank both the referees for their reviews of this manuscript and their constructive 1 
comments. Below is a response to each comment (the referee’s comments have been included in 2 
italics). Following on from this is a copy of the revised manuscript with all relevant changes 3 
highlighted in red.  4 
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Reply to anonymous referee 1: 1 

 2 

“if	  one	  assumes	  a	  Gaussian	  prior	  that	  extends	  into	  negative	  values	  when	  these	  make	  no	  physical	  3 
sense,	   and	   a	   negative	   assumption	   is	   provided	   by	   the	   scheme,	   we	   need	   to	   interpret	   this	   as	   a	  4 
consistent	  solution	  (consistent	  with	  the	  model	  as	  it	  stands,	  and	  with	  the	  prior	  description).”	  5 
	  6 
The	  negative	  assumption	  is	  a	  solution	  however	  it	  is	  not	  useful	  in	  this	  context	  since	  it	  breaks	  7 
the	  physical	  laws.	  And	  it	  is	  a	  solution	  to	  an	  ill-‐posed	  problem	  because	  we	  know	  that	  for	  the	  8 
real	   problem	  a	  negative	   value	   is	  not	   a	   viable	   solution.	  But	  we	  agree	   that	   it	   is	   a	   consistent	  9 
solution	  with	  the	  current	  model	   formulation	  together	  with	  the	  prior	  and	  data	   information.	  10 
Still,	  we	  can	  learn	  from	  this:	  	  11 
-‐	  If,	  for	  a	  certain	  process	  in	  the	  model,	  the	  posterior	  parameter	  value	  takes	  on	  an	  unrealistic	  12 
value	   (either	   non-‐physical	   or	   even	  physically	   correct	   but	   non-‐sensible,	   e.g.	   a	  Q10	   value	   of	  13 
>10)	   this	   may	   hint	   to	   an	   incorrect	   model	   formulation	   or	   even	   a	   missing	   process	   in	   the	  14 
description	  of	  the	  model.	  The	  occurrence	  of	  unrealistic	  posterior	  parameter	  values	  therefore	  15 
always	  requires	  an	  analysis	  of	  the	  course	  of	  the	  optimisation	  and	  the	  residuals.	  One	  way	  to	  16 
resolve	  this	  could	  be	  further	  model	  development	  and	  include	  missing	  processes	  in	  the	  model	  17 
formulation.	   But	   this	   is	   not	   always	   feasible	   and	   therefore	   we	   use	   the	   current	   model	  18 
formulation	   with	   parameter	   transformations	   to	   ensure	   physically	   meaningful	   parameter	  19 
values.	  20 
-‐	   A	   process-‐based	   terrestrial	   ecosystem	   model	   contains	   many	   non-‐linear	   functional	  21 
relationships	   and	   large	   number	   of	   parameters	   such	   that	   the	   parameter	   space	   is	   a	   highly	  22 
complex	  multi-‐dimensional	  space.	  In	  a	  strictly	  mathematical	  sense	  it	  could	  well	  be	  the	  case	  23 
that	   an	   optimum	   point	   is	   found	   at	   a	   non-‐physical	   value	   if	   the	   definition	   intervals	   of	   the	  24 
respective	   parameters	   are	   not	   restricted	   (through	   either	   parameter	   transformations	   or	  25 
constrained	  optimisation).	  26 
	  27 
“I	  think	  that	  instead	  of	  looking	  at	  the	  MAP	  value	  of	  a	  particular	  parameter,	  we	  need	  to	  address	  28 
the	  whole	  distribution,	  and	  maybe	  decide	  that	  if	  the	  prior	  has	  a	  very	  large	  amount	  of	  weight	  in	  29 
the	  non-‐physical	  space,	  it	  should	  be	  narrowed	  or	  modified.”	  30 
	  31 
In	  fact,	  we	  do	   look	  at	  the	  distribution	  and	  not	  only	  the	  posterior	  optimum	  value	  (or	  MAP).	  32 
But	  this	  does	  not	  circumvent	  the	  fact	  that	  when	  assuming	  a	  Gaussian	  PDF	  (which	  is	  the	  case	  33 
in	  our	  Bayesian	  parameter	  estimation	  framework)	  parameter	  values	  are	  not	  restricted	  to	  a	  34 
certain	   interval.	   The	   parameter	   transformations	   transform	   the	   whole	   PDF	   such	   that	   the	  35 
relative	  weight	  of	  each	  parameter	  is	  not	  changed.	  We	  could	  narrow	  the	  uncertainty	  but	  we	  36 
want	  it	  to	  be	  realistic	  and	  as	  little	  is	  known	  about	  some	  of	  the	  parameters,	  we	  would	  like	  to	  37 
start	  with	  a	   larger,	   realistic	  uncertainty.	   	  We	  have	  clarified	   in	   the	  manuscript	   that	   “as little 38 
information is known about some of the parameters, we have chosen to start with larger, realistic 39 
uncertainties”.	  40 
	  41 
	  42 
“The	  authors	  pursue	  some	  parameter	  space	  limitation	  strategies.	  The	  first	  one	  is	  the	  addition	  of	  43 
an	   extra	   "penalty	   constraint".	   This	   approach	   has	   problems,	   as	   it	   basically	   changes	   the	   prior	  44 
term	   to	   something	   different.	   The	   resulting	   cost	   function	   is	   also	   dependent	   on	   a	   number	   of	  45 
parameters	  (D18,	  µ18	  in	  the	  paper,	  Eq.	  10).	  These	  choices	  have	  implications	  (you	  are	  solving	  a	  46 
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different	  problem	  after	  all),	  which	  the	  authors	  do	  not	  address	  (despite	  the	  fact	  that	  the	  method	  1 
didn’t	  work!)”	  2 
	  3 
When	  we	   limit	   the	   parameter	   space,	  we	   actually	   do	   change	   the	   optimisation	   problem.	   So,	  4 
yes,	   the	   penalty	   term	   experiment	   optimises	   a	   slightly	   different	   problem,	   but	   so	   does	   the	  5 
parameter	  transformation	  experiments.	  The	  constrained	  experiment	  uses	  the	  same	  problem	  6 
but	  the	  search	  space	  is	  restricted.	  We	  chose	  D18	  to	  be	  on	  the	  same	  order	  of	  magnitude	  as	  the	  7 
cost	  function	  at	  the	  minimum	  of	  previous	  experiments	  and	  µ18	  had	  to	  be	  positive	  but	  we	  did	  8 
not	  want	  to	  use	  2	  as	  we	  use	  the	  2nd	  derivative	  to	  calculate	  posterior	  uncertainties.	  9 
	  10 
“The	  authors	  do	  not	  address	  why	  the	  optimiser	  boundary	  experiments	  fail	  to	  converge.	  It	  would	  11 
be	  interesting	  to	  know	  the	  reasons	  behind	  their	  results,	  as	  it’s	  the	  most	  logical	  way	  for	  users	  to	  12 
impose	  constraints	  (for	  example,	  how	  does	  the	  bounded	  space	  relate	  to	  the	  prior	  pdf?)”	  13 
	  14 
For	   the	   constrained	   experiments,	   four	   out	   of	   the	   five	   optimisations	   failed	   to	   converge	  15 
because	  of	  internal	  overflow	  problems	  within	  the	  optimiser	  and	  the	  fifth	  one	  (started	  from	  16 
the	  default	  prior	  parameter	  values)	   stopped	  because	  of	   reaching	   the	  maximum	  number	  of	  17 
iterations	  (5000,	  which	  is	  about	  10	  times	  more	  than	  the	  average	  number	  of	  iterations	  for	  the	  18 
parameter	  transformation	  experiments).	  Also,	  for	  this	  optimisation,	  the	  selected	  parameters	  19 
for	  bounding	  were	  exactly	  at	  their	  limits,	  which,	  at	  least	  in	  the	  case	  of	  0	  for	  a	  beta	  parameter,	  20 
does	  not	  make	  sense.	  21 
	  22 
The	  constrained	  approach	  produces	  a	  prior	  of	  Gaussian	  shape	  inside	  the	  bounds	  and	  a	  zero	  23 
probability	  outside	  the	  bounds.	  	  24 
	  25 
“The	   transformations	   are	   useful,	   but	   their	   form	   (the	   double	   bounded	   transformation)	   is	   not	  26 
included!	  This	   is	  a	  major	  oversight!	  Please	   include	  the	  transformations	  you	  used	   in	  the	  paper	  27 
(was	  it	  a	  simple	  linear	  transformation,	  or	  a	  more	  complicate	  transformation?	  We	  don’t	  know).”	  	  28 
	  29 
We	  have	  included	  in	  the	  manuscript	  the	  equations	  explaining	  how	  the	  transformations	  are	  30 
made.	  31 
“Where a parameter has a lower and upper bound, a and b, the parameter transformation from 32 

optimisation space to physical space is given by an equation of the form: 33 

p(x) = (b− a) (1+ e−x )+ a       (13) 34 

For the log transformation with only a lower bound of a, this simplifies to an equation of the form: 35 

p(x) = ex + a         (14) 36 

The quadratic transformation with lower bound a is computed by a function like this: 37 

axxp += 2)(         (15)” 38 

	  39 
	  40 
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“Additionally,	  why	  not	  calculate	  the	  uncertainties	  in	  transformed	  space	  and	  transform	  back	  e.g.	  1 
the	   5-‐95%	  CI?	   This	   should	   hopefully	   result	   in	   uncertainties	   that	   are	   now	   bounded,	   and	   thus	  2 
more	  realistic.”	  3 
	  4 
In	  fact,	  that	  is	  our	  normal	  procedure	  to	  calculate	  posterior	  parameter	  uncertainties.	  We	  have	  5 
included	  the	  one-‐sigma	  confidence	  interval	  in	  physical	  space	  in	  Table	  3	  in	  the	  manuscript.	  6 
	  7 
“Finally,	   Section	  2.2	   should	  be	   shortened,	   as	  most	  details	   are	  of	   little	   relevance	   to	   this	   study.	  8 
Figure	  2	  is	  unnecessary.	  Figs	  6	  is	  superficially	  discussed,	  and	  Fig	  7	  should	  be	  better	  presented:	  9 
as	  it	  is,	  it	  looks	  like	  an	  optometrists	  test!”	  10 
	  11 
As	   the	   second	   reviewer	  has	   asked	   for	   extra	   details	   in	   section	  2.2,	  we	  have	  decided	  not	   to	  12 
shorten	  this	  section.	  Figure	  2	  has	  been	  removed	   from	  the	  manuscript	  as	  well	  as	  Fig.	  7;	  we	  13 
agree	  with	  the	  second	  reviewer	  that	  it	  does	  not	  add	  any	  new	  information.	  Figure	  6	  (now	  Fig.	  14 
5)	  is	  discussed	  in	  more	  detail	  as	  we	  have	  added	  the	  following	  paragraph	  to	  the	  manuscript:	  15 
“There	  are	  a	  large	  number	  of	  negative	  correlations,	  which	  is	  the	  reason	  for	  a	  relatively	  small	  16 
overall	  uncertainty	  for	  the	  global	  mean	  NEP	  over	  the	  whole	  period	  1979	  to	  2003.	  However,	  17 
the	  uncertainty	  for	  the	  global	  mean	  NEP	  for	  a	  single	  year	  (as	  shown	  in	  Fig	  4)	  is	  substantially	  18 
larger.	  It	  is	  worthwhile	  to	  note	  that,	  between	  the	  different	  parameter	  transformations,	  there	  19 
is	   no	   difference	   in	   the	   uncertainty	   correlation	   matrix	   and	   thus	   also	   in	   the	   posterior	  20 
parameter	  covariances.”	  21 
	  22 
	  23 
	  “Finally,	  a	  table	  with	  the	  prior	  extents	  would	  be	  useful	  (see	  comments	  above)	  to	  compare	  the	  24 
boundaries	  of	  the	  parameter	  to	  the	  true	  extent	  of	  the	  prior.”	  25 
	  26 
We	  are	  not	  completely	  confident	  that	  we	  have	  understood	  this	  comment.	  We	  have	  included	  27 
in	  Table	  3	  the	  prior	  and	  posterior	  parameter	  uncertainties.	  28 
	  29 
  30 
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Reply to anonymous referee 2: 1 
 2 
“• What is the temporal resolution of CCDAS?” 3 
 4 
The temporal resolution of CCDAS in the version used here is daily. 5 
 6 
“• page 667 equation 3 and 4: How are the carbon pools fed. This should be made clear as well 7 
as the dependence on pools sizes, NPP and beta parameters (eq 7).” 8 
 9 
As described in Rayner et al. (2005), input to the fast pool is parameterised by the annual course 10 
of LAI for deciduous PFTs and the constant fraction of the leaf carbon pool for evergreen PFTs. 11 
The relationship between the slow respiration flux and long term mean NPP determines the overall 12 
carbon balance. 13 
 14 
“• page 668 line 21ff: Does this hold for all kind of experiments or only for the Gaussian one?” 15 
 16 
This holds for all experiments.  17 
 18 
“• section 2.3.3: The transformation should be given as formula, otherwise one of the core aspects 19 
of this work is not reproducible.” 20 
 21 
We have included the equations explaining the transformations in the paper. 22 
 23 
“It would be also good the have a more descriptive discussion of the implications of the different 24 
transformations (and other methods) on the interpretation of the results, given the underlying 25 
Bayesian paradigm. How do the different methods influence the interpretation of the posterior 26 
results as a joint probability? Is there a justification to prefer one method or are the proposed 27 
transformation purely pragmatic solutions?” 28 
 29 
We have added the following paragraph to the manuscript to describe the differences in the 30 
transformations: “The essential difference between the three approaches is the form of the prior 31 
(and thus posterior) pdfs in (physical) parameter space. Both the constrained and the penalty term 32 
approaches produce a prior of Gaussian shape inside the bounds/the non-penalised region. 33 
Outside, the constrained approach produces a zero probability while the penalty approach 34 
produces a non-zero probability consisting of a gradual reduction of the Gaussian probability with 35 
increasing distance from the bounds. The parameter transformation approach produces a zero 36 
probability outside the bounds and a non-zero but non-Gaussian probability within the bounds.” 37 
 38 
Obviously, we recommend (as stated in the manuscript) the parameter transformations as the 39 
preferred method, however there is no objective criteria to prefer either the quadratic or the 40 
logarithmic transformation. 41 
 42 
“• page 671 line 27ff: Is there a reason why to chose those values and no others.” 43 
 44 
We chose a value of 10^4 for the penalty factor as it is on the same order of magnitude as the cost 45 
function at the previous minimum we had found. We need a value large enough to affect the 46 
optimisation but not so large that it dominates. We chose the sensitivity value to be 4 as it needs to 47 
be even, as mentioned in the text, but we did not want 2 as we want to have a non-constant second 48 
derivative. 49 
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 1 
“• page 672 line 7ff: Were the 5 starting points for the different experiments the same or did they 2 
also change within the experiments? And why were they changed by 10” 3 
 4 
One of the starting points was the same for each of the experiments (that which used the prior 5 
parameter values). The other 4 optimisations for each experiment had different starting points. The 6 
starting points were varied by +/- 10% to allow some variation to the starting points but not so 7 
much that they were too far away from the prior parameter values. 8 
 9 
“• Fig 2: Not necessary” 10 
 11 
We agree and this has been removed. 12 
 13 
“The authors state that the unsuccessful experiments are of little use. But in the context of this 14 
work, where strategies to avoid non-physical parameters are investigated, an understanding of the 15 
failure of the methods would help to interpret the results and increase its relevance for other 16 
similar studies. One method does not converge, one method and at least 1 out of 5 starting points 17 
of the other methods still yield non-physical parameter values.” 18 
 19 
The manuscript includes now a more complete description of the unsuccessful experiments. In 20 
fact, for the penalty experiments, all five optimisations did converge and found a minimum in a 21 
mathematical sense (zero or at least close to zero gradient) but still the parameter that had been 22 
selected for bounding (parameter 18) had a non-physical value and therefore we discarded this 23 
method. For the constrained experiments, four out of the five optimisations failed to converge 24 
because of internal overflow problems within the optimiser and the fifth one (started from the 25 
default parameter values) stopped because of reaching the preset maximum number of iterations 26 
(5000, which is about 10 times more than the average number of iterations for the parameter 27 
transformation experiments). Also, for this optimisation, the selected parameters for bounding 28 
were exactly at their limits, which at least in the case of 0 for a beta parameter does not make 29 
sense. 30 
 31 
“Interestingly these last cases show a smaller cost compared to the successful experiments. This 32 
could be interpreted such that the optimal solution is only found with non-physical parameters. 33 
Maybe the application of a parameter transformation is not the one solution to the problem.” 34 
 35 
It is possible that the global minimum is within the non-physical space because the model is 36 
highly non-linear with a complex, 19-dimensional parameter space and from a purely 37 
mathematical point of view a smaller minimum can be found outside the physically meaningful 38 
parameter space.  However, this does not constitute a solution for our optimisation problem. 39 
Another possible reason for finding a minimum outside the physically valid parameter space is 40 
that the model, as it stands, is missing or does not fully describe a relevant process and therefore 41 
the optimisation has to compensate for this missing process by choosing non-physical parameter 42 
values. One way to resolve this could be further model development and include missing 43 
processes in the model formulation. But this is not always feasible and therefore we use the 44 
current model formulation with parameter transformations to ensure physically meaningful 45 
parameter values. 46 
 47 
“For sake of completeness, I also suggest to add the penalty and constrained cases to table 3.” 48 
 49 
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The penalty and constrained parameter values have been added to Table 3. 1 
 2 
“As already mentioned by the authors themselves, the results of Koffi et al. (2012), that the 3 
parameter transformation change the results is not found here. What is the authors view on this. 4 
Why is this the case for this relatively similar systems? What can be learned from this 5 
discrepancy? 6 
 7 
While Koffi et al. (2012) use a relatively similar system there are some important differences to 8 
our system. Firstly, they use in their experiment the full CCDAS including the photosynthesis and 9 
autotrophic respiration processes in the optimisation. Hence they are optimising 57 parameters. 10 
We use here a simplified version of CCDAS, which only includes the heterotrophic respiration 11 
and carbon balance processes in the optimisation and optimises altogether 19 parameters, a factor 12 
of 3 less parameters resulting in a factor of 3 less dimensions in the parameter space. Secondly, in 13 
the experiments of Koffi et al. (2012) the optimisations did not converge to a minimum, they have 14 
stopped the optimisation iterations after a certain reduction of the cost function value without 15 
obtaining a near zero gradient. In our experiments for this manuscript here, all the optimisations 16 
with parameter transformations have converged to a minimum with a final gradient approaching 17 
zero. 18 
In the manuscript we have clarified the differences between the two studies with the following: “in 19 
this study a more complex system was used that involved 57 parameters compared to our 19. 20 
Furthermore, in Koffi et al. (2012), the optimisations do not converge to a minimum and have 21 
been stopped after a certain reduction in the cost function value, without obtaining a near zero 22 
gradient. In our experiments, for this manuscript, all the optimisations with parameter 23 
transformations have converged to a minimum with a final gradient approaching zero.” 24 
 25 
“• Figure 7 could be omitted. If I interpret this correctly, the differences are several orders of 26 
magnitudes smaller then the correlations themselves. It would be enough to only mention this in 27 
the text. Otherwise, this needs to be discussed in more detail.” 28 
 29 
Figure 7 has been omitted; the differences are indeed several orders of magnitudes smaller than 30 
the correlations. 31 
 32 
“• The discussion of the convergence (figure 4) should be extended. Why do the different methods 33 
converge differently fast. How do the different starting points behave? Are their robust 34 
interpretation of the convergence behaviour?” 35 
 36 
Thank you for this suggestion, we have picked up this point and added a discussion on this in the 37 
manuscript by adding the following: “The different methods and also the minimisations from 38 
different starting points converge differently as they are solving different problems. Each change 39 
in the formulation of the cost function results in a different optimisation problem. When an 40 
optimisation begins at a different starting point in the control space, it follows a different 41 
trajectory to find a minimum.” 42 
 43 
“• It would be good to add to figure 5 also NEP obtained with the prior parameters and also that 44 
of CONS and PEN. Then the differences should be interpreted. Otherwise figure 5 does not 45 
provide additional and necessary information.” 46 
 47 
Our terrestrial biosphere model assumes a balanced carbon budget over the simulation period (i.e. 48 
a long-term mean NEP value of 0) for the prior parameter values. A dedicated parameter (beta) 49 
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scales the product of the size of the slow decomposing soil carbon pool and its turnover time to 1 
adjust for the terrestrial sources and sinks of CO2. This has already been described in the original 2 
CCDAS paper by Rayner et al. (2005).  Therefore, we don’t think it makes sense to include prior 3 
NEP in figure 5. Furthermore, as the parameter values from the CONS and PEN experiments are 4 
reasonably similar to the values from the parameter transformation experiments, the plots of NEP 5 
are imperceptibly different (around 2-4%) so these will not be added. 6 
 7 
“• Table 2: For completeness I suggest to add the values obtained with the prior parameters as 8 
well.” 9 
 10 
Whilst we don’t think it would make sense to include the values obtained with the prior parameter 11 
values in Table 2, we have included the cost function value obtained from the prior parameter 12 
values in the text. 13 
 14 
“page 664 line 19: Which transport model is used?” 15 
 16 
The transport model is TM2, it was stated later in the text. We have included this at the first 17 
mention of the transport model. 18 
 19 
“page 665 line 11: "NPP parameters" should only be NPP?” 20 
 21 
This has been changed. 22 
 23 
“page 668 line 5: This should be table 3” 24 
 25 
This has been corrected. 26 
  27 
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Abstract 12 

Terrestrial ecosystem models are employed to calculate the sources and sinks of carbon dioxide 13 

between land and atmosphere. These models may be heavily parameterised. Where reliable 14 

estimates are unavailable for a parameter, it remains highly uncertain; uncertainty of parameters 15 

can substantially contribute to overall model output uncertainty. This paper builds on the work of 16 

the terrestrial Carbon Cycle Data Assimilation System (CCDAS), which, here, assimilates 17 

atmospheric CO2 concentrations to optimise 19 parameters of the underlying terrestrial ecosystem 18 

model (Biosphere Energy Transfer and Hydrology scheme, BETHY). Previous experiments have 19 

shown that the identified minimum may contain non-physical parameter values. One way to 20 

combat this problem is to use constrained optimisation and so avoid the optimiser searching non-21 

physical regions. Another technique is to use penalty terms in the cost function, which are added 22 

when the optimisation searches outside of a specified region. The use of parameter 23 

transformations is a further method of avoiding this problem, where the optimisation is carried out 24 

in a transformed parameter space, thus ensuring that the optimal parameters at the minimum are in 25 

the physical domain. We compare these different methods of achieving meaningful parameter 26 

values, finding that the parameter transformation method shows consistent results and the other 27 

two provide no useful results. 28 

 29 



 10 

1 Introduction 1 

The response of the global carbon cycle to future changes in climate is highly uncertain. It has 2 

been proposed that there is a positive climate-carbon cycle feedback that might significantly 3 

accelerate climate change; the study of Friedlingstein et al. (2006) used eleven Earth System 4 

models with an interactive carbon cycle and two simulations with each model, to isolate the 5 

feedback between climate change and the carbon cycle. All of the models showed that future 6 

climate change would reduce the efficiency of the Earth system and in particular the land 7 

biosphere to absorb the anthropogenic carbon perturbation, with an additional CO2 of between 20 8 

and 200ppm between the two most extreme models by 2100. Friedlingstein et al. (2006) estimated 9 

that this rise in CO2 would lead to a further warming of 0.1°C to 1.5°C. 10 

 11 

The sources and sinks of carbon dioxide between land and atmosphere can be calculated using 12 

terrestrial ecosystem models (TEMs).  State of the art TEMs, such as the Biosphere Energy 13 

Transfer and Hydrology (BETHY) scheme (Knorr, 2000), encapsulate large numbers of 14 

biogeochemical processes and hence involve a large number of parameters. Results from TEMs 15 

can diverge markedly, indicating limited understanding and representation of the processes 16 

involved. The study of Sitch et al. (2008) used five Dynamic Global Vegetation Models (DGVMs) 17 

to model the contemporary terrestrial carbon cycling. They coupled the DGVMs to a fast ‘climate 18 

analogue model’ based on the Hadley Centre General Circulation Model, and ran the coupled 19 

models to the year 2100 using four Special Report Emissions Scenarios. The most extreme 20 

projections differed by up to 494 PgC of cumulative land uptake across the DGVMs over the 21st 21 

Century (over 50 years of anthropogenic emissions at current levels; Sitch et al., 2008), although 22 

they remained consistent with the contemporary global land carbon budget. Furthermore, 23 

Huntingford et al. (2013) explored uncertainties of potential future carbon loss from tropical 24 

forests. They found that the DGVM response uncertainty dominated over variation between 25 

emission scenarios and climate models. 26 

 27 

There are various sources of uncertainty within the model, for example structural uncertainty, 28 

which depends on the formulation of individual processes and their numerical representation. 29 

Another source of uncertainty is parametric uncertainty, which results from the uncertainty of the 30 

process parameter values used in the models' parameterisation, either due to a lack of knowledge 31 

or to upscaling to larger spatial domains. Model parameter values are commonly based on “expert 32 
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knowledge”. Where little information is known, this can be just an educated guess. If estimates are 1 

unavailable for a parameter, it remains highly uncertain. Uncertainty of parameters can 2 

substantially contribute to overall model output uncertainty. In this case, parameter estimation to 3 

constrain the model against observations can be very useful. 4 

 5 

Many parameter estimation methods, such as gradient-based, Kalman Filter, Monte Carlo 6 

inversion, Levenberg-Marquardt and genetic algorithm, use the Bayesian approach [Tarantola, 7 

1987, 2005], which combines probability density functions (PDFs) of observational information, 8 

prior information and the model dynamics. Four-dimensional variational (4D-Var) schemes use 9 

the gradient of the model for the optimisation of parameters; this is usually provided by the 10 

adjoint. These approaches are generally computationally efficient but unlike some other 11 

variational data assimilation methods, for example the Markov Chain Monte Carlo method, it is 12 

possible to identify only a local minimum. Another weakness of 4D-Var schemes is that they 13 

concentrate only on the optimal solution without considering uncertainties. However, there are 14 

some 4D-Var schemes, such as the one used in the Carbon Cycle Data Assimilation System 15 

(CCDAS) (Rayner et al., 2005), which are able to approximate posterior parameter uncertainties 16 

using the inverse of the second order derivative of the cost function with respect to the parameters 17 

(Hessian) at the global minimum. 18 

Generally, Gaussian distributions are assumed for the prior probability distributions of the 19 

parameters. This is not always a good assumption as sometimes parameters are restricted to certain 20 

values; many are positive, for example and some are restricted between two values, such as a 21 

fraction between 0 and 1. Another example, is the terrestrial carbon parameter Q10, which 22 

regulates the response of the decomposition rate of organic material to changes in temperature and 23 

is known to be greater than 1 (“A rule of thumb widely accepted in the biological research 24 

community is that... the Q10 of decomposition is two” Davidson et al., 2006). Where parameters 25 

are limited to certain values, optimal solutions can contain non-physical parameter values, as has 26 

been seen in Koffi et al. (2012) when using CCDAS (Rayner et al., 2005) without attempting to 27 

limit the parameter space. Here, the optimal value of one of the parameters in the photosynthesis 28 

scheme was negative, which is unrealistic and would lead to a reversed photosynthesis. Kaminski 29 

et al. (2012) used, in addition, quadratic and double bounded transformations to achieve a limited 30 

parameter space. Further, in Trudinger et al. (2007), an optimisation inter-comparison study of 31 

parameter estimation methods in terrestrial biogeochemical models, and in Fox et al. (2009), 32 
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another inter-comparison project, the parameter space needed to be limited to avoid non-physical 1 

values. 2 

 3 

A simple method of avoiding these non-physical values would be to place hard constraints within 4 

the search algorithm. Byrd et al. (1995) described a limited memory quasi-Newton algorithm for 5 

solving large nonlinear optimisation problems, which can be applied to parameter estimation.  6 

 7 

Alternatively, it is possible to modify the cost function formulation by adding a so-called penalty 8 

term associated with some of the parameters. The penalty term is zero when the parameter is 9 

within its specified limits and increases as the parameter goes further away from these limits. This 10 

has been implemented in a study to estimate the turnover time of terrestrial carbon (Barrett, 2002). 11 

A genetic algorithm was used to improve consistency between estimated model parameters and 12 

data. All of the parameters were limited between two values and a penalty term was added 13 

whenever they violated these constraints. 14 

 15 

A further option to avoid these non-physical values would be to alter the estimation problem by 16 

using a parameter transformation (i.e. a nonlinear change of parameters’ PDFs) so that the 17 

parameter limits can never be reached. Simon and Bertino (2009) performed a twin experiment 18 

with a coupled ocean ecosystem model (HYCOM-NORWECOM) with an ensemble Kalman filter 19 

(EnKf), with and without parameter transformations to limit parameters to positive values. The 20 

study compared EnKF with parameter transformations and the plain EnKf with post-processing of 21 

results, where negative values are increased to zero. These two methods led to similar results, 22 

however, the parameter transformations had an advantage in efficiency. In this work they use the 23 

term “Gaussian anamorphosis”, however, we will continue to use the term “parameter 24 

transformation”. 25 

 26 

Within CCDAS, a parameter transformation from a Gaussian prior parameter distribution to a log-27 

normal prior parameter distribution is already routinely in use for some selected parameters such 28 

as the Q10 parameters. Koffi et al. (2012) showed that the choice of prior parameter distribution 29 

can have a great effect on the parameter’s uncertainty and the resulting flux field. In their 30 
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experiments a log-normal PDF on prior parameters reduced the sensitivity of net CO2 exchange 1 

flux (net ecosystem productivity, NEP) to the observational network as well as the transport 2 

model. In the study, the differences in NEP between two configurations are quantified by 3 

calculating the root mean square difference (rmsd) over all the grid cells and all months in the 4 

study period. After applying the log-normal PDF, the rmsd between the observational networks 5 

went from 42 gCm2/yr to 16 gCm2/yr. 6 

 7 

This paper builds upon the findings of Koffi et al. (2012) and systematically investigates the 8 

ability of the above mentioned three different methods to limit the parameter space within 9 

CCDAS. 10 

 11 

The outline of the paper is as follows: 12 

First, we give an overview of the data assimilation system and the model, going on to describe the 13 

parameter limiting methods and the experiments (Sect. 2). Section 3 describes the results and 14 

discussion. We finish with Sect. 4, providing some concluding remarks. 15 

 16 

2 Methodology 17 

CCDAS employs a terrestrial ecosystem model BETHY (Knorr, 2000) and an atmospheric tracer 18 

transport model TM2 (Heimann, 1995), along with prescribed CO2 fluxes constituting land-use 19 

change, sea surface-atmosphere exchange flux and fossil fuel emission (Rayner et al., 2005; 20 

Scholze et al., 2007) that are not calculated by the BETHY model. The biosphere model 21 

parameters are estimated using the variational approach. The configuration of CCDAS has been 22 

comprehensively described by Scholze et al. (2003), Rayner et al. (2005) and Ziehn et al. (2011b). 23 

Here, we provide a brief summary and an explanation of the points where we differ. 24 

2.1 Data assimilation system 25 

There are two steps to the data assimilation in CCDAS as can be seen in Fig. 1. The first uses the 26 

full version of BETHY to assimilate space-borne remote sensing data of vegetation activity to 27 

optimise the model’s phenology and hydrology. The second is a simplified form of BETHY and 28 

uses the optimised leaf area index (LAI) and soil moisture fields from the full version as input.  29 
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 1 

This paper focuses on the soil carbon balance, a simplified part of the second step. This 2 

simplification of the model keeps parameters that control net primary productivity (NPP) fixed; 3 

previous studies (Rayner et al., 2005; Scholze et al., 2007) have demonstrated that atmospheric 4 

CO2 data constrain these parameters only moderately. The NPP parameters are calculated by an 5 

additional forward simulation covering the full 25-year simulation period after the first step. They 6 

are then used as input, similar to soil moisture from the first step. 7 

 8 

Posterior parameter values are obtained via iterative minimisation of a cost function J(x). The cost 9 

function yields the mismatch between the parameter vector x and their priors x0 and modelled 10 

concentrations M(x) and observations c, where each is weighted by the uncertainties Cx0  and Cc 11 

of the prior and the observations, respectively (Rayner et al., 2005):   12 

J(x) = 1
2
(x − x0 )

TCx0
−1(x − x0 )+ (M(x)− c)

TCc
−1(M(x)− c)( )    (1) 13 

The formulation of the cost function uses a Bayesian approach (Tarantola, 1987, 2005) and 14 

reflects an assumption of Gaussian probability distributions on the observed concentrations and 15 

the prior information on the parameters (explained further in Ziehn et al. (2012)). Minimisation of 16 

the cost function uses the gradient of J with respect to the parameters x at each iteration. 17 

Transformation of Algorithms in Fortran (TAF) (Giering and Kaminski, 1998; Kaminski et al., 18 

2003) is used to generate derivative code from the model’s source code. 19 

 20 

At the minimum in the cost function, the Hessian approximates the inverse covariance of the 21 

parameter uncertainties (Tarantola, 1987) and can therefore be used to estimate the posterior 22 

uncertainties in the process parameters. Calculation of the Hessian is done by using TAF once 23 

more to differentiate the gradient vector in forward mode with respect to the process parameters. 24 

Although there is a significant reduction of the cost function within a few tens of iterations, for the 25 

Hessian assumptions to hold, many more iterations are required to achieve the near zero gradient 26 

of a cost function minimum. 27 

 28 
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When using the gradient-based approach, it is possible that only a local minimum is identified. 1 

Therefore, an ensemble of optimisations is performed, with each optimisation starting in slightly 2 

varied points in parameter space. In this way, if they all converge to the same minimum, we have 3 

confidence that we have found a minimum that is more likely to be a global minimum within the 4 

physical parameter space.  5 

 6 

Using the atmospheric tracer transport model TM2, calculated fluxes from BETHY are mapped 7 

onto atmospheric concentrations for comparison with measurements of observations of CO2 8 

obtained from the GLOBALVIEW database (GLOBALVIEW-CO2, 2008). As in previous studies 9 

(Rayner et al., 2005), we are using global monthly mean atmospheric CO2 concentration data from 10 

41 sites but here, we use data from over 25 years (1979-2003). 11 

 12 

As the interest of this study is the natural CO2 exchange flux between land-atmosphere, the 13 

remaining fluxes contributing to the atmospheric CO2 content are added separately. We use the 14 

estimates of Houghton (2008) for the land-use flux, without seasonality or interannual variability, 15 

following the procedure of Rayner et al. (2005). The flux pattern and magnitude of ocean CO2 16 

exchange is taken from Takahashi et al. (1999) and estimations of inter annual variability from Le 17 

Quéré et al. (2007). Background fluxes for fossil fuel emissions, based on the flux magnitudes 18 

from Boden et al. (2009), are described by the method of Scholze et al. (2007). 19 

 20 

2.2 Terrestrial biosphere model and parameters 21 

BETHY, a process-based model of the terrestrial biosphere (Knorr, 2000), simulates carbon 22 

uptake and soil respiration within a full energy and water balance and phenology scheme. The grid 23 

resolution of BETHY in this study is 2° × 2° with the global vegetation mapped onto 13 Plant 24 

Functional Types (PFT) based on Wilson and Henderson-Sellers (1985). Each grid cell can 25 

contain up to three PFTs. The amount of present PFTs within a grid cell is specified by their 26 

fractional coverage.  27 

 28 

In BETHY, NEP is defined as 29 
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NEP =NPP− Rs =NPP− (RS,s + RS, f )    (2) 1 

Where RS,s and RS,f are respiration fluxes from the slowly and rapidly decomposing soil carbon 2 

pools. Input to the fast pool is parameterised by the annual course of LAI for deciduous PFTs and 3 

the constant fraction of the leaf carbon pool for evergreen PFTs. Soil respiration is simulated to be 4 

soil moisture and temperature dependent assuming the following functional dependencies: 5 

  6 

    (3) 7 

     (4) 8 

where Cf and Cs represent sizes of the fast and slow carbon pool, respectively, and fs the fraction of 9 

decomposition from the fast pool to the long-lived soil carbon pool. The rate constants are 10 

     (5) 11 

     (6) 12 

where ω is the dimensionless plant available soil moisture, i.e. divided by the field capacity of the 13 

soil in the respective grid cell (a value between 0 and 1), Ta air temperature, κ a soil moisture 14 

dependence parameter, Q10,f and Q10,s, temperature dependence parameters for the fast and slow 15 

pool, τf and τs the pool turnover times at 25 °C.  16 

 17 

A parameter can either be global or differentiated by certain criteria (in this study, PFT). In this 18 

simplified version with NPP kept fixed, there are 6 controlling parameters; five are global and one, 19 

the β parameter, is PFT dependent. There is an additional parameter, the offset, representing the 20 

carbon dioxide concentration at the beginning of the optimisation, giving 19 process parameters, 21 

as can be seen in Table 3. Also shown in Table 3 are the prior uncertainties. As little information 22 

is known about some of the parameters, we have chosen to start with larger, realistic uncertainties. 23 

The five global parameters are Q10,f and Q10,s, the temperature dependence parameters for the fast 24 

and slow pool, τf the fast pool turnover time at 25°C, fs the fraction of decomposition from the fast 25 

pool to the slow decomposing soil carbon pool and κ the soil moisture dependence parameter. The 26 

PFT dependent parameter β, described in Eq. (7) and in more detail in Ziehn et al. (2012), is the 27 

carbon balance parameter and determines whether a PFT is a long-term source (β>1) or sink (0< 28 

β<1):  29 

RS, f = (1− fs )k fCf

RS,s = ksCs

k f =ω
κQ10, f

Ta 10 τ f

ks =ω
κQ10,s

Ta 10 τ s
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NEP =NPP(1−β)       (7) 1 

note that the vertical lines above denote the temporal average value over the full 25 year 2 

simulation period at each subgrid cell. The β parameter is strictly positive and, whilst it has no 3 

physical upper bound, it shouldn’t be unrealistically large; a value of 10, for example, would 4 

indicate that locations covered by this PFT have a net flux, NEP, 9 times that of NPP as described 5 

in Ziehn et al. (2011a). Therefore, an upper bound of 2 is a reasonable selection and is the value 6 

we have chosen when bounding this parameter. 7 

 8 

We distinguish between the physical model parameters pi and the parameters as seen by the 9 

optimisation routine, the control variables xi. Control variables have variance 1, in this sense, all 10 

the parameters are on the same dimensionless scale and so a change of 1 in that scale to the value 11 

of each parameter contributes equally to the value of the cost function.  Furthermore, the control 12 

variables have PDFs assuming a Gaussian distribution, as mentioned above. To obtain the control 13 

variables and to achieve the unit uncertainty, physical parameter values are divided by their prior 14 

standard deviation.  15 

     (8) 16 

 17 

2.3 Limiting the parameter space 18 

It is not always the case that the physical parameters are distributed in a Gaussian way. For 19 

example, this gives positive probability of negative values and as mentioned, some model 20 

parameters are only physically meaningful with strictly positive values. Three methods of 21 

avoiding these non-physical parameter values are examined in this paper. Two of the methods 22 

incorporate the bounding directly into the optimisation. The first, constrained optimisation, seeks a 23 

solution within the physically meaningful parameter space. The second adds a penalty term to the 24 

cost function when the optimiser begins to search the non-physical domain. This encourages it to 25 

stay within the physically meaningful parameter space. The final method investigated in this 26 

paper, parameter transformations, performs the optimisation in a transformed parameter space, 27 

which ensures that, when back-transformed, the minimum is always in the physically meaningful 28 

parameter space. In addition to testing these three methods, we go on to investigate the effect of 29 

xi =
pi
σ p0 i
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different parameter transformations on the inferred target quantities and their posterior 1 

uncertainties. One particular transformation, the log transformation has already been used in 2 

CCDAS and found to have a large impact on the optimised parameter values and also the resulting 3 

flux fields as explained above (Koffi et al., 2012). In addition to this log-normal transformation we 4 

propose two other transformations: quadratic and double bounded log. The quadratic and log 5 

transformations are used to provide a lower bound on a parameter and the double bounded log can 6 

be used to provide an upper and lower bound on a parameter. We will examine the effect of using 7 

these different parameter transformations on parameter values and their uncertainties. 8 

 9 

The essential difference between the three approaches is the form of the prior (and thus posterior) 10 

PDFs in (physical) parameter space. Both the constrained and the penalty function approaches 11 

produce a prior of Gaussian shape inside the bounds/the non-penalised region. Outside, the 12 

constrained approach produces a zero probability while the penalty approach produces a non-zero 13 

probability consisting of a gradual reduction of the Gaussian probability with increasing distance 14 

from the bounds. The parameter transformation approach produces a zero probability outside the 15 

bounds and a non- zero but non-Gaussian probability within the bounds. 16 

 17 

 18 

2.3.1 Constrained optimiser 19 

When using the constrained optimisation, the optimiser can only choose from amongst a restricted 20 

well-defined set. Minimisation of the cost function is done via a gradient based algorithm updating 21 

an approximation of the Hessian through the L-BFGS-B method [Byrd et al., 1995; Zhu et al., 22 

1997], which limits the control parameter space to the restricted set. This is a variant of the 23 

Davidon-Fletcher-Powell (DFP) formula (Fletcher and Powell, 1963; Press et al., 1996).  24 

 25 

2.3.2 Penalty term in the cost function 26 

For the penalty term optimisation, we use BFGS but add a penalty term to the cost function when 27 

the optimiser begins to search a non-physical region in the form of  28 
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J(x) = 1
2
(x − x0 )

TCx0
−1(x − x0 )+ (M(x)− c)

TCc
−1(M(x)− c)( )+ Pr (Drgrδrµr )

r=1

R

∑  , 1 

r=1,...,R=19 (i.e. the number of parameters)       (9) 2 

where Dr is a penalty factor that scales the penalty function, gr is the threshold function,  3 

invokes the penalty when the threshold is violated and  determines the sensitivity of the penalty 4 

function to threshold violation (with even, integer values). 5 

      (10) 6 

     (11) 7 

Where  is the current value of the rth parameter and  is the threshold value, the value beyond 8 

which the threshold is violated and the penalty imposed. 9 

 10 

 𝛿! =
1  , if  threshold  violated    

            0  , if  threshold  not  violated     (12) 11 

 12 

2.3.3 Parameter transformations 13 

Depending on the transformation used on the parameter, different equations are used to convert 14 

them from the model parameters pi into the control variables xi. The equations give control 15 

variables with a variance of 1. Where no transformation is used (i.e. the prior is assumed to have a 16 

Gaussian distribution), the parameters are just normalised using Eq. (8) as mentioned above. 𝑝!! is 17 

the prior value of the ith model parameter and 𝜎!!! is its prior uncertainty. As further options we 18 

have a double-bounded log, a lower-bounded log, and a quadratic transformation.  19 

Where a parameter has a lower and upper bound, a and b, the parameter transformation from 20 

optimisation space to physical space is given by an equation of the form: 21 

p(x) = (b− a) (1+ e−x )+ a       (13) 22 

For the log transformation with only a lower bound of a, this simplifies to an equation of the form: 23 

p(x) = ex + a         (14) 24 

The quadratic transformation with lower bound a is computed by a function like this: 25 

δr

µr

Pr = Drδrgr
µr

gr (αr ) = (αr
* −αr )

αr αr
*



 20 

axxp += 2)(         (15) 1 

Minimisation of the cost function is achieved via a gradient-based algorithm updating an 2 

approximation of the Hessian through the Broyden-Fletcher-Goldfarb-Shannon formula (Fletcher 3 

and Powell, 1963; Press et al., 1996), a Quasi-Newton method. 4 

 5 

2.4 Experiments 6 

We performed a total of five experiments investigating the impact of the three parameter space 7 

restriction methods on the results of the optimisation. Table 1 provides an overview of the 8 

experiments and how they differ. 9 

 10 

Previous experiments with this reduced version of CCDAS using no parameter transformations 11 

indicated three β parameters (8, 13, 18) that were either negative or extremely high, so in this 12 

paper, unless otherwise stated, they have all been limited between 0 and 2 using a double bounded 13 

log transformation. The rest of the β parameters have been left untransformed (i.e., assumed 14 

Gaussian), as they didn’t require any bounding since their posterior values already lied between 0 15 

and 2. 16 

 17 

To explore the effect that parameter transformations have in the model, the Q10,f parameter’s 18 

treatment was varied between Gaussian, Log and Quadratic, whilst keeping all but the three β 19 

parameters’ (8, 13 and 18) treatments Gaussian. (Experiments PTG, PTL and PTQ.) 20 

 21 

For the default penalty term optimisation, we only added a penalty term when the β parameter for 22 

crops (parameter 18) became negative. In Eq. (10), we chose D18=104 as the penalty factor, since 23 

this is on the same order of magnitude as the cost function minimum from previous experiments, 24 

and =4 for the sensitivity value, as it has to be positive but we do not use 2 since we use the 25 

second derivative to calculate posterior uncertainties. The other two β parameters (8 and 13) were 26 

still transformed using the double bounded log transformation. (Experiment PEN.) 27 

 28 

µ18



 21 

In the default constrained optimisation, the three β parameters (8, 13 and 18) were restricted 1 

between 0 and 2 by the hard limits imposed by the constrained optimiser. (Experiment CONS.) 2 

 3 

For each of the experiments above, four extra optimisations (building together an ensemble of five 4 

optimisations) were performed with the default prior parameter values randomly perturbed by up 5 

to 10%. This ensures that if most of the optimisations converge to the same minimum we have 6 

found a robust solution. 7 

 8 

 9 

3 Results and discussion 10 

We present the results of the different experiments, with a focus on the parameter transformations, 11 

as these are the experiments that successfully located a minimum within the physical parameter 12 

space. The other two methods were not successful and so are of limited use. We commence with 13 

the constrained optimisation (CONS), then briefly discuss the penalty term experiment (PEN) and 14 

finish with the results from the parameter transformations (PTG, PTL, PTQ). An overview of the 15 

optimisation results is presented in Table 2. 16 

 17 

CONS: Here, for the default prior parameter values, the optimisation did not converge and reached 18 

the preset maximum number of iterations (5000). We did not continue this optimisation as the 19 

number of iterations was already about 10 times more than the average number of iterations for 20 

the parameter transformation experiments. At this point there had been a significant reduction in 21 

the cost function by around a factor of 550 but the bounded parameters (8,13,18) were exactly at 22 

their bounds of 0 or 2, which at least in the case of 0 for a beta parameter does not make sense. 23 

Furthermore, there was not a near zero gradient. The other four ensemble members terminated 24 

after fewer iterations (10-382), without finding a minimum because of internal numerical 25 

problems within the optimiser. There was some reduction in the cost function by between a factor 26 

of around 20 and 400 but there was still a very large gradient of at least 4000 and all of these four 27 

ensembles had negative values for the soil moisture dependence parameter, κ. 28 

Since this method of limiting the parameter space was unsuccessful for this problem, uncertainties 29 

have not been calculated. 30 
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 1 

PEN: All of the five optimisations converged and found a minimum in a mathematical sense (zero 2 

or at least close to zero gradient). However, they did not achieve the parameter bounding, as the 3 

limited β parameter (parameter 18) was slightly negative (-0.024), contributing a penalty term of 4 

0.8 to the cost function. As the penalty was non-zero, the experiment was not successful in our 5 

aim of limiting the parameter. The optimisation is able to offset this small negative penalty 6 

contribution by achieving a smaller input to the cost function from the data and the parameters. 7 

We performed further experiments adding a penalty to parameter 8 as well, with no successful 8 

bounding of these parameters. We also increased the penalty term by a factor of 100 but still the β 9 

parameter was slightly negative. Again, uncertainties have not been calculated due to the 10 

unsuccessful optimisation of the parameters to physically meaningful values. 11 

 12 

PTG, PTL, PTQ: Using the parameter transformations we were able to successfully limit the 13 

parameter space. In this case, the transformation of Q10,f did not seem to have an effect on the final 14 

value of the cost function. Of the 15 (3 x 5) optimisations, 12 converged to the same minimum in 15 

the cost function of J = 9667 (reduced from an initial value of 5294051 when using the prior 16 

parameter values) and took between 174 and 876 iterations. The other three (one from each of the 17 

Gaussian, Log and Quadratic) converged to a different value of 9515, but were outside of the 18 

physical parameter space since another of the β parameters (parameter  9) was negative (-0.057), 19 

and are therefore not relevant. Having been reduced from over 107 to 10-3, the gradient of the 20 

minimum in the cost function can be considered to be sufficiently small enough to indicate that a 21 

minimum has been located for all three parameter transformation experiments. We calculate 22 

posterior parameter uncertainties and also propagate these uncertainties onto the net carbon flux 23 

using a linearisation of the model (Kaminski et al., 2003).  24 

 25 

Prior and optimised parameter values for all the parameter transformation experiments are shown 26 

in Table 3. Also shown are prior and posterior uncertainties and percentage reduction in 27 

uncertainty. The 3 β parameters that were double bounded show their upper and lower percentiles, 28 

equivalent to one standard deviation. The global parameters behave in a consistent way to 29 

previous studies (Ziehn et al., 2011a). The temperature dependence parameter of the fast carbon 30 

pool, Q10,f, is somewhat reduced to 1.07 compared to its initial value of 1.5, although this change 31 

is within the range of the prior parameter uncertainty. The temperature dependence parameter of 32 
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the slow pool, Q10,s is increased from its initial value of 1.5 to 1.82, which again lies within the 1 

one sigma range of the parameter’s prior uncertainty. The two Q10 parameters posterior 2 

uncertainties are lowered by more than one order of magnitude, which confirms the result of 3 

Scholze et al. (2007) that atmospheric CO2 data constrain the parameters of soil respiration 4 

relatively well.  5 

The fast pool turnover time τf is also within the prior uncertainty range of one standard deviation 6 

increasing from 1.5 to 3.46. As is the soil moisture dependence parameter, κ, which is reduced 7 

from 1 to 0.57. The small posterior uncertainty of this parameter indicates that it is also well 8 

constrained by the data. The optimised parameter value of the fraction, fs, however is outside of 9 

the prior uncertainty range, increasing from 0.2 to 0.74. It behaves similarly to previous studies 10 

(Ziehn et al., 2011a). Again, the posterior uncertainty is very small. Lastly, the offset parameter 11 

also behaves in a consistent way to Ziehn et al. (2011a). The posterior uncertainties for all the 12 

global parameters are reduced by over 95% compared to their prior uncertainty. This is due in part 13 

to the fact that the global atmospheric CO2 network strongly observes those parameters that act 14 

globally at all subgrid cells and is further explained by the fact that moderately large prior 15 

parameter uncertainty values are used. 16 

 17 

For the PFT-dependent β parameters, the uncertainty reduction varies between 5-90% and so is 18 

clearly less than for the global parameters. This is partly due to the β parameter being 19 

differentiated by PFT, which means each PFT is less well observed by the atmospheric network. 20 

 21 

The cost function reduction of all of the five experiments is shown in Fig. 2 up to the first 400 22 

iterations on a log scale. By 400 iterations, all of the parameter transformations (PTG, PTL, PTQ) 23 

and the penalty term optimisation (PEN) had converged, the constrained optimisation (CONS) had 24 

not. The rest of the constrained optimisation’s performance is shown inlaid in Fig. 2 on a linear 25 

scale. The majority of the cost function reduction (around 2 orders of magnitude) is within the first 26 

30 iterations. After this, convergence is slower but the optimisation continues until a near zero 27 

gradient is achieved, which indicates that we have found a minimum. Only at the minimum can 28 

the inverse of the hessian be used to estimate the posterior parameter uncertainty. 29 

 30 



 24 

The gradient value for all five optimisations is shown in Fig. 3, again up to 400 iterations, where 1 

we can see that the parameter transformations and the penalty term experiments have converged. 2 

The constrained optimisation has not been included up to its full 5000 iterations; it continues in 3 

much the same way after this and does not achieve a near-zero gradient. The different methods 4 

and the minimisations from different starting points converge differently as they are solving 5 

different problems. Each change in the formulation of the cost function results in a different 6 

optimisation problem. When an optimisation starts at a different point in the parameter space, it 7 

follows a different trajectory to find a minimum. 8 

 9 

Figure 4 shows a time-series of our target output quantity of global mean NEP, along with 10 

uncertainties. We calculated the values for all three of the parameter transformation experiments 11 

but as they are all within the same numerical limits only the Gaussian case has been shown. The 12 

global mean NEP time-series and their uncertainties resemble that of Ziehn et al. (2011b). This is 13 

because we are using exactly the same set-up with identical forcing and assimilation data. We also 14 

calculated NEP using the parameter values obtained form the constrained and the penalty 15 

experiments. Per year, NEP from these two cases does not differ much from the parameter 16 

transformations (between 2-4%), so we have not added this to Fig. 4. The resulting NEP fields 17 

look very similar to each other as do the posterior parameter values but since each of the 18 

constrained and penalty experiments yielded at least one unphysical value, we shall not consider 19 

these any further. The effect of these unphysical parameters does not show up in aggregated 20 

quantities such as annual global values or even annual grid cell values since the NEP of a grid cell 21 

is also the sum of the NEP of the individual PFTs within that grid cell. 22 

 23 

 24 

We also show the covariance between the flux uncertainties, which, as in Ziehn et al. (2011b), we 25 

express using the uncertainty correlation matrix of diagnostics, Rd, defined as follows: 26 

 27 

    (16) 28 

 29 

Rd
i, j=

Cd
i, j

σ iσ j



 25 

Where Cd
i,j is element i,j of the error covariance matrix of global net CO2 exchange flux (NEP) per 1 

year and σi the posterior uncertainty of parameter i obtained from the diagonal element Cd
i,i of the 2 

matrix Cd. For mean global NEP for the Gaussian case this uncertainty correlation matrix is shown 3 

in Fig. 5. There are a large number of negative correlations, which is the reason for a relatively 4 

small overall uncertainty for the global mean NEP over the whole period 1979 to 2003. However, 5 

the uncertainty for the global mean NEP for a single year (as shown in Fig 4) is substantially 6 

larger. It is worthwhile to note that, between the different parameter transformations, there is no 7 

difference in the uncertainty correlation matrix and thus also in the posterior parameter 8 

covariances. 9 

 10 

It seems in general, that a lower cost function value can be achieved when the optimiser is allowed 11 

to search the whole space. For example, in one of each of the parameter transformation 12 

experiments the cost function at the minimum was 9515 but one of the β parameters (parameter 9) 13 

was negative (-0.057). It is possible that the global minimum is within the non-physical space 14 

because the model is highly non-linear with a complex, 19-dimensional parameter space and from 15 

a purely mathematical point of view, a smaller minimum can be found outside the physically 16 

meaningful parameter space.  However, this does not constitute a solution for our optimisation 17 

problem. Another possible reason for finding a minimum outside the physically valid parameter 18 

space is that the model, as it stands, is missing or does not fully describe a relevant process and 19 

therefore the optimisation has to compensate for this missing process by choosing non-physical 20 

parameter values. The analysis of such non-physical parameter values can provide useful 21 

information for further model development. However, this is not always feasible and therefore 22 

limiting the parameter space with parameter transformations seems to be the most effective way to 23 

ensure physically meaningful parameter values. 24 

 25 

4 Conclusions 26 

We systematically investigated the effects of different methods of limiting the parameter space, 27 

which is an emerging issue in parameter optimisation studies. In our simplified set-up of CCDAS, 28 

we saw that two of the methods were not successful; both the constrained and the penalty term 29 

optimisation had values outside of the physically meaningful parameter space and in fact, the 30 

former did not converge to a minimum at all. Parameter transformations however, were successful 31 

in locating an optimal solution within the limits. All of the physically meaningful ensembles 32 



 26 

converged to the same minimum, so we can be confident that this is the global minimum.  We 1 

tested two parameter transformations against standard scaling and found that these three 2 

experiments all reached the same minimum, indicating that the transformation does not alter the 3 

optimisation problem. This is in contrast to the study of Koffi et al. (2012) however, we note that 4 

in this study a more complex system was used that involved 57 parameters compared to our 19. 5 

Furthermore, in Koffi et al. (2012), the optimisations do not converge to a minimum and have 6 

been stopped after a certain reduction in the cost function value, without obtaining a near zero 7 

gradient. In our experiments, for this manuscript, all the optimisations with parameter 8 

transformations have converged to a minimum with a final gradient approaching zero. A future 9 

experiment of interest may involve systematically investigating parameter transformations within 10 

the fully complex model. 11 

 12 

In our experience, we would therefore recommend the parameter transformations as the most 13 

suitable solution to the problem of limiting parameter spaces. As the parameter transformations 14 

are applied outside of the optimisation routine this would be a good general method for any 15 

problem involving restricted parameter sets. As for CCDAS, the quadratic transformation is 16 

slightly preferred to the log as it may have a lower range for the number of iterations required to 17 

achieve convergence. 18 

 19 

5 Code availability 20 

 21 

For obtaining the code, please contact M. Scholze (marko.scholze@nateko.lu.se). 22 

23 



 27 
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 31 

 Table 1: Experiments performed to investigate the impact of different methods of limiting the parameter space on the 1 
optimisation. 2 

Experiment Default set-up: 

No Parameter 
Transformation of Q10,f          

(Gaussian) 

Parameter 
Transformation 

of Q10,f            

(Log) 

Parameter 
Transformation 

of Q10,f  

(Quadratic) 

Constrained Penalty 
Term 

Optimiser used BFGS BFGS BFGS L-BFGS-B BFGS 

Parameters treated with a 
double bounded parameter 

transformation 

8,13,18 8,13,18 8,13,18 none 8,13 

Treatment of Q10,f in 
parameter transformation 

experiments 

No transformation 
(assuming Gaussian PDF) 

Logarithmic 
transformation 

Quadratic 
transformation 

none none 

Parameters constrained none none none 8,13,18: 
constrained 
between 0 

and 2 

none 

Parameters with a penalty 
term added 

none none none none 18: penalty 
term added 

when 
negative 

Abbreviation PTG PTL PTQ CONS PEN 

  3 



 32 

Table 2. Values of the cost function, the contributions from data and parameters, the gradient, the number of iterations 1 
to achieve convergence and how many optimisations from the ensemble of 5 converged to this value for the different 2 
parameter transformations of Q10,f and the constrained and penalty term experiments. 3 

 4 

 Parameter Treatment Used for Q10,f Constrained Penalty term 

Gaussian Log  Quadratic 

Optimised cost function 

value 

9666.8       9667.0 9666.9        9613.6  9639.0     

Data contribution 9584.3      

 

9584.3  

 

9584.3  

 

9552.8 9571.0 

Parameter contribution 82.5     82.7     82.6  60.8 67.1 

Final gradient value 2.3x10-3 1.6x10-4 1.2x10-3 49.8 5.2 x 102 

Number of iterations 224 319 365    5000 154 

Range of number of 
iterations 

174-876 319-595 232-478 10-5000 154-208 

Number of optimisations 

that successfully converged  

4 4 4 0 0 

 5 

  6 
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 1 

Table 3. Controlling parameters and their initial and optimised values for each experiment and parameters’ initial and 2 
posterior uncertainty (equivalent to one standard deviation) and percentage reduction in uncertainty (relative to the 3 
upper standard deviation) after the optimisation for the parameter transformation experiments. For the three β 4 
parameters that were transformed using the double-bounded log transformation, upper and lower percentiles, 5 
equivalent to one standard deviation, are shown. 6 

Parameter 
Initial 

Value 

Optimised Value 
Initial 

Uncertainty 

Optimised 

Uncertainty 

 

Percentage 

Reduction in 

Uncertainty CONS PEN PTG PTL PTQ 

1 Q10,f 1.5 1.071 1.068 1.069 1.069 1.069 0.75 0.016 97.899 

2 Q10,s 1.5 1.81 1.811 1.817 1.816 1.816 0.75 0.019 97.492 

3 τf 1.5 3.456 3.417 3.435 3.436 3.435 3.0 0.12 95.993 

4 κ 1 0.574 0.574 0.571 0.571 0.571 9.0 0.011 99.877 

5 fs 0.2 0.734 0.735 0.735 0.735 0.735 0.2 0.004 98.073 

6 β(TrEv) 1 0.803 0.807 0.796 0.796 0.796 0.25 0.017 93.387 

7 β(TrDec) 1 0.889 0.896 0.926 0.926 0.926 0.25 0.043 82.999 

8 

β(TmpEv) 
1 0 0.284 0.29 0.29 0.29 0.25 0.071/0.089 37.231 

9 

β(TmpDec) 
1 0.075 0.101 0.037 0.037 0.037 0.25 0.05 79.889 

10 β(EvCn) 1 1.274 1.278 1.272 1.272 1.272 0.25 0.023 90.774 

11 

β(DecCn) 
1 0.36 0.398 0.325 0.325 0.325 0.25 0.121 51.785 

12 

β(EvShr) 
1 0.151 0.171 0.196 0.196 0.196 0.25 0.095 61.899 

13 

β(DecShr) 
1 2 1.912 1.913 1.913 1.913 0.25 0.024/0.019 48.949 

14 β(C3Gr) 1 1.508 1.509 1.485 1.485 1.485 0.25 0.029 88.468 

15 β(C4Gr) 1 1.138 1.131 1.129 1.129 1.129 0.25 0.024 90.508 

16 β(Tund) 1 0.866 0.866 0.876 0.876 0.876 0.25 0.05 79.816 

17 β(Wetl) 1 2.241 2.165 2.211 2.211 2.211 0.25 0.238 4.9 

18 β(Crop) 1 0 -0.024 0.066 0.066 0.066 0.25 0.013/0.017 54.095 

19 offset 338 336.423 336.421 336.421 336.421 336.421 1.0 0.049 95.099 
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 2 

Figure 1. CCDAS structure. Top arrows indicate the parameters to be optimised and the 3 

observational data used in the various steps. 4 
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 1 

 2 

Figure 2. Cost function value for all five experiments in log scale for the first 400 iterations and 3 

cost function value for constrained optimisation from 400 to 5000 in linear scale (dark blue: 4 

Gaussian, green: log, red: quadratic, light blue: constrained, pink: penalty). 5 

  6 
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 2 

Figure 3. Gradient value for all five experiments in log scale up to 400 iterations (dark blue: 3 

Gaussian, green: log, red: quadratic, light blue: constrained, pink: penalty). 4 
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Figure 4. Time series of annual global mean net ecosystem productivity (NEP) with posterior 3 

uncertainty.  4 
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Figure 5. Uncertainty correlation matrix of global mean NEP. 3 
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