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General Comments 

The authors present their data assimilation system GCAS-EK, which is 

based on the application of a Kalman Filter to the CO2 flux estimation 

problem. Some recent improvements to such systems were incorporated 

into this version, such as the inflation of covariances (on fluxes and 

observations) and the replacement of the forecast statistics with a better 

one, based on the analysis state vector mean. This system is described in 

a rather short description, that mostly states that all input data and 

settings were copied from NOAA/ESRL’s carbon tracker website. One 

important difference with carbon tracker itself is the choice to also place 

CO2 in the state vector, which has been demonstrated to be beneficial in 

a joint meteorological-CO2 data assimilation method, which GCAS-EK is 

however not. The impact of the innovations in the extended state vector, 

inflation estimation, and forecast statistics are demonstrated in 

straightforward experiments, much similar to the original publication of 

these methods. Following these OSSE’s, a real global CO2 inversion is 



performed with as main result a better fit to the observed CO2 that was 

assimilated, and closer agreement to the published carbon tracker results 

at global, and at TransCom scales. Overall, I feel that this new system has 

a place in the ranks of current CO2 data assimilation methods, but the 

current paper does not highlight much novelty, does not convincingly 

show the added value of an extended state vector or shorter assimilation 

window, and does not demonstrate that this system is mature enough to 

estimate global carbon fluxes to a level of reliability comparable to 

existing methods. This is a consequence of the way the paper is 

structured: it does not fully document your system as I would expect for 

GMD, it also does not fully assess the details of extended state vectors or 

window lengths as could be suitable, and it also is not a sufficient paper 

to show you can estimate good carbon fluxes. The latter would be an 

interesting paper even for ACP or BG I believe. A clearer choice of the aim 

of this paper would in that sense help a lot. 

Our reply: 

Thank you for your valuable comments. Please see our reply to your 

following specific comments. 

 

The paper is very well written in appropriate English, and structured 

logically which makes it easy to read. Sufficient literature from the field is 

cited, although there are some blatant omissions in referencing data 



source as documented under (1). I think the design and application of this 

system is of interest to the GMD reader community, if the following four 

major points of concern are addressed in a next manuscript: 

(1) This paper cannot be published without consent and 

acknowledgement of the CO2 data providers. You currently state that you 

got the data from the carbon tracker website but this is not an 

acceptable citation, nor the right source to get observational data. The 

data used by carbon tracker is owned by many individual PIs and the 

terms of use of this data state that these must all be informed when you 

use their data, and consulted to discuss acknowledgement. This has 

clearly not been done yet, and this must be rectified. Along a similar line, 

this study uses many products and details obtained from the carbon 

tracker website, but there is no acknowledgement for the carbon tracker 

effort as asked for on their website. Nor is there any reference to the 

original fossil, fire, and ocean flux data providers behind carbon tracker 

that also should receive fair credit for their work. I find this scientifically 

unacceptable. 

Our reply: 

Thank you for your comments.  

We have added all the sources of the datasets we can find on the 

website in the following paragraphs and will send the manuscript to data 

owners to ask how to acknowledge them as soon as the manuscript is 



completed. We promise that all the mistakes you mentioned will be 

rectified. In the revised manuscript, 

“The vegetation fire flux is taken from CarbonTracker 2011 dataset, 

which is modeled using the Carnegie-Ames Stanford Approach (CASA) 

biosphere model (Potter et al., 1993) based on the Global Fire Emission 

Database (GFED) (van der Werf et al., 2006) and resampled to an 8-day 

time step using MODIS fire hot spots (Giglio et al., 2006).” 

“The oceanic CO2 flux is taken from CarbonTracker 2011 optimized 

results, whose a priori estimates are based on two different datasets: 

namely ocean inversions flux result (Jacobson et al., 2007) and pCO2-Clim 

prior derived from the climatology of seawater pCO2 (Takahashi et al., 

2009).” 

“The fossil fuel combustion estimate is the dataset preprocessed by 

CarbonTracker 2011 from the global total fossil fuel emission of the 

Carbon Dioxide Information and Analysis Center (CDIAC) (Boden et al., 

2011) and the “ODIAC” emission dataset (Oda and Maksyutov, 2011).” 

“The atmospheric CO2 concentration measurements collected and 

preprocessed by Observation Package (ObsPack) Data Product (Masarie 

et al., 2014) are used in this study (Product Version: 

obspack_co2_1_CARBONTRACKER_CT2013_2014-05-08). The selected 

CO2 measurements on 92 sites include observations of two main types: 

the measurements of air samples at surface sites and in situ 



quasi-continuous CO2 time series from towers. Since some stations have 

multiple observations within a week, on average there are about 140 

observations every week during 2002 and 2008. Five laboratories (NOAA 

Global Monitoring Division, Commonwealth Scientific and Industrial 

Research Organization, National Center For Atmospheric Research, 

Environment Canada and Instituto de Pesquisas Energeticas e Nucleares) 

provided these measurements and information of observation sites used 

in this study is listed in Table 1.” 

And in the Acknowledgement: 

 “We kindly acknowledge all atmospheric data providers to 

obspack_co2_1_CARBONTRACKER_CT2013_2014-05-08, and those 

contribute their data to WDCGG. We grateful acknowledge 

CarbonTracker CT2011 results provided by NOAA ESRL, Boulder, Colorado, 

USA from the website at http://carbontracker.noaa.gov.” 

 

(2) Technically, the tests shown are not so interesting because they 

demonstrate improvements that were already described in more detail in 

previous publications. Their application in GCAS-EK is not much different 

from those papers and yields results which are quite predictable. 

Moreover, some of the questions that are important to the real-world 

application of GCAS-EK are not answered in this test. These questions are: 

(1) Why would the extended state vector be expected to outperform the 



regular flux state vector if they are fully related through a linear operator 

G? and (2) How much carbon mass is lost or gained per 

cycle/season/year due to the adjustments made directly to the mixing 

ratios rather than to the underlying fluxes? I recommend that the 

authors try to answer these questions as a prelude to the real-world 

application of estimating CO2 with GCAS-EK. 

Our reply: 

Thank you for your comments.  

Following your advice, we have deleted Section 4 of “simulation 

study”.  

We would like to answer Question (2) first. In this study, the 

background CO2 concentration field at the beginning of a week is the 

analysis state at the end of the previous week. It is then updated using 

the observations within the week, so the estimated CO2 concentration at 

the beginning of the week is different from that at the end of the 

previous week. This results in inexact carbon mass balance. To remove 

the imbalance, a corrected atmospheric CO2 concentration can be 

generated using the sequential forecast of CO2 concentration with the 

optimized carbon fluxes starting from the very beginning of the whole 

assimilation period. The corrected CO2 concentration is denoted by . 

By this way the carbon mass can be balanced. 

For question (1): Given an atmospheric transport model and its 
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meteorological forcing data, the CO2 concentration field is fully 

determined by the “initial condition” and “boundary conditions”. In fact, 

if we have to find a state vector of “minimum length”, it will consist of 

the initial CO2 concentration field and the scaling factors. If the initial 

condition is inaccurate, there will be error in forecasted observations. 

There are two ways to reduce this error: one is using an assimilation 

window long enough to decrease the impact of the error of the initial 

CO2 concentration field, which is done by CarbonTracker and many 

atmospheric inversions etc.; another is to optimize the initial CO2 

concentration field with observations, which is carried out by Kang et al. 

(2011,2012), Liu et al. (2012), Miyazaki et al. (2011) and this study. If a 

short assimilation window is used (for example, one week in this study), 

the error of the initial condition cannot be ignored. This is the main 

reason we include the CO2 concentration field in the state vectors. 

The benefit of this inclusion needs to be tested against the traditional 

approach without this inclusion. This issue is studied with the one-week 

assimilation window. A comparative experiment is designed as follows. 

At every time step, the CO2 concentration is not updated. For 

maintaining the CO2 mass balance, the analysis CO2 concentration is 

derived by sequentially predicting atmospheric CO2 concentration forced 

by the updated flux within the week. The results showed that the overall 

RMSE of analysis CO2 concentration observations in this experiment is 



8.5% larger than that of the corrected analysis CO2 concentration  

by GCAS-EK. This suggests that inclusion of CO2 concentration in state 

vectors can significantly alter the CO2 mass balance and may have 

advantage in optimizing the surface CO2 flux. 

If the CO2 concentration is not included in state vectors, the analysis 

CO2 concentration at the beginning of each week is just the analysis CO2 

concentration at the end of the previous week, so the CO2 concentration 

observations within the current week are not used to optimize the CO2 

concentration at the beginning of each week. However, when the CO2 

concentration is included in state vectors, all the observations within the 

current week and the previous weeks are used to estimate the CO2 

concentration at the beginning of the current week. So the CO2 

concentration at the beginning of each week estimated by inclusion of 

CO2 concentration in state vectors could be more accurate than that 

estimated in the no inclusion case. Therefore, the estimated flux 

associated with the updated CO2 concentration at the beginning of 

current week could have better quality. This is demonstrated by smaller 

RMSE with the inclusion than that without the inclusion.  

Most of discussions above have been added in the revised 

manuscript. Please see the manuscript file for the revision. 

 

References 

 

ca

t
c



Kang, J. S., Kalnay, E., Liu, J., Fung, I., Miyoshi, T., and Ide, K.: "Variable localization" in an ensemble 

Kalman filter: Application to the carbon cycle data assimilation, J. Geophys. Res., 116, D09110, 2011. 

Kang, J. S., Kalnay, E., Miyoshi, T., Liu, J., and Fung, I.: Estimation of surface carbon fluxes with an 

advanced data assimilation methodology, Journal of Geophysical Research: Atmospheres (1984--2012), 

117, 2012. 

Liu, J., Fung, I., Kalnay, E., Kang, J.-S., Olsen, E. T., and Chen, L.: Simultaneous assimilation of AIRS Xco2 

and meteorological observations in a carbon climate model with an ensemble Kalman filter, Journal of 

Geophysical Research: Atmospheres, 117, D05309, 10.1029/2011JD016642, 2012. 

Miyazaki, K., Maki, T., Patra, P., and Nakazawa, T.: Assessing the impact of satellite, aircraft, and surface 

observations on CO2 flux estimation using an ensemble-based 4-D data assimilation system, J. 

Geophys. Res. [Atmos.], 116, D16306, 10.1029/2010JD015366, 2011. 

 

(3) You have chosen to apply your method globally, yet you use your 

Kalman Filter as a filter rather than a smoother. The only justification you 

give is that transport is uncertain and various choices are possible. This is 

not enough in my opinion. If you want to apply your system globally, you 

need to show that a filter captures the signals of CO2 sufficiently well in 

that period, and that going to a longer window or a lagged window has 

little advantage. My estimate is that your one week filter is too short for 

global flux estimates, and is partly responsible for the large flux 

differences with carbon tracker in your figures. 

Our reply: 

Thank you for your comments.  

Different lengths of the assimilation time window are used in various 

systems (5 weeks in CarbonTracker, 3 and 7 days in Miyazaki et al. (2011) 

and 6 hours in Kang et al. (2012)). We choose the one-week assimilation 



window in our methodology for the following three reasons. First, since 

most surface stations only have weekly observations, we need at least 

one week data to cover the globe. Second, beyond one week the errors 

of the atmospheric transport model may be significant, but they are very 

difficult to quantify. Third, the detailed information of observations may 

be attenuated with time by atmospheric diffusion and advection (Enting, 

2002). 

For comparison to longer assimilation windows, the following 

alternative experiments with moving assimilation windows were carried 

out. In the first alternative experiment, the length of the moving window 

is set to be two weeks while the forecast time step is still one week. The 

CO2 concentration observation system is still the same as that described 

in Section 3, but is used to update the global carbon flux and the 

atmospheric CO2 concentration within the current week and the 

previous week. This procedure is similar to GCAS-EK, which provides the 

ensemble forecast state of the first week in the assimilation window that 

is set as its ensemble analysis state at previous assimilation time step. 

Therefore carbon fluxes and CO2 concentration every week is optimized 

twice with the observations in the current week and the next week. The 

corrected analysis of CO2 concentration is also retrieved from rerunning 

the atmospheric transport model. The second alternative experiment is 

similar to the first one, but with the three-week moving window. 



The linear trends of the observations, the corrected CO2 

concentrations averaged over all observation sites with one-week, 

two-week and three-week moving windows are 2.14ppm yr
-1

, 2.17 ppm 

yr
-1

, 1.59 ppm yr
-1

, 1.13 ppm yr
-1

, respectively. It seems that the longer 

the moving window is, the larger difference is the long term growth to 

the measurements. For further investigating the reason, the annual 

mean carbon budgets on 11 Transcom regions are shown in Fig. R1. It 

can be found that the longer the moving window is, the larger are the 

carbon budget adjustments. Long windows result in underestimation of 

the corresponding long term growth rate. These facts indicate that the 

one-week assimilation window may be most appropriate. Incidentally, 

the corresponding trend for CarbonTracker 2011 is 2.15 ppm yr
-1

, also 

very close to the trend observed.  

 

Figure R1. Annual means of carbon budgets (PgC yr
-1

) on 11 Transcom regions in 

four different cases. Four cases are associated with prior values modeled with 

ecosystem model BEPS, assimilated results using GCAS-EK with one-week 

assimilation windows, two-week windows and three-week windows. 11 regions in 



X-axis refer to 'North American Boreal' (NAB), 'North American Temperate' (NAT), 

'South American Tropical' (SATr), 'South American Temperate' (SAT), 'Northern Africa' 

(NAf), 'Southern Africa' (SAf), 'Eurasia Boreal' (EAB), 'Eurasia Temperate' (EAT), 

'Tropical Asia' (TA), 'Australia' (AU) and 'Europe' (EU), respectively. 

 

To further investigate the long time and long distance impact of 

atmospheric transport on CO2 observations, components of CO2 

concentration at observation sites associated with different Transcom 

regions in each day before their observation times are calculated in the 

following way. For a given region and some day before the observation 

time, prior fluxes on other regions and in other days are all masked. Then 

the atmospheric transport model can be run with a homogeneous initial 

atmospheric CO2 concentration and forced by the masked fluxes to 

obtain the corresponding CO2 concentration components.  

These components at individual sites are then averaged in time to 

investigate general impacts of carbon fluxes from different sources. 

Results at 7 selected sites are shown in Fig. R2. For these sites, CO2 

concentrations resulting from carbon fluxes within 25 days are mainly 

from local carbon fluxes within 7 days (although mostly within 3 days). 

Carbon fluxes beyond 7 days or regions far from observation locations 

have very small impacts, indicating that they have little information in 

observations (i.e. the contribution is less than observation error), even if 

the atmospheric transport model is accurate. Actually the majority of 

continental observation sites used in this study (approximately 49) have 



similar properties to these 7 sites. If the errors of the transport and 

ecosystem models are considered, the information of fluxes one week 

before may be even more difficult to estimate. 

The setting of length of the assimilation window is closely related to 

spatial and temporal localizations of forecast errors. For the observation 

network and the atmospheric transport model used in this study, the 

one-week assimilation window seems most suitable. 

Figure R2. Mean components of CO2 concentration at observation sites (Site IDs: 

LEF_01P0, BAL_01D0, WLG_01D0, BKT_01D0, BHD_01D0, MKN_01D0 and ABP_01D0) 

from 11 Transcom regions in each of 25 days before the observation time. X-axis 

refers to days before the observation time. Y-axis refers to the amount of CO2 

concentration in ppm. Different colors within a bar refer to CO2 concentration from 

11 different Transcom regions. 11 regions refer to 'North American Boreal' (N-Ame-B), 

'North American Temperate' (N-Ame-T), 'South American Tropical' (S-Ame-Tr), 'South 

American Temperate' (S-Ame-T), 'Northern Africa' (N-Afr), 'Southern Africa' (S-Afr), 

'Eurasia Boreal' (Era-B), 'Eurasia Temperate' (Era-T), 'Tropical Asia' (Tr-Asa), 'Australia' 

(Aus) and 'Europe' (Eur), respectively. 
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(4) The real-world application of the system is interesting, but I feel 

that the assessment of its realism needs to be expanded significantly. 

Now, we are just given a comparison to carbotracker fluxes that shows 

large differences but little evaluation. In the end, the question whether 

your system can produce good fluxes that match atmospheric 

concentrations well is not answered for me. The authors should look 

more closely at the evaluation of other systems that have recently been 

published such as from Liu et al., (2013) and Zhang et al., (2013). 

Important is to include an evaluation of mixing ratios, both those 

assimilated and non-assimilated such as from aircraft or other sites. And 

to assess these at multiple time scales (diurnal, syncopic, seasonal, 

annual) and multiple location (tropics, SH, NH). Then, the sum of fluxes 

must be given for the globe and their sum must be compared to the 

global CO2 growth rate. Next, these must be split into ocean and land 

fluxes, and the land fluxes must be looked at to see where the land sink 



appears largest (tropics, NH boreal, or NH temperate, and Europe vs Asia 

vs North America). These must then also be split into forests and 

grasslands or cropland uptake. If all of these look good, a comparison 

can be made to the results of other systems, such as those in TransCom, 

or RECCAP, and perhaps carbon tracker. And again, this has to be done on 

seasonal, annual, and interannual scales. Finally, independent 

assessment against for instance GCP estimates, or eddy-covariance, or 

crop yields, or forest surveys could help. I realize this is not an easy task, 

but to publish a new inversion system one has to convince the existing 

community of its realism.  

Our reply: 

Thank you for your comments.  

The purpose of this study is to show some ideas that are potentially 

useful in assimilating atmospheric CO2 concentration measurements into 

ecosystem models, including the inclusion of atmospheric CO2 

concentration in state vectors, the implementation of the Ensemble 

Kalman Filter (EnKF) with a short assimilation window, the use of  

analysis states to iteratively estimate ensemble forecast errors, and a 

maximum likelihood estimation of the inflation factors of the forecast 

and observation errors. We plan to put the assessment of the system 

into another manuscript, which is similar to the papers you mentioned 

(Liu et al., 2014;Liu et al., 2012;Zhang et al., 2014). 



Following your advice, we have added more assessment in the 

revised manuscript. First, Chi-square tests were carried out to directly 

investigate the effectiveness of the techniques used to improve the 

estimation of forecast and observation error covariances. Second, 

long-term growth rates in several cases were tested and compared. Third, 

independent gridded net ecosystem productivity data such as that by 

Xiao et al. (2011) was compared to that by GCAS-EK. Xiao’s data is based 

on eddy covariance and MODIS data. 

Unfortunately, we carried out the assimilation from 2002 to 2008, 

when there is little aircraft or satellite data. Furthermore, direct carbon 

flux observations such as eddy covariance are sparse over the globe and 

their spatial representativeness is very limited, and thus they are not 

suitable for comparisons with our gridded results, although tower flux 

data at more than 100 stations are used to optimize the BEPS model that 

is used to produce the prior land surface carbon flux. 

In the future, we are going to extend our assimilation to recent years 

using more observations, and comprehensive and systematic 

assessments of the methodologies developed in GCAS-EK will carried 

out. 
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My recommendation is that the current MS is rejected and that the 

authors work on this manuscript some more before resubmitting it, since 

the changes I ask for are beyond a simple major revision. The first part of 

the paper should then focus on demonstrating that the extended 

statevector is an asset to this system and not just a liability for loss of 

CO2 mass. Also, it should demonstrate that the non-smoother version of 

the EnKF that they apply here is suitable for doing global inversions. Then, 

the global inversion should be presented, benchmarked in the method as 

described above under point (4). I hope my further comments on the 

manuscript in PDF help this effort. 

 



In the supplement: 

(1) Title: This title is a bit awkward as it contains the word 

assimilation twice, also the acronym EnKF is not known to all readers. 

Carbon Assimilation for many persons refers to the process of carbon 

fixation by photosynthesis. I suggest the authors make a better title. 

Our reply: 

Thank you for your comments. We have changed the title to “A 

Global Carbon Assimilation System using a modified Ensemble Kalman 

filter”. 

 

(2) P6520, L25: I am not sure I agree with this reasoning that 

including the CO₂ concentrations in the state vector should improve 

carbon flux estimations. How would that help? In principle, the CO₂ 

concentrations are fully determined by the surface fluxes, so putting 

them both in the state vector is not so intuitive to me. Of course, the 

reason they did go this direction is because the relationship between 

surface fluxes and atmospheric CO₂ is given by a transport model with 

uncertainties and putting CO₂ in the state vector allows you to correct for 

biases in transport, and also reduces the need to explicitly simulate the 

CO₂-flux relationship over long time periods.  

Our reply: 

Thank you for your comments. Please see our reply to the Question 



(1) of your Major Comment 2. 

 

 

(3) P6521, L25: In Kang et al (2011, 2012) and Liu et al (2012,2013) 

CO₂ concentrations are added to the state vector because they have 

strong correlations with weather variables that are simultaneously 

assimilated. This is much different from this study and the one by 

Miyazaki where only fluxes and CO₂ are added. This difference should be 

noted explicitly in the text. 

Our reply: 

Thank you for your comments.  

We have added the following sentence in the Introduction section of 

revised manuscript, 

“Kang et al. (2011) and Liu et al. (2012) also added CO2 concentration 

to the state vectors due to their strong correlations with weather 

variables that are simultaneously assimilated.” 

 

(4) P6522, L10-15: Can you add a reference (URL or paper) to this 

source, as well as some form of acknowledgement for using this product? 

And note that NOAA/ESRL is often not the owner of these datasets 

themselves and true references should be made to the original data 

providers such as CDIAC, GFED, etc… 



Our reply: 

Thank you for your comments. Please see our reply to your Major 

Comment 1. 

 

(5) P6522, L14: “rests” to “rest” 

Our reply:  Correted. 

 

(6) P6522, L20: Please also mention the lack of knowledge on 

historical land-use change and land management, as this likely exceeds 

parameter uncertainties. 

Our reply: 

Thank you for your comments.  

We have rewritten this sentence in the revised manuscript, 

“Errors in these parameters lead to biases of model results (Other  

uncertainties, such as lack of knowledge on historical land-use change 

and land management, also have influence on model results). ” 

 

(7) P6523, L20: This is not acceptable as reference for the 

measurements used in this study. Carbontracker is not the source of this 

data and its is stated very explicitly that the original data owners must be 

contacted when these datasets are used in a publication. Then they must 

be asked how to be acknowledged. Simply downloading the data from a 



website is not the way to go in our field. Please rectify this mistake. 

Our reply: 

Thank you for your comments. Please see our replay to your Major 

Comment 1. 

 

(8) P6523, L25: What do you mean with “chosen to fit the 

observations?” Variances are not the same as mixing ratios… 

Our reply:  

Thank you for your comments.  

We mean the “model-data mismatch” error in Peters et al. 2005. In 

the revised manuscript, the sentence is rephrased as:  

“They were subjectively chosen and manually tuned to fit into specific 

atmospheric transport models and observations.” 

 

Reference 

Peters, W., Miller, J. B., Whitaker, J., Denning, A. S., Hirsch, A., Krol, M. C., Zupanski, D., Bruhwiler, L., 

and Tans, P. P.: An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric 

trace gas observations, J. Geophys. Res. [Atmos.], 110, D24304-D24304, 10.1029/2005JD006157, 

2005. 

 

(9) P6524, L13: But in this setup, the spread in Ci simply reflects the 

spread in fluxes and the concentration variance is fully correlated with 

the flux errors. This is different from the methods in Kang et al (2012) 

and Liu et al (2012,2013) where CO₂ concentrations are added to the 



state vector because they have strong correlations with weather 

variables. This difference should be noted explicitly in the text. The 

question becomes: why do you expect this method to work better than 

just having fluxes in the state vector? After all, the observations you have 

are not different, and the relation between fluxes and concentrations is 

fully explicit through G 

Our reply: 

Thank you for your comments.  

Ci (4-Dimensional: 3D in space and 1D in time) reflects the spread 

both in fluxes (3D: 2D in space and 1D in time) and the initial CO2 

concentration field (3D in space) at the beginning of the week. The 

concentration covariance is also correlated to both the error of the initial 

CO2 concentration field and flux errors. Since we are using a relatively 

short assimilation window, the error in the initial CO2 concentration field 

is significant to the concentration covariance and we are trying to reduce 

this error by including CO2 concentration in the state vectors.  

Please see our reply to your Major Comment 2 for more details. 

 

(10) P6528, L9 

Our reply: 

Thank you for your comments. We have deleted the whole section 

following your comment. 



 

(11) P6530, L7 

Our reply: 

Thank you for your comments. We have deleted the whole section 

following your comment. 

 

(12) P6530, L19: I am not surprised that the extended state vector 

does not really help as it contains no new information than the CO₂ 

observations you already had before, and it is fully correlated to the 

fluxes. The gain of time for not having to rerun the model forward must 

be weighed against the ‘inexact mass balance’: by adding or subtracting 

CO₂ from the atmosphere without a corresponding surface flux 

adjustment, you are creating CO₂ that is not accounted for by exchange 

between reservoirs. On longer time scales, this balance is very important. 

I suggest that you calculate this balance for your system by: (1) 

calculating per time step the change in mass of atmospheric CO₂ (2) 

calculating as well as the surface flux for that step (3) and compare these 

to each other to estimate the amount of ‘ghost-CO₂’ created in each step. 

If this number is small (say <1%) of surface flux then this issue might be 

minor. (4) Then, also compare this on an annual basis: does the 

ghost-CO₂ add up over time to a substantial flux, or does it average out 

over a year? And does it have a seasonal pattern? 



Our reply: 

Thank you for your comments. Please see our reply to Question (2) of 

your Major Comment 2. 

 

(13) P6531, L4: The details should go to the method section. 

Our reply: 

Thank you for your comments. We have moved them to the 

methodology section. 

 

(14) P6532, L10: You are describing here in words things that the 

reader can see in the figure. But what I expect is not a description, but an 

explanation of the differences: why are these fluxes not the same as 

carbontracker when you have copied almost the whole setup 

(observations, prior fluxes, variances, initial conditions, scaling factors)? 

Our reply: 

Thank you for your comments.  

Although we have used the same observations and variances and 

initial conditions since the very beginning  at 1
st

 Jan, 2002 as well as a 

similar setting of scaling factors, the system is still very different from 

CarbonTracker in many aspects, such as prior ecosystem carbon fluxes 

(modeled with BEPS in this study vs CASA in CarbonTracker), data 

assimilation methodology (with several new developments of Ensemble 



Kalman filter), length of the assimilation window (one week in this study 

vs 5 weeks in CarbonTracker) etc. Since the observation network is not 

dense enough to constrain the carbon fluxes that are inverted, small 

changes in system settings may lead to large differences in the results. 

Without a large set of modeling experiments and verification of 

independent estimates, it is difficult to give an exact explanation of the 

improvements in the optimized flux due to the introduction of new 

methodologies in GCAS-EK. We will put more effort on this issue and 

hope we can tell more on the reasons in the future. 

We have deleted the unnecessary descriptions to the figure to make 

the manuscript more concise.  

 

(15) P6545: Where are the error bars on these fluxes? 

Our reply: 

Thank you for your comment. We have added the error bars on the 

figure. With the ensemble methodology, we can get an ensemble of 

these fluxes and the corresponding errors are calculated as the spread of 

this ensemble. 

 

 



P. Rayner (Referee) prayner@unimelb.edu.au  

Interactive comment on “A Global Carbon Assimilation System using a modified EnKF 

assimilation method” by S. Zhang et al. 
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General Comments 

This paper presents a new inversion method for CO2 fluxes and applies it 

to the period 2002–2008. The novelty in the method is the inclusion of 

CO2 concentration in the state vector allowing the relaxation of the 

perfect model assumption for transport. The ensemble method used 

makes this large augmentation of the state vector possible. The explicit 

treatment of transport error as part of the forecast error also allows 

better treatment of the observational error since this is now much closer 

to the observations (previously it was dominated by errors in the 

transport model). The paper also introduces to Ensemble Kalman Filter 

inversions the techniques of objective estimation of covariance scaling 

parameters. These are called inflation parameters in this study but play 

the same role as the scaling parameters of Michalak et al. (2005). 

Incidentally I think this paper should be cited. No doubt the authors came 

to their objective function via the KF literature but a citation would point 

out the familiarity of the approach to the conventional atmospheric 

inverse community. 



The paper makes an important methodological contribution. It is well 

written and, most pleasingly, the algorithm is clearly enough described 

that it could be copied by someone with reasonable knowledge of the 

field. Analysis of the results is less developed but this is GMD and 

hopefully this can be taken up at a later date. I have no overall 

suggestions for the paper but do suggest a couple of small extra pieces of 

analysis in the specific comments below. 

Our reply: 

Thank you for your valuable comments. 

The inflation parameters in this study do play the same role as the 

scaling parameters in Michalak et al. (2005).  

We have cited Michalak’s paper in the revised version and added the 

following sentence in 2) Error Step of Section 3.1:  

“Michalak et al. (2005) used a similar objective function for 

estimating the statistical parameters in the atmospheric inverse 

problems of surface fluxes.” 

 

Reference 

Michalak, A. M., Hirsch, A., Bruhwiler, L., Gurney, K. R., Peters, W., and Tans, P. P.: Maximum likelihood 

estimation of covariance parameters for Bayesian atmospheric trace gas surface flux inversions, J. 

Geophys. Res. [Atmos.], 110, D24107, 10.1029/2005JD005970, 2005. 

 

Specific Comments 

overall It would be good to list the size of the state vector in various 



configurations (with and without concentration). 

Our reply: 

Thank you for your comment. 

The size of the state vector without concentration is 145 (size of 

scaling factors tλ ) and the size of the state vector with concentration is 

145 (size of scaling factors tλ ) + 128×64×28× 8×7 (size of 

concentration: lon×lat×lev×times/day×days). 

We have listed the size of the state vector at the beginning of Section 

3 in the revised manuscript: 

“The size of the state vector in this study is 128×64×28×8×7 ( : 

lon×lat×lev×times/day×days) plus 145 ( ).” 

 

Eq. (1) Can you justify the 2/3 1/3 split? See later comment for why 

this might be important. 

Our reply: 

Thank you for your comment.  

Actually we choose the (2/3,1/3) split by trial tests. We have tested 7 

values of a  in the following formula, 

( ) 2

, 1,
11

f

t i t i

a

ia a aλ λ ζ−= + − + −  

The forecast CO2 concentrations in 2002 and 2003 are compared to the 

measurements in the following steps. First, the monthly means are 

calculated at each site (for example, Fig. R1 shows the monthly means of 

tc

tλ



forecast minus measurement at site TAP_01D0).  

 

Figure R1. Residuals of monthly mean forecast minus measurement on site 

TAP_01D0 for four cases: a=0,1/3,2/3,1. The numbers in the legend are root mean 

square errors of monthly means. 

Then we can define a root mean square error at individual sites as 

1

2

,

1
site site m

M

mont

ont

h

hr r
M =

= ∑  

where ,site month
r  is the monthly mean of forecast minus measurement and 

M  is the number of months when there are observations. Finally for all 

the sites in 2002 and 2003, we use the following relative root mean 

square error to test different choices of parameter a  

2

2
1

1 S
site

a

site site

r
r

S v=

= ∑  

where 2

sitev  is the given error variance for each site and S  is the 



number of sites. The results are listed in Table R1. We can see that in 5 

cases a=0,1/6,1/3,1/2,2/3 perform similarly while a=1 performs the 

worst among all cases. The performance of the case when a=5/6 is 

between the cases of a=2/3 and a=1. We then chose the median value 

a=1/3 between a=0 and a=2/3 in our formula. Furthermore, the inflation 

on forecast error covariance will decrease the impact of different choices 

of coefficient a . 

Table R1. Overall relative root mean square error for 7 cases. 

 a=0 a=1/6 a=1/3 a=1/2 a=2/3 a=5/6 a=1 

2

2
1

1 S
site

site site

r

S v=
∑  

(dimensionless) 

1.07 1.07 1.06 1.06 1.05 1.12 1.21 

 

 

Sec 3.2 We need a little more discussion on the relationship between 

the iteration of the forecast and analyzed state and the tuning of the 

inflation parameters. This tuning is set up to ensure that the assumed 

and actual statistics of departures and innovations are consistent with 

those assumed in the relevant covariances. 

Our reply: 

Thank you for your comment.  

As discussed in Tarantola (2005), we can calculate the 2χ  statistic of 

the analysis state for testing the error covariance constructed in this 

study, 
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−

 
 −
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= Xx R yXy xH H H H  
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� ( )f
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,1 ,2 ,
.t t t t t t m t= − − −X x x x x x x⋯  

and θ , µ  are the estimated inflation factors for the week associated 

with �
f

tX .  should be distributed according to the Chi-square 

probability density with  degree of freedom, where  is the 

number of observations within tth week. Since the mean and the 

variance of  are 1 and , respectively, the value of 

 should be close to 1.  

The Chi-square statistics for the error covariance matrices without 

using the analysis state can be defined similarly, but with  replaced 

by . They are denoted as ,  and  for the cases of no 

inflation, inflation on forecast error only and inflation on both forecast 

and observation errors, respectively. The closer  to 1 is, 

the better the corresponding error statistics. 
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Figure R2. 
2χ  statistic of the analysis state for four estimates of error 

covariance. “Original” refers to the case without inflations; “One Inf” refers to the 

case with inflation only on forecast error covariance; “Both Inf” refers to the case 

with inflations on both forecast and observation error covariance and “Iteration” 

refers to the case with both inflations and further using analysis to improve forecast 

error statistics. The closer 2
/ obsnχ  is to 1, the better the corresponding error 

estimates. 

For validating the construction of error statistics used in this study, 

the weekly time series of  from 2002 to 2003 is shown in Fig. 

R2. It is remarkably close to 1. The weekly time series of ,  

and  for the cases of no inflation, inflation on forecast error only 

and inflation on both forecast and observation errors are also shown in 

Fig. R2. All of them are not as close to 1 as that of . This 

indicates that the construction of error statistics using the analysis state 

iteratively is effective for correctly estimating the error statistics. Figure 

R2 also shows that  is closer to 1 than  is, and both are 

closer to 1 than  is. This suggests that the inflation on forecast 
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0 obsnχ 2
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2 obsnχ 2

1 obsnχ

2
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error and observation error are also both effective in improving the 

estimation of error statistics. 

The above discussions have been added to the revised manuscript.  

 

Reference. 

Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation, Other Titles in 

Applied Mathematics, Society for Industrial and Applied Mathematics, 348 pp., 2005. 

 

 

I’m not quite sure what consistency is enforced by the iteration in Sec 

2.2 and am a little concerned that the observations might be implicitly 

used twice, once via the analyzed state now used to describe the forecast 

uncertainty then again in the update step. This probably reflects limited 

understanding on my part but I doubt I am alone. 

Our reply: 

Now we have given some proof of the effectiveness of using analysis 

to improve the estimation of forecast error covariance by Chi-square test. 

On the other hand, theoretically the basic assumption of EnKF 

assimilation is that the forecast and observation are statistically 

independent. In our iterative scheme, the ensemble forecast is always 

the same, that is, using observations to estimate the forecast uncertainty 

do not change the ensemble forecast, so this basic assumption is not 

violated. Furthermore, in all existing schemes for adaptive estimation of 

the inflation factor, observations are also used to estimate the forecast 



uncertainty since it is the forecast uncertainty being inflated (e.g. 

Anderson (2007), Li et al. (2009), Michalak et al. (2005), Miyoshi (2011), 

Wang and Bishop (2003)). Therefore, we feel that using observations to 

estimate the forecast uncertainty is justified. 

 

References. 

Anderson, J. L.: An adaptive covariance inflation error correction algorithm for ensemble filters, Tellus 

Ser. A-dynamic Meteorology and Oceanography, 59(2), 210--224, 

doi:10.1111/j.1600-0870.2006.00216.x, 2007.  

Li, H., E. Kalnay, and T. Miyoshi: Simultaneous estimation of covariance inflation and observation 

errors within an ensemble Kalman filter, Q. J. R. Meteorolog. Soc., 135(639), 523--533, 

doi:10.1002/qj.371, 2009. 

Michalak, A. M., Hirsch, A., Bruhwiler, L., Gurney, K. R., Peters, W., and Tans, P. P.: Maximum likelihood 

estimation of covariance parameters for Bayesian atmospheric trace gas surface flux inversions, J. 

Geophys. Res. [Atmos.], 110, D24107, 10.1029/2005JD005970, 2005. 

Miyoshi, T.: The Gaussian approach to adaptive covariance inflation and its implementation with the 

local ensemble transform Kalman filter, Mon. Weather Rev., 139(5), 1519—1535, 2011. 

Wang, X., and C. H. Bishop: A Comparison of Breeding and Ensemble Transform Kalman Filter 

Ensemble Forecast Schemes, J. Atmos. Sci., 60(9), 1140--1158, 

doi:10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2, 2003. 

 

P6530 it’s a fascinating idea that by hugely increasing the size of the 

state vector (including concentration) you can actually reduce the 

computational cost. Shouldn’t this be compensated by requiring different 

ensemble sizes to span the much larger space? 

Our reply: 

Thank you for your comments. 

We fully agree with you that if we increase hugely the size of the 

state vector, we have to increase the ensemble sizes.  



However, since the size of scaling factor vector tλ  is 145 in this study, 

the degrees of freedom of surface flux sets are less than 145.  

On the other hand, the concentrations mix rapidly by diffusion in one 

week. An intuitional example is given in Fig. R3. We started from one 

modeled concentration field in July 1
st

, 2003, and forecasted the 

concentration field in the following week without any carbon fluxes at 

land surface (i.e. zero boundary conditions). In this way the diffusion and 

advection of CO2 existing in atmosphere at July 1
st

, 2003, can be 

investigated. We have plotted the lowest vertical model level since it is 

most strongly influenced by previous carbon fluxes and thus has largest 

varibilities at the starting time. It can be seen that after one week the 

concentration field becomes very smooth. Therefore, the atmospheric 

CO2 concentration is mixed rapidly with time and it does not have as 

large degree of freedom as the size itself. 



 
Figure R3. Forecast of concentration field in the lowest vertical model level in one 

week without carbon fluxes as boundary conditions. 

 

Actually we determined the size of ensemble (150) by experiments. 

The difference of the assimilated carbon budgets in 2002 is within 10% 

and the patterns are very similar when we use different ensemble sizes 

of 150 and 200.  

For all above reasons we chose 150 as the default ensemble size in 

GCAS-EK. 

 

P6531 The bias in the simulation after analysis could be disturbing if 

it represents a miscalculation of the trend in concentration. Could you 

plot this bias as a function of time? If there is an error in the 

concentration trend this would suggest an error in the long-term fluxes. 



This is worth discussing since it’s always seemed possible in these 

weak-constraint formulations that we might not match the long-term 

growth rate. 

Our reply: 

Thank you for your comments.  

Following your advice, we calculated the long-term growth rate in 

different cases. Atmospheric CO2 concentration is generated using the 

sequential forecast of CO2 concentration with the prior and optimized 

carbon fluxes, respectively, from 2002 to 2008. The annual mean growth 

rate with optimized flux (2.17 ppm yr
-1

) is much closer to observations 

(2.14 ppm yr
-1

) than that with prior flux (3.13 ppm yr
-1

), indicating that 

we have a good match with the long-term growth rate after optimization. 

The time series of the bias look similar to the scatter plot in Fig. 6 in the 

revised manuscript.  

We have added the analysis of the long-term growth rates in the 

revised manuscript. 

 

Sec 6.2] Some of the concern over low variability in may be explained 

by Eq. 1. The division by 3 should have the effect of strongly smoothing. 

What would happen if you replaced Eq. 1 with a pure random walk 

model? 

Our reply: 

Thank you for your comments.  



Some comparisons between Eq. 1 (a=1/3) and a pure random walk 

model (a=0) can be found in our reply to Specific Comment 2. The overall 

relative root mean square errors of forecasted CO2 observations are very 

close. The estimated annual carbon budget in 2002 and 2003 with the 

model with a=1/3 is 15% more on average than that with the model with 

a=0. 

However these two models perform differently at individual sites. It 

can be found in Fig. R4 that which model performs better at each 

observation site. The sites at which the a=1/3 model performs better are 

mostly located in or closely to land areas. Since we focus on the 

optimization of ecosystem carbon fluxes, we prefer to use the strong 

smoothing model with a=1/3. 

 

Figure R4. Performance of model a=0 and a=1/3 at different sites. The green stars 

indicate that these two models have almost equal performance. The red stars 

indicates that the model with a=0 performs much better at these sites than the 

model with a=1/3. The blue stars indicates that the model with a=1/3 performs much 



better at these sites than the model with a=0. 
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 1 

Abstract 2 

 3 

A Global Carbon Assimilation System based on the Ensemble Kalman filter 4 

(GCAS-EK) is developed for assimilating atmospheric CO2 abundance data into an 5 

ecosystem model to simultaneously estimate the surface carbon fluxes and 6 

atmospheric CO2 distribution. This assimilation approach is similar to 7 

CarbonTrackerbased on the ensemble Kalman filter (EnKF), but with several new 8 

developments, including inclusion of atmospheric CO2 concentration in state vectors, 9 

using the Ensemble Kalman filter (EnKF) with one-week assimilation windows, using 10 

analysis states to iteratively estimate ensemble forecast errors, and a maximum 11 

likelihood estimation of the inflation factors of the forecast and observation errors. 12 

The proposed assimilation approach is tested in observing system simulation 13 

experiments and then used to estimate the terrestrial ecosystem carbon fluxes and 14 

atmospheric CO2 distributions from 2002 to 2008. The results showed that this 15 

assimilation approach can effectively reduce the biases and uncertainties of the carbon 16 

fluxes simulated by the ecosystem model. 17 

 18 

Keywords: Data assimilation, Ensemble Kalman filter, Ecosystem modeling, 19 

Atmospheric transport, CO2 mole fraction, Surface carbon fluxes 20 

21 
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 1 

1 Introduction 2 

 3 

The carbon dioxide concentration in the atmosphere plays an essential role in the 4 

study of global change for its potential to warm up the atmosphere and the surface. A 5 

better estimation of carbon fluxes over global ecosystems would help better 6 

understand each nation’s contribution to the global warming and improve the global 7 

warming science. 8 

In the past decade, many efforts have been made to estimate the surface CO2 9 

fluxes using both atmosphere-based top-down and land-based bottom-up methods. 10 

CarbonTracker (Peters et al., 2005;Peters et al., 2007) (!!! INVALID CITATION !!! 11 

(Peters et al., 2005;Peters et al., 2007)) may be one of the most advanced among these 12 

efforts. It uses an ensemble square root filter to assimilate atmospheric CO2 mole 13 

fractions into an ecosystem model coupled with an atmospheric transport model.  14 

The model state vectors in CarbonTracker are carbon fluxes only.within 5 weeks. 15 

However, the observed CO2 consists of both initial state of atmosphere CO2 and 16 

recently released carbon fluxes, so including CO2 concentration in the state vectors 17 

should improve the estimation of initial atmosphere CO2 (Miyazaki et al., 2011). This 18 

could lead to further improvement of carbon flux estimation. Kang et al. (2011) Kang 19 

et al. (2011);(Kang et al., 2012)and Liu et al. (2012) also added CO2 concentration to 20 

the state vectors due to their strong correlations with weather variables that are 21 

simultaneously assimilated. argued that the state vectors should also include 22 

atmospheric CO2 concentration, because the observed CO2 consists of both existing 23 

atmosphere CO2 and recently released carbon fluxes, so including CO2 concentration 24 

in the state vectors should improve the estimation of carbon fluxes. However, their 25 
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efforts mainly focus on studying the performance of the assimilation methodology and 1 

observation settings by using idealized models only, not on assimilating real 2 

observations. 3 

The length of the assimilation window in CarbonTracker is 5 weeks. This would 4 

include CO2 observations far from the analysis time. However this may not 5 

necessarily improve the flux analysis compared to an instantaneous analysis due to the 6 

attenuation of the detailed information as discussed by Enting (2002). A shorter 7 

assimilation window reduces the attenuation of observed CO2 information, because 8 

the analysis system can use near-surface CO2 observations before the transport of CO2 9 

blurs out the essential information of near-surface CO2 forcing (Kang et al., 2012). 10 

It is well known that correct estimation of the forecast error statistics is crucial for 11 

the accuracy of any data assimilation algorithm. In all existing EnKF assimilations for 12 

estimating carbon fluxes, the ensemble forecast errors are estimated by the difference 13 

of perturbed forecasts minusand their ensemble mean. However, the definition of the 14 

The perturbed forecast errors is are defined as the perturbed forecast states minus the 15 

true state. Motivated by the fact that the analysis state is a better estimate of the true 16 

state than the forecast state, Wu et al. (2013) proposed a new estimator for the 17 

perturbed forecast errors by using the difference between the perturbed forecast states 18 

minus and the analysis state. Moreover, they used a simulation study to demonstrated 19 

through a simulation study that the new estimator can lead to better assimilations for 20 

models with large errors. Since the model errors of ecosystem models are generally 21 

large, the new estimation of the perturbed forecast errors is potentially useful to 22 

improve EnKF assimilation for estimating carbon fluxes. 23 

Besides forecast errors, the observation errors need also be accurately estimated. 24 

In the majority schemes for estimating carbon fluxes, including CarbonTracker, the 25 
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observation error variances are not estimated but empirically assigned. The quality of 1 

the estimation of observation error variances critically depends on whether the 2 

forecast error covariance matrix is appropriately estimated or not (Desroziers et al., 3 

2005). However, appropriate estimation of the forecast error covariance matrix is a 4 

challenge in real applications. 5 

In this paper, we propose several modifications to the conventional EnKF for 6 

assimilating atmospheric CO2 observations into ecosystem models. Firstly, the model 7 

state is set as a combination ofcontains both the surface carbon fluxes and 8 

atmospheric CO2 concentration as suggested by Miyazaki et al. (2011), Kang et al. 9 

(2011) and Liu et al. (2012)and. Secondly, the analysis state is used to adaptively 10 

estimate forecast errors as suggested by Wu et al. (2013) and Zheng et al. (2013)., and 11 

Thirdly, both forecast and observation errors are inflated as suggested by  Liang et al. 12 

(2012)Liang et al (2012). Finally, the one-week assimilation window is tested against 13 

longer windows. This modified EnKF is used to assimilate real CO2 concentration 14 

data into the Boreal Ecosystem Productivity Simulator (BEPS, Chen et al., 1999;Liu 15 

et al., 1999;Mo et al., 2008) for estimating the real world terrestrial carbon fluxes with 16 

3 hourly and 1 1°× °  resolution from 2002 to 2008.  17 

This paper consists of 7 6 sections. The models and data used in this study are 18 

introduced in Section 2, while the methodology is described in Section 3. Section 4 19 

presents the validations of the new methodologies using the real observing system.  20 

simulation experiment results. A real data application of the proposed methodology is 21 

presented in Section 5. Conclusions and discussions are given in Sections 6. and 7 22 

respectively. 23 

 24 

2 Models and Data 25 
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 1 

2.1 Surface carbon flux models 2 

 3 

The surface carbon fluxes mainly arise from fossil fuel combustion, vegetation fire, 4 

oceanic uptake exchange and biosphere. In this study, only the surface carbon fluxes 5 

from biosphere are simulated using BEPS, while the rests are taken from datasets of 6 

CarbonTracker 2011 (http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/). 7 

BEPS is a process-based ecosystem model mainly developed to simulate forest 8 

ecosystem carbon budgets (Chen et al., 1999;Ju et al., 2006;Liu et al., 1999). For 9 

many reasons, such as including the complexity of ecosystem processes, 10 

spatial-temporal variabilities, and representative errors, parameters in process-based 11 

models often do not represent their true values when these models are used to 12 

calculate carbon budgets over large areas and or for long time periods (Mo et al., 13 

2008). Errors in these parameters lead to biases of in model results (Other 14 

uncertainties, such as lack of knowledge on historical land-use change and land 15 

management, also have influence on model results). In this study, we try to reduce 16 

biases of in the BEPS- simulated carbon fluxes by incorporating atmospheric CO2 17 

concentration measurements with data assimilation methods. The prior carbon fluxes 18 

simulated by BEPS are at a spatial resolution of 1 1°× °  and for every 3 one hours. 19 

On each model grid, BEPS calculates carbon fluxes of 6 different ecosystem plant 20 

function types and outputs the sum of them through weighting the fluxes against areal 21 

fractions of the ecosystem plant function types. Figure 1 shows the ecosystem plant 22 

function types with the largest weight on each grid. 23 

The vegetation fire flux is taken from CarbonTracker 2011 dataset, which is 24 

modeled using the Carnegie-Ames Stanford Approach (CASA) biosphere model 25 
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(Potter et al., 1993) based on the Global Fire Emission Database (GFED) (van der 1 

Werf et al., 2006) which are resampled to an 8-day time step using MODIS fire hot 2 

spots (Giglio et al., 2006). 3 

The oceanic CO2 flux is taken from CarbonTracker 2011 optimized results, 4 

whose a priori estimates are based on two different datasets: namely ocean inversion 5 

flux result (Jacobson et al., 2007) and pCO2-Clim prior derived from the climatology 6 

of seawater pCO2 (Takahashi et al., 2009). 7 

The fossil fuel combustion estimate is the dataset preprocessed by CarbonTracker 8 

2011 from the global total fossil fuel emission of the Carbon Dioxide Information and 9 

Analysis Center (CDIAC) (Boden et al., 2011) and the “ODIAC” emission dataset 10 

(Oda and Maksyutov, 2011). 11 

 12 

2.2 Atmospheric transport model 13 

 14 

The global chemical transport Model for OZone And Related chemical Tracers 15 

(MOZART,Emmons et al., 2010) is used as the atmospheric transport model. In this 16 

study, MOZART is run at a horizontal resolution of approximately ..8 82 2×° °  with 17 

28 vertical levels. The forcing meteorology is from NCAR reanalysis of the National 18 

Centers for Environmental Prediction (NCEP) forecasts (Kalnay et al., 1996;Kistler et 19 

al., 2001). Since CO2 is chemically inert in atmosphere, we turn off all the 20 

chemicalstry processes and leave only transport of CO2 by atmospheric motions. 21 

Given the atmospheric CO2 concentration in the previous week and the surface carbon 22 

fluxes in the current week, MOZART is used to forecast gridded atmospheric CO2 23 

concentration within the current week. 24 

 25 
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2.3 Observation 1 

 2 

The atmospheric CO2 concentration measurements collected and preprocessed by 3 

CarbonTrackerObservation Package (ObsPack) Data Product (Masarie et al., 2014) 4 

are used in this study (Product Version: 5 

obspack_co2_1_CARBONTRACKER_CT2013_2014-05-08). It reflects the 6 

variability of the total surface carbon fluxes (i.e. fossil fuel combustion, vegetation 7 

fire, oceanic uptake and biosphere) as well as inter-exchange among the CO2 existing 8 

in the atmosphere. The CO2 dataset released on CarbonTracker's website 9 

(http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/) The selected CO2 measurements 10 

on 92 sites includes observations of two main types: the measurements of air samples 11 

at surface sites and in situ quasi-continuous CO2 time series from towers. Since some 12 

stations have multiple observations within a week, Onon average there are about 140 13 

observations in every week during 20002002 and 20102008. Five laboratories 14 

(NOAA Global Monitoring Division, Commonwealth Scientific and Industrial 15 

Research Organization, National Center For Atmospheric Research, Environment 16 

Canada and Instituto de Pesquisas Energeticas e Nucleares) provided these 17 

measurements and information of observation sites used in this study is listed in Table 18 

1. CO2 concentration measurement reflects the variability of the total surface carbon 19 

fluxes (i.e. fossil fuel combustion, vegetation fire, oceanic uptake and biosphere) as 20 

well as inter-exchange among CO2 air mass in the initial atmosphere. 21 

The observation error variances dataset is also released on CarbonTracker's 22 

websiteare also provided in 23 

obspack_co2_1_CARBONTRACKER_CT2013_2014-05-08). They were 24 

subjectively chosen and manually tuned to fit into their models specific atmospheric 25 
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transport models and observations (Peters et al., 2005;Peters et al., 2007). The 1 

observation sites were divided into six categories, each with their own assigned 2 

observation errors (see the document of CarbonTracker for details). These observation 3 

error variances Since these values depend on the atmospheric transport model used in 4 

a carbon data assimilation system, they are just used as prior values in our systemfor 5 

this study and are will be adaptively adjusted with the proposed assimilation scheme. 6 

 7 

3 Methodology 8 

 9 

Within t th week, let tc  be a set of gridded atmospheric CO2 concentrations every 3 10 

hours, tf  be the set of prior carbon fluxes every 3 hours, and tλ
 

be a set of factors 11 

defined as constants on areas and within a week for adjusting tf . Then, the model 12 

state is defined as ( )T
T T,t tt =x λc . In this study, only land surface carbon fluxes need 13 

to be adjusted. The partition of the adjustment factors (i.e. tλ ) is based on 11 14 

TransCom regions (Gurney et al., 2004) and 19 Olson ecosystem types, as in 15 

CarbonTracker. Thus the size of the state vector in this study is 128×64×28×8×7 ( tc : 16 

lon×lat×lev×times/day×days) plus 145 ( tλ ).We refer to this data assimilation scheme 17 

as Global Carbon Assimilation System using Ensemble Kalman filter (GCAS-EK). 18 

 19 

3.1 EnKF with error inflations 20 

 21 

Using the notations of Ide et al. (1997), the first EnKF algorithm used in this study 22 

consists of the following three main steps: 23 

域域域域代码代码代码代码已更已更已更已更改改改改
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1) Forecast step 1 

The perturbed forecast states are estimated as 2 

 
f a

, , ,1

2 1

3 3
t i t i t i−= + +λ λ ξ  (1) 3 

 ( )a

, 1,

f f

,G ,t i t i t i−=c c λ  (2) 4 

where i  represents an ensemble member, ,t iξ  are vectors sampled from a 5 

distribution with mean 0zero and a given covariance matrix (taken from prior 6 

covariance structure in CarbonTracker, see the document of CarbonTracker and 7 

(Peters et al., 2005;Peters et al., 2007)), and G  is the atmospheric transport operator 8 

which maps 1t−c  and the tλ -adjusted tf  onto gridded CO2 concentration. Then the 9 

forecast state is estimated as 10 

 f f

,

1

1

=

= ∑
m

t t i

im
x x , (3) 11 

where m  is the ensemble size. 12 

2) Error step 13 

 The ensemble forecast errors and the observation error covariance matrix are 14 

estimated as 
f

ttθ X  and t tµ R
 
respectively, where 15 

 ( )f f f f f f f

,1 ,2 , ,t t t t t t m t= − − −X x x x x x x⋯  (4) 16 

and tR  is the prescribed observation error variance matrix for CarbonTracker. tθ
 

17 

and tµ  are the inflation factors (of the forecast error and the observation error 18 

respectively) which are estimated by minimizing the following objective function 19 

(Liang et al., 2012;Zheng, 2009): 20 
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 (5) 1 

where 
o

t
y

 
is the vector of atmospheric CO2 concentration measurements, tH  is a 2 

linear observation operator, which interpolates gridded CO2 concentrations at 3 

observation times and locations. Michalak et al. (2005) used a similar objective 4 

function for estimating the statistical parameters in the atmospheric inverse problems 5 

of surface fluxes. 6 

3) Analysis step 7 

The perturbed analysis states are estimated as 8 

( ) ( ) ( ) ( )
( )( ) ( ) ( )( )

1
T 1a

, ,

f f f f

f f
T

1

, ,

1θ

ε

θ µ θ

θ µ

−
−

−

 = + −
  

+

+−

t t t t t t t

t

t i t i t t t

t tt t t i t it t

mX X R X

X y xR

x x I H H

H H

 9 

  (6) 10 

where ,t iε  is a normal random variable with mean zero and covariance matrix
 t tµ R
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(Burgers et al., 1998). The analysis state 
a

t
x  is estimated as 12 

 a a

,

1

1

=

= ∑
m

t t i

im
x x  (7) 13 

Finally, set t = t + 1 and return to step (1) for the assimilation at next time step. 14 

The assimilated surface carbon fluxes are from all sources because the observed 15 

CO2 concentrations are arising arise from all sources. Then, the surface carbon fluxes 16 

from the biosphere are estimated by the assimilated total carbon fluxes minus carbon 17 

fluxes from other sources supplied by the forcing data. 18 

 19 

3.2 Constructing error statistics using analysis 20 



12 

 

 1 

Let 
t

t
x  be the true state. Then the ensemble forecast error should be defined as 2 

f t

,t i t
−x x . However, 

t

t
x  is estimated by 

f

t
x  in Eq.(4). Since 

a

t
x  is derived by 3 

assimilating observations into the model, it should beis a better estimate of 
t

tx  than 4 

f

t
x , especially when the model error is large (Wu et al., 2013). Therefore after the 5 

analysis step 3) in Section 3.1, it is suggested to return to the error step 2), and 6 

substitute 
f

t
x  in Eq.(4) by 

a

t
x . This procedure is repeated until the corresponding 7 

objective function (Eq.(5)) converges (Wu et al., 2013;Zheng et al., 2013). In this 8 

study, the iteration is stopped whenif the difference between the minima of 9 

( ),2 θ µ−
t

L  at n-th and n+1th iterations is less one 1., then the iteration is stopped. A 10 

flowchart of the proposed assimilation scheme in this study is shown in Fig. 2. 11 

 12 

3.3 Removing carbon mass imbalance 13 

 14 

In this study, the background CO2 concentration field at the beginning of a week is the 15 

analysis state at the end of the previous week. It is then updated using the 16 

observations within the week, so the estimated CO2 concentration at the beginning of 17 

the week is different from that at the end of the previous week. This results in inexact 18 

carbon mass balance. To remove this imbalance, a corrected atmospheric CO2 19 

concentration is generated using the sequential forecast of CO2 concentration with the 20 

optimized carbon fluxes from the very beginning of the entire assimilation period. The 21 

corrected CO2 concentration is denoted by ca

tc . 22 

 23 

3.4 Validation statistics 24 
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 1 

A Chi-square statistics (Tarantola, 2005) is used to test the error covariance 2 

constructed in this study. For the tth week, it is defined as 3 

 ( )( ) �( ) �( ) ( )( )T f
1

T
2 o of

,

f
f

2
1

t tIter t t t t t t t t t
m

χ θ µ
−

 
 −

− + −


= Xx R yXy xH H H H  (8) 4 

where  5 

 � ( )f f a f a f a

,1 ,2 ,t t t t t t m t= − − −X x x x x x x⋯  (9) 6 

and θ , µ  are the estimated inflation factors for the week. If the forecast and 7 

observation error covariance matrix are correctly estimated, 
2

2,Iterχ  follows a 8 

Chi-square distribution with obsn  degree of freedom, where obsn  is the number of 9 

observations within tth week. Since the mean and the variance of 
2

2,Iter obs
nχ  are 1 10 

and 2 obsn  respectively, the value of 
2

2,Iter obs
nχ  should be close to 1. 11 

 The Chi-square statistics for the error covariance matrices without using the 12 

analysis state can be defined similarly to Eq. (8), but with  replaced by f

tX . 13 

They are denoted as 2

0χ , 
2

1χ  and 2

2χ  for the cases of no inflation, inflation on 14 

forecast error only and inflation on both forecast and observation errors, respectively. 15 

The closer 
2 , 0,1,2
j obs

n jχ =  to 1 is, the better the corresponding error statistics.  16 

The RMSE of estimated CO2 observations is defined as 17 

 ( ) ( )( )2

,

1 ca o

i i

i l

l y ly
L

−∑  (10) 18 

where ( )
ca

iy l  is generated by interpolating a

t

c
c  to the observation site l and time i, 19 

and L is the total number of the CO2 concentration observations during the entire 20 
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assimilation period. The smaller RMSE means better assimilation scheme. 1 

 2 

In ideal experiments where the "truth" is known, we can calculate the 3 

root-mean-square error (RMSE) of the model states. RMSE of carbon fluxes is 4 

defined as 5 

 ( ) ( ) ( )( )2
t

1

1σ
=

= −∑
T

t t

t

ff k
T

k k  (8) 6 

where T  stands for the total period of the assimilation, ( )tf k
 

is an average of 7 

fluxes in the k th TransCom region (Gurney et al., 2004) and t th 3 hour-period, 8 

while 
t

t
f  is the corresponding “truth”. The spread is defined as, 9 

 ( ) ( ), ,

2

1 1 1

1 1

( 1)

m m

i

T

t

j i

t

t

jf k
T m m

f k
= = =

−
−

 
 
 

∑∑ ∑  (9) 10 

where ( ),t jf k
 

is the jth member of ensemble fluxes in the k th TransCom region. If 11 

all the members of ensemble analysis states have the same distribution as the “truth”, 12 

then estimated RMSE and spread should be close. 13 

The RMSE of CO2 concentrations at t th time is defined as 14 

 ( ) ( )( )2
t

1

1

=

−∑
L

t t

l

y l y l
L

 (10) 15 

where ( )ty l  is the CO2 concentration value at l th location and 
t ( )ty l  is the 16 

corresponding “truth”. 17 

 18 

 19 

4 Simulation studyDiscussions on methodology 20 

 21 
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4.1 Error covariance statistics 1 

 2 

To validate the construction of error statistics used in this study, we plot the weekly 3 

time series of 
2

2,Iter obs
nχ  (Eq. 8) from 2002 to 2003 in Fig. 3 which shows that the 4 

values are remarkably close to 1. In contrast, the weekly time series of 2

0 obsnχ , 5 

2

1 obsnχ  and 2

2 obsnχ  (for the cases of no inflation, inflation on forecast error only 6 

and inflation on both forecast and observation errors) are not as close to 1 as 7 

2

2,Iter obsnχ . This indicates that the construction of error statistics using the analysis 8 

state iteratively (Section 3.2) is effective for correctly estimating the error statistics. 9 

Fig. 3 also shows that 2

2 obsnχ  is closer to 1 than 2

1 obsnχ  is, and both are 10 

closer to 1 than 
2

0 obsnχ  is. This suggests that the inflation on forecast error and 11 

observation error are also both effective in improving the estimation of error statistics. 12 

 13 

4.2 Inclusion of CO2 concentration in state vectors 14 

 15 

In this study, the CO2 concentration is included in state vectors. The benefit of this 16 

inclusion needs to be tested against the traditional approach without this inclusion. 17 

This issue is studied with the one-week assimilation window.  18 

For this purpose we design a comparative experiment as follows. In every week, 19 

the CO2 concentration (i.e. c ) is not updated (Eq. 6). Instead the analysis CO2 20 

concentration is derived by sequentially predicting atmospheric CO2 concentration 21 

forced by the updated flux within the week. The carbon mass is automatically 22 

balanced in this experiment. The results show that RMSE of the analysis CO2 23 

域域域域代码代码代码代码已更已更已更已更改改改改
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concentration observations (Eq. 10) is 8.5% larger than that of the corrected analysis 1 

CO2 concentration described in Section 3.3. This suggests that inclusion of CO2 2 

concentration in state vectors can significantly alter the CO2 mass balance and may 3 

have advantage in optimizing the surface CO2 flux. 4 

If the CO2 concentration is not included in state vectors, the analysis CO2 5 

concentration at the beginning of each week is just the analysis CO2 concentration at 6 

the end of the previous week, so the CO2 concentration observations within the 7 

current week are not used to optimize the CO2 concentration at the beginning of each 8 

week. However, when the CO2 concentration is included in state vectors, all the 9 

observations within the current week and the previous weeks are used to estimate the 10 

CO2 concentration at the beginning of the current week. So the CO2 concentration at 11 

the beginning of each week estimated by inclusion of CO2 concentration in state 12 

vectors could be more accurate than that estimated in the no inclusion case. Therefore, 13 

the estimated flux associated with the updated CO2 concentration at the beginning of 14 

current week could have better quality. This is demonstrated by smaller RMSE（Eq. 15 

10）with the inclusion than that without the inclusion. 16 

 17 

4.3 Length of assimilation window 18 

 19 

Different lengths of the assimilation window are used in various systems (5 weeks in 20 

CarbonTracker, 3 and 7 days in Miyazaki et al. (2011) and 6 hours in Kang et al. 21 

(2012)). We choose the one-week assimilation window in our methodology for the 22 

following reasons. First, since most surface stations only have weekly observations, 23 

we need at least one week data to cover the globe. Second, beyond one week the 24 

errors of the atmospheric transport model may be significant, and they are very 25 
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difficult to quantify. Third, the detailed information of observations may be attenuated 1 

with time by atmospheric diffusion and advection (Enting, 2002). 2 

For comparison to longer assimilation windows, the following alternative 3 

experiments with moving assimilation windows were carried out. In the first 4 

alternative experiment, the length of the moving window is set to be two weeks while 5 

the forecast time step is still one week. The CO2 concentration observation system is 6 

still the same as that described in Section 3, but is used to update the global carbon 7 

flux and the atmospheric CO2 concentration within the current week and the previous 8 

week. This procedure is similar to Eq. 6, while the ensemble forecast state of the first 9 

week in the assimilation window is set as its ensemble analysis state at previous 10 

assimilation time step. Therefore carbon fluxes and CO2 concentration every week is 11 

optimized twice with the observations in the current week and the next week. The 12 

corrected analysis of CO2 concentration is also retrieved from reruning the 13 

atmospheric transport model as that described in Section 3.3. The second alternative 14 

experiment is similar to the first one, but with the three-week moving window. 15 

The linear trends for the observations, the estimates with one-week, two-week 16 

and three-week moving windows are 2.14ppm yr
-1

, 2.17 ppm yr
-1

, 1.59 ppm yr
-1

, 1.13 17 

ppm yr
-1

 respectively. It seems that the longer the moving window is, the larger 18 

difference is the long term growth rate to the measurements. For further investigating 19 

the reason, the annual mean carbon budgets on 11 Transcom regions are shown in Fig. 20 

4. It can be found that the longer the moving window is, the larger are the carbon 21 

budget adjustments. Long windows result in underestimation of the corresponding 22 

long term growth rate. 23 

To further investigate the long time and long distance impact of atmospheric 24 

transport on CO2 observations, components of CO2 concentration at observation sites 25 
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associated with different Transcom regions in each day before their observation times 1 

are calculated in the following way. For a given region and some day before the 2 

observation time, prior fluxes on other regions and in other days are all masked. Then 3 

the atmospheric transport model can be run with a homogeneous initial atmospheric 4 

CO2 concentration and forced by the masked fluxes to obtain the corresponding CO2 5 

concentration components.  6 

These components at individual sites are then averaged in time to investigate 7 

general impacts of carbon fluxes from different sources. Results at 7 selected sites are 8 

shown in Fig. 5. For these sites, CO2 concentrations resulting from carbon fluxes 9 

within 25 days are mainly from local carbon fluxes within 7 days (although mostly 10 

within 3 days). Carbon fluxes beyond 7 days or regions far from the observation 11 

locations have very small impacts, indicating that they have little information in 12 

observations (i.e. the contribution is less than observation error), even if the 13 

atmospheric transport model is accurate. Actually the majority observations 14 

(approximately 49) over continental sites used in this study have similar properties to 15 

these 7 sites. If the errors of the transport and ecosystem models are considered, the 16 

information of fluxes one week before may be even more difficult to estimate. 17 

The setting of length of the assimilation window is closely related to spatial and 18 

temporal localizations of forecast errors. For the observation network and the 19 

atmospheric transport model used in this study, the one-week assimilation window 20 

seems most suitable. 21 

3.3 Experimental design 22 

 23 

In this section, the effectiveness of data assimilation methods introduced in Section 3 24 

is examined with simulation experiments. 25 
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No ecosystem model is perfect. Therefore it is desirable to introduce ecosystem model 1 

error. In order to mimic this model error, we set the "true" carbon fluxes to be 80 2 

percent of the BEPS simulated values plus 20 percent of the CarbonTracker 3 

assimilated values. The "true" gridded CO2 concentration is calculated starting from a 4 

CO2 concentration field taken from CarbonTracker document, and is forced by the 5 

"true" carbon fluxes. The synthetic observations are formed by adding noise to the 6 

interpolated "true" CO2 concentrations at the observation locations and times. All the 7 

observation errors are assumed to be statistically independent and normally 8 

distributed with standard deviation 0.2 ppmv. The experiments are carried out for 9 

2002 with BEPS and MOZART. The ensemble size is 150 unless otherwise noted. 10 

 11 

3.4 Inflation on observation error variance 12 

 13 

In this section, we test the method of inflation on observation error covariance 14 

matrices described in Section 3.1. Three experiments with inflated forecast error are 15 

compared. In Experiment 1, the observation error variance is incorrectly specified 16 

(with variance of 0.5ppmv), and the inflation procedure is not carried out (refer to as 17 

Wrong R). In Experiment 2, the observation error variance is also specified as 18 

0.5ppmv, but the inflation procedure is carried out (refer to as Wrong R + Inf). In 19 

Experiment 3, the observation error variance is correctly specified as 0.2 ppmv (refer 20 

to as True R). The regional RMSEs of the assimilated carbon fluxes and the monthly 21 

RMSEs of atmospheric concentrations at the observation sites in these three 22 

experiments are shown in Fig. 3 and 4 respectively. 23 

Figure 3 shows that the RMSEs of the estimated carbon fluxes (Eq. (8)) in all 24 

experiments are reduced on all 11 regions compared with the RMSEs of the prior 25 
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carbon fluxes. Similarly, Fig. 4 shows that the RMSEs of the estimated in situ 1 

atmospheric CO2 concentrations (Eq. (10)) in all experiments are also reduced in all 2 

months compared with the RMSEs of the prior CO2 concentrations. These facts 3 

indicate that the data assimilation schemes studied in this paper are useful. Moreover, 4 

the RMSEs from Experiment 3 (True R) is smaller than that from Experiment 1 5 

(Wrong R). This suggests that correct specification of the observation error variances 6 

is important in improving the assimilation results. 7 

The mean value of the estimated observation error variances in Experiment 2 8 

(Wrong R + Inf) is 0.262ppmv. Although it is larger than the true value 0.2ppmv, but 9 

is much smaller than the incorrectly specified value 0.5ppmv. Nevertheless, the 10 

RMSEs from Experiment 2 (Wrong R + Inf) and Experiment 3 (True R) are 11 

comparable (see Fig. 3 and 4). 12 

 13 

3.5 Constructing forecast error statistics using the analysis states 14 

 15 

In this section, we test the methodology of using the analysis state to construct 16 

forecast error statistics described in Section 3.2. The corresponding Experiment 4 is 17 

referred to as “Wrong R + Inf + Anl”. 18 

Figure 3 shows that the RMSEs of the carbon fluxes assimilated in Experiment 19 

4(Wrong R + Inf + Anl) are the smallest for all regions and in all experiments. 20 

Similarly, Fig. 4 shows that the RMSEs of the in situ atmospheric CO2 concentrations 21 

assimilated in Experiment 4 are the smallest for all months except September. These 22 

results indicate that the methodology of using the analysis state to construct forecast 23 

error statistics described in Section 3.2 can improve the assimilation results. The mean 24 

value of the estimated observation error variances in Experiment 3 (Wrong R + Inf + 25 
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Anl) is 0.268ppmv, which is virtually identical to that in Experiment 2 (Wrong R + 1 

Inf). 2 

 3 

3.6 Validation 4 

 5 

For investing the sensitivity of the inflation factors toward the choice of ensemble size, 6 

the time series of inflation factors are calculated with the ensemble size 200, and are 7 

plotted against the estimated inflation factors with the the ensemble size 150 (not 8 

shown here). In fact they are very close, suggesting that the ensemble size 150 used in 9 

both CarbonTracker and this study is reasonable. 10 

The analysis spread and RMSE are also calculated for each region using Eq. (9) 11 

and they are very close (not shown here). This indicates that the member of analysis 12 

states may have the same distribution as the true states. 13 

By including CO2 concentration in the state vectors, the initial value of gridded CO2 14 

concentration at every week is the analysis states of CO2 concentration at previous 15 

week. However, when excluding CO2 concentration from the state vectors, the initial 16 

value of gridded CO2 concentration can also be estimated by using atmospheric 17 

transport model forced by the assimilated surface carbon fluxes at previous week. 18 

Sensitivity experiments were carried out to compare these two approaches. The 19 

RMSEs of analysis in the experiment without including CO2 concentration in state 20 

vectors are close to those in Wrong R + Inf + Anl, which suggests that including CO2 21 

concentration in state vectors may not significantly improves the assimilation results. 22 

However, in Wrong R + Inf + Anl the initial states of gridded atmospheric CO2 23 

concentration need not be re-estimated, thus the computational cost of atmospheric 24 

transport model is about half of that in experiment without including CO2 25 

concentration, which is one advantage of including CO2 concentration. 26 
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 1 

45 Application and results 2 

 3 

In this section we use the data assimilation methods described in Section 3 to estimate 4 

the land surface carbon fluxes from 2002 to 2008. The fossil fuel, forest fire and 5 

ocean surface carbon flux forcing fields of the atmospheric transport model MOZART 6 

are all taken from CarbonTracker website. The initial atmospheric CO2 concentration 7 

field is also from CarbonTracker products. The prior land surface carbon fluxes are 8 

simulated by the ecosystem model BEPS. In this study, only land surface carbon 9 

fluxes need to be adjusted. The partition of the adjustment factors (i.e. tλ  in Section 10 

3) is based on 11 TransCom regions (Gurney et al., 2004) and 19 Olson ecosystem 11 

types, as in CarbonTracker. Prior observation error covariance matrix is adopted from 12 

CarbonTracker. We refer to this data assimilation scheme as Global Carbon 13 

Assimilation System using Ensemble Kalman filter (GCAS-EK). 14 

 15 

4.15.1 Adjustment to total carbon budget of BEPS 16 

 17 

We first carry out a control run starting from January 1, 2002 with no adjustment of 18 

prior fluxes. The simulated CO2 concentrations are interpolated at measurement 19 

observation times and locations, and compared with real observations in the year 2005. 20 

The result is shown in Fig. 5a6a). It shows that the simulated concentrations have a 21 

bias of 2.945 ppmv and an RMSE of 4.525 ppmv, which implies implying an 22 

underestimation of carbon sinks by BEPS. WithUsing GCAS-EK to estimate the 23 

ecosystem fluxes estimated by GCAS-EK, we carry out another control run and 24 

comparisons. The bias and RMSE are reduced to 0.967 ppmv and 3.675 ppmv, 25 
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respectively (Fig. 5b6b).  1 

We haveIt is worthwhile to point out that the underestimation of carbon sinks by 2 

BEPS is conditioned on the estimated carbon fluxes released by fossil fuel and fire, 3 

even if the ocean fluxes used in our assimilation system are accurate. As described in 4 

Section 2, the observed variability of CO2 concentration is due to the variability of 5 

carbon fluxes from all sources, including fossil fuel combustion, vegetation fire, 6 

oceanic uptake and biosphere exchange. If non-biospheric carbon sources not from 7 

biosphere are underestimated, the carbon sinks from the biosphere simulated by BEPS 8 

would also be underestimated. Nevertheless, our adjustment to carbon sinks simulated 9 

by BEPS appears reasonable. 10 

 11 

4.25.2 Multiyear average of the global carbon flux distribution 12 

 13 

Figure 7 shows Tthe distribution of the average global carbon budget from 2002 to 14 

2008 is shown in Fig. 6. Twhere the two spatial patterns of carbon fluxes related to 15 

BEPS (Fig. 6a 7a and 6b7b) are similar, although. However, they are quite different 16 

from that of CarbonTracker products 2011 (Fig. 6c7c). 17 

In the North American region, CarbonTracker exhibits a nearly west-east strip of the 18 

carbon sink (Fig. 6c), while the carbon sinks assimilated or simulated by BEPS are 19 

mainly distributed in the east of 95ºW (Fig. 6a and 6b). In the central Africa near the 20 

southern edge of Sahara desert, CarbonTracker simulates a strong carbon sink (Fig. 21 

6c), but BEPS simulates a weak sink (Fig. 6a), while the assimilated result shows a 22 

weak source (Fig. 6b). In Indonesia, CarbonTracker simulates a moderate carbon 23 

source (Fig. 6c), while carbon sinks are simulated and assimilated by BEPS (Fig. 6a 24 

and 6b). In Australian Northern Territory, CarbonTracker simulates a carbon sink (Fig. 25 
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6c), while the other two produce carbon sources (Fig. 6a and 6b). In North American 1 

Temperate and Eurasia Boreal, the assimilated carbon sink is clearly larger than that 2 

simulated. 3 

Carbon budgets are calculated based on the BEPS ecosystem types and the 11 4 

TransCom Transcom regions (Fig. 78). Similar to the global distribution maps (Fig. 5 

67), the assimilated BEPS carbon budgets (Fig. 78) have almost the same property in 6 

sources or sinks with that simulated by BEPS. However，they are quite differenct from 7 

that of CarbonTracker 2011 in many aspects. For example, for the C4 and the shrub in 8 

Australia, BEPS simulates carbon sources while CarbonTracker 2011 shows carbon 9 

sinks. Moreover in North America, there is a large carbon sink increase of the 10 

assimilated over the BEPS simulated. Further diagnostic (not shown here) reveals that, 11 

between October and April, the carbon sinks estimated by CarbonTracker 2011 are 12 

much larger than that estimated by GCAS-EK. But between May and September, the 13 

carbon sinks estimated by CarbonTracker 2011 and GCAS-EK are very close. 14 

 15 

4.35.3 Interannual and seasonal variations 16 

 17 

The interannual variations of the global total carbon budgets are shown in Fig. 89. It 18 

shows that CarbonTracker 2011 predicts the largest multiyear average carbon sink 19 

(-3.89 PgC yearyr
-1

), compared with the smallest one simulated by BEPS (-2.23 PgC 20 

yearyr
-1

). The assimilated mean carbon sink (-3.87 PgC yearyr
-1

) is virtually identical 21 

to that estimated by CarbonTracker 2011. The carbon sinks simulated by BEPS and 22 

predicted by CarbonTracker 2011 obviously have more interannual oscillation than 23 

that assimilated by GCAS-EK. 24 

The monthly changes variations of the multiyear-averaged carbon budgets before 25 
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and after the assimilation of BEPS results are compared with that by CarbonTracker 1 

2011 in Fig. 910. Clearly, the seasonal variability of the carbon budgets by 2 

CarbonTracker 2011 is the largest. The assimilated fluxes based on BEPS have larger 3 

sinks in the summer and smaller sources in the winter than those before the 4 

assimilation. 5 

 6 

5.4 Comparison to other flux estimations 7 

 8 

Two independent gridded carbon flux estimates are compared with GCAS-EK 9 

estimates. 10 

The first independent dataset is net carbon exchange of U.S. terrestrial 11 

ecosystems by Xiao et al. (2011) which is generated by integrating eddy covariance 12 

flux measurements and satellite observations from Moderate Resolution Imaging 13 

Spectroradiometer (MODIS). The original dataset is during 2002 to 2006 with spatial 14 

resolution of 1km and temporal resolution of 8 day. For comparison, Xiao’s data were 15 

grouped from 1km to 1º spatial resolution. The carbon flux distributions of the 16 

multiyear average from 2002 to 2006 over United States are shown in Fig. 11a), 11b) 17 

and 11c) for Xiao’s data, GCAS-EK and CarbonTracker 2011, respectively. It shows 18 

that spatial pattern of the flux assimilated by GCAS-EK is closer to Xiao’s data (with 19 

spatial standard deviation 153 gC m
2
 yr

-1
 and spatial correlation 0.47) than that by 20 

CarbonTracker 2011 (with spatial standard deviation 197 gC m
2
 yr

-1
 and spatial 21 

correlation 0.22).  22 

The carbon budgets estimated by GCAS-EK were also compared to those by 23 

Lauvaux et al. (2012), Penn State University (PSU) inversion and Colorado State 24 

University (CSU) inversion (Schuh et al., 2013) for the Mid Continent Intensive (MCI) 25 
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area from June – December 2007. The spatial patterns by GCAS-EK and 1 

CarbonTracker 2011 are similar to those estimated by PSU, CSU (Schuh et al., 2013) 2 

and Lauvaux et al. (2012) (not shown here). The regional averaged carbon sinks 3 

estimated by GCAS-EK and by CarbonTracker 2011 are 0.19PgC and 0.26PgC 4 

respectively while the averaged carbon sinks estimated by PSU and CSU (Schuh et al., 5 

2013) and by Lauvaux et al. (2012) are between 0.14PgC and 0.18PgC, which are 6 

closer to that estimated by GCAS-EK than that by CarbonTracker 2011. 7 

Since the true values of carbon flux are unknown, the closeness to the 8 

independent observations does not mean a better assimilation. However, these two 9 

examples indicate that the carbon fluxes estimated by GCAS-EK may provide some 10 

useful new information of global carbon flux estimation to the atmospheric inversion 11 

community. Therefore, the development of the new assimilation system is 12 

worthwhile. 13 

 14 

5 Discussion 15 

 16 

5.1 Comparison with Carbon Tracker 17 

 18 

Including CO2 concentration in the state vector implies that an atmospheric transport 19 

model is part of the forecast operator, not part of the observation operator (such as in 20 

CarbonTracker). In this framework, the forecast operator comprises an atmospheric 21 

transport model and forecast of adjusted factors (Eq.(1)(2)). The observation operator 22 

is the linear operator which interpolates gridded atmospheric CO2 concentration onto 23 

the observation points. Moreover for remotely sensed CO2 cylinder concentration data, 24 

the observation operator can be chosen as a weighted average of gridded atmosphere 25 
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CO2 concentrations. 1 

 Since atmospheric CO2 concentration is not model variable in CarbonTracker, the 2 

observation operator in this study is different from that in CarbonTracker. In 3 

CarbonTracker, the observation operator is atmospheric transport model coupled with 4 

a linear spatial interpolation operator which maps surface CO2 fluxes to atmospheric 5 

CO2 concentration observation network. Then its observation error comprises the 6 

following three components: 1) measurement error covariance; 2) representation error 7 

covariance; and 3) model transport error covariance. In this study, the observation 8 

operator is only the linear spatial interpolation operator. So the observation error in 9 

our experiment only comprises components 1) and 2). 10 

The mean value of the estimated µt  for inflating the prior observation error 11 

variances is 0.74. This indicates that the estimated observation error variances are 12 

smaller than that used in CarbonTracker. This may be due to that model transport 13 

errors are not included in our observation errors, but are included in the observation 14 

errors for CarbonTracker.  15 

 16 

5.2 Forecast of adjusted factors 17 

 18 

From the extensive experiments conducted in this study, we find that the spatial 19 

pattern of assimilated fluxes is highly correlated with the spatial pattern of prior fluxes. 20 

This is due to the fact that the unconditional expectation of the analysis a

,
  t iE λ  is 1, 21 

which could be attributed to the setting of forecast of adjusted factors (Eq. (1)). Then 22 

the probability of shifting between carbon sources and sinks is small. It means that 23 

GCAS-EK generally trusts the spatial pattern simulated by the ecosystem model. 24 

To avoid this problem, more flexible adjustment of tf  with more adjusted factors 25 



28 

 

may be considered. However, the increased number of the adjusted factors results in 1 

increased degrees of freedom of adjustment model. To fit such kind of model more 2 

abundance of observations may be required. . For surface flask observations with a 3 

total number of about 100 every week over the entire globe, the number of adjusted 4 

factors has to be carefully controlled. Therefore, under the current density of 5 

ground-based observation network, improving the accuracy of the ecosystem model 6 

producing the prior fluxes may be more feasible strategy to improve the surface flux 7 

estimation. 8 

 9 

5.3 Length of the assimilation time window 10 

 11 

Different lengths of the assimilation time window are used in various systems (5 12 

weeks in CarbonTracker, 3 and 7 days in Miyazaki et al. (2011) and 6 hours in Kang 13 

et al. (2012)). We choose one week as the length in our methodology for the following 14 

two reasons. Firstly, since most surface stations only have weekly observations, we 15 

need at least one week data to cover the globe. Secondly, beyond one week the model 16 

errors of MOZART and BEPS may be significant, but they are very difficult to 17 

quantify. 18 

 19 

6 Conclusion 20 

 21 

We propose a methodology to assimilate atmospheric CO2 concentration into surface 22 

carbon fluxes simulated by an ecosystem model. In our framework, CO2 concentration 23 

is included in the state vector, and the assimilation window is restricted to one week. 24 

Bboth forecast and observation errors are inflated, and forecast error statistics are 25 
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estimated in an adaptive procedure using the analysis states. Generally speaking, these 1 

adaptive estimations improve the accuracy of assimilated error statistics in EnKF, 2 

which leads to further improvement in the accuracy of analysis states. Importantly, 3 

pre-assigned values of the observation error variance are improved if these adaptive 4 

procedures are applied. 5 

Four simulation experiments were carried out to show the effectiveness of the 6 

proposed methodology. In the first two experiments, we assumed the observation 7 

error variances were incorrectly specified and compared assimilation results with and 8 

without using inflations on the observation error statistics. The third experiment, in 9 

which the observation error variances were supposed to be known, served as a 10 

benchmark of how the observation error variances were estimated using our 11 

methodology. The fourth experiment showed the effectiveness of using analysis states 12 

to further improve the estimation of forecast error. The results from all experiments 13 

met our expectation and increased our confidence in applying the improved EnKF to 14 

assimilate real observations. The application of the methodology to real data shows 15 

that the assimilated carbon fluxes by GCAS-EK are comparable to those reported by 16 

CarbonTracker 2011. However, there are significant regional differences between 17 

carbon flux distributions assimilated by GCAS-EK and CarbonTracker 2011, which 18 

may be attributed to the differences between the ecosystem models, atmospheric 19 

transport models and the assimilation methodologies. 20 

In our future study, we will investigate the sensitivity of assimilation results to 21 

the accuracy of ecologicalecosystem  models and transport models. Also, more 22 

observation datasets, such as remote sensing CO2 column data, will be introduced into 23 

the GCAS-EK. 24 

 25 
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Table 1. 92 observation sites used in this study. "r" refers to prescribed observation 1 

error (umol umol-1). 2 

Site Code Lat (°) Lon (°) r Lab Site Code Lat (°) Lon (°) r Lab 

ABP_01D0 -12.27 -38.17 2.50 NOAA* MID_01D0 28.21 -177.38 1.50 NOAA 

ABP_26D0 -12.27 -38.17 2.50 IPEN* MKN_01D0 -0.05 37.30 2.50 NOAA 

ALT_01D0 82.45 -62.51 1.50 NOAA MLO_01C0_02LST 19.54 -155.58 0.75 NOAA 

ALT_06C0_14LST 82.45 -62.51 2.50 EC* MLO_01D0 19.54 -155.58 1.50 NOAA 

AMT_01C3_14LST 45.03 -68.68 3.00 NOAA MQA_02D0 -54.48 158.97 0.75 CSIRO 

AMT_01P0 45.03 -68.68 3.00 NOAA NMB_01D0 -23.58 15.03 2.50 NOAA 

ASC_01D0 -7.97 -14.40 0.75 NOAA NWR_01D0 40.05 -105.58 1.50 NOAA 

ASK_01D0 23.18 5.42 1.50 NOAA NWR_03C0_02LST 40.05 -105.58 3.00 NCAR* 

AZR_01D0 38.77 -27.38 1.50 NOAA OBN_01D0 55.11 36.60 7.50 NOAA 

BAL_01D0 55.35 17.22 7.50 NOAA OXK_01D0 50.03 11.80 2.50 NOAA 

BAO_01C3_14LST 40.05 -105.00 3.00 NOAA PAL_01D0 67.97 24.12 2.50 NOAA 

BAO_01P0 40.05 -105.00 3.00 NOAA POC_01D1 -0.39 -132.32 0.75 NOAA 

BHD_01D0 -41.41 174.87 1.50 NOAA PSA_01D0 -64.92 -64.00 0.75 NOAA 

BKT_01D0 -0.20 100.32 7.50 NOAA PTA_01D0 38.95 -123.74 7.50 NOAA 

BME_01D0 32.37 -64.65 1.50 NOAA RPB_01D0 13.17 -59.43 1.50 NOAA 

BMW_01D0 32.27 -64.88 1.50 NOAA SCT_01C3_14LST 33.41 -81.83 3.00 NOAA 

BRW_01C0_14LST 71.32 -156.61 2.50 NOAA SEY_01D0 -4.67 55.17 0.75 NOAA 

BRW_01D0 71.32 -156.61 1.50 NOAA SGP_01D0 36.80 -97.50 2.50 NOAA 

BSC_01D0 44.17 28.68 7.50 NOAA SGP_64C3_16LST 36.80 -97.50 3.00 EC 

CBA_01D0 55.21 -162.72 1.50 NOAA SHM_01D0 52.72 174.10 2.50 NOAA 

CDL_06C0_14LST 53.99 -105.12 3.00 EC SIS_02D0 60.17 -1.17 2.50 CSIRO 

CFA_02D0 -19.28 147.06 2.50 CSIRO* SMO_01C0_14LST -14.25 -170.56 0.75 NOAA 

CGO_01D0 -40.68 144.69 0.75 NOAA SMO_01D0 -14.25 -170.56 1.50 NOAA 

CGO_02D0 -40.68 144.69 0.75 CSIRO SNP_01C3_02LST 38.62 -78.35 3.00 NOAA 

CHR_01D0 1.70 -157.17 0.75 NOAA SPL_03C0_02LST 40.45 -106.73 3.00 NCAR 

CRZ_01D0 -46.45 51.85 0.75 NOAA SPO_01C0_14LST -89.98 -24.80 0.75 NOAA 

CYA_02D0 -66.28 110.52 0.75 CSIRO SPO_01D0 -89.98 -24.80 1.50 NOAA 

EGB_06C0_14LST 44.23 -79.78 3.00 EC STM_01D0 66.00 2.00 1.50 NOAA 

EIC_01D0 -27.15 -109.45 7.50 NOAA STR_01P0 37.76 -122.45 3.00 NOAA 

ETL_06C0_14LST 54.35 -104.98 3.00 EC SUM_01D0 72.58 -38.48 1.50 NOAA 

FSD_06C0_14LST 49.88 -81.57 3.00 EC SYO_01D0 -69.00 39.58 0.75 NOAA 

GMI_01D0 13.43 144.78 1.50 NOAA TAP_01D0 36.73 126.13 7.50 NOAA 

HBA_01D0 -75.58 -26.50 0.75 NOAA TDF_01D0 -54.87 -68.48 0.75 NOAA 

HPB_01D0 47.80 11.01 7.50 NOAA THD_01D0 41.05 -124.15 2.50 NOAA 

HUN_01D0 46.95 16.65 7.50 NOAA UTA_01D0 39.90 -113.72 2.50 NOAA 

ICE_01D0 63.40 -20.29 1.50 NOAA UUM_01D0 44.45 111.10 2.50 NOAA 

KEY_01D0 25.67 -80.16 2.50 NOAA WBI_01C3_14LST 41.72 -91.35 3.00 NOAA 

KUM_01D0 19.52 -154.82 1.50 NOAA WBI_01P0 41.72 -91.35 3.00 NOAA 

KZD_01D0 44.06 76.82 2.50 NOAA WGC_01C3_14LST 38.27 -121.49 3.00 NOAA 

KZM_01D0 43.25 77.88 2.50 NOAA WGC_01P0 38.27 -121.49 3.00 NOAA 

LEF_01C3_14LST 45.95 -90.27 3.00 NOAA WIS_01D0 31.13 34.88 2.50 NOAA 

LEF_01P0 45.95 -90.27 3.00 NOAA WKT_01C3_14LST 31.31 -97.33 3.00 NOAA 

LLB_06C0_14LST 54.95 -112.45 3.00 EC WKT_01P0 31.31 -97.33 3.00 NOAA 

LMP_01D0 35.52 12.62 1.50 NOAA WLG_01D0 36.29 100.90 1.50 NOAA 

MAA_02D0 -67.62 62.87 0.75 CSIRO WSA_06C0_14LST 49.93 -60.02 3.00 EC 

MHD_01D0 53.33 -9.90 2.50 NOAA ZEP_01D0 78.90 11.88 1.50 NOAA 

*“NOAA”: NOAA Global Monitoring Division; “CSIRO”: Commonwealth Scientific and 3 

Industrial Research Organization; “NCAR”: National Center For Atmospheric Research; “EC”: 4 

Environment Canada; “IPEN”: Instituto de Pesquisas Energeticas e Nucleares. 5 
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 2 

Figure 1. Global distribution of ecosystem types in Land areas of 6 plant 3 

function types used in ecosystem model BEPS. 4 

5 
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 1 

Figure 2. Flowchart of modified Ensemble Kalman filter.the proposed adaptive 2 

procedure. 3 

4 
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 1 

Figure 3. 2χ  statistics of the analysis state for four estimates of error 2 

covariance. “Original” refers to the case without inflations; “One Inf” 3 

refers to the case with inflation on forecast error covariance only; “Both 4 

Inf” refers to the case with inflations on both forecast and observation error 5 

covariance and “Iteration” refers to the case with both inflations and further 6 

using analysis to improve forecast error statistics. The closer χ 2 / nobs
 is to 7 

1, the better the corresponding error estimates. 8 

9 
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 1 

Figure 3. RMSEs (gC m
-2
 year

-1
) of carbon fluxes in four experiments: 1) the 2 

“standard” EnKF with incorrectly specified observation errors (Wrong R); 2) the 3 

“standard” EnKF with correctly specified observation errors (True R); 3) EnKF with 4 

inflation on both forecast and observation errors (Wrong R +Inf); 4) using analysis to 5 

further improve the estimation of forecast error statistics(Wrong R + Inf + Anl). 6 
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Figure 4. Posterior RMSEs (ppmv) of concentrations on observation sites in 2 

four experiments.  3 

4 
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Figure 4. Annual means of carbon budgets (PgC yr
-1

) on 11 Transcom regions 3 

in four different cases. Four cases are associated with prior values modeled 4 

with ecosystem model BEPS, assimilated results using GCAS-EK with 5 

one-week assimilation windows, two-week windows and three-week windows. 6 

11 regions in X-axis refer to 'North American Boreal' (NAB), 'North American 7 

Temperate' (NAT), 'South American Tropical' (SATr), 'South American 8 

Temperate' (SAT), 'Northern Africa' (NAf), 'Southern Africa' (SAf), 'Eurasia 9 

Boreal' (EAB), 'Eurasia Temperate' (EAT), 'Tropical Asia' (TA), 'Australia' 10 

(AU) and 'Europe' (EU), respectively 11 

12 
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1 

Figure 5. Mean components of CO2 concentration at observation sites (Site IDs: 2 

LEF_01P0, BAL_01D0, WLG_01D0, BKT_01D0, BHD_01D0, MKN_01D0 3 

and ABP_01D0) from 11 Transcom regions in each of 25 days before the 4 

observation time. X-axis refers to days before the observation time. Y-axis 5 

refers to the amount of CO2 concentration in ppm. Different colors within a bar 6 

refer to CO2 concentration from 11 different Transcom regions. 11 regions 7 

refer to 'North American Boreal' (N-Ame-B), 'North American Temperate' 8 

(N-Ame-T), 'South American Tropical' (S-Ame-Tr), 'South American 9 

Temperate' (S-Ame-T), 'Northern Africa' (N-Afr), 'Southern Africa' (S-Afr), 10 

'Eurasia Boreal' (Era-B), 'Eurasia Temperate' (Era-T), 'Tropical Asia' (Tr-Asa), 11 

'Australia' (Aus) and 'Europe' (Eur) respectively. 12 

13 
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 1 

Figure 56. Comparisons between real observations and simulated 2 

concentrations by control runs: a) control run forcing by prior carbon fluxes; b) 3 

control run forcing by assimilated carbon fluxes by GCAS-EK. Both 4 

simulations start from Jan 1,2002 and all simulated concentrations at 5 

observation locations and times in 2005 are compared here. 6 

7 
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 2 

Figure 67. Global carbon budget (gC m
-2

) distributions on multiyear average 3 

from 2002 to 2008: a) prior carbon fluxes simulated by BEPS; b) assimilated 4 

carbon fluxes by GCAS-EK; c) CarbonTracker 2011 estimated carbon fluxes.5 
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 1 

Figure 78. Average Annual mean carbon budgets (PgC yearyr
-1

) on areas of 2 

with 6 BEPS ecosystem plant function types inand TransCom Transcom 3 

regions from 2002 to 2008. The errors of GCAS-EK fluxes are the root mean 4 

square errors of the ensemble. 5 

 6 

 7 
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Figure 89. Comparison of the interannual change variations of global total 2 

carbon budgets from 2002 to 2008 by three products: BEPS, GCAS-EK and 3 

CarbonTracker 2011. 4 

 5 

 6 

 7 
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Figure 910. Comparison of multiyear average monthly change variations from 2 

2002 to 2008 by three products: BEPS, GCAS-EK and CarbonTracker 2011. 3 

4 
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Figure 11. The distribution of averaged net ecosystem exchange (gC m
-2

 yr
-1

) 2 

from 2002 to 2006 for conterminous U.S. by EC-MOD, GCAS-EK and 3 

CarbonTracker 2011, respectively. The pattern correlation coefficient is 0.47 4 

between EC-MOD and GCAS-EK, and 0.22 between CarbonTracker 2011 and 5 

EC-MOD. 6 

 7 


