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Abstract

The weighted least squares estimator for model parameters was presented together
with its asymptotic properties. A popular approach to optimize experimental designs
called local optimal experimental designs was described together with a lesser known
approach which takes into account a potential nonlinearity of the model parameters.5

These two approaches were combined with two different methods to solve their under-
lying discrete optimization problem.

All presented methods were implemented in an open source MATLAB toolbox called
the Optimal Experimental Design Toolbox whose structure and handling was de-
scribed.10

In numerical experiments, the model parameters and experimental design were op-
timized using this toolbox. Two models for sediment concentration in seawater of dif-
ferent complexity served as application example. The advantages and disadvantages
of the different approaches were compared, and an evaluation of the approaches was
performed.15

1 Introduction

Mathematical models are a fundamental concept in science. Often, they contain only
roughly known model parameters. A common way to make such models more realis-
tic is to optimize these parameters so that the model output is more consistent with
measurement results.20

The measurements required for this purpose are often time-consuming or costly. For
this reason, it is desirable that the information content of the obtained measurement
results is maximal.

Several conditions under which measurements are carried out are controllable.
These conditions are also known as experimental setup or experimental design. This25

can be, e.g., the point in time, the location or the method of the measurements. These

6440

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/6439/2014/gmdd-7-6439-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/6439/2014/gmdd-7-6439-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 6439–6487, 2014

Optimization of
experimental designs

and model
parameters

J. Reimer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

experimental designs can be optimized so that the information content is maximized.
Thus, the number of measurements necessary for a certain accuracy of the model
parameters and accordingly of the model itself can be considerably reduced.

The main problem in optimizing experimental design is to quantify the informa-
tion content. In general, this can only be done approximatively. There are several5

approaches to quantify the information content and hence to optimize experimental
designs. See, e.g., Pronzato and Pázman (2013) for an overview. Usually, these ap-
proaches are a tradeoff between accuracy and computational effort. In general, it is
difficult to say whether a higher computational effort is justified by a higher accuracy.

In this paper, two models for sediment concentration in seawater served as applica-10

tion examples. Their model parameters had to be adapted to the local environmental
conditions. The measurements required for this purpose are very time-consuming. For
this reason, it should be evaluated which approach is most suitable to optimize their
experimental designs.

After this introduction, four different approaches to optimize experimental designs15

together with the weighted least squares estimator for model parameters are presented
in Sect. 2. One approach is based on the linearization of the model with respect to the
parameters and is the most common used approach called local optimal experimental
design. The second more robust approach takes into account a potential nonlinearity of
the model parameters. Both approaches are combined with two different approaches20

of solving the underlying discrete optimization problem.
The presented methods to optimize experimental designs and model parameters

were implemented in an open source MATLAB toolbox called the Optimal Experimental
Design Toolbox. The structure and handling of this toolbox is described in Sect. 3.

The numerical experiments carried out with the models for sediment concentration25

and their results are shown in Sect. 4.
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2 Optimization of model parameters and experimental designs

The first step to the optimization of model parameters is the choice of the estimator.
This maps the measurement results onto optimal model parameters. These optimal
parameters are often defined so that they minimize a so-called misfit function. The
misfit function quantifies the distance between the measurement results and the model5

output.
The most widely used class of estimators are the least squares estimators since their

introduction by Gauss and Legendre (see, e.g., Stigler, 1981). Their simplest form is
the ordinary least squares estimator. Its misfit function is the sum of the squares of the
differences between each measurement result and the corresponding model output.10

A generalization is the weighted least squares estimator which has advantages in case
of heteroscedastic measurement errors. This estimator and its asymptotic properties
are presented in the following subsection. The generalized least squares estimator
is a further generalization which takes into account a stochastic dependence of the
measurement errors.15

2.1 The weighted least squares estimator

In the following, the weighted least squares estimator is presented. For this purpose,
some notations and assumptions are introduced.

The model function is denoted by

f : Ωx ×Ωp →R.20

Here, Ωx ⊆Rnx is the set of feasible experimental designs and Ωp ⊂Rnp the set of
feasible model parameters from which the unknown exact parameter vector p̂ ∈Ωp is
to be determined. Often, these sets are defined by lower and upper bounds.

The measurement result for every design x ∈Ωx is considered as a realization of
a random variable ηx. Each random variable ηx is assumed to be normally distributed25

6442

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/6439/2014/gmdd-7-6439-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/6439/2014/gmdd-7-6439-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 6439–6487, 2014

Optimization of
experimental designs

and model
parameters

J. Reimer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

with expectation f (x, p̂) and standard deviation σx > 0, i.e.,

ηx ∼N (f (x, p̂),σ2
x) for every x ∈Ωx. (1)

Furthermore, these random variables are assumed to be pairwise stochastically inde-
pendent, i.e.,5

ηx and ηx′stochastically independent for everyx,x′ ∈Ωx. (2)

If we consider n ≥ np measurement results y = (y1, . . . ,yn)
T ∈Rn with corresponding

experimental designs x1, . . . ,xn ∈Ωx, the weighted least squares estimation pn and
the corresponding estimator Pn is defined as10

pn := Pn(y) := arg min
p∈Ωp

ψn(y ,p) (3)

where the misfit function ψn is defined as

ψn : Rn ×Ωp →R, (y ,p) 7→
n∑
i=1

(
yi − f (xi ,p)

σxi

)2

.

The set of possible model parameters Ωp is assumed to be compact and the model15

function f (x, · ) is assumed to be continuous for every selectable design x ∈Ωx. In this
way, the existence of a minimum is ensured. If ψn(y , · ) is also assumed to be injective,
the minimum is also unique.

The optimal parameters pn in Eq. (3) can be calculated with an optimization method
for continuous optimization problems. A possible method is the SQP algorithm which20

is, e.g., described in (Nocedal and Wright, 1999, Chapter 18).

2.2 Asymptotic properties

Provided certain regularity conditions are met, the least squares estimators are con-
sistent, asymptotically normal distributed and asymptotically efficient.
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This asymptotic properties were first proved by Jennrich (1969) for the ordinary least
squares estimator and also discussed in Malinvaud (1970) and Wu (1981). In White
(1980), these properties were proved for the weighted least squares estimator and
for the generalized least squares estimator in White and Domowitz (1984). A good
summary for all three can be found in Amemiya (1983).5

Consistency means that the estimated parameters converge in probability to the
unknown exact parameters as the number of measurements goes to infinity. That is

Pn
p→ p̂asn→∞

for the weighted least squares estimator Pn with the unknown exact model parameters
p̂.10

An estimator is asymptotically efficient if its variance converges to the Cramér–Rao
bound as the number of measurements goes to infinity. The Cramér–Rao bound (see
Cramér, 1946; Rao, 1945) is a lower bound for the variance of any unbiased estimator.

For the assumed measurement distribution Eqs. (1) and (2) with n measurements,
this bound is the inverse of the Fisher information matrix15

Mn(p̂) :=
n∑
i=1

∇pf (xi , p̂)∇pf (xi , p̂)T

σ2
xi

if the inverse exists. Here, ∇pf (xi , p̂) denotes the gradient of f (xi , · ) at the point p̂.
In this case, the asymptotic behavior of the weighted least squares estimator can be

summarized by its convergence in distribution as follows

√
n(Pn − p̂) d→N (0,Mn(p̂)−1n) as n→∞. (4)20

See, e.g., Seber and Wild (2003, Chapter 12) and Walter and Pronzato (1997, Chap-
ter 3).

6444

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/6439/2014/gmdd-7-6439-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/6439/2014/gmdd-7-6439-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 6439–6487, 2014

Optimization of
experimental designs

and model
parameters

J. Reimer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2.3 Optimal experimental designs

The accuracy of the weighted least square estimator Pn can be described by its covari-
ance matrix. Due to the asymptotic distribution Eq. (4), this can be approximated by
the inverse of the information matrix Mn(pn), provided the matrix Mn(pn) is nonsingular,
i.e.,5

cov(Pn) ≈ Mn(pn)
−1. (5)

Therefore, the unknown model parameters can be determined more accurately the
smaller the (approximated) covariance matrix of the estimator is.

Criteria φ : Rnp×np →R+, such as the trace or determinant, are used in order to10

compare these matrices. (See, e.g., El-Monsef et al., 2009, for an overview of various
criteria.) If the approximation Eq. (5) is used and Mn(pn) is singular, the value of φ is
set to infinity.

In the context of optimizing experimental designs, we assume n ≥ 0 measurements
have been carried out and designs for additional measurements should be selected15

fromm designs x′1, . . . ,x′m ∈Ωx. The choice for each design x′i is expressed by a weight
wi ∈ {0,1} where 1 indicates the selection and 0 the contrary.

Hence, the resulting information matrix, depending on the choice w ∈ {0,1}m and the
parameter vector pn ∈Ωp, is defined as

Mn(w,pn) := Mn(pn)+
m∑
i=1

wi
∇pf (x

′
i ,pn)∇pf (x

′
i ,pn)

T

σ2
x′i

.20

If the covariance matrix is approximated by the inverse of the information matrix,
optimal (additional) designs, with respect to a criterion φ, are expressed by a solution
of

arg min
w∈{0,1}m

φ(Mn(w,pn)
−1). (6)

25
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These optimal designs are called local optimal designs because these designs are only
optimal regarding the previously optimized model parameters pn and not the unknown
exact model parameters p̂.

Potential constraints on the choice of the designs can be realized by constraints
on the weight w. For example, the number or the costs of the measurements can be5

limited by linear constraints on w. These constraints have to be considered in the above
optimization problem Eq. (6).

2.4 Calculation of optimal experimental designs

A straight-forward way to solve the optimization problem Eq. (6) is to test all possible
values of w. This direct approach is only practical for small m.10

For bigger m, The optimization problem Eq. (6) is solved approximately. For this
purpose, it is solved in the continuous rather than the discrete setting, i.e., the constraint
w ∈ {0,1}m is relaxed to w ∈ [0,1]m. Accordingly, the problem

arg min
w∈[0,1]m

φ(Mn(w,pn)
−1) (7)

15

is solved.
A possible algorithm to solve this continuous optimization problem is the SQP algo-

rithm which is, e.g., described in Nocedal and Wright (1999, Chapter 18).
After the continuous problem Eq. (7) is solved, the solution is projected onto the

integers with heuristics. An easy way is to round the continuous solution. Another is to20

sum up all continuous weights and then to choose as many designs with the highest
continuous weights. Potential constraints on w still have to be considered by solving the
continuous problem and the following projection onto an integer solution. The second
heuristic, e.g., preserves constraints on the number of designs to choose.

Our numerical experiments with the application examples in Sect. 4 have shown that25

the solutions of the continuous problem Eq. (7) are already close to integer values. This
behavior was also observed, for example, in Körkel (2002) and Körkel et al. (2004).
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2.5 Robust optimal experimental designs

The information matrix Mn depends on the estimated parameters pn if the parameters
occur nonlinear in the model. This may lead to suboptimal designs if ∇pf ( · ,pn) differs
strongly from ∇pf ( · , p̂).

For this reason, we now consider a method which takes into account a possible5

nonlinearity of the parameters. This robust method was presented in Körkel (2002) and
Körkel et al. (2004).

The main idea of the method is not to optimize the quality of the covariance matrix
for a single parameter vector pn as in Eq. (6), but to optimize the worst case quality
within a whole domain which contains the unknown exact parameter vector p̂ with high10

probability.
For this purpose, a confidence region which contains p̂ with probability α ∈ (0,1) is

approximated by

Gn(α) := {p ∈Rnp | ‖p−pn‖2
Mn(pn)−1 ≤ γ(α)}. (8)

15

Here, γ(α) is the α-quantile of the χ2-distribution and ‖v‖A :=
√
vTA v denotes the en-

ergy norm of the vector v ∈Rnp with respect to the positive definite matrix A ∈Rnp×np .
The approximation of the confidence region arises from linearization of the model func-
tion f in point pn and the assumption Pn ∼N (p̂,Mn(pn)

−1).
If the worst case quality in the entire region Gn(α) shall be optimized, the optimization20

problem Eq. (6) becomes

arg min
w∈{0,1}m

max
p∈Gn(α)

φ(Mn(w,p)−1). (9)

This min-max optimization problem can by solved only with considerable more com-
putational effort compared to the optimization problem Eq. (6). In order to reduce this25

effort, the function φ(Mn(w, · )−1) is linearized in point pn in the following way.

φ(Mn(w,p)−1) ≈φ(Mn(w,pn)
−1)+∇p(φ(Mn(w,p)−1))T (p−pn)
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The resulting inner maximization problem can be solved analytically. It is

max
p∈Gn(α)

φ(Mn(w,pn)
−1)+∇p(φ(Mn(w,p)−1))T (p−pn) =

φ(Mn(w,pn)
−1)+γ(α)

1
2 ‖∇p(φ(Mn(w,pn)

−1))‖Mn(pn),

as can be seen, e.g., in Körkel (2002). With this approach the optimization problem5

Eq. (9) is replaced by

arg min
w∈{0,1}m

φ(Mn(w,pn)
−1)+γ(α)

1
2 ‖∇p(φ(Mn(w,pn)

−1))‖Mn(pn). (10)

This optimization problem again can be solved approximatively by solving the corre-
sponding continuous problem and projecting this solution onto an integer solution as10

described in the previous subsection.
It should be noted that in this approach Eq. (10), the first and second derivatives of

the model is used. In contrast, only the first derivative is used for local optimal designs
Eq. (6).

2.6 Efficiency of experimental designs15

A common way to describe the benefit of an experimental design is its efficiency. The
efficiency of an experimental design w ∈ {0,1}m regarding a criterion φ and with n
previous measurements is defined as follows.

Eφ(w) := min
ŵ∈{0,1}m

φ(Mn(ŵ, p̂)−1)

φ(Mn(w, p̂)−1)
(11)

20

It should be noted that the searched parameter vector p̂ is used here. If this is not
known, thus the efficiency can not be calculated.

The efficiency is always between 0 and 1 and is larger the better the experimental
design is.
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3 The Optimal Experimental Design Toolbox

We implemented the methods presented in the previous section for optimization of
model parameters and experimental designs as a MATLAB toolbox named the Optimal
Experimental Design Toolbox.

MATLAB (see MathWorks, 2011) was chosen because it supports vector and matrix5

operations and provides many numerical algorithms, especially for optimization. More-
over, MATLAB supports object oriented programming and therefore permits a simple
structuring, modification and extension of the implementation. Another advantage of
MATLAB is that it can easily interact with C and Fortran.

The toolbox is available at the Git repository (see Reimer, 2013) at GitHub under the10

GNU General Public License (see Foundation, 2007). It includes extensive commented
source code and a detailed help integrated in MATLAB.

3.1 Provision of the model function

For the methods described in Sect. 2, the model function and its first and second
derivative with respect to the model parameters is required.15

Actually, the model function is required for the parameter optimization and, depend-
ing on the optimization method, also the first derivative. The first derivative is also
required for the experimental design optimization. If the robust method is used also the
second derivative is required.

The first step for using the Optimal Experimental Design Toolbox is to provide these20

functions. The model interface prescribes how this should be done. The functions need
not be written in MATLAB itself, since MATLAB can call functions in C, C++ or Fortran.

The toolbox has several possibilities to provide the derivatives automatically. The
model_fd class, e.g., provides the derivatives by approximation with finite differences.
If the model function is given as an explicit symbolic function, the model_explicit class25

can provide the derivatives by symbolic differentiation with the Symbolic Math Toolbox.
Figure 1 shows, for example, how a model_explicit object is created.
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For the case the model function is given as a solution of an initial value problem,
the Optimal Experimental Design Toolbox contains the model_ivp class. This class
solves the parameter dependent initial value problem and calculates the necessary
derivatives. Figure 2 shows how a model_ivp object is created.

The class takes advantage of the fact that the integration and differentiation of the5

differential equation can be interchanged if the model function is sufficiently often con-
tinuously differentiable. Required derivatives of the differential equation and initial value
are calculated again by symbolic differentiation with the Symbolic Math Toolbox. The
resulting initial value problems are solved with MATLABs ode23s function which can
also solve stiff problems. Because the arising initial value problems for the derivatives10

are mutually independent, the solution of the initial value problems can be calculated
in parallel using the Parallel Computing Toolbox.

3.2 Setup of the solver

Another important class in the Optimal Experimental Design Toolbox is the solver
class. This class provides the methods for the optimization of parameter estimations15

and experimental designs. To perform one of these optimizations, the solver class has
to be instantiated (see Fig. 3) and the necessary informations have to be passed to the
solver object.

First of all, the model represented by an object which implements the model interface
has to be set by the set_model method (see Fig. 4).20

In addition, an initial estimation of the model parameters have to be set by the
set_initial_parameter_estimation method (see Fig. 5).

Potential accomplished measurements can be set via the
set_accomplished_measurements method. These measurements consist of the
corresponding experimental designs together with their variances of the measurement25

errors. Also the measurement results themselves have to be passed for a parameter
estimation (see Fig. 6).
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Finally, if an optimization of experimental designs shall be performed, the selectable
measurements have to be set by the set_selectable_measurements method (see
Fig. 7). These measurements consist of the experimental designs and the variances of
the measurement errors again.

3.3 Optimization of experimental designs and model parameters5

Once the solver object is configured as described in the previous subsec-
tion, experimental designs or model parameters can be optimized via the
get_optimal_measurements (see Fig. 8) respectively the get_optimal_parameters (see
Fig. 9) method. Constraints on the experimental designs or model parameters can be
passed to the corresponding method.10

The get_optimal_measurements method can solve the optimization problem directly
by trying all possible combinations or by solving the corresponding continuous prob-
lem and projecting onto an integer solution. For solving the continuous problem, the
implementation of the SQP algorithm (see Nocedal and Wright, 1999, Chapter 18) pro-
vided by the fmincon function of the Optimization Toolbox is used. The first derivative15

of the objective function is provided in analytical form. This saves much of the comput-
ing time compared to derivatives calculated by finite differences. The Hessian matrix
is approximated by the BFGS-update (see Broyden, 1970; Fletcher, 1970; Goldfarb,
1970; Shanno, 1970).

The get_optimal_parameters method uses the Trust–Region–Reflective (see20

Coleman and Li, 1994; Coleman and Li, 1996) or the Levenberg–Marquard algorithm
(see Levenberg, 1944; Marquardt, 1963; Moré, 1977) provided by the lsqnonlin func-
tion of the Optimization Toolbox to solve the least squares problem resulting from the
parameter estimation. The first derivative of the objective function is also provided an-
alytically.25

Furthermore, the expected quality of the resulting parameter estimation for any se-
lection of experimental designs can be calculated using the get_quality method of the
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solver object. Thus, for example, the increase in quality by adding or removing experi-
mental designs can be determined.

In the methods of the Optimal Experimental Design Toolbox, often reusable (inter-
mediate) results occur. The toolbox takes advantage of this by internally saving and
reusing appropriate results. Thus, the execution time is significantly reduced. Multiple5

occurring matrix multiplications within a calculation are an example. Also, reusable
results are cached between different method calls. An example scenario is a re-
optimization of designs with other constraints, such as another maximum number of
allowed measurements. Here, the derivatives of the model function calculated in the
previous optimization is reused.10

3.4 Changeable options

Many settings for the optimization of experimental designs or model parameters are
changeable. These can be altered by the set_option method of the solver object (see
Fig. 10). The desired options can be set using property-value pairs, as already known
from MATLAB. This means, the name of the option has to be passed to the method as15

first argument and the new value as second argument.

Estimation method: For example, the estimation method for the quality of experi-
mental designs can be selected by the estimation_method option. The standard
point estimation method and the robust region estimation method, both presented
in Sect. 2, are supported. The region estimation method is the default setting.20

Confidence level: Moreover, the level of confidence for the confidence region at the
region estimation method, represented by α in Sect. 2.5, can be set by the alpha
option. The default value is 0.95.

Prior parameter estimation: Furthermore, it can be chosen whether a parameter
optimization should be performed before optimizing experimental designs. This25

would improve the estimations of the quality of experimental designs. This can
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be set by the parameter_estimation option and the values yes or no. To save
computational time no previous parameter optimization is performed by default.

Quality criterion: The quality criterion, which is applied to the covariance matrix and
represented in Sect. 2.1 as φ, can also be chosen. Therefore, an object of a class
which implements the criterion interface have to be passed with the criterion op-5

tion. The criterion interface prescribes the syntax of the criterion function and its
necessary derivatives. The trace of the covariance is the default criterion and im-
plemented by the criterion_A class.

Parameter scaling: Furthermore, it can be chosen whether the covariance ma-
trix should be scaled before applying the quality criterion or not by the10

scale_covariance_matrix option and the values yes and no. Scaling the covari-
ance matrix allows to optimize the quality of each parameter uniformly and is
enabled by default. The model parameters are scaled by default for the parame-
ter optimization, too. This can be changed by the po_scale_parameter option and
the values yes and no.15

Optimization algorithm for experimental design: Finally, the optimization algo-
rithm for the experimental design problem can be configured. The direct and the
relaxed method, described in 2.4, can be chosen as solution algorithm. The corre-
sponding option is ed_algorithm and the values are direct respectively local_sqp.
For time reasons by default the experimental design problem is solved by the20

relaxed method. Furthermore, the number of function evaluations and iterations
by the SQP algorithm can be constrained by the options ed_max_fun_evals and
ed_max_iter .

Optimization algorithm for parameter estimation: Similarly, the optimization algo-
rithm for the parameter estimation problem can be configured. The Trust–Region–25

Reflective (see Coleman and Li, 1994; Coleman and Li, 1996) and the Levenberg–
Marquard algorithm (see Levenberg, 1944; Marquardt, 1963; Moré, 1977) can be
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chosen as solution algorithm with the option po_algorithm and the values trust-
region-reflective respectively levenberg-marquardt . The Trust–Region–Reflective
algorithm is the default algorithm. By default the model parameters are scaled
for the optimization. This can be influenced by the po_scale_parameter option
and the values yes and no. Furthermore, the number of function evaluations and5

iterations can be limited through the options po_max_fun_evals and po_max_iter .

3.5 Help and documentation

The Optimal Experimental Design Toolbox also provides an extensive integrated help.
It can be viewed in the command window by the MATLAB command help or in the help
browser of MATLAB by its doc command (see Fig. 11).10

The layout of the help of the Optimal Experimental Design Toolbox is based on the
design of the help also used by MATLAB and other toolboxes. Thus the user does not
have to get used to a new layout. The help includes, besides system requirements and
version informations, a user’s guide with a step by step instruction how to optimize ex-
perimental designs and model parameters. Demos show how to work with the toolbox15

in practice. In addition, a detailed description for every class and method is available.

4 Application examples

In this section, numerical experiments together with their results regarding the opti-
mization of model parameters and experimental designs are presented for two models
from geophysics, namely for sediment concentration in seawater which floods coastal20

salt marshes.
Coastal salt marshes have an important ecological function with their diverse flora

and as a nursery for migratory birds. Furthermore they have the ability of dissipating
current and wave energy and therefore reducing erosional forces at dikes and coastal
areas.25
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With these models, the vertical accretion of coastal salt marshes can be predicted. If
sea level rise is considered too, the future ability of coastal salt marshes to grow faster
as sea increases and thus to survive can be estimated. Depending on this, measures
to protect these salt marshes can be taken.

This application example arose in cooperation with the Geographical Institute of5

the Christian-Albrechts University of Kiel. There, the parameters of these two mod-
els should be determined. Carrying out the required measurements of the sediment
concentrations is time consuming and laborious. For this reason, it is advantageous to
know under which conditions and how many measurements should be carried out.

4.1 The models10

Both models are zero-dimensional point models, which describe the sediment concen-
tration in seawater that floods coastal salt marshes within a tidal cycle. The first model
has two model parameters, was described in Temmerman et al. (2003) and adapted
for the local salt marshes in Schuerch et al. (2013). The second model has three model
parameters, is an extension of the first model and subject of current research.15

4.1.1 The C2-model

The first model is called the C2-model. Here, the sediment concentration is modeled by
the function C : [tS,tE) →R+ and has the unit kg m−3. Furthermore, tS is the start time
of the inundation of the salt marsh and tE the end time. The concentration C is given
implicit as solution of the initial value problem20

C′(t) =

{−wsC(t)+(C0−C(t))h′(t)
h(t)−E if h′(t) > 0

−wsC(t)
h(t)−E else

for all t ∈ (tS,tE) and C(tS) = C0. (12)
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Here, C0 ≥ 0 is the initial sediment concentration at the flooding seawater and wS ≥ 0
the settling velocity of the sediment in the unit m s−1. Moreover, the function

h : R→R,t 7→ a

1+
(
t−x0
b

)2
+hHW −hMHW

describes the time-dependent water surface elevation and E the elevation of the marsh
both relative to a fixed datum. Here, a, b and x0 are constants describing the change5

in the water level, hMHW the mean high water level and hHW the high water level of
a certain tidal inundation. The start and end time tS and tE of the inundation are the
points where the height h equals the elevation of the marsh E .

The concentration C thus decreases continuously within a tidal cycle depending on
the settling velocity wS which is described by the term10

−
wsC(t)

h(t)−E

in Eq. (12). During the flood phase, the reduced concentration is partially compensated
by new inflowing sea water. This is described by the term

(C0 −C(t))h′(t)

h(t)−E

in the first case of Eq. (12).15

The values used in the water surface elevation function h, for the local salt marsh,
are shown in Table 1 (see also Schuerch et al., 2013). The high water level hHW of the
current tidal inundation is measured or taken from predictions.

The initial sediment concentration C0 and the settling velocity wS are only roughly
known and therefore model parameters. Initial estimations can be found in Table 2.20
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4.1.2 The C3-model

The second model is an extension of the C2-model and is called the C3-model. Here
the model parameters C0 and wS are substituted by

C0 = k(hHW −E )

ws = r(C0)s = rks(hHW −E )s.5

Where k ≥ 0, r ≥ 0 and s ≥ 0 are unknown model parameters.
On the one hand, a linear relationship between the initial sediment concentration and

the high water level is assumed, where during heavy flooding a higher sediment con-
centration is assumed. On the other hand, a relationship between the initial sediment10

concentration and the settling velocity is assumed. This is an empirical approximation
of the so-called flocculation effect.

Initial estimations for the parameters in this model can be found in Table 3.

4.2 Numerical experiments

We performed several numerical experiments to compare the benefit of optimized with15

unoptimized measurement conditions. Also, the benefit of different approaches to opti-
mization measurement conditions was compared. Using these results, an appropriate
approach for the optimization of conditions for real measurements was selected.

The approaches introduced in Sect. 2 and implemented by the Optimal Experimental
Design Toolbox described in Sect. 3 were used for the numerical experiments. For that,20

we used the model_ivp class which allows to calculate the solution of an initial value
problem and its first and second derivatives with respect to the model parameters. The
C2-model was implemented by the model_C2 class and the C3-model by the model_C3
class which is a subclass of the model_C2 class.

For our numerical experiments, we used the model output with the model parame-25

ters in Tables 2 and 3 plus an additive normal distributed measurement error with zero
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expectation as artificial measurement results. As standard deviation of the measure-
ment error, we once chose 10−2 and once 10−1.

In our numerical experiments, we alternately selected a fixed number of experimen-
tal designs and estimated the model parameters with corresponding measurement re-
sults. We carried out each experiment ten times and averaged the results to minimize5

the influence of randomness.
For the initial parameter estimation, we used the values presented in Table 4.
Moreover the bounds for the model parameters shown in Table 5 were used for the

parameter estimations.
The experimental designs for these models consist of the time point of the measure-10

ment and the high water level of the tidal inundation. A set of thirty selectable exper-
imental designs was specified. They were obtained by combining three different high
water levels of the tidal inundation (1.5, 2.0 and 2.5 m) with ten time points equidistantly
spread over the inundation period.

For choosing the experimental designs, we compared the standard and the robust15

approach presented in Sect. 3 with the trace as quality criterion together with uniformly
distributed experimental designs. The optimization problems for the experimental de-
signs were once solved exact in the discrete variant and once approximatively in the
relaxed variant. To evaluate all these methods, we compared the resulting parameter
estimations with the correct model parameters in Tables 2 and 3.20

We further investigated whether the number of measurements after which new ex-
perimental designs are optimized had an impact on the accuracy of the parameter
estimation. For this purpose, different numerical experiments were performed where
the parameters and experimental designs have been optimized after each one, three
resp. five measurements. Altogether fifty measurements were simulated at each ex-25

periment with the C2-model. For the C3-model, hundred and fifty measurements were
simulated at each experiment since the model is more complex and therefore a suffi-
ciently accurate estimation of its parameters might be more difficult.
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4.3 Accuracy of the parameter estimations

In this subsection, we compare the accuracy of the parameter estimations resulting
from the previously described numerical experiments. Some results are illustrated in
Figs. 12 and 13.

4.3.1 Results for the C2-model5

The accuracy of the parameter estimations for the C2-model only improved marginally
after four to twelve measurements independently of the choice of the experimental de-
signs. The maximal accuracy was achieved faster the more frequently the experimental
designs and parameters were optimized. However, the maximal achieved accuracy was
independent of the frequency.10

With uniformly distributed experimental designs the maximum accuracy was slightly
worst than with optimized experimental designs. Additional four to six more measure-
ments were needed compared to optimized experimental designs in order to achieve
their accuracy.

Although the parameters nonlinearly occur in this model, it made close to no differ-15

ence whether the standard or the robust approach for the optimization of the experi-
mental designs was used.

In both approaches, the accuracy was slightly better in the first iterations if the dis-
crete optimization problem was solved directly as if the relaxed optimization problem
was solved. The solutions of the relaxed optimization problems were almost all nearly20

integer.
The different standard deviations of the measurement errors only influenced the max-

imal accuracy achieved which was of course higher at a higher standard deviation.
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4.3.2 Results for the C3-model

After ten to twenty-five measurements, the accuracy of the parameter estimations for
the C3-model with optimized experimental designs only improved slightly. Again, the
maximal accuracy was achieved faster, the fewer measurements were performed per
iteration and the maximal achieved accuracy was independent of the number of mea-5

surements per iteration.
With uniformly distributed experimental designs, the maximum accuracy was

achieved after twenty-four to sixty measurements. Furthermore, the maximal accuracy
was worse by about a factor of ten compared to the accuracy achieved by (standard)
optimized experimental designs.10

The standard approach for optimizing experimental designs resulted in a slightly
better accuracy compared to the robust approach. Again, if the underlying optimization
problem was solved in the discrete rather in the relaxed variant, the accuracy was
slightly better for both approaches. Also in these experiments, the solutions of the
relaxed optimization problems were almost all nearly integer.15

Again, the different standard deviations of the measurement errors only influenced
the maximal accuracy achieved.

4.3.3 Conclusions regarding the approach for optimizing experimental designs

Optimized experimental designs provided a much more accurate parameter estimation
than uniformly distributed experimental designs independent of the chosen optimiza-20

tion approach. Furthermore, only about half as many measurements were needed to
archive the same accuracy with optimized experimental designs as with uniformly dis-
tributed experimental designs. In the more complex model, the difference was even
greater.

The robust approach achieved no higher accuracy compared to the standard ap-25

proach. In the complex model, the robust approach was even slightly less accurate.
This may indicate that the additional approximations in the robust approach offset the
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increase in accuracy, which should be achieved by taking into account the nonlinear-
ity. Since a considerably higher computational effort is associated with the robust ap-
proach, the standard approach should be preferred, at least for these models.

The direct solution of the discrete optimization problems compared to the solution
of the continuous relaxed optimization problems only resulted in a small increase in5

accuracy. The fact that the solutions of the relaxed optimization problems were al-
most all nearly integer was another indication that the difference between both so-
lutions was small. This fact was also observed, for example, in Körkel (2002) and
Körkel et al. (2004). For these reasons and because the direct solving requires much
more computational effort, the relaxed problem should be solved, at least for these10

models.

4.4 Efficiency for the experimental designs

We also calculated the efficiencies of the used experimental designs. Some results are
illustrated in Figs. 14 and 15.

The results emphasized the already seen importance of the optimization of the ex-15

perimental designs. In particular, the advantage in the case of few measurements car-
ried out so far was highlighted. Again, the slight advantage of the standard approach
over the robust approach was visible. With increasing number of accomplished mea-
surements, the selection strategy of new measurements became less important as the
amount and thus the influence of the new measurements compared to those of the20

accomplished measurements decreased.

4.5 Distribution of optimal measuring points

In this subsection, we compare the distribution of the measuring points optimized in the
previously described numerical experiments. Graphical representation of the distribu-
tion of the measuring points from some numerical experiments are shown in Figs. 1625

and 17.
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4.5.1 Distribution for the C2-model

The optimized measuring points were almost exclusively located at the start and end
of the inundation periods. At the start of the inundation period, both approaches in
the discrete variant favored lower high water levels unlike both approaches in relaxed
variant which favored higher high water levels. At the end of the inundation period, the5

standard approach in both variants favored lower high water levels unlike the robust
approach in both variants which favored higher high water levels.

4.5.2 Distribution for the C3-model

For the C3-model the optimized measuring points accumulated at the end of the in-
undation periods. All approaches favored lower high water levels. With an increasing10

number of measurements per iteration the robust approach in both variants also pref-
ered measurements in the middle of the inundation periods with the highest high water
level.

4.5.3 Conclusions regarding the distribution of optimal measuring points

The numerical experiments showed that measurements at the start and end of the15

inundation periods should be preferred for the C2-model.
Measurements at the start of the inundations can be justified by the fact that one

parameter of the model is the concentration at the start of the inundation. The fact
that the settling velocity as second model parameter most affects the concentration
at the end of the inundations justifies measurements here. This can be confirmed by20

an examination of the ordinary differential equation of the model derived with respect
to the settling velocity. The derivative of the model with respect to the settling velocity
is zero at the start of the inundation and is getting smaller the further the inundation
progresses. Its absolute greatest value it thus reached at the end of the inundation.
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The experiments with the C3-model showed that here measurements at end of the
inundation periods should be preferred. In this model, the concentration at the start is
no parameter but is affected by a parameter that also influences the settling velocity.
For this reason, measurements are not suggested at the start.

For both models the high water level seemed to play a minor role for the choice of5

measuring points.
As a rule of thumb one can say that measurements should be carried out at the end

of an inundation period and also some at the start if the C2-model is used.

5 Conclusions

In this paper we presented two different approaches for optimizing experimental design10

for parameter estimations. One method was based on the linearization of the model
with respect to its parameters, the other takes into account a possible nonlinearity
of the model parameters. Both methods were implemented in our presented Optimal
Experimental Design Toolbox for MATLAB.

Using application examples, we showed that model parameters can be determined15

much more accurately if the corresponding measurement conditions were optimized.
Especially for time-consuming or costly measurements, it is therefore useful to optimize
the measurement conditions with the Optimal Experimental Design Toolbox.
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Table 1. Values used for the water surface elevation function h.

a b x0 hMHW E

local value 3.7506 19447.1 −1301.0 3.75 m 1.3 m
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Table 2. Estimated parameter values for the C2-model.

C0 wS

estimated value 0.1 kg m−3 10−5 m s−1
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Table 3. Estimated parameter values for the C3-model.

k r s

estimated value 0.25 10−5 0.5
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Table 4. Initial parameter values.

C0 wS k r s

initial value 5 2×10−7 12.5 2×10−7 3

6469

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/6439/2014/gmdd-7-6439-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/6439/2014/gmdd-7-6439-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 6439–6487, 2014

Optimization of
experimental designs

and model
parameters

J. Reimer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 5. Parameter bounds.

C0 wS k r s

lower bound 10−4 10−8 10−4 10−8 10−1

upper bound 104 1 104 1 5
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model_object = model_explicit ( 'p* t ˆ2 ' , 'p ' , ' t ' )
% 1 . input : the model func t i on as symbol ic formula
% 2 . input : the parameter va r i ab l e ( s )
% 3 . input : the exper imenta l des ign va r i ab l e ( s )
% return : a model ob j e c t which implements the model i n t e r f a c e

Figure 1. Create a model with a symbolic model function.
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model_object = model_ivp ( '−y+(t+1)*b ' , ' [ a , b ] ' , 'y ' , ' a ' , ' t ' , [ 1 , 1 0 ] )
% 1 . input : the formula o f the d e r i v a t i v e o f the model func t i on
% 2 . input : the model parameter va r i ab l e ( s )
% 3 . input : the model func t i on va r i ab l e
% 4 . input : the i n i t i a l va lue o f the model func t i on
% 5 . input : the dependent va r i ab l e in the model func t i on
% 6 . input : the i n t e r v a l o f i n t e g r a t i o n
% return : a model ob j e c t which implements the model i n t e r f a c e

Figure 2. Create a model with a model function given as solution of an initial value problem.
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solver_object = solver ( )
% return : a s o l v e r ob j e c t

Figure 3. Create a solver object.
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solver_object . set_model ( model_object )
% input : an ob j e c t that implements the model i n t e r f a c e

Figure 4. Set the model.
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solver_object . set_initial_parameter_estimation ( [ 1 , 2 ] )
% input : the i n i t i a l e s t imat ion o f the model parameters

Figure 5. Set the initial parameter estimation.
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solver_object . set_accomplished_measurements ( ( 1 : 5 ) ' , 0 .01* ones (5 , 1 ) , −←↩
exp ( ( 1 : 5 ) ' ) )

% 1 . input : the exper imenta l de s i gn s o f accomplished measurements
% 2 . input : the va r i ance s o f the a s s o c i a t ed measurement e r r o r s
% 3 . input : the a s s o c i a t ed measurement r e s u l t s

Figure 6. Set accomplished measurements.
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solver_object . set_selectable_measurements ( ( 6 : 1 0 ) ' , 0 .01* ones (5 , 1) )
% 1 . input : the s e l e c t a b l e exper imenta l de s i gn s
% 2 . input : the va r i ance s o f the a s s o c i a t ed measurement e r r o r s

Figure 7. Set selectable measurements.
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optimal_measurements = solver_object . get_optimal_measurements (3 )
% input : the maximum number o f measurements a l lowed
% return : the optimal subset o f the s e l e c t a b l e measurements with a ←↩

number o f measurements l e s s or equal to the r e s t r i c t i o n

Figure 8. Optimize experimental designs.
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optimal_parameters = solver_object . get_optimal_parameters ( [ 0 , 0 ] , [ 9 , 9 ] )
% 1 . input : the lower bound o f the model parameters
% 2 . input : the upper bound o f the model parameters
% return : a parameter e s t imat ion r e s u l t i n g from the accomplished ←↩

measurements which takes in to account the passed c on s t r a i n t s

Figure 9. Optimize model parameters.
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solver_object . set_option ( ' option name ' , option_value )
% 1 . input : the name o f the opt ion which should be changed
% 2 . input : the new value o f the opt ion

Figure 10. Change an option.
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doc optimal_experimental_design_toolbox

Figure 11. Get the documentation.
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Figure 12. Averaged error in the parameter estimation from ten optimization runs with the C2-
model and three measurement per iteration with standard deviation 10−2 of the measurement
error.
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Figure 13. Averaged error in the parameter estimation from ten optimization runs with the C3-
model and three measurement per iteration with standard deviation 10−2 of the measurement
error.
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Figure 14. Averaged efficiency for the experimental designs from ten optimization runs with the
C2-model and three measurement per iteration with standard deviation 10−2 of the measure-
ment error.

6484

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/6439/2014/gmdd-7-6439-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/6439/2014/gmdd-7-6439-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 6439–6487, 2014

Optimization of
experimental designs

and model
parameters

J. Reimer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 15. Averaged efficiency for the experimental designs from ten optimization runs with the
C3-model and three measurement per iteration with standard deviation 10−2 of the measure-
ment error.
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Figure 16. Averaged frequency of measurements from ten optimization runs with the C2-model
and three measurement per iteration with standard deviation 10−2 of the measurement error.
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Figure 17. Averaged frequency of measurements from ten optimization runs with the C3-model
and three measurement per iteration with standard deviation 10−2 of the measurement error.
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