
Response to referee 1:
----------------------

We first thank the referee for his very insightful comments, which helped us a lot to
clarify and improve this paper.

Comments and responses:

1. For a paper in a geoscience journal, a main focus of the paper should be on the
application. They should be discussed in the beginning of the paper addressing the
interests of the readers of the journal. At the moment the geoscience application first
appears in Chapter 4.
-> The introduction has been revised so that a greater focus is placed on the application.

2. Is it aim of this article to give a documentation of the Optimal Experimental Design
Toolbox? This should be described in some other paper. Chapter 3 should be less
technical.
-> Technical details in chapter 3 have been removed or shortened.

3. Some explanations and conclusions in Chapter 4 on the numerical results should
be reconsidered. For details see below.

Minor comments:

p 6442ff: Say "estimation of model parameters" instead of "optimization ..."
-> changed (except at the title of the paper and the title of chapter 2)

p 6442f: Choice of the estimator: the estimator should be derived from the statistical
properties/distribution of the measurement errors, e.g. a maximum likelihood estimator
-> incorporated

p 6442: Set of feasible model parameters, described by bounds: what is the use of an
estimate if the bounds (which have been specified by the modeler) are active?
-> The bounds can be determined by physical meanings. For example, a concentration 
can not be negative thus it can be meaningful even if it is on a boundary.
-> For the presented optimal experimental design theory, it is reasonable to assume that
the unknown exact parameter vector $\hat{p}$ is not at the bounds. (See assumption A5.)
However, this does not mean that estimated parameters $p_n$ are not allowed to be at the
bounds.

p 6443: Can psi be assumed to be injective?
-> This is in practice certainly rarely the case. A less restrictive assumption would be 
the convexity.
-> changed

p 6443: Use of SQP for PE is not really a good idea, for large residuals it may converge
to statistically unstable solutions, see Bock et al. 2013 better use Gauss-Newton For
exp. design SQP is ok.
-> So far, we have gained good experience with SQP for PE. Can you please explain why large
residual minimizers are no good estimators? Please look in the supplement for an example of
a large residual minimizers which is a good estimator.

p 6443 l 24: "normally distributed"
-> changed

p 6443f: What are the regularity assumptions? E.g. for the inverse of Mn(p) it is:
nabla_p fˆT has full (column) rank.
-> regularity assumptions incorporated

p 6445 l 23-13: The operation "set to infinity" is not differentiable, which is needed for
application of SQP.
-> Matlab's SQP algorithm can recover from infinity. If an infinite function value is 
reached 
during the optimization, the algorithm attempts to take a smaller step. Thus, if the 



optimization
is started with a regular design, singular designs do not make any trouble.
-> explanation incorporated

p 6446: Experimental design: what about optimizing the x_i?
-> This formulation is useful if additional experimental designs should be chosen from a 
finite number
of experimental designs. Otherwise, the optimization problem can be reformulated so that the
additional optimal design variables have to be optimized directly.
-> explanation incorporated

p 6447 l 2: "occur nonlinearly"
-> changed

p 6447 l 24: typo: can be solved
-> changed

p 6449 l 19: For derivative based optimization of the exp design problem, e.g.. by SQP,
a mixed derivative is required to compute the gradient of the objective.
-> That's right. However, the user needs to provide only the derivatives with respect to 
the model. 
All other derivatives are computed automatically and are not listed here for this reason.

p 6450 l 21: "initial guess" instead of "initial estimation"
-> changed

p 6457 l 26: "normally distributed"
-> changed

p 6458 l 11ff: If you also use the high water levels of the tidal inundation as experimental
design variable, you need derivatives wrt. this quantity for the SQP optimization. How
do you compute them? (In contrast, derivatives wrt. the w_i only need nabla f.)
-> The experimental design variables are not directly optimized. Instead, the corresponding 
weights are optimized. That is, derivatives with respect to the weightings are needed. 
These 
are automatically calculated. Derivatives with respect to the experimental design variables 
are not needed.

p 6459f: The phrase "maximal accuracy" is misleading. Of course the accuracy can
always be improved further by performing additional measurements.
-> "maximal accuracy" replaced by "best achieved accuracy"

p 6459f: Which gamma did you choose in the robust approach? How big is the stan-
dard part of the objective compared to the robustification part?
-> The 95%-quantil of the chi-squared-distribution was used for gamma.
-> quantil incorporated
-> The standard part is around one thousandth of the robustification part. Which means that 
the robustification part dominates in the robust approach.

p 6459ff: Conceptionally, the relaxed solution should be better than the discrete one,
because the feasible set is larger, Unless you compare local relaxed to global discrete
minima which is not a fair comparison.
-> Here, the formulation was misleading. The solution of the discrete problem was compared 
with the solution of the continuous (relaxed) problem projected onto an integer solution.
-> In the article, the terms "exact" and "approximate" solution of the discrete problem are
used now.

p 6459 l 12: typo: worst -> worse
-> changed

p 6459 l 15: "occur nonlinearly"
-> changed

p 6459 l 22f and p 6460 l 16f: This is because here the different (constant) standard
deviations only mean a different scaling of the objective of the exp. design opt. problem.
Only if the stqandard deviations are non-constant within the experiments, the weighting
by 1/sigma becomes relevant.



-> explanation incorporated

p 6460 l 24: replace greater by bigger, e.g.
-> changed

p 6460 l 27f: This explanation sounds weird. See remark above. The behavior should
depend on the actual nonlinearity of the problem.
-> On the one hand, the nonlinearity is included, by optimizing the worst case quality 
within a confidence region. On the other hand, the worst case quality is approximated 
by the solution of the linearized problem. It may be that this additional approximation 
offsets the gain by considering the nonlinearity.

p 6462 l 14ff: This kind of results also occurs for linear models. This may indicate why
the robust approach is not needed.
-> The model is nonlinear in the parameters and the robust approach yields different 
results 
than the standard approach. The robustification part is many times larger than the standard 
part.

p 6472: Fig. 2: 1.input should be the "RHS of the differential equation".
-> changed



Response to referee 2:
----------------------

We thank the second referee for his informative comments, which helped us a lot to improve 
and clarify this paper.

Comments and responses:

Abstract: The abstract is concise and get’s to the point although perhaps a sentence
to give a general geosciences context would help.
-> A sentence about the general geosciences context is added at the beginning of the 
abstract.

Introduction: Like the abstract this is concise, however a few key things are missing for
me
1) What is the original contribution of the article? Given that there is no literature or
context included in the introduction its difficult to know what this is. If the originality 
is
the Matlab toolbox then some context is needed to explain what was available prior to
this toolbox. 2) I would expect at least a few good examples of these methods being
used in geosciences to be referenced. The start of the paper currently has no focus
and reads more like an introductory textbook.
-> Explain what was available prior to this toolbox added.
-> Reference for application on geosciences added.
-> Introduction revised to emphasize the focus more.

Section 2.1 P6443, L15: Sorry I don’t understand what you mean by model parameters
are assumed to be compact? Also, just below, I’m not familiar with the use of the term
injective. Maybe these could be defined.
-> Compact and injectice are two common terms in mathematics. Compact is (in this case) 
equivalent to closed and bounded and refers to the set of model parameters. 
-> (closed and bounded) as additional explanation inserted
-> The term injective is no longer found in the current version of the article.

Section 2.2 “Provided certain regularity conditions are met” Could you explain what
these are at some point for completeness?
-> regularity conditions inserted

Section 2.5: Check English in sentence “if the parameters occur nonlinear in the model” -> 
if the model parameters are nonlinear.
-> changed

P6451, Ll5: Is there a memory space issue with saving intermediate results.
Actually more generally could you comment on the memory efficiency and what might
be a limiting factor in the size of problem that can be handled?
-> Subsection "3.4 Execution time and memory consumption" included. Here, the memory 
consumption and limiting factors are described.

Section 4 P6454, L20:
I think the example is from geosciences rather then geophysics.
-> changed

Also it’s not clear
what you mean by two models. . . I initially assumed there was a sediment concentra-
tion/deposition model coupled to a hydrodynamic model. But later its clear this is not
the case. Personally I would merge section 4 and 4.1 and re-order the text to make
it clearer to understand. At the moment the description of the model is spread over
several paragraphs, which is quite confusing.
-> In the beginning of section 4, an explanation was added that both model describe a 
sediment concentration and only differ in their complexity.
-> We would like to keep the separation of section 4 and 4.1 because section 4 contains the 
general description and utility of both models whereas section 4.1 contains their 
mathematical description.

When you go on to implement the mod-
els it was not clear to me if the test case was based around something real or if the



modelling example was entirely synthetic. I probably missed a key statement on this
but I think it needs to be much clearer how the model was set up.
-> Insertions added (in Chapter 1 and Chapter 4) that the test case is based on a real 
application example.

How were the values in table 1 obtained?
-> They have been estimated with data from local historic tide gauge data.
-> explanation added

What are the typical ranges for the values in table 2?
-> Typical ranges added for Table 2 and 3.

Also it should possible to combine tables 3,4&5 and have all the results in one place.
-> Table 4 and 5 merged in Table 2 and 3.

I would also be tempted to combine Fig 16 with 17 and Fig 14 with 15 and 12 with 13, but 
this is
purely stylistic.
-> We decided not to combine these figures since then ten curves/bars would be in a figure 
which would be to overloaded.

Conclusions: These are very concise and really only state the obvious.
I would include a paragraph with the conclusions from the geoscience models and also
comment on how widely you might expect these conclusions to apply, particularly in the
case of higher dimensional models. Most geoscientific models are substantially more
complex than the test cases you have implemented here. For example, salt marshes
are often simulated using distributed rather than point based models, while a river sed-
iment transport model would include components to handle bed and bank erosion, a
number of sediment transport mechanisms and the flow hydraulics, they might also
measure multiple model states e.g. sediment load and velocity. I’m not suggesting the
paper needs to test many different model types but the discussion/conclusions should
expand to cover this more ‘realistic’ range of numerical models and what issues a geo-
scientist is likely encounter.
-> conclusion extended (especially with respect to more complex models)
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Abstract.
::::::::::
Geosciences

::::
are

:::
a
::::::

highly
::::::::

suitable
:::::

field
:::

of

:::::::::
application

:::
for

:::::::::
optimizing

:::::::::::
experimental

:::::::
designs

::::
and

:::::
model

:::::::::
parameters

:::::::::
especially

:::::
since

:::
in

::::
this

:::::
field

:::::
many

:::::
data

:::
are

::::::::
collected.

The weighted least squares estimator for model parameters5

was
::::::::::
optimization

::
of

::::::
model

:::::::::
parameters

::
is

:
presented together

with its asymptotic properties. A popular approach to opti-
mize experimental designs called local optimal experimental
designs was

:
is

:
described together with a lesser known ap-

proach which takes into account a potential nonlinearity of10

the model parameters. These two approaches were
::::
have

::::
been

combined with two different methods to solve their underly-
ing discrete optimization problem.

All presented methods were implemented in an open
source MATLAB toolbox called the Optimal Experimental15

Design Toolbox whose structure and handling was
:
is

:
de-

scribed.
In numerical experiments, the model parameters and ex-

perimental design were optimized using this toolbox. Two

::::::
existing

:
models for sediment concentration in seawater

:::
and20

:::::::
sediment

::::::::
accretion

:::
on

:::
salt

::::::::
marshes of different complexity

served as application example. The advantages and disad-
vantages of the different approaches were compared, and an
evaluation of the approaches was performed.

1 Introduction25

Mathematical models are a fundamental concept in science.
Often, they contain only

::::
often

::::::
contain

:
roughly known model

parameters . A common way to make such models more
realistic is to optimize these parameters so that the model
output is more consistent with measurement results.30

The measurements required for this purpose are often
time-consuming or costly. For this reason, it is desirable that
the information content of the obtained measurement results
is maximal.

Several conditions under which measurements are carried35

out are controllable. These conditionsare also known as
experimental setup or experimental design. This can be,
e.g., the point in time, the location or the method of the
measurements

:::::
which

:::
are

::::::::
optimized

:::::
based

:::
on

::::::::::::
measurements.

:::
The

::::::::
resulting

::::::::
accuracy

:::
of

:::
the

::::::
model

::::::::::
parameters

:::::::
depends40

::
on

::::
the

::::::::::
conditions,

:::::
also

::::::
called

::::::::::::
experimental

::::::
setups

:::
or

::::::::::
experimental

::::::::
designs,

:::::
under

:::::
which

:::::
these

::::::::::::
measurements

:::
are

::::::
carried

:::
out. These experimental designs can be optimized

so that the information content
:::::::
resulting

::::::::
accuracy

:
is maxi-

mized. Thus, the number of measurements necessary for a45

certain accuracy of the model parameters and accordingly
of the model itself can be considerably

::::
effort

::::
and

::::
cost

::
of

:::::::::::
measurements

::::
can

::
be

::::::::::
significantly

:
reduced.

The main problem in
::::::::::
optimization

::
of

:::::::::::
experimental

::::::
designs

:
is
::::::::

therefore
::::::::::

particularly
::::::::::

interesting
:::
for

:::::::::::
geosciences,

:::::
where50

::::
much

:::::::
money

::
is
:::::

spent
:::

on
:::::

data
:::::::::
collection.

:::::::::
However,

::::
only

:::
few

::::::::::
application

::::::::
examples

:::::
exist

::
in

::::
this

:::::
field.

::::
See

:::::
? for

::
an

::::::::
overview.

::::
This

::::::
article

:::::
aims

:::
to

:::::::
promote

::::
this

:::::::::
approach

::
in

::::::::::
geosciences

:::
and

::::::::::
exemplarily

:::::
apply

:
it
::
to

::
an

:::::::
existing

:::
salt

:::::
marsh

:::::::
accretion

::::::
model

::::
(? ).55

::
In

:
optimizing experimental design

:
,
:::
the

::::::
main

:::::::
problem

is to quantify the information content. In general, this
can only be done approximatively. There are several
approaches to quantify the information content and
hence to optimize experimental designs. See, e.g.,60

Pronzato and Pázman (2013) for an overview. Usually,
these approaches are a tradeoff between accuracy and
computational effort. In general, it is difficult to say whether
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a higher computational effort is justified by a higher
accuracy.65

In this paper, two models for sediment concentration
in seawater served as application examples. Their model
parameters had to be adapted to the local environmental
conditions. The measurements required for this purpose
are very time-consuming. For this reason, it should be70

evaluated which approach is most suitable to optimize their
experimental designs.

After this introduction
::::::::
available.

::
In

:::::::
Section

:
2, four differ-

ent approaches to optimize experimental designs together
with the weighted least squares estimator for model pa-75

rameters are presentedin Section 2. .
:::::

Each
:::

of
:::::
these

::::
four

:::::::::
approaches

::::::
makes

:
a
:::::::
different

:::::::
trade-off

::::::::
between

:::::::
accuracy

:::
and

:::::::::::
computational

::::::
effort.

One approach is based on the linearization of the model
with respect to the parameters and is the most common used80

approach called local optimal experimental design. The sec-
ond more robust approach takes into account a potential non-
linearity of the model parameters. Both approaches are com-
bined with two different approaches of solving the underly-
ing discrete optimization problem.85

The presented
::
As

::::
far

:::
as

:::
the

::::::::
authors

::::::
know,

:::::
there

::
is

::
no

:::::
open

:::::::
source

::::::::
software

:::::::::
available

::::
that

::::
can

::::::
apply

:::
all

::::
these

:::::
four

::::::::::
approaches.

::::
So

:::
far

::::
the

:::::
only

::::::::
software

:::::
using

::
the

:::::::::
presented

::::::
robust

:::::::::
approach

::
is
::::::::

VPLAN
::::::::::

introduced
::
in

:::::::::::::::::
Körkel (2002) which

::
is

::::
not

::::
open

:::::::
source.

::::
For

::::
this

::::::
reason,90

:::
this

::::::::
approach

::::
was

:::::::::::
implemented

::
in

:::::::::
MATLAB.

::::
For

:::
the

::::
local

::::::
optimal

:::::::::
approach,

::::::
several

:::::::::::::
implementation

:::
are

::::::::
available

:::
but

::::
none

:::::
(open

:::::::
source)

:::::::
software

::::::
which

::
is

::::::
written

::
in

:::::::::
MATLAB,

::
so

:::
this

::::::::
approach

::::
was

:::::::::::
implemented

::
as

:::::
well.

:::::
These

::::::::
methods,

:::::::
together

::::
with methods to optimize experimental designs and95

model parameterswere implemented in an open source
:::::
model

:::::::::
parameters,

:::::
were

:::::::
collected

::
in
::
a MATLAB toolbox called the

Optimal Experimental Design Toolbox. The
::
Its

:
structure and

handling of this toolbox is described in Section 3.
The numerical experiments carried out with the models100

for sediment concentration and their results are shown

::::::
impetus

::::
for

::::
this

:::::
work

:::::
gave

::::
two

:::::::
models,

::::::::::
simulating

:::
the

::::::::
suspended

::::::::
sediment

::::::::::::
concentration

:::
on

::::
salt

:::::::
marshes

::::::
during

::::
tidal

:::::::::
inundation

:::::
and

::::::::
resulting

:::::::::
accretion

:::::
rates

:::
on

:::::
these

:::::::
marshes

:::
(? ,

:::::
? and

::::
? ).

:::::
Both

::::::
models

::::
are

::::::::::::::
zero-dimensional105

::::
point

:::::::
models

:::
and

:::::
differ

:::
in

::::
their

::::::::::
complexity

:::
and

:::::::
number

::
of

:::::::::
parameters.

::::::
These

::::::
models

::::
can

::
be

::::
used

:::
as

:
a
:::::
basis

::
to

::::::
predict

::
the

:::::::
survival

:::::::::
capability

::
of

:::
salt

:::::::
marshes

:::::
under

:::
the

::::::::
influence

::
of

:::::::
expected

::::::
global

:::
sea

::::
level

::::
rise.

::
To

::::
use

::::::
these

:::::::
models

::::
for

:::::
local

:::::
salt

::::::::
marshes,

:::::
their110

:::::::::
parameters

::::
have

:::
to

::
be

::::::::
adapted

::
to

:::
the

:::::
local

::::::::::::
environmental

:::::::::
conditions.

:::::
The

::::::::::
required

:::::::::::::
measurements

:::::
are

::::::
very

:::::::::::::
time-consuming

:::::
and

::::::
costly.

:::::::::::
Employing

::::
the

:::::::::
presented

:::::::
approach

:::::
here,

:::
the

:::::::::::
experimental

::::::
designs

:::::
could

:::
be

::::::::
optimized

:::
and

::::::::::
performed

:::::
more

::::::::::
efficiently.

:::::
The

::::
two

:::::::
models

::::
are115

::::::::
described

:::::::
together

::::
with

:::
the

::::::::
attendant

::::::::
numerical

::::::::::
experiments

:::
and

:::
the

:::::::::
associated

:::::
results

:
in Section 4.

2 Optimization of model parameters and experimental
designs

The first step to the optimization of model parameters is the120

choice of the estimator. This maps the measurement results
onto optimal

:::::::
estimated

:
model parameters. These optimal

::::::::
estimated parameters are often defined so that they minimize
a so-called misfit function. The misfit function quantifies the
distance between the measurement results and the model out-125

put.
The most widely used class of estimators are

:::::::
estimator

:::::
should

:::
be

:::::::
derived

:::::
from

::::
the

:::::::::
statistical

:::::::::
properties

:::
of

:::
the

:::::::::::
measurement

::::::
errors,

:::
e.g.

::
a
:::::::::
maximum

:::::::::
likelihood

::::::::
estimator.

:::::
Often,

:::
the

::::::::::::
measurement

:::::
errors

:::
are

::::::::
assumed

::
to

::
be

::::::::
normally130

:::::::::
distributed.

::::
This

:::::
leads

::
to

:
the least squares estimators

:
.
::::
They

::
are

:::
the

:::::
most

::::::
widely

::::
used

::::
class

::
of

:::::::::
estimators since their intro-

duction by Gauss and Legendre (see, e.g., Stigler (1981)).
Their simplest form is the ordinary least squares estimator.

Its misfit function is the sum of the squares of the differences135

between each measurement result and the corresponding
model output. A generalization is the weighted least squares
estimator which has advantages in case of heteroscedastic
measurement errors. This estimator and its asymptotic prop-
erties are presented in the following subsection. The general-140

ized least squares estimator is a further generalization which
takes into account a stochastic dependence of the measure-
ment errors.

2.1 The weighted least squares estimator

In the following, the weighted least squares estimator is pre-145

sented. For this purpose, some notations and assumptions are
introduced.

The model function is denoted by

f : Ωx×Ωp→ R.

Here, Ωx ⊆ Rnx is the set of feasible experimental designs150

and Ωp ⊂ Rnp the set of feasible model parameters from
which the unknown exact parameter vector p̂ ∈ Ωp is to be
determined. Often, these sets are defined by lower and upper
bounds.

The measurement result for every design x ∈ Ωx is consid-155

ered as a realization of a random variable ηx. Each random
variable ηx is assumed to be normally distributed with expec-
tation f(x, p̂) and standard deviation σx > 0, i. e. ,

ηx ∼N (f(x, p̂),σ2
x) for every x ∈ Ωx.

:
.160

A1a)
:::::::::::::::::
ηx ∼N (f(x, p̂),σ2

x)
::
for

:::::
every

:::::::
x ∈ Ωx.

:

Furthermore, these random variables are assumed to be pair-
wise stochastically independent, i. e. ,

ηx and ηx′ stochastically independent for every x,x′ ∈ Ωx.

:
.165
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A1b)
::
ηx::::

and
:::
ηx′::::

are
:::::::::::
stochastically

:::::::::::
independent

:::
for

:::::
every

:::::::::
x,x′ ∈ Ωx.

If we consider n≥ np measurement results
y = (y1, . . . ,yn)T ∈ Rn with corresponding experimen-
tal designs x1, . . . ,xn ∈ Ωx, the weighted least squares170

estimation pn and the corresponding estimator Pn is defined
as

pn := Pn(y) := argmin
p∈Ωp

ψn(y,p) (1)

where the misfit function ψn is defined as

ψn : Rn×Ωp→ R,(y,p) 7→
n∑
i=1

(
yi− f(xi,p)

σxi

)2

.175

The set of possible model parameters Ωp is assumed to
be compact and the model function f(x, · ) is assumed to
be continuous for every selectable design x ∈ Ωx. In this
way

::::
With

:::
the

:::::::::
following

::::::::::
assumptions, the existence of a min-

imum is ensured.180

A2)
::::::
f(x, · )

::
is

::::::::
continous

:::
for

:::::
every

:::::::
x ∈ Ωx.

A3)
::
Ωp::

is
::::::::
compact

::::::
(closed

:::
and

:::::::::
bounded).

If ψn(y, · ) is also assumed to be injective
::::::
convex, the mini-

mum is also unique.
The optimal parameters

::::::::
parameter

:::::::::
estimation pn in (1) can185

be calculated with an optimization method for continuous op-
timization problems. A possible method is the SQP algorithm
which is, e.g., described in (Nocedal and Wright, 1999, chap-
ter 18).

2.2 Asymptotic properties190

Provided certain regularity conditions are met, the least
squares estimators are consistent, asymptotically normal

:::::::
normally

:
distributed and asymptotically efficient.

This asymptotic properties were first proved by Jennrich
(1969) for the ordinary least squares estimator and also dis-195

cussed in Malinvaud (1970) and Wu (1981). In White (1980),
these properties were proved for the weighted least squares
estimator and for the generalized least squares estimator in
White and Domowitz (1984). A good summary for all three
can be found in Amemiya (1983).200

Consistency means that the estimated parameters converge
in probability to the unknown exact parameters as the number
of measurements goes to infinity. That is

Pn
p−→ p̂ as n→∞

for the weighted least squares estimator Pn with the un-205

known exact model parameters p̂.

:::
For

::::::::::
consistency,

:::
the

:::::::::
following

::::::::::
assumptions

:::
are

::::::::
sufficient

::
in

::::::::
addition

:::
to

::::
the

::::::::
previous

::::::::::::
assumptions

::::
A1

:::
to

::::
A3.

:::::::::::::::::::::::::::
(Seber and Wild, 2003, page 565)

A4a)
::::::
n−1Bn::::::::::::::

converges
::::::::::::::

uniformly
:::::::::

with210

::::::::::::::::::::::::::::::::::::::::::::::
Bn : Ωp×Ωp→ R,(p,p′) 7→

∑n
i=1 f(xi,p)f(xi,p

′)σ−2
xi

A4b)
:::::::::::::::::
D̄(p, p̂) = 0⇒ p= p̂

:::::::::::::
for

:::::::::::::
all

::::::
p ∈ Ωp :::::::::

with
:::::::::::::::::::::

D̄ := lim
n→∞

n−1Dn ::::::::
and

::::::::::::::::::::::::::::::::::::::::::::::::::
Dn : Ωp×Ωp→ R,(p,p′) 7→

∑n
i=1(f(xi,p)− f(xi,p

′))2σ−2
xi

215

::
(D̄

::
is
::::
well

:::::::
definied

:::
by

:::::::::
assumption

:::::
A4a.)

:

An estimator is asymptotically efficient if its variance con-
verges to the Cramér-Rao bound as the number of measure-
ments goes to infinity. The Cramér-Rao bound (see Cramér
(1946) and Rao (1945)) is a lower bound for the variance of220

any unbiased estimator.
For the assumed measurement distribution (??) and

(??) with n measurements, this bound
::::::::
asymptotic

::::::::
efficiency,

:::::
the

:::::::::
following

::::::::::::
assumptions

:::::
are

:::::::::
sufficient

::
in

::::::::
addition

:::
to

::::
the

::::::::
previous

::::::::::::
assumptions

::::
A1

:::
to

::::
A4.225

:::::::::::::::::::::::::::
(Seber and Wild, 2003, page 571)

A5)
:̂
p
::
is
:::
an

::::::
interior

:::::
point

:::
of

:::
Ωp.

::::
Let

::::::::
Ω̂p ⊆ Ωp ::

be
:::
an

::::
open

:::::::::::
neighborhood

::
of

::̂
p.

:

A6)
:::::::
f(xi, · ) ::

is
::::
twice

:::::::::::
continuously

:::::::::::
differentiable

::
in
::::
Ω̂p.

A7)
::::::
n−1Mn:::::::::::::::

converges
::::::::::::::

uniformly
:::::::::

with230

:::::::::::::::::::::::::::::::::::::::::::::::::
Mn : Ω̂p→ Rnp×np ,p 7→

∑n
i=1∇pf(xi,p)∇pf(xi,p

′)Tσ−2
xi

.

A8)
::::::
n−1Hn::::::::::::::

converges
:::::::::::::::

uniformly
:::::::::

with

:::::::::::::::::::::::::::::::::::::::::::::::::::::
Hn : Ω̂p→ Rnp×np ,p 7→ (

∑n
i=1( ∂2

∂pi∂pj
f(xi,p))

2σ−2
xi

)i,j=1,...,np
.

235

A9)
:::::
M̂(p̂)

::
is

::::::::
invertible

::::
with

:::::::::::::::::
M̂ := lim

n→∞
n−1Mn.

::
In

:::
this

:::::
case,

:::
the

:::::
Cramé

::::
r-Rao

::::::
bound

::
of

:::
the

::::::::
weighted

::::
least

::::::
squares

::::::::
estimator

:::
Pn is the inverse of the Fisher information

matrix

Mn(p̂) :=

n∑
i=1

∇pf(xi, p̂)∇pf(xi, p̂)
T

σ2
xi

240

if the inverse exists. Here,∇pf(xi, p̂) denotes the gradient of
f(xi, · ) at the point p̂

:::::
Mn(p̂).

In this case
:::::
Under

:::::
these

:::::::::::
assumptions, the asymptotic be-

havior of the weighted least squares estimator can be sum-
marized by its convergence in distribution as follows245

√
n(Pn− p̂)

d−→N (0,Mn(p̂)−1n) as n→∞. (2)

See, e.g., (Seber and Wild, 2003, chapter 12) and (Walter and
Pronzato, 1997, chapter 3).
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2.3 Optimal experimental designs

The accuracy of the weighted least square estimator Pn can250

be described by its covariance matrix. Due to the asymp-
totic distribution (2), this can be approximated by the in-
verse of the information matrixMn(pn), provided the matrix
Mn(pn) is nonsingular, i.e.,

cov(Pn)≈Mn(pn)−1. (3)255

Therefore, the unknown model parameters can be deter-
mined more accurately the smaller the (approximated) co-
variance matrix of the estimator is.

Criteria φ : Rnp×np → R+
:::::::::::::::::::::
φ : Rnp×np → R+ ∪{∞},

such as the trace or determinant, are used in order to260

compare these matrices. (See, e.g., El-Monsef et al. (2009)
for an overview of various criteria.) If the approximation
(3) is used and Mn(pn) is singular, the value of φ is set to
infinity.

In the context of optimizing experimental designs, we as-265

sume n≥ 0 measurements have been carried out and designs
for additional measurements should be selected from m de-
signs x′1, . . . ,x

′
m ∈ Ωx. The choice for each design x′i is ex-

pressed by a weight wi ∈ {0,1} where 1 indicates the selec-
tion and 0 the contrary.270

Hence, the resulting information matrix, depending on the
choice w ∈ {0,1}m and the parameter vector pn ∈ Ωp, is de-
fined as

Mn(w,pn) :=Mn(pn) +

m∑
i=1

wi
∇pf(x′i,pn)∇pf(x′i,pn)T

σ2
x′i

.

If the covariance matrix is approximated by the inverse275

of the information matrix, optimal (additional) designs, with
respect to a criterion φ, are expressed by a solution of

argmin
w∈{0,1}m

φ(Mn(w,pn)−1). (4)

These optimal designs are called local optimal designs be-
cause these designs are only optimal regarding the previously280

optimized model parameters
:::::
model

:::::::::
parameter

:::::::::
estimation pn

and not the unknown exact model parameters p̂.
Potential constraints on the choice of the designs can be

realized by constraints on the weight w. For example, the
number or the costs of the measurements can be limited by285

linear constraints on w. These constraints have to be consid-
ered in the above optimization problem (4).

:::
The

::::::::::
formulation

:
(4)

::
is

:::::
useful

::
if
:::::::::

additional
:::::::::::
experimental

::::::
designs

:::::::
should

:::
be

::::::::
chosen

:::::
from

:::
a

:::::
finite

::::::::
number

:::
of

::::::::::
experimental

::::::::
designs.

:::::::::
Otherwise,

:::
the

:::::::::::
optimization

:::::::
problem290

:::
can

:::
be

:::::::::::
reformulated

::
so

::::
that

:::
the

:::::::::
additional

:::::::
optimal

::::::
design

:::::::
variables

::::
have

::
to
:::
be

::::::::
optimized

:::::::
directly.

:

2.4 Calculation of optimal experimental designs

A straight-forward way to solve the optimization problem (4)
is to test all possible values ofw. This direct approach is only295

practical for small m.

For bigger m, The optimization problem (4) is solved ap-
proximately. For this purpose, it is solved in the continu-
ous rather than the discrete setting, i.e., the constraint w ∈
{0,1}m is relaxed to w ∈ [0,1]m. Accordingly, the problem300

argmin
w∈[0,1]m

φ(Mn(w,pn)−1) (5)

is solved.
A possible algorithm to solve this continuous optimization

problem is the SQP algorithm which is, e.g., described in
(Nocedal and Wright, 1999, chapter 18).305

After the continuous problem (5) is solved, the solution is
projected onto the integers with heuristics. An easy way is
to round the continuous solution. Another is to sum up all
continuous weights and then to choose as many designs with
the highest continuous weights. Potential constraints on w310

still have to be considered by solving the continuous problem
and the following projection onto an integer solution. The
second heuristic ,e.g., preserves constraints on the number of
designs to choose.

Our numerical experiments with the application examples315

in Section 4 have shown that the solutions of the continuous
problem (5) are already close to integer values. This behavior
was also observed, for example, in Körkel (2002) and Körkel
et al. (2004).

2.5 Robust optimal experimental designs320

The information matrix Mn depends on the estimated pa-
rameters pn if the parameters occur nonlinearin the model

::
are

::::::::
nonlinear. This may lead to suboptimal designs if∇pf(·,pn)
differs strongly from ∇pf( · , p̂).

For this reason, we now consider a method which takes325

into account a possible nonlinearity of the parameters. This
robust method was presented in Körkel (2002) and Körkel
et al. (2004).

The main idea of the method is not to optimize the quality
of the covariance matrix for a single parameter vector pn as330

in (4), but to optimize the worst case quality within a whole
domain which contains the unknown exact parameter vector
p̂ with high probability.

For this purpose, a confidence region which contains p̂
with probability α ∈ (0,1) is approximated by335

Gn(α) := {p ∈ Rnp | ‖p− pn‖2Mn(pn)−1 ≤ γ(α)}. (6)

Here, γ(α) is the α-quantile of the χ2-distribution and
‖v‖A :=

√
vTAv denotes the energy norm of the vector v ∈

Rnp with respect to the positive definite matrix A ∈ Rnp×np .
The approximation of the confidence region arises from lin-340

earization of the model function f in point pn and the as-
sumption Pn ∼N (p̂,Mn(pn)−1).

If the worst case quality in the entire region Gn(α) shall
be optimized, the optimization problem (4) becomes

argmin
w∈{0,1}m

max
p∈Gn(α)

φ(Mn(w,p)−1). (7)345
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This min-max optimization problem can by
::
be solved only

with considerable more computational effort compared to the
optimization problem (4). In order to reduce this effort, the
function φ(Mn(w, · )−1) is linearized in point pn in the fol-
lowing way.350

φ(Mn(w,p)−1)≈
φ(Mn(w,pn)−1) +∇p(φ(Mn(w,p)−1))T (p− pn)

The resulting inner maximization problem can be solved355

analytically. It is

max
p∈Gn(α)

φ(Mn(w,pn)−1)+∇p(φ(Mn(w,p)−1))T (p−pn) =

φ(Mn(w,pn)−1)+γ(α)
1
2 ‖∇p(φ(Mn(w,pn)−1))‖Mn(pn),360

as can be seen, e.g., in Körkel (2002). With this approach the
optimization problem (7) is replaced by

argmin
w∈{0,1}m

φ(Mn(w,pn)−1)+γ(α)
1
2 ‖∇p(φ(Mn(w,pn)−1))‖Mn(pn).

(8)

This optimization problem again can be solved approxi-
matively by solving the corresponding continuous problem365

and projecting this solution onto an integer solution as de-
scribed in the previous subsection.

It should be noted that in this approach (8), the first and
second derivatives of the model is used. In contrast, only the
first derivative is used for local optimal designs (4).370

2.6 Efficiency of experimental designs

A common way to describe the benefit of an experimental
design is its efficiency. The efficiency of an experimental de-
sign w ∈ {0,1}m regarding a criterion φ and with n previous
measurements is defined as follows.375

Eφ(w) := min
ŵ∈{0,1}m

φ(Mn(ŵ, p̂)−1)

φ(Mn(w,p̂)−1)
(9)

It should be noted that the searched parameter vector p̂ is
used here. If this is not known, thus the efficiency can not be
calculated.

The efficiency is always between 0 and 1 and is larger the380

better the experimental design is.

3 The Optimal Experimental Design Toolbox

We implemented the methods presented in the previous sec-
tion for optimization of model parameters and experimental
designs as a MATLAB toolbox named the Optimal Experi-385

mental Design Toolbox.
MATLAB (see MathWorks (2011)) was chosen because

it supports vector and matrix operations and provides many

numerical algorithms, especially for optimization. Moreover,
MATLAB supports object oriented programming and there-390

fore permits a simple structuring, modification and extension
of the implementation. Another advantage of MATLAB is
that it can easily interact with C and Fortran.

The toolbox is available at the Git repository (see
Reimer (2013) )

::::::::::::
Reimer (2013) at GitHub under the GNU395

General Public License (see Foundation (2007)). It includes
extensive commented source code and a detailed help inte-
grated in MATLAB.

3.1 Provision of the model function

For the methods described in Section 2, the model function400

and its first and second derivative with respect to the model
parameters is

:::
are required.

Actually, the model function is required for the parame-
ter optimization and, depending on the optimization method,
also the

::
its first derivative. The

::
Its first derivative is also re-405

quired for the experimental design optimization. If the robust
method is used also the

::
its

:
second derivative is required.

The first step for using the Optimal Experimental Design
Toolbox is to provide these functions. The model interface
prescribes how this should be done. The functions

::
to

::::::
provide410

::::
these

:::::::::
functions.

::::
They need not be written in MATLAB itself,

since MATLAB can call functions in C, C++ or Fortran.
The toolbox has several possibilities to provide the deriva-

tives automatically. The model_fd class, e.g., provides the
derivatives by approximation with finite differences. If the415

model function is given as an explicit symbolic function, the
model_explicit class can provide the derivatives by symbolic
differentiation with the Symbolic Math Toolbox. Listing 1
shows, for example, how a model_explicit object is created.

Figure 1. Create a model with a symbolic model function
model_object = model_explicit ( 'p* t ˆ2 ' , 'p ' , ' t ' )
% 1 . input : the model func t i on as symbol ic formula
% 2 . input : the parameter va r i ab l e ( s )
% 3 . input : the exper imenta l des ign va r i ab l e ( s )
% return : a model ob j e c t which implements the model i n t e r f a c e

For the case the model function is given as a solution of420

an initial value problem, the Optimal Experimental Design
Toolbox contains the model_ivp class. This class solves the
parameter dependent initial value problem and calculates the
necessary derivatives. Listing 2 shows how a model_ivp ob-
ject is created.425

Figure 2. Create a model with a model function given as solution
of an initial value problem
model_object = model_ivp ( '−y+(t+1)*b ' , ' [ a , b ] ' , 'y ' , ' a ' , ' t ' , [ 1 , 1 0 ] )
% 1 . input : the r i gh t hand s i d e o f the d i f f e r e n t i a l equat ion
% 2 . input : the model parameter va r i ab l e ( s )
% 3 . input : the model func t i on va r i ab l e
% 4 . input : the i n i t i a l va lue o f the model func t i on
% 5 . input : the dependent va r i ab l e in the model func t i on
% 6 . input : the i n t e r v a l o f i n t e g r a t i o n
% return : a model ob j e c t which implements the model i n t e r f a c e

The class takes advantage of the fact that the integration
and differentiation of the differential equation can be inter-
changed if the model function is sufficiently often continu-
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ously differentiable. Required derivatives of the differential
equation and initial value are calculated again by symbolic430

differentiation with the Symbolic Math Toolbox. The result-
ing initial value problems are solved with MATLABs ode23s
function which can also solve stiff problems. Because the
arising initial value problems for the derivatives are mutually
independent, the solution of the initial value problems can be435

calculated in parallel using the Parallel Computing Toolbox.

3.2 Setup of the solver

Another important class in the Optimal Experimental Design
Toolbox is the solver class. This class provides the methods

:::::::
Methods for the optimization of parameter estimations

:::::
model440

:::::::::
parameters

:
and experimental designs . To perform one of

these optimizations,
::
are

::::::::
provided

:::
by the solver class

:
.
::::
First,

:
a
:::::
solver

::::::
object has to be instantiated (see Listing ??)

:::::
created

and the necessary informations have to be passedto the solver
object. Create a solver object .

:
445

First of all, the model represented by an object which
implements the model interface

::
On

:::
the

::::
one

:::::
hand,

:::
this

::
is
:::
the

:::::
model

:::::
which

:
has to be set by the set_model method (see List-

ing 3).

Figure 3. Set the model
solver_object . set_model ( model_object )
% input : an ob j e c t that implements the model i n t e r f a c e

In addition, an initial estimation
::::
guess of the model param-450

eters have to be set by the set_initial_parameter_estimation
method (see Listing 4).

Figure 4. Set the initial parameter estimation
solver_object . set_initial_parameter_estimation ( [ 1 , 2 ] )
% input : the i n i t i a l e s t imat ion o f the model parameters

Potential accomplished measurements can be set via the
set_accomplished_measurements method. These measure-
ments consist of the corresponding experimental designs to-455

gether with their variances of the measurement errors. Also
the measurement results themselves have to be passed for a
parameter estimation (see Listing 5).

Figure 5. Set accomplished measurements
solver_object . set_accomplished_measurements ( ( 1 : 5 ) ' , 0 .01* ones (5 , 1 ) , −←↩

exp ( ( 1 : 5 ) ' ) )
% 1 . input : the exper imenta l de s i gn s o f accomplished measurements
% 2 . input : the va r i ance s o f the a s s o c i a t ed measurement e r r o r s
% 3 . input : the a s s o c i a t ed measurement r e s u l t s

Finally, if an optimization of experimental designs shall be
performed, the selectable measurements have to be set by the460

set_selectable_measurements method (see Listing 6). These
measurements consist of the experimental designs and the
variances of the measurement errors again.

Figure 6. Set selectable measurements
solver_object . set_selectable_measurements ( ( 6 : 1 0 ) ' , 0 .01* ones (5 , 1) )
% 1 . input : the s e l e c t a b l e exper imenta l de s i gn s
% 2 . input : the va r i ance s o f the a s s o c i a t ed measurement e r r o r s

3.3 Optimization of experimental designs and model
parameters465

Once the solver object is configured as described in the
previous subsection, experimental designs or model param-
eters can be optimized via the get_optimal_measurements
(see Listing 7) respectively the get_optimal_parameters (see
Listing 8) method. Constraints on the experimental designs470

or model parameters can be passed to the corresponding
method.

The get_optimal_measurements method can solve the op-
timization problem directly by trying all possible com-
binations or by solving the corresponding continuous475

problem and projecting onto an integer solution. For solving

:::::::::::::
approximatively.

:

:::
For

:::
the

::::::::::::
approximative

:::::::
solving,

:
the continuous problem ,

the implementation of
::
is

:::::
solved

::::
with

:
the SQP algorithm (see

(Nocedal and Wright, 1999, Chapter 18)) provided by the480

fmincon function of the Optimization Toolboxis used.
:
.
::
Its

::::::
solution

::
is
::::::::

projected
:::::

onto
::
an

::::::
integer

:::::::
solution

:::
by

:::
the

::::::
second

:::::::
heuristic

::::::::
described

::
in

::::
2.4.

The first derivative of the objective function is provided in
analytical form. This saves much of the computing time com-485

pared to derivatives calculated by finite differences. The Hes-
sian matrix is approximated by the BFGS-update (see Broy-
den (1970), Fletcher (1970), Goldfarb (1970) and Shanno
(1970)

:
).
:

:::::::
Matlab’s

::::
SQP

:::::::::
algorithm

:::
can

:::::::
recover

:::::
from

:::::::
infinity.

::
If

::
an490

::::::
infinite

:::::::
function

:::::
value

::
is
::::::::

reached
::::::
during

:::
the

:::::::::::
optimization,

::
the

:::::::::
algorithm

::::::::
attempts

::
to

::::
take

::
a

::::::
smaller

:::::
step.

:::::
Thus,

::
if
:::
the

::::::::::
optimization

::
is

::::::
started

::::
with

:
a
::::::
regular

::::::
design,

:::::::
singular

::::::
designs

::
do

:::
not

:::::
make

:::
any

::::::
trouble.

Figure 7. Optimize experimental designs
optimal_measurements = solver_object . get_optimal_measurements (3 )
% input : the maximum number o f measurements a l lowed
% return : the optimal subset o f the s e l e c t a b l e measurements with a ←↩

number o f measurements l e s s or equal to the r e s t r i c t i o n

The get_optimal_parameters method uses the Trust-495

Region-Reflective (see Coleman and Li (1994) and Coleman
and Li (1996)) or the Levenberg-Marquard algorithm (see
Levenberg (1944), Marquardt (1963) and Moré (1977)) pro-
vided by the lsqnonlin function of the Optimization Toolbox
to solve the least squares problem resulting from the param-500

eter estimation. The first derivative of the objective function
is also provided analytically.

Figure 8. Optimize model parameters
optimal_parameters = solver_object . get_optimal_parameters ( [ 0 , 0 ] , [ 9 , 9 ] )
% 1 . input : the lower bound o f the model parameters
% 2 . input : the upper bound o f the model parameters
% return : a parameter e s t imat ion r e s u l t i n g from the accomplished ←↩

measurements which takes in to account the passed c on s t r a i n t s

Furthermore, the expected quality of the resulting param-
eter estimation for any selection of experimental designs can
be calculated using the get_quality method of the solver ob-505
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ject. Thus, for example, the increase in quality by adding or
removing experimental designs can be determined.

In the methods of the Optimal Experimental Design
Toolbox, often reusable (intermediate) results occur. The
toolbox takes advantage of this by internally saving and510

reusing appropriate results. Thus

3.4
::::::::

Execution
::::
time

::::
and

::::::::
memory

:::::::::::
consumption

:::
The

::::
total

:::::
time

:::::::
required

::::
for

:::
the

:::::::::::
optimization

::
of

::::
the

:::::
model

:::::::::
parameters

::
or

:::
an

:::::::::::
experimental

::::::
design

:::::::
depends

::::::::
crucially

::
on

::
the

:::::
time

::::::::
required

:::
for

:::::::::
evaluating

::::
the

::::::
model

:::::::
function

::::
and515

::
its

::::
first

::::
and

::::::
second

:::::::::
derivative

:::::
with

::::::
respect

:::
to

:::
the

::::::
model

:::::::::
parameters.

:

:::::
When

:::::::::
optimizing

::::::
model

::::::::::
parameters,

:::
the

::::::
model

:::::::
function

:::
and

:::
its

::::
first

:::::::::
derivative

:::
has

:::
to

:::
be

::::::::
evaluated

:::::::
several

:::::
times

::::
with

:::::::
different

::::::
model

::::::::
parameter

:::::::
vectors

::
at

:::
the

:::::::::::
accomplished520

::::::::
measuring

:::::::
points.

:::::
When

::::::::::
optimizing

:::::::::::
experimental

:::::::
designs,

::
the

::::::
model

::::::::
function

:::
and

:::
its

::::
first

::::
and

::::::
second

:::::::::
derivative

:::
has

::
to

::
be

:::::::::
evaluated

:::
for

:::
one

::::::
model

:::::::::
parameter

::::::
vector

:::
but

::
at

:::
the

:::::::::::
accomplished

:::
and

:::::::::
selectable

:::::::::
measuring

:::::
points.

:

::::::::
Generally, the execution time is significantly reduced.525

Multiple occurring matrix multiplications within a
calculation are an example. Also, reusable results are cached
between different method calls

::::::::
increases

::::
with

:::
the

::::::
number

::
of

:::::::::
parameters,

:::
the

:::::::
number

::
of

:::::::::
selectable

::::::::::::
measurements

:::
and

:::
the

::::::
number

::
of

::::::::::::
accomplished

::::::::::::
measurements.

:
530

:::
The

:::::::::::::
implementation

::
of

::::
this

::::::
toolbox

:::::
favors

::
a
:::
low

::::::::
execution

::::
time

:::
of

::
a
::::

low
::::::::

memory
::::::::::::

consumption.
::::

For
::::

this
:::::::

reason,

:::::::::::
(intermediate)

:::::::
results

::::::
within

::
a
:::::::
method

::::
call

::::
and

:::::::
between

::::::::
successive

:::::::
method

::::
calls

::::
are

:::::
saved

:::
and

::::::
reused. An example

scenario
:::
are

:::::::
multiple

::::::::
occurring

:::::
matrix

:::::::::::::
multiplications

:::::
within535

:
a
:::::::
method

::::
call.

:::::::
Another

:::::::
example

:
is a re-optimization of de-

signs with other constraints, such as another maximum num-
ber of allowed measurements. Here, the derivatives of the
model function calculated in the previous optimization is
reused.540

:::
Due

::::
to

::::
the

:::::::::
described

::::::::
caching

:::::::::
strategy,

::::
the

:::::
total

:::::::
memory

:::::::::::
consumption

::::::::
depends

::::::::
linearly

:::
on

::::
the

:::::::
number

::
of

:::::::::::::
(accomplished

:::::
and

::::::::::
selectable)

::::::::::::::
measurements

::::
and

::::::::::
quadratically

:::
on

::::
the

:::::::
number

::
of

:::::::::::
parameters.

:::::::::::
Nevertheless,

:
it
::::::
should

:::
be

:::::::
possible

:::
to

:::::
solve

::::::::
problems

:::::
with

::::::::
hundreds

::
of545

:::::::::
parameters

::::
and

::::::::
thousands

:::
of

::::::::::::
measurements

:::
on

::
a
:::::::
standard

::::::::
computer.

3.5 Changeable options

Many settings for the optimization of experimental designs
or model parameters are changeable. These can be altered by550

the set_option method of the solver object (see Listing 9).
The desired options can be set using property-value pairs, as
already known from MATLAB. This means, the name of the
option has to be passed to the method as first argument and
the new value as second argument.555

Figure 9. Change an option
solver_object . set_option ( ' option name ' , option_value )
% 1 . input : the name o f the opt ion which should be changed
% 2 . input : the new value o f the opt ion

Estimation method: For example, the
:::
The

::
estimation

method for the quality of experimental designs can be
selected by the estimation_method option. The standard
point estimation method and the robust region estima-
tion method, both presented in Section 2, are supported.560

The region estimation method is the default setting.

Confidence level: Moreover, the
:::
The

:
level of confidence for

the confidence region at the region estimation method,
represented by α in Section 2.5, can be set by the alpha
option. The default value is 0.95.565

Prior parameter estimation: Furthermore, it
:
It

:
can be

chosen whether a parameter optimization should be
performed before optimizing experimental designs.
This would improve the estimations of the quality
of experimental designs. This can be set by the570

parameter_estimation option and the values yes or no.
To save computational time no previous parameter opti-
mization is performed by default.

Quality criterion: The quality criterion, which is applied to
the covariance matrix and represented in Section 2.1575

as φ, can also be chosen . Therefore, an object of a
class which implements the criterion interface have to
be passed with the criterion option. The criterion in-
terface prescribes the syntax of the criterion function
and its necessary derivatives. The trace of the covari-580

ance is the default criterion and implemented by the
criterion_A class.

Parameter scaling: Furthermore, it
:
It
::

can be chosen
whether the covariance matrix

:::::
model

::::::::
parameter

:
should

be scaled before applying the quality criterion or585

not by the scale_covariance_matrix option and the
values yes and no. Scaling the covariance matrix
allows to optimize the quality of each parameter
uniformly

:::::::::
optimizing

::::::::::::
experimental

:::::::
designs

:::
or
::::

the

:::::
model

:::::::::::
parameters

:::::::::::
themselves.

::::::::
Scaling

:::::::
means

::
a590

::::::
uniform

:::::::
impact

::::
of

:::
all

:::::::
model

::::::::::
parameters

::
and is

enabled by default. The model parameters are
scaled by default for the parameter optimization,
too. This can be changed by the

::::::
options

::::
are

poSUBSCRIPTNBscaleSUBSCRIPTNBparameteroption and
::::
scale

:::::::::::::
SUBSCRIPTNB

:
c
::::::::
ovariance

::::::::::::
SUBSCRIPTNB

::
m

::::
atrix595

:::
and

:::::::::::::::::
po_scale_parameter

::::
with the values yes and no.

Optimization algorithm for experimental design:
Finally, the optimization algorithm for the

:::
The

:::::
exact

:::
and

:::
the

::::::::::::
approximative

::::::::
approach

:::
for

:::
the

::::::::::
optimization

::
of

experimental design problem can be configured. The600

direct and the relaxed method, described in 2.4, can
be chosen as solution algorithm. The corresponding
option is ed_algorithm

:::::
chosen

:::::
with

:::
the

:::::::::::
ed_algorithm
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:::::
option

:
and the values are direct respectively

::::
direct

:::
and

:
local_sqp. For time reasons by default the ex-605

perimental design problem is solved by the relaxed
method

:::::::::::
approximative

::::::::::
approach. Furthermore, the

number of function evaluations and iterations by the
SQP algorithm can be constrained by the options
ed_max_fun_evals and ed_max_iter.610

Optimization algorithm for parameter estimation:
Similarly, the

:::
The

:
optimization algorithm for the param-

eter estimation problem can be configured
:::::
chosen

::::
with

::
the

::::::::::::
po_algorithm

::::::
option. The Trust-Region-Reflective

(see Coleman and Li (1994) and Coleman and Li615

(1996)) and the Levenberg-Marquard algorithm (see
Levenberg (1944), Marquardt (1963) and Moré (1977))
can be chosen as solution algorithm with the option
po_algorithm and the values trust-region-reflective
respectively

::::
with

:::
the

::::::
values

::::::::::::::::::
trust-region-reflective

:::
and620

levenberg-marquardt. The Trust-Region-Reflective
algorithm is the default algorithm. By default the model
parameters are scaled for the optimization. This can be
influenced by the po_scale_parameter option and the
values yes and no. Furthermore, the number of function625

evaluations and iterations can be limited through the
options po_max_fun_evals and po_max_iter.

3.6 Help and documentation

The Optimal Experimental Design Toolbox also provides an
extensive integrated help. It can be viewed in the command630

window by the MATLAB command help or in the help
browser of MATLAB by its doc command (see Listing ??).
Get the documentation

The layout of the help of the Optimal Experimental Design
Toolbox is based on the design of the help also used by635

MATLAB and other toolboxes. Thus the user does not have
to get used to a new layout. The help includes, besides

::::::
Besides

:
system requirements and version informations, a

user’s guide with a step by step instruction how to optimize
experimental designs and model parameters

:
is

:::::::
included. De-640

mos show how to work with the toolbox in practice. In ad-
dition, a detailed description for every class and method is
available.

:::
The

::::::
layout

::
of

::
the

::::
help

::
of

:::
the

:::::::
Optimal

:::::::::::
Experimental

::::::
Design

::::::
Toolbox

::
is

:::::
based

:::
on

:::
the

::::::
design

:::
of

:::
the

:::::
help

::::
also

::::
used

:::
by645

::::::::
MATLAB

::::
and

::::
other

:::::::::
toolboxes.

:::::
Thus

:::
the

::::
user

::::
does

:::
not

::::
have

::
to

:::
get

:::::
used

::
to

:
a
::::
new

::::::
layout.

4 Application examples

In this section, numerical experiments together with their
results regarding the optimization of model parameters and650

experimental designs are presented for two models from
geophysics, namely for

::
of

:::::::
different

::::::::::
complexity.

::::
Both

::::::
models

:::::::
describe

:::
the sediment concentration in seawater which floods

:::::
during

::::
tidal

:::::::::
inundation

::
of
:
coastal salt marshes.

Coastal salt marshes have an important ecological function655

with their diverse flora and as a nursery for migratory birds.
Furthermore they have the ability of dissipating current and
wave energy and therefore reducing erosional forces at dikes
and coastal areas.

With these models, the vertical accretion of coastal salt660

marshes can be predicted. If
:::::
When

::::::::::
considering

::::::::
expected

:::::
global

:
sea level rise is considered too

:::
(? ), the future ability

of coastal salt marshes to grow faster as sea increases
::::
adapt

::
to

:::::
rising

:::
sea

:::::
levels and thus to survive can be estimated. De-

pending on this, measures to protect these salt marshes can665

be taken.
This application example arose in cooperation with the

Geographical Institute of the Christian-Albrechts University
of Kiel. There, the parameters of these two models should
be determined. Carrying out the required measurements of670

the sediment concentrations is time consuming
:::::::::
Calibration

::
of

::
the

::::::
model

::::::::::
parameters

:::::::
requires

::::::::::::
measurements

::
of

:::::::::
suspended

:::::::
sediment

::::::::::::
concentration

::::::
during

::::
tidal

::::::::::
inundation,

::::::
which

:::
are

:::::::::::::
time-consuming and laborious. For this reason, it is advanta-
geous to know under which conditions and how many mea-675

surements should be carried out.

4.1 The models

Both models are zero-dimensional point models, which de-
scribe the sediment concentration in seawater that floods

:::::
during

::::
tidal

::::::::::
inundation

::
of coastal salt marsheswithin a tidal680

cycle. The first model
:::::::::
(C2-model) has two model parameters,

was described in Temmerman et al. (2003)
:
? and adapted for

the local salt marshes in Schuerch et al. (2013) a
::::

salt
:::::
marsh

::
in

:::
the

::::::::
German

:::::::
Wadden

::::
Sea

:::::::::::::
(South-Eastern

::::::
North

:::::
Sea),

::::::
located

::::
near

::::::::
Hoernum

::
in
::::

the
:::::::
southern

::::
part

::
of

::::
the

:::::
island

::
of685

:::
Sylt

::::::::::
(Germany),

:::
by

::
? . The second model

:::::::::
(C3-model)

:
has

three model parameters, is an extension of the first model
and subject of current research.

4.1.1 The C2-model

The first model is called the C2-model. Here, the sed-690

iment concentration
:
in
::::

kg
m3:

is modeled by the function
C : [tS , tE)→ R+and has the unit kg

m3 . Furthermore, tS is the
start time of the inundation of the salt marsh and tE the end
time. The concentration C is given implicit as solution of the
initial value problem695

C ′(t) =

{
−wsC(t)+(C0−C(t))h′(t)

h(t)−E if h′(t)> 0
−wsC(t)
h(t)−E else

for all t ∈ (tS , tE) and C(tS) = C0. (10)

Here, C0 ≥ 0 is the initial sediment concentration at
:
of

the flooding seawater and wS ≥ 0 the settling velocity of the
sediment in the unit

::::::::
suspended

::::::::
sediment

::
in

:

m
s . Moreover, the
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function700

h : R→ R, t 7→ a

1 +
(
t−x0

b

)2 +hHW −hMHW

describes the time-dependent water surface elevation and E
the elevation of the marsh both

:
in

::::::
meters

::::
and

:
relative to a

fixed datum. Here, a, b and x0 are constants describing the
change in the water level, hMHW the mean high water level705

and hHW the high water level of a certain tidal inundation
:
in

:::::
meters. The start and end time tS and tE of the inundation
are the points where the height h equals the elevation of the
marsh E.

The
:::::::
sediment

:
concentration C thus decreases continu-710

ously within a tidal cycle depending on the settling velocity
wS which is described by the term

− wsC(t)

h(t)−E

in (10). During the flood phase, the reduced
:::::::
sediment

:
con-

centration is partially compensated by new inflowing sea wa-715

ter. This is described by the term

(C0−C(t))h′(t)

h(t)−E

in the first case of (10).
The values used in the water surface elevation func-

tion h, for the local salt marsh, are shown in Table 1.720

:::::
These

::::
have

::::
been

::::::::
estimated

:::
by

:::::::::
non-linear

::::::::
regression

:::::::
analysis

::::
using

:::::
local

:::::::
historic

::::
tide

::::::
gauge

:::::
data

::::
from

::::::::::
1999-2009

:::
(at

::::::::
Hoernum

:::::
Hafen,

::::::::::
Germany).

:::
The

::::::::::
continuous

::::::::::::
high-resolution

(see also Schuerch et al. (2013) . The high water level hHW
of the current tidal inundation is measured or taken from725

predictions
:
6
::::::::
minutes)

::::
time

:::::
series

::::
has,

:::::::::
therefore,

::::
been

::::
split

:::
into

:::
the

:::::::::
individual

::::
tidal

:::::
cycles

::::::::::
beforehand

:::
(? ).

Table 1. Values used for the water surface elevation function h

a b x0 hMHW E
local value 3.7506 19447.1 −1301.0 3.75 m 1.3 m

The
:::
high

:::::
water

:::::
level

:::::
hHW ::

of
:::
the

::::::
current

::::
tidal

:::::::::
inundation

:
is
::::::::
measured

:::
or

::::
taken

:::::
from

::::::::::
predictions.

:::
The

:
initial sediment concentration C0 and the settling ve-730

locity wS are only roughly known and therefore model pa-
rameters. Initial estimations

::::::::
Reference

::::::
values

:::::::
derived

::::
from

:::::::
literature

::::::
values

:::
and

::::::
typical

::::::
ranges can be found in Table ??.

::
2.

:::
See

::::
? for

:::
C0:::

and
:::::
? for

:::
C0 :::

and
::::
wS .

Table 2. Estimated parameter values
:::::
Values for the C2-model

C0 ::::

[
kg
m3

]
:

wS ::::

[
m
s

]
estimated

::::::::
reference value 0.1 kg

m3 10−5 m
s

::::::
typical

:::::
range

::::
0.01

:
–
:::
0.2

: ::::::::
4× 10−6

:
–
::::::::
4× 10−4

::::
start

::::
value

: :
5
: ::::::::

2× 10−7

::::::::::
optimization

::::::
bound

::::
10−4

::
–
:::
104

: ::::
10−8

::
–
:
1
:

4.1.2 The C3-model735

The second model is an extension of the C2-model and is
called the C3-model. Here the model parameters C0 and wS
are substituted by

C0 = k(hHW −E)

ws = r(C0)s = rks(hHW −E)s.740

Where k ≥ 0, r ≥ 0 and s≥ 0 are unknown model param-
eters.

::::::::
Reference

::::::
values

:::::::
derived

:::::
from

::::::::
literature

::::::
values

:::
and

:::::
typical

::::::
ranges

::::::
(where

::::::::
available)

::::
can

::
be

:::::
found

::
in

:::::
Table

::
3.

:::
See

::::
? and

:::::
? for

:::
the

::::::
settling

:::::
index

:
s
::::
and

::::
? for

::
k.

:
745

On the one hand
::
In

:::
this

::::::
model, a linear relationship be-

tween the initial sediment concentration and the high water
level is assumed, where during heavy flooding a higher sed-
iment concentration is assumed . On the other hand

:::::
(? and

:::
? ).

::::::::::
Additionally, a relationship between the initial sediment750

concentration and the settling velocity is assumed
:::
(? ). This

is an empirical approximation of the so-called flocculation
effect

:::::
process

::::
(? ).

Initial estimations for the parameters in this model can be
found in Table ??.755

Table 3. Estimated parameter values
:::::
Values for the C3-model

k r s
estimated

::::::::
reference value 0.25 10−5 0.5

::::::
typical

:::::
range

::::
0.04

:
–
:::
0.2

: :::
0.5

:
–
:::
3.5

::::
start

::::
value

: ::::
12.5

::::::::
2× 10−7

:
3
:

::::::::::
optimization

::::::
bound

::::
10−4

::
–
:::
104

: ::::
10−8

::
–
:
1
: ::::

10−1
::
–
:
5
:

4.2 Numerical experiments

We performed several numerical experiments to compare the
benefit of optimized with unoptimized measurement condi-
tions. Also, the benefit of different approaches to optimiza-
tion measurement conditions was compared. Using these re-760

sults, an appropriate approach for the optimization of condi-
tions for real measurements was selected.

The approaches introduced in Section 2 and implemented
by the Optimal Experimental Design Toolbox described in
Section 3 were used for the numerical experiments. For that,765

we used the model_ivp class which allows to calculate the
solution of an initial value problem and its first and sec-
ond derivatives with respect to the model parameters. The
C2-model was implemented by the model_C2 class and the
C3-model by the model_C3 class which is a subclass of the770

model_C2 class.
For our numerical experiments, we used the model output

with the model
:::::::
reference

:
parameters in Tables ?? and ??

:
2

:::
and

:
3
:
plus an additive normal

:::::::
normally

:
distributed measure-

ment error with zero expectation as artificial measurement775

results. As standard deviation of the measurement error, we
once chose 10−2 and once 10−1.

In our numerical experiments, we alternately selected a
fixed number of experimental designs and estimated the
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model parameters with corresponding measurement results.780

We carried out each experiment ten times and averaged the
results to minimize the influence of randomness.

For the initial parameter estimation, we used the values
presented in Table ??. Initial parameter values C0 wS k r s
initial value 5 2× 10−7 12.5 2× 10−7 3785

Moreover the bounds for the model parameters shown in
Table ?? were used for the parameter estimations. Parameter
bounds C0 wS k r s lower bound 10−4 10−8 10−4 10−8

10−1 upper bound 104 1 104 1 5
::
the

::::
start

::::::
values

:::
and

::::::
bounds

::
in

:::::
Tables

::
2

:::
and

:
3
:::::
were

::::
used.

::::
The

::::::
bounds

:::::
were

::::::
chosen

::
so

:::
that790

::
the

::::::
typical

:::::
range

::
of
::::::
values

::
is

:::::::
covered,

:::
but

::::
also

::::
more

:::::::
extreme

:::::
values

:::
are

::::::::
possible.

:::
The

:::::::
starting

:::::
values

:::::
were

::::::
chosen

::::::
slightly

::::::
outside

:::
the

::::::
typical

:::::
ranges

::
to
::::::::
represent

::
a

::::
poor

:::::
initial

:::::
guess.

:

The experimental designs for these models consist of the
time point of the measurement and the high water level of the795

tidal inundation. A set of thirty selectable experimental de-
signs was specified. They were obtained by combining three
different high water levels of the tidal inundation (1.5m, 2.0m
and 2,5m) with ten time points equidistantly spread over the
inundation period.800

For choosing the experimental designs, we compared the
standard and the robust approach presented in Section 3
with the trace as quality criterion together with uniformly
distributed experimental designs.

:
In

:::
the

::::::
robust

:::::::::
approach,

:
a

:::::::::
confidence

::::
level

:::
of

::
95%

:::
was

:::::
used. The optimization prob-805

lems for the experimental designs were once solved exact
in the discrete variant

::::::
exactly

:
and once approximativelyin

the relaxed variant. .
:::::

(See
:::::::
Section

:::::
2.4.)

:
To evaluate all

these methods, we compared the resulting parameter esti-
mations with the correct model parametersin Tables ?? and810

??
:::::::
reference

::::::
model

:::::::::
parameters.

We further investigated whether the number of measure-
ments after which new experimental designs are optimized
had an impact on the accuracy of the parameter estimation.
For this purpose, different numerical experiments were per-815

formed where the parameters and experimental designs have
been optimized after each one, three resp. five measurements.
Altogether fifty measurements were simulated at each exper-
iment with the C2-model. For the C3-model, hundred and
fifty measurements were simulated at each experiment since820

the model is more complex and therefore a sufficiently accu-
rate estimation of its parameters might be more difficult.

4.3 Accuracy of the parameter estimations

In this subsection, we compare the accuracy of the parameter
estimations resulting from the previously described numer-825

ical experiments. Some results are illustrated in Figures 10
and 11.

4.3.1 Results for the C2-model

Figure 10. Averaged error in the parameter estimation from ten op-
timization runs with the C2-model and three measurement per iter-
ation with standard deviation 10−2 of the measurement error.

The accuracy of the parameter estimations for the C2-model
only improved marginally after four to twelve measurements830

independently of the choice of the experimental designs. The
maximal accuracy was achieved

:::::::
accuracy

::::::::
improved

:
faster

the more frequently the experimental designs and parameters
were optimized. However, the maximal

:::
best achieved accu-

racy was independent of the frequency.835

With uniformly distributed experimental designs the
maximum

:::
best

::::::::
achieved accuracy was slightly worst

::::
worse

than with optimized experimental designs. Additional four to
six more measurements were needed compared to optimized
experimental designs in order to achieve their accuracy.840

Although the parameters nonlinearly occur
::::
occur

:::::::::
nonlinearly

:
in this model, it made close to no differ-

ence whether the standard or the robust approach for the
optimization of the experimental designs was used.

In both approaches, the accuracy was slightly better in845

:::
The

::::::::::::::
approximatively

:::::::
solving

:::
of

:::
the

:::::::
discrete

:::::::::::
optimization

:::::::
problem

:::
has

::::::::
resulted

::
in

::
a
:::::::
slightly

::::::
worse

::::::::
accuracy

::
at

:
the

first iterationsif the discrete optimization problem was solved
directly as if the relaxed optimization problem was solved.

:::::::::
Thereafter,

:::
the

:::::::::
difference

:::
was

:::::
very

:::::
small. The solutions of850

the relaxed
:::::::::
continuous optimization problems were almost

all
::::::
always

:
nearly integer.

The different standard deviations of the measurement er-
rors only influenced the maximal accuracy achieved

:::
best

:::::::
achieved

::::::::
accuracy

:
which was of course higher

:::::
worse

:
at855

a higher standard deviation.
:::
This

::::
can

:::
be

::::::::
explained

:::
by

:::
the

:::
fact

::::
that

:::::::
different

:::::::
constant

::::::::
standard

:::::::::
deviations

::::
only

:::::
mean

:
a

:::::::
different

::::::
scaling

::
of

:::
the

::::::::
objective

:::
of

:::
the

:::::::::::
experimental

:::::
design

::::::::::
optimization

:::::::::
problem.

:::::
Thus,

::::::::
different

::::::::
constant

::::::::
standard

::::::::
deviations

:::
do

:::
not

:::::
affect

::
its

::::::::
solution.860
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4.3.2 Results for the C3-model

Figure 11. Averaged error in the parameter estimation from ten op-
timization runs with the C3-model and three measurement per iter-
ation with standard deviation 10−2 of the measurement error.

After ten to twenty-five measurements, the accuracy of
the parameter estimations for the C3-model with optimized
experimental designs only improved slightly. Again, the
maximal accuracy was achieved

:::::::
accuracy

:::::::::
improved

:
faster,865

the fewer measurements were performed per iteration and
the maximal

:::
best achieved accuracy was independent of the

number of measurements per iteration.
With uniformly distributed experimental designs, the

maximum
:::
best

:
accuracy was achieved after twenty-four to870

sixty measurements. Furthermore, the maximal
:::
best

:::::::
achieved

accuracy was worse by about a factor of ten compared to the

:::
best

:
accuracy achieved by (standard) optimized experimental

designs.
The standard approach for optimizing experimental de-875

signs resulted in a slightly better accuracy compared to
the robust approach. Again, if the underlying optimization
problem was solved in the discrete rather in the relaxed
variant, the accuracy was slightly better for both approaches

:::
For

::::
both

::::::::::
approaches,

:::
the

:::::::::
difference

:::::::
between

:::
the

:::::::
accuracy880

:::::::
achieved

::::
with

:::
the

:::::
exact

:::::::
solution

::
of

:::
the

:::::::
discrete

::::::::::
optimization

:::::::
problem

:::
and

::::
the

::::::::
accuracy

::::::::
achieved

::::
with

:::
the

:::::::::::
approximate

::::::
solution

::::
was

:::::
small

:::
but

::::::::::
recognizable

::::
and

:::::
almost

:::::::
constant

::::
over

::
the

::::::::
iterations. Also in these experiments, the solutions of the

relaxed
::::::::
continuous

:
optimization problems were almost all885

nearly integer.
Again, the different standard deviations of the measure-

ment errors only influenced the maximal accuracy achieved

:::
best

::::::::
achieved

:::::::
accuracy.

4.3.3 Conclusions regarding the approach for optimiz-890

ing experimental designs

Optimized experimental designs provided a much more accu-
rate parameter estimation than uniformly distributed experi-
mental designs independent of the chosen optimization ap-
proach. Furthermore, only about half as many measurements895

were needed to archive the same accuracy with optimized ex-
perimental designs as with uniformly distributed experimen-

tal designs. In the more complex model, the difference was
even greater

:::::
bigger.

The robust approach achieved no higher accuracy com-900

pared to the standard approach. In the complex model, the
robust approach was even slightly less accurate. This may
indicate that the additional approximations in the robust
approach offset the increase in accuracy , which should be
achieved

:::
gain

::
in

::::::::
accuracy by taking into account the nonlin-905

earity
:
is
:::::
offset

:::
by

:::
the

::::::::
additional

:::::::::::::
approximations

::
in

:::
the

:::::
robust

:::::::
approach. Since a considerably higher computational effort
is associated with the robust approach, the standard approach
should be preferred, at least for these models.

The direct solution
::::
exact

:::::::
solving

:
of the discrete op-910

timization problems compared to the solution of the
continuous relaxed optimization problems

:::::::::::::
approximatively

::::::
solving

:
only resulted in a small increase in accuracy. The

fact that the solutions of the relaxed optimization problems

:::::::::::
approximative

::::::::
solutions

:
were almost all nearly integer was915

another indication that the difference between both solu-
tions was small. This fact was also observed, for example,
in Körkel (2002) and Körkel et al. (2004). For these rea-
sons and because the direct

::::
exact

:
solving requires much

more computational effort, the relaxed problem should be920

solved
::::::::::::
approximative

::::::
solving

::::::
should

::
be

::::::::
preferred, at least for

these models.

4.4 Efficiency for the experimental designs

We also calculated the efficiencies of the used experimental
designs. Some results are illustrated in Figures 12 and 13.925

Figure 12. Averaged efficiency for the experimental designs from
ten optimization runs with the C2-model and three measurement per
iteration with standard deviation 10−2 of the measurement error.
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Figure 13. Averaged efficiency for the experimental designs from
ten optimization runs with the C3-model and three measurement per
iteration with standard deviation 10−2 of the measurement error.

The results emphasized the already seen importance of the
optimization of the experimental designs. In particular, the
advantage in the case of few measurements carried out so
far was highlighted. Again, the slight advantage of the stan-
dard approach over the robust approach was visible. With930

increasing number of accomplished measurements, the se-
lection strategy of new measurements became less important
as the amount and thus the influence of the new measure-
ments compared to those of the accomplished measurements
decreased.935

4.5 Distribution of optimal measuring points

In this subsection, we compare the distribution of the mea-
suring points optimized in the previously described numeri-
cal experiments. Graphical representation of the distribution
of the measuring points from some numerical experiments940

are shown in Figure 14 and 15.

4.5.1 Distribution for the C2-model

Figure 14. Averaged frequency of measurements from ten opti-
mization runs with the C2-model and three measurement per iter-
ation with standard deviation 10−2 of the measurement error.

The optimized measuring points were almost exclusively lo-
cated at the start and end of the inundation periods. At the
start of the inundation period, both approaches in the discrete945

::::
exact

:
variant favored lower high water levels unlike both ap-

proaches in relaxed
:::::::::::::
approximatively variant which favored

higher high water levels. At the end of the inundation pe-
riod, the standard approach in both variants favored lower
high water levels unlike the robust approach in both variants950

which favored higher high water levels.

4.5.2 Distribution for the C3-model

Figure 15. Averaged frequency of measurements from ten opti-
mization runs with the C3-model and three measurement per iter-
ation with standard deviation 10−2 of the measurement error.

For the C3-model the optimized measuring points accumu-
lated at the end of the inundation periods. All approaches
favored lower high water levels. With an increasing number955

of measurements per iteration the robust approach in both
variants also prefered measurements in the middle of the in-
undation periods with the highest high water level.

4.5.3 Conclusions regarding the distribution of optimal
measuring points960

The numerical experiments showed that measurements at the
start and end of the inundation periods should be preferred
for the C2-model.

Measurements at the start of the inundations can be justi-
fied by the fact that one parameter of the model is the concen-965

tration at the start of the inundation. The fact that the settling
velocity as second model parameter most affects the concen-
tration at the end of the inundations justifies measurements
here. This can be confirmed by an examination of the ordi-
nary differential equation of the model derived with respect970

to the settling velocity. The derivative of the model with re-
spect to the settling velocity is zero at the start of the inun-
dation and is getting smaller the further the inundation pro-
gresses. Its absolute greatest value it thus reached at the end
of the inundation.975

The experiments with the C3-model showed that here mea-
surements at end of the inundation periods should be pre-
ferred. In this model, the concentration at the start is no pa-
rameter but is affected by a parameter that also influences
the settling velocity. For this reason, measurements are not980

suggested at the start.
For both models the high water level seemed to play a mi-

nor role for the choice of measuring points.
As a rule of thumb one can say that measurements should

be carried out at the end of an inundation period and also985

some at the start if the C2-model is used.

5 Conclusions

In this paper we presented two different approaches for op-
timizing experimental design for parameter estimations. One
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method was based on the linearization of the model with re-990

spect to its parameters, the other takes into account a possi-
ble nonlinearity of the model parameters. Both methods were
implemented in our presented Optimal Experimental Design
Toolbox for MATLAB.

Using application examples
::
By

::::::::::
employing

:::
the

::::::::
presented995

:::::::
approach

::::
for

:::
two

::::::::
existing

:::
salt

::::::
marsh

:::::::
models, we showed

that model parameters can be determined much more accu-
rately if the corresponding measurement conditions were op-
timized. Especially for time-consuming or costly measure-
ments, it is therefore useful to optimize the measurement1000

conditions with the Optimal Experimental Design Toolbox.

::::
This

::::
gain

::
in
::::::::

accuracy
:::

is
:::
not

:::::::
limited

::
to

::::
the

:::::::::
application

::::::::
examples.

::
In

::::::::
general,

:::::
using

:::
the

:::::::::::
implemented

::::::::
methods,

:::
the

:::::::
accuracy

::
of

:::
the

::::::::::
parameters

::
of

:::
any

::::::
model

:::
can

:::
be

:::::::::
maximized1005

::::
while

:::::::::::
minimizing

:::
the

::::::::::::
measurement

::::::
costs,

::::::::
provided

::::
that

::
the

:::::::
related

::::::::::
assumptions

:::
are

::::::::
fulfilled.

::::::::
However,

:::
the

:::::::
required

::::::::
execution

:::::
time

:::
for

::::
the

:::::::::::
optimization

:::::::::
increases

:::::
with

:::
the

::::::
number

:::
of

:::::::
model

::::::::::
parameters

:::::
and

:::::::::::::
(accomplished

::::
and

:::::::::
selectable)

::::::::::::
measurements.

:::::::::::::
Parallelization

:::::::::
techniques

::
in

:::
the1010

::::::::::
optimization

:::
as

::::
well

::
as

:::
in

:::
the

::::::
model

:::::::::
evaluation

:::::
itself

:::
can

::::::::
counteract

::::
this

:::::
effect.

:

::
In

:::::::
addition

:::
to

::::
the

:::::::::::::
parallelization,

:::
the

::::::::::::
optimization

::
in

::
the

::::::::
toolbox

::::::
could

::::
also

::::
be

::::::::
extended

:::
to

::::::::::
techniques

:::
of

:::::::::::
globalization,

:::
so

::::
that

:::
the

:::::::
chance

:::
of

::::::
getting

::::
into

::
a
:::::

local1015

::::::::
minimum

::
is

:::::::
reduced.

:::
The

::::::
results

::::::::::
concerning

::::
the

::::::::::
application

:::::::::
examples

::::
have

:::
not

:::::::::::
significantly

:::::::
differed

:::
in

:::::
spite

::
of

:::::::
various

::::::::::
approaches

::
for

:::::::::::
optimizing

::::::::::::
experimental

:::::::
design.

::::
For

:::::
this

:::::::
reason,

::
the

:::::::::
approach

::::::
with

::::
the

:::::
least

:::::::::::::
computational

::::::
effort

:::
is1020

::::::::::::
recommended.

::::::::
However,

::::
this

::::::::::::::
recommendation

::::
can

::::
not

::
be

::::::
applied

::::::
readily

::
to
:::::

other
::::::

(more
::::::::
complex)

:::::::
models.

:::::
Here,

:::
the

::::::::::
performance

::
of

:::
the

::::::::::
approaches

::::::
should

::
be

:::::::::
compared

:::::
again

:
if

:::::::
possible.

:

::::::::::
Furthermore,

::
it
::::
has

::::
been

:::::
found

::::
that

::::::::::::
measurements

::
at
:::
the1025

::::::::
beginning

::::
and

:::
end

::
of

:::
the

::::::::::
inundation

:::::
period

::::
are

:::::::::
particularly

::::::::
important

:::
for

:::
the

:::::::::
application

::::::::
examples.

::::
The

::::
high

:::::
water

::::
level

::
of

:::
the

:::::::::
inundation

::::::
seemed

::
to

::::
play

::
a

:::::
minor

::::
role.

:::::
These

::::::
results,

:::::::
however,

:::
can

::::
not

::
be

::::::
applied

::::::
easily

::
to

::::
other

:::::::
models.

:::::::
Usually,

:
a
:::::::
separate

:::::::::::
optimization

::
of

:::::::::::
experimental

::::::
design

:::::
makes

:::::
sense1030

:::
here.
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