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Abstract. Geosciences are a highly suitable field of applica-
tion for optimizing experimental designs and model parame-
ters especially since in this field many data are collected.

The weighted least squares estimator for optimization of
model parameters is presented together with its asymptotic5

properties. A popular approach to optimize experimental de-
signs called local optimal experimental designs is described
together with a lesser known approach which takes into
account a potential nonlinearity of the model parameters.
These two approaches have been combined with two differ-10

ent methods to solve their underlying discrete optimization
problem.

All presented methods were implemented in an open
source MATLAB toolbox called the Optimal Experimental
Design Toolbox whose structure and handling is described.15

In numerical experiments, the model parameters and ex-
perimental design were optimized using this toolbox. Two
existing models for sediment concentration in seawater and
sediment accretion on salt marshes of different complexity
served as application example. The advantages and disad-20

vantages of the different approaches were compared, and an
evaluation of the approaches was performed.

1 Introduction

Mathematical models often contain roughly known model
parameters which are optimized based on measurements. The25

resulting accuracy of the model parameters depends on the
conditions, also called experimental setups or experimental
designs, under which these measurements are carried out.
These experimental designs can be optimized so that the re-
sulting accuracy is maximized. Thus, effort and cost of mea-30

surements can be significantly reduced.

The optimization of experimental designs is therefore par-
ticularly interesting for geosciences, where much money is
spent on data collection. However, only few application ex-
amples exist in this field. See Guest and Curtis (2009) for an35

overview. This article aims to promote this approach in geo-
sciences and exemplarily apply it to an existing salt marsh
accretion model (Schuerch et al. (2013)).

In optimizing experimental design, the main problem is
to quantify the information content. In general, this can only40

be done approximatively. There are several approaches avail-
able. In Section 2, four different approaches to optimize ex-
perimental designs together with the weighted least squares
estimator for model parameters are presented. Each of these
four approaches makes a different trade-off between accu-45

racy and computational effort.
One approach is based on the linearization of the model

with respect to the parameters and is the most common used
approach called local optimal experimental design. The sec-
ond more robust approach takes into account a potential non-50

linearity of the model parameters. Both approaches are com-
bined with two different approaches of solving the underly-
ing discrete optimization problem.

As far as the authors know, there is no open source soft-
ware available that can apply all these four approaches. So55

far the only software using the presented robust approach
is VPLAN introduced in Körkel (2002) which is not open
source. For this reason, this approach was implemented in
MATLAB. For the local optimal approach, several imple-
mentation are available but none (open source) software60

which is written in MATLAB, so this approach was imple-
mented as well. These methods, together with methods to
optimize model parameters, were collected in a MATLAB
toolbox called the Optimal Experimental Design Toolbox. Its
structure and handling is described in Section 3.65
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The impetus for this work gave two models, simulat-
ing the suspended sediment concentration on salt marshes
during tidal inundation and resulting accretion rates on
these marshes (Krone (1987), Temmerman et al. (2003) and
Schuerch et al. (2013)). Both models are zero-dimensional70

point models and differ in their complexity and number of
parameters. These models can be used as a basis to predict
the survival capability of salt marshes under the influence of
expected global sea level rise.

To use these models for local salt marshes, their param-75

eters have to be adapted to the local environmental condi-
tions. The required measurements are very time-consuming
and costly. Employing the presented approach here, the ex-
perimental designs could be optimized and performed more
efficiently. The two models are described together with the80

attendant numerical experiments and the associated results
in Section 4.

2 Optimization of model parameters and experimental
designs

The first step to the optimization of model parameters is the85

choice of the estimator. This maps the measurement results
onto estimated model parameters. These estimated parame-
ters are often defined so that they minimize a so-called misfit
function. The misfit function quantifies the distance between
the measurement results and the model output.90

The estimator should be derived from the statistical prop-
erties of the measurement errors, e.g. a maximum likelihood
estimator. Often, the measurement errors are assumed to be
normally distributed. This leads to the least squares estima-
tors. They are the most widely used class of estimators since95

their introduction by Gauss and Legendre (Stigler (1981)).
Their simplest form is the ordinary least squares estimator.

Its misfit function is the sum of the squares of the differences
between each measurement result and the corresponding
model output. A generalization is the weighted least squares100

estimator which has advantages in case of heteroscedastic
measurement errors. This estimator and its asymptotic prop-
erties are presented in the following subsection. The general-
ized least squares estimator is a further generalization which
takes into account a stochastic dependence of the measure-105

ment errors.

2.1 The weighted least squares estimator

In the following, the weighted least squares estimator is pre-
sented. For this purpose, some notations and assumptions are
introduced.110

The model function is denoted by

f : Ωx×Ωp→ R.

Here, Ωx ⊆ Rnx is the set of feasible experimental designs
and Ωp ⊂ Rnp the set of feasible model parameters from

which the unknown exact parameter vector p̂ ∈ Ωp is to be115

determined. Often, these sets are defined by lower and upper
bounds.

The measurement result for every design x ∈ Ωx is consid-
ered as a realization of a random variable ηx. Each random
variable ηx is assumed to be normally distributed with expec-120

tation f(x, p̂) and standard deviation σx > 0.

A1a) ηx ∼N (f(x, p̂),σ2
x) for every x ∈ Ωx.

Furthermore, these random variables are assumed to be pair-
wise stochastically independent.

A1b) ηx and ηx′ are stochastically independent for every125

x,x′ ∈ Ωx.

If we consider n≥ np measurement results
y = (y1, . . . ,yn)T ∈ Rn with corresponding experimen-
tal designs x1, . . . ,xn ∈ Ωx, the weighted least squares
estimation pn and the corresponding estimator Pn is defined130

as

pn := Pn(y) := argmin
p∈Ωp

ψn(y,p) (1)

where the misfit function ψn is defined as

ψn : Rn×Ωp→ R,(y,p) 7→
n∑
i=1

(
yi− f(xi,p)

σxi

)2

.

With the following assumptions, the existence of a mini-135

mum is ensured.

A2) f(x, · ) is continous for every x ∈ Ωx.

A3) Ωp is compact (closed and bounded).

If ψn(y, · ) is convex, the minimum is also unique.
The parameter estimation pn in (1) can be calculated with140

an optimization method for continuous optimization prob-
lems. A possible method is the SQP algorithm which is, e.g.,
described in (Nocedal and Wright, 1999, chapter 18).

2.2 Asymptotic properties

Provided certain regularity conditions are met, the least145

squares estimators are consistent, asymptotically normally
distributed and asymptotically efficient.

This asymptotic properties were first proved by Jennrich
(1969) for the ordinary least squares estimator and also dis-
cussed in Malinvaud (1970) and Wu (1981). In White (1980),150

these properties were proved for the weighted least squares
estimator and for the generalized least squares estimator in
White and Domowitz (1984). A good summary for all three
can be found in Amemiya (1983).

Consistency means that the estimated parameters converge155

in probability to the unknown exact parameters as the number
of measurements goes to infinity. That is

Pn
p−→ p̂ as n→∞
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for the weighted least squares estimator Pn with the un-
known exact model parameters p̂.160

For consistency, the following assumptions are sufficient
in addition to the previous assumptions A1 to A3. (Seber and
Wild, 2003, page 565)

A4a) n−1Bn converges uniformly with Bn : Ωp×Ωp→
R,(p,p′) 7→

∑n
i=1 f(xi,p)f(xi,p

′)σ−2
xi

165

A4b) D̄(p, p̂) = 0⇒ p= p̂ for all p ∈ Ωp with
D̄ := lim

n→∞
n−1Dn and Dn : Ωp×Ωp→ R,(p,p′) 7→∑n

i=1(f(xi,p)− f(xi,p
′))2σ−2

xi

(D̄ is well definied by assumption A4a.)

An estimator is asymptotically efficient if its variance con-170

verges to the Cramér-Rao bound as the number of mea-
surements goes to infinity. The Cramér-Rao bound (Cramér
(1946) and Rao (1945)) is a lower bound for the variance of
any unbiased estimator.

For asymptotic efficiency, the following assumptions are175

sufficient in addition to the previous assumptions A1 to A4.
(Seber and Wild, 2003, page 571)

A5) p̂ is an interior point of Ωp. Let Ω̂p ⊆ Ωp be an open
neighborhood of p̂.

A6) f(xi, · ) is twice continuously differentiable in Ω̂p.180

A7) n−1Mn converges uniformly with Mn : Ω̂p→
Rnp×np ,p 7→

∑n
i=1∇pf(xi,p)∇pf(xi,p

′)Tσ−2
xi

.

A8) n−1Hn converges uniformly with Hn : Ω̂p→
Rnp×np ,p 7→ (

∑n
i=1( ∂2

∂pi∂pj
f(xi,p))

2σ−2
xi

)i,j=1,...,np
.

A9) M̂(p̂) is invertible with M̂ := lim
n→∞

n−1Mn.185

In this case, the Cramér-Rao bound of the weighted least
squares estimator Pn is the inverse of the Fisher information
matrix Mn(p̂).

Under these assumptions, the asymptotic behavior of the
weighted least squares estimator can be summarized by its190

convergence in distribution as follows

√
n(Pn− p̂)

d−→N (0,Mn(p̂)−1n) as n→∞. (2)

See, e.g., (Seber and Wild, 2003, chapter 12) and (Walter and
Pronzato, 1997, chapter 3).

2.3 Optimal experimental designs195

The accuracy of the weighted least square estimator Pn can
be described by its covariance matrix. Due to the asymp-
totic distribution (2), this can be approximated by the in-
verse of the information matrixMn(pn), provided the matrix
Mn(pn) is nonsingular, i.e.,200

cov(Pn)≈Mn(pn)−1. (3)

Therefore, the unknown model parameters can be deter-
mined more accurately the smaller the (approximated) co-
variance matrix of the estimator is.

Criteria φ : Rnp×np → R+∪{∞}, such as the trace or de-205

terminant, are used in order to compare these matrices. (See,
e.g., El-Monsef et al. (2009) for an overview of various crite-
ria.) If the approximation (3) is used and Mn(pn) is singular,
the value of φ is set to infinity.

In the context of optimizing experimental designs, we as-210

sume n≥ 0 measurements have been carried out and designs
for additional measurements should be selected from m de-
signs x′1, . . . ,x

′
m ∈ Ωx. The choice for each design x′i is ex-

pressed by a weight wi ∈ {0,1} where 1 indicates the selec-
tion and 0 the contrary.215

Hence, the resulting information matrix, depending on the
choice w ∈ {0,1}m and the parameter vector pn ∈ Ωp, is de-
fined as

Mn(w,pn) :=Mn(pn) +
m∑
i=1

wi
∇pf(x′i,pn)∇pf(x′i,pn)T

σ2
x′i

.

If the covariance matrix is approximated by the inverse220

of the information matrix, optimal (additional) designs, with
respect to a criterion φ, are expressed by a solution of

argmin
w∈{0,1}m

φ(Mn(w,pn)−1). (4)

These optimal designs are called local optimal designs be-
cause these designs are only optimal regarding the previously225

model parameter estimation pn and not the unknown exact
model parameters p̂.

Potential constraints on the choice of the designs can be
realized by constraints on the weight w. For example, the
number or the costs of the measurements can be limited by230

linear constraints on w. These constraints have to be consid-
ered in the above optimization problem (4).

The formulation (4) is useful if additional experimental de-
signs should be chosen from a finite number of experimental
designs. Otherwise, the optimization problem can be refor-235

mulated so that the additional optimal design variables have
to be optimized directly.

2.4 Calculation of optimal experimental designs

A straight-forward way to solve the optimization problem (4)
is to test all possible values ofw. This direct approach is only240

practical for small m.
For bigger m, The optimization problem (4) is solved ap-

proximately. For this purpose, it is solved in the continu-
ous rather than the discrete setting, i.e., the constraint w ∈
{0,1}m is relaxed to w ∈ [0,1]m. Accordingly, the problem245

argmin
w∈[0,1]m

φ(Mn(w,pn)−1) (5)

is solved.
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A possible algorithm to solve this continuous optimization
problem is the SQP algorithm which is, e.g., described in
(Nocedal and Wright, 1999, chapter 18).250

After the continuous problem (5) is solved, the solution is
projected onto the integers with heuristics. An easy way is
to round the continuous solution. Another is to sum up all
continuous weights and then to choose as many designs with
the highest continuous weights. Potential constraints on w255

still have to be considered by solving the continuous problem
and the following projection onto an integer solution. The
second heuristic ,e.g., preserves constraints on the number of
designs to choose.

Our numerical experiments with the application examples260

in Section 4 have shown that the solutions of the continuous
problem (5) are already close to integer values. This behavior
was also observed, for example, in Körkel (2002) and Körkel
et al. (2004).

2.5 Robust optimal experimental designs265

The information matrix Mn depends on the estimated pa-
rameters pn if the parameters are nonlinear. This may lead
to suboptimal designs if ∇pf( · ,pn) differs strongly from
∇pf( · , p̂).

For this reason, we now consider a method which takes270

into account a possible nonlinearity of the parameters. This
robust method was presented in Körkel (2002) and Körkel
et al. (2004).

The main idea of the method is not to optimize the quality
of the covariance matrix for a single parameter vector pn as275

in (4), but to optimize the worst case quality within a whole
domain which contains the unknown exact parameter vector
p̂ with high probability.

For this purpose, a confidence region which contains p̂
with probability α ∈ (0,1) is approximated by280

Gn(α) := {p ∈ Rnp | ‖p− pn‖2Mn(pn)−1 ≤ γ(α)}. (6)

Here, γ(α) is the α-quantile of the χ2-distribution and
‖v‖A :=

√
vTAv denotes the energy norm of the vector v ∈

Rnp with respect to the positive definite matrix A ∈ Rnp×np .
The approximation of the confidence region arises from lin-285

earization of the model function f in point pn and the as-
sumption Pn ∼N (p̂,Mn(pn)−1).

If the worst case quality in the entire region Gn(α) shall
be optimized, the optimization problem (4) becomes

argmin
w∈{0,1}m

max
p∈Gn(α)

φ(Mn(w,p)−1). (7)290

This min-max optimization problem can be solved only
with considerable more computational effort compared to the
optimization problem (4). In order to reduce this effort, the
function φ(Mn(w, · )−1) is linearized in point pn in the fol-

lowing way.295

φ(Mn(w,p)−1)≈
φ(Mn(w,pn)−1) +∇p(φ(Mn(w,p)−1))T (p− pn)

The resulting inner maximization problem can be solved300

analytically. It is

max
p∈Gn(α)

φ(Mn(w,pn)−1)+∇p(φ(Mn(w,p)−1))T (p−pn) =

φ(Mn(w,pn)−1)+γ(α)
1
2 ‖∇p(φ(Mn(w,pn)−1))‖Mn(pn),305

as can be seen, e.g., in Körkel (2002). With this approach the
optimization problem (7) is replaced by

argmin
w∈{0,1}m

φ(Mn(w,pn)−1)+γ(α)
1
2 ‖∇p(φ(Mn(w,pn)−1))‖Mn(pn).

(8)

This optimization problem again can be solved approxi-
matively by solving the corresponding continuous problem310

and projecting this solution onto an integer solution as de-
scribed in the previous subsection.

It should be noted that in this approach (8), the first and
second derivatives of the model is used. In contrast, only the
first derivative is used for local optimal designs (4).315

2.6 Efficiency of experimental designs

A common way to describe the benefit of an experimental
design is its efficiency. The efficiency of an experimental de-
sign w ∈ {0,1}m regarding a criterion φ and with n previous
measurements is defined as follows.320

Eφ(w) := min
ŵ∈{0,1}m

φ(Mn(ŵ, p̂)−1)

φ(Mn(w,p̂)−1)
(9)

It should be noted that the searched parameter vector p̂ is
used here. If this is not known, thus the efficiency can not be
calculated.

The efficiency is always between 0 and 1 and is larger the325

better the experimental design is.

3 The Optimal Experimental Design Toolbox

We implemented the methods presented in the previous sec-
tion for optimization of model parameters and experimental
designs as a MATLAB toolbox named the Optimal Experi-330

mental Design Toolbox.
MATLAB (see MathWorks (2011)) was chosen because

it supports vector and matrix operations and provides many
numerical algorithms, especially for optimization. Moreover,
MATLAB supports object oriented programming and there-335

fore permits a simple structuring, modification and extension
of the implementation. Another advantage of MATLAB is
that it can easily interact with C and Fortran.
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The toolbox is available at the Git repository Reimer
(2013) at GitHub under the GNU General Public License340

(see Foundation (2007)). It includes extensive commented
source code and a detailed help integrated in MATLAB.

3.1 Provision of the model function

For the methods described in Section 2, the model function
and its first and second derivative with respect to the model345

parameters are required.
Actually, the model function is required for the parame-

ter optimization and, depending on the optimization method,
also its first derivative. Its first derivative is also required for
the experimental design optimization. If the robust method is350

used also its second derivative is required.
The model interface prescribes how to provide these func-

tions. They need not be written in MATLAB itself, since
MATLAB can call functions in C, C++ or Fortran.

The toolbox has several possibilities to provide the deriva-355

tives automatically. The model_fd class, e.g., provides the
derivatives by approximation with finite differences. If the
model function is given as an explicit symbolic function, the
model_explicit class can provide the derivatives by symbolic
differentiation with the Symbolic Math Toolbox. Listing 1360

shows, for example, how a model_explicit object is created.

Figure 1. Create a model with a symbolic model function
model_object = model_explicit ( 'p* t ˆ2 ' , 'p ' , ' t ' )
% 1 . input : the model func t i on as symbol ic formula
% 2 . input : the parameter va r i ab l e ( s )
% 3 . input : the exper imenta l des ign va r i ab l e ( s )
% return : a model ob j e c t which implements the model i n t e r f a c e

For the case the model function is given as a solution of
an initial value problem, the Optimal Experimental Design
Toolbox contains the model_ivp class. This class solves the
parameter dependent initial value problem and calculates the365

necessary derivatives. Listing 2 shows how a model_ivp ob-
ject is created.

Figure 2. Create a model with a model function given as solution
of an initial value problem
model_object = model_ivp ( '−y+(t+1)*b ' , ' [ a , b ] ' , 'y ' , ' a ' , ' t ' , [ 1 , 1 0 ] )
% 1 . input : the r i gh t hand s i d e o f the d i f f e r e n t i a l equat ion
% 2 . input : the model parameter va r i ab l e ( s )
% 3 . input : the model func t i on va r i ab l e
% 4 . input : the i n i t i a l va lue o f the model func t i on
% 5 . input : the dependent va r i ab l e in the model func t i on
% 6 . input : the i n t e r v a l o f i n t e g r a t i o n
% return : a model ob j e c t which implements the model i n t e r f a c e

The class takes advantage of the fact that the integration
and differentiation of the differential equation can be inter-
changed if the model function is sufficiently often continu-370

ously differentiable. Required derivatives of the differential
equation and initial value are calculated again by symbolic
differentiation with the Symbolic Math Toolbox. The result-
ing initial value problems are solved with MATLABs ode23s
function which can also solve stiff problems. Because the375

arising initial value problems for the derivatives are mutually
independent, the solution of the initial value problems can be
calculated in parallel using the Parallel Computing Toolbox.

3.2 Setup of the solver

Methods for the optimization of model parameters and ex-380

perimental designs are provided by the solver class. First, a
solver object has to be created and the necessary informa-
tions have to be passed.

On the one hand, this is the model which has to be set by
the set_model method (see Listing 3).385

Figure 3. Set the model
solver_object . set_model ( model_object )
% input : an ob j e c t that implements the model i n t e r f a c e

In addition, an initial guess of the model parameters have
to be set by the set_initial_parameter_estimation method
(see Listing 4).

Figure 4. Set the initial parameter estimation
solver_object . set_initial_parameter_estimation ( [ 1 , 2 ] )
% input : the i n i t i a l e s t imat ion o f the model parameters

Potential accomplished measurements can be set via the
set_accomplished_measurements method. These measure-390

ments consist of the corresponding experimental designs to-
gether with their variances of the measurement errors. Also
the measurement results themselves have to be passed for a
parameter estimation (see Listing 5).

Figure 5. Set accomplished measurements
solver_object . set_accomplished_measurements ( ( 1 : 5 ) ' , 0 .01* ones (5 , 1 ) , −←↩

exp ( ( 1 : 5 ) ' ) )
% 1 . input : the exper imenta l de s i gn s o f accomplished measurements
% 2 . input : the va r i ance s o f the a s s o c i a t ed measurement e r r o r s
% 3 . input : the a s s o c i a t ed measurement r e s u l t s

Finally, if an optimization of experimental designs shall be395

performed, the selectable measurements have to be set by the
set_selectable_measurements method (see Listing 6). These
measurements consist of the experimental designs and the
variances of the measurement errors again.

Figure 6. Set selectable measurements
solver_object . set_selectable_measurements ( ( 6 : 1 0 ) ' , 0 .01* ones (5 , 1) )
% 1 . input : the s e l e c t a b l e exper imenta l de s i gn s
% 2 . input : the va r i ance s o f the a s s o c i a t ed measurement e r r o r s

3.3 Optimization of experimental designs and model400

parameters

Once the solver object is configured as described in the
previous subsection, experimental designs or model param-
eters can be optimized via the get_optimal_measurements
(see Listing 7) respectively the get_optimal_parameters (see405

Listing 8) method. Constraints on the experimental designs
or model parameters can be passed to the corresponding
method.

The get_optimal_measurements method can solve the op-
timization problem directly by trying all possible combina-410

tions or approximatively.
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For the approximative solving, the continuous problem is
solved with the SQP algorithm (see (Nocedal and Wright,
1999, Chapter 18)) provided by the fmincon function of the
Optimization Toolbox. Its solution is projected onto an inte-415

ger solution by the second heuristic described in 2.4.
The first derivative of the objective function is provided

in analytical form. This saves much of the computing time
compared to derivatives calculated by finite differences. The
Hessian matrix is approximated by the BFGS-update (Broy-420

den (1970), Fletcher (1970), Goldfarb (1970) and Shanno
(1970)).

Matlab’s SQP algorithm can recover from infinity. If an in-
finite function value is reached during the optimization, the
algorithm attempts to take a smaller step. Thus, if the opti-425

mization is started with a regular design, singular designs do
not make any trouble.

Figure 7. Optimize experimental designs
optimal_measurements = solver_object . get_optimal_measurements (3 )
% input : the maximum number o f measurements a l lowed
% return : the optimal subset o f the s e l e c t a b l e measurements with a ←↩

number o f measurements l e s s or equal to the r e s t r i c t i o n

The get_optimal_parameters method uses the Trust-
Region-Reflective (Coleman and Li (1994) and Coleman and
Li (1996)) or the Levenberg-Marquard algorithm (Levenberg430

(1944), Marquardt (1963) and Moré (1977)) provided by the
lsqnonlin function of the Optimization Toolbox to solve the
least squares problem resulting from the parameter estima-
tion. The first derivative of the objective function is also pro-
vided analytically.435

Figure 8. Optimize model parameters
optimal_parameters = solver_object . get_optimal_parameters ( [ 0 , 0 ] , [ 9 , 9 ] )
% 1 . input : the lower bound o f the model parameters
% 2 . input : the upper bound o f the model parameters
% return : a parameter e s t imat ion r e s u l t i n g from the accomplished ←↩

measurements which takes in to account the passed c on s t r a i n t s

Furthermore, the expected quality of the resulting param-
eter estimation for any selection of experimental designs can
be calculated using the get_quality method of the solver ob-
ject. Thus, for example, the increase in quality by adding or
removing experimental designs can be determined.440

3.4 Execution time and memory consumption

The total time required for the optimization of the model pa-
rameters or an experimental design depends crucially on the
time required for evaluating the model function and its first
and second derivative with respect to the model parameters.445

When optimizing model parameters, the model function
and its first derivative has to be evaluated several times with
different model parameter vectors at the accomplished mea-
suring points. When optimizing experimental designs, the
model function and its first and second derivative has to be450

evaluated for one model parameter vector but at the accom-
plished and selectable measuring points.

Generally, the execution time increases with the number of
parameters, the number of selectable measurements and the
number of accomplished measurements.455

The implementation of this toolbox favors a low execution
time of a low memory consumption. For this reason, (inter-
mediate) results within a method call and between successive
method calls are saved and reused. An example are multiple
occurring matrix multiplications within a method call. An-460

other example is a re-optimization of designs with other con-
straints, such as another maximum number of allowed mea-
surements. Here, the derivatives of the model function calcu-
lated in the previous optimization is reused.

Due to the described caching strategy, the total memory465

consumption depends linearly on the number of (accom-
plished and selectable) measurements and quadratically on
the number of parameters. Nevertheless, it should be possi-
ble to solve problems with hundreds of parameters and thou-
sands of measurements on a standard computer.470

3.5 Changeable options

Many settings for the optimization of experimental designs
or model parameters are changeable. These can be altered by
the set_option method of the solver object (see Listing 9).
The desired options can be set using property-value pairs, as475

already known from MATLAB.

Figure 9. Change an option
solver_object . set_option ( ' option name ' , option_value )
% 1 . input : the name o f the opt ion which should be changed
% 2 . input : the new value o f the opt ion

Estimation method: The estimation method for the qual-
ity of experimental designs can be selected by the
estimation_method option. The standard point estima-
tion method and the robust region estimation method,480

both presented in Section 2, are supported. The region
estimation method is the default setting.

Confidence level: The level of confidence for the confi-
dence region at the region estimation method, repre-
sented by α in Section 2.5, can be set by the alpha op-485

tion. The default value is 0.95.

Prior parameter estimation: It can be chosen whether a
parameter optimization should be performed before op-
timizing experimental designs. This can be set by the
parameter_estimation option and the values yes or no.490

To save computational time no previous parameter opti-
mization is performed by default.

Quality criterion: The quality criterion, which is applied to
the covariance matrix and represented in Section 2.1 as
φ, can also be chosen with the criterion option. The495

criterion interface prescribes the syntax of the criterion
function and its necessary derivatives. The trace of the
covariance is the default criterion and implemented by
the criterion_A class.
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Parameter scaling: It can be chosen whether model pa-500

rameter should be scaled before optimizing experi-
mental designs or the model parameters themselves.
Scaling means a uniform impact of all model pa-
rameters and is enabled by default. The options are
scale_covariance_matrix and po_scale_parameter with505

the values yes and no.

Optimization algorithm for experimental design: The
exact and the approximative approach for the op-
timization of experimental design problem can be
chosen with the ed_algorithm option and the values510

direct and local_sqp. For time reasons by default the
experimental design problem is solved by the approxi-
mative approach. Furthermore, the number of function
evaluations and iterations by the SQP algorithm can
be constrained by the options ed_max_fun_evals and515

ed_max_iter.

Optimization algorithm for parameter estimation: The
optimization algorithm for the parameter estimation
problem can be chosen with the po_algorithm option.
The Trust-Region-Reflective (Coleman and Li (1994)520

and Coleman and Li (1996)) and the Levenberg-
Marquard algorithm (Levenberg (1944), Marquardt
(1963) and Moré (1977)) can be chosen with the
values trust-region-reflective and levenberg-marquardt.
The Trust-Region-Reflective algorithm is the default525

algorithm. Furthermore, the number of function evalua-
tions and iterations can be limited through the options
po_max_fun_evals and po_max_iter.

3.6 Help and documentation

The Optimal Experimental Design Toolbox also provides an530

extensive integrated help. Besides system requirements and
version informations, a user’s guide with a step by step in-
struction how to optimize experimental designs and model
parameters is included. Demos show how to work with the
toolbox in practice. In addition, a detailed description for ev-535

ery class and method is available.
The layout of the help of the Optimal Experimental De-

sign Toolbox is based on the design of the help also used by
MATLAB and other toolboxes. Thus the user does not have
to get used to a new layout.540

4 Application examples

In this section, numerical experiments together with their
results regarding the optimization of model parameters and
experimental designs are presented for two models of dif-
ferent complexity. Both models describe the sediment con-545

centration in seawater during tidal inundation of coastal salt
marshes.

Coastal salt marshes have an important ecological function
with their diverse flora and as a nursery for migratory birds.

Furthermore they have the ability of dissipating current and550

wave energy and therefore reducing erosional forces at dikes
and coastal areas.

With these models, the vertical accretion of coastal salt
marshes can be predicted. When considering expected global
sea level rise (IPCC (2013)), the future ability of coastal salt555

marshes to adapt to rising sea levels and thus to survive can
be estimated. Depending on this, measures to protect these
salt marshes can be taken.

Calibration of the model parameters requires measure-
ments of suspended sediment concentration during tidal in-560

undation, which are time-consuming and laborious. For this
reason, it is advantageous to know under which conditions
and how many measurements should be carried out.

4.1 The models

Both models are zero-dimensional point models, which de-565

scribe the sediment concentration in seawater during tidal in-
undation of coastal salt marshes. The first model (C2-model)
has two model parameters, was described in Temmerman
et al. (2003) and adapted for a salt marsh in the German
Wadden Sea (South-Eastern North Sea), located near Hoer-570

num in the southern part of the island of Sylt (Germany),
by Schuerch et al. (2013). The second model (C3-model) has
three model parameters, is an extension of the first model and
subject of current research.

4.1.1 The C2-model575

The first model is called the C2-model. Here, the sed-
iment concentration in kg

m3 is modeled by the function
C : [tS , tE)→ R+. Furthermore, tS is the start time of the
inundation of the salt marsh and tE the end time. The con-
centration C is given implicit as solution of the initial value580

problem

C ′(t) =

{
−wsC(t)+(C0−C(t))h′(t)

h(t)−E if h′(t)> 0
−wsC(t)
h(t)−E else

for all t ∈ (tS , tE) and C(tS) = C0. (10)

Here, C0 ≥ 0 is the initial sediment concentration of the
flooding seawater andwS ≥ 0 the settling velocity of the sus-
pended sediment in m

s . Moreover, the function585

h : R→ R, t 7→ a

1 +
(
t−x0

b

)2 +hHW −hMHW

describes the time-dependent water surface elevation and E
the elevation of the marsh both in meters and relative to a
fixed datum. Here, a, b and x0 are constants describing the
change in the water level, hMHW the mean high water level590

and hHW the high water level of a certain tidal inundation in
meters. The start and end time tS and tE of the inundation
are the points where the height h equals the elevation of the
marsh E.
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The sediment concentration C thus decreases continu-595

ously within a tidal cycle depending on the settling velocity
wS which is described by the term

− wsC(t)

h(t)−E

in (10). During the flood phase, the reduced sediment con-
centration is partially compensated by new inflowing sea wa-600

ter. This is described by the term

(C0−C(t))h′(t)

h(t)−E

in the first case of (10).
The values used in the water surface elevation function h,

for the local salt marsh, are shown in Table 1. These have605

been estimated by non-linear regression analysis using local
historic tide gauge data from 1999-2009 (at Hoernum Hafen,
Germany). The continuous high-resolution (6 minutes) time
series has, therefore, been split into the individual tidal cycles
beforehand (Schuerch et al. (2013)).610

Table 1. Values used for the water surface elevation function h

a b x0 hMHW E
local value 3.7506 19447.1 −1301.0 3.75 m 1.3 m

The high water level hHW of the current tidal inundation
is measured or taken from predictions.

The initial sediment concentration C0 and the settling ve-
locity wS are only roughly known and therefore model pa-
rameters. Reference values derived from literature values and615

typical ranges can be found in Table 2. See Bartholdy and
Aagaard (2001) for C0 and Temmerman et al. (2003) for C0

and wS .

Table 2. Values for the C2-model

C0

[
kg
m3

]
wS
[

m
s

]
reference value 0.1 10−5

typical range 0.01 – 0.2 4× 10−6 – 4× 10−4

start value 5 2× 10−7

optimization bound 10−4 – 104 10−8 – 1

4.1.2 The C3-model

The second model is an extension of the C2-model and is620

called the C3-model. Here the model parameters C0 and wS
are substituted by

C0 = k(hHW −E)

ws = r(C0)s = rks(hHW −E)s.
625

Where k ≥ 0, r ≥ 0 and s≥ 0 are unknown model parame-
ters. Reference values derived from literature values and typ-
ical ranges (where available) can be found in Table 3. See

van Leussen (1999) and Pejrup and Mikkelsen (2010) for the
settling index s and Temmerman et al. (2004) for k.630

In this model, a linear relationship between the initial sed-
iment concentration and the high water level is assumed,
where during heavy flooding a higher sediment concentra-
tion is assumed (Temmerman et al. (2003) and Schuerch
et al. (2013)). Additionally, a relationship between the initial635

sediment concentration and the settling velocity is assumed
(Krone (1987)). This is an empirical approximation of the
so-called flocculation process (Burt (1986)).

Table 3. Values for the C3-model

k r s
reference value 0.25 10−5 0.5
typical range 0.04 – 0.2 0.5 – 3.5
start value 12.5 2× 10−7 3
optimization bound 10−4 – 104 10−8 – 1 10−1 – 5

4.2 Numerical experiments

We performed several numerical experiments to compare the640

benefit of optimized with unoptimized measurement condi-
tions. Also, the benefit of different approaches to optimiza-
tion measurement conditions was compared. Using these re-
sults, an appropriate approach for the optimization of condi-
tions for real measurements was selected.645

The approaches introduced in Section 2 and implemented
by the Optimal Experimental Design Toolbox described in
Section 3 were used for the numerical experiments. For that,
we used the model_ivp class which allows to calculate the
solution of an initial value problem and its first and sec-650

ond derivatives with respect to the model parameters. The
C2-model was implemented by the model_C2 class and the
C3-model by the model_C3 class which is a subclass of the
model_C2 class.

For our numerical experiments, we used the model output655

with the reference parameters in Tables 2 and 3 plus an ad-
ditive normally distributed measurement error with zero ex-
pectation as artificial measurement results. As standard de-
viation of the measurement error, we once chose 10−2 and
once 10−1.660

In our numerical experiments, we alternately selected a
fixed number of experimental designs and estimated the
model parameters with corresponding measurement results.
We carried out each experiment ten times and averaged the
results to minimize the influence of randomness.665

For the parameter estimation, the start values and bounds
in Tables 2 and 3 were used. The bounds were chosen so that
the typical range of values is covered, but also more extreme
values are possible. The starting values were chosen slightly
outside the typical ranges to represent a poor initial guess.670

The experimental designs for these models consist of the
time point of the measurement and the high water level of the
tidal inundation. A set of thirty selectable experimental de-
signs was specified. They were obtained by combining three
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different high water levels of the tidal inundation (1.5m, 2.0m675

and 2,5m) with ten time points equidistantly spread over the
inundation period.

For choosing the experimental designs, we compared the
standard and the robust approach presented in Section 3 with
the trace as quality criterion together with uniformly dis-680

tributed experimental designs. In the robust approach, a con-
fidence level of 95% was used. The optimization problems
for the experimental designs were once solved exactly and
once approximatively. (See Section 2.4.) To evaluate all these
methods, we compared the resulting parameter estimations685

with the reference model parameters.
We further investigated whether the number of measure-

ments after which new experimental designs are optimized
had an impact on the accuracy of the parameter estimation.
For this purpose, different numerical experiments were per-690

formed where the parameters and experimental designs have
been optimized after each one, three resp. five measurements.
Altogether fifty measurements were simulated at each exper-
iment with the C2-model. For the C3-model, hundred and
fifty measurements were simulated at each experiment since695

the model is more complex and therefore a sufficiently accu-
rate estimation of its parameters might be more difficult.

4.3 Accuracy of the parameter estimations

In this subsection, we compare the accuracy of the parameter
estimations resulting from the previously described numer-700

ical experiments. Some results are illustrated in Figures 10
and 11.

4.3.1 Results for the C2-model

Figure 10. Averaged error in the parameter estimation from ten op-
timization runs with the C2-model and three measurement per iter-
ation with standard deviation 10−2 of the measurement error.

The accuracy of the parameter estimations for the C2-model
only improved marginally after four to twelve measurements705

independently of the choice of the experimental designs. The
accuracy improved faster the more frequently the experimen-
tal designs and parameters were optimized. However, the
best achieved accuracy was independent of the frequency.

With uniformly distributed experimental designs the best710

achieved accuracy was slightly worse than with optimized

experimental designs. Additional four to six more measure-
ments were needed compared to optimized experimental de-
signs in order to achieve their accuracy.

Although the parameters occur nonlinearly in this model,715

it made close to no difference whether the standard or the
robust approach for the optimization of the experimental de-
signs was used.

The approximatively solving of the discrete optimization
problem has resulted in a slightly worse accuracy at the first720

iterations. Thereafter, the difference was very small. The so-
lutions of the relaxed continuous optimization problems were
almost always nearly integer.

The different standard deviations of the measurement er-
rors only influenced the best achieved accuracy which was of725

course worse at a higher standard deviation. This can be ex-
plained by the fact that different constant standard deviations
only mean a different scaling of the objective of the experi-
mental design optimization problem. Thus, different constant
standard deviations do not affect its solution.730

4.3.2 Results for the C3-model

Figure 11. Averaged error in the parameter estimation from ten op-
timization runs with the C3-model and three measurement per iter-
ation with standard deviation 10−2 of the measurement error.

After ten to twenty-five measurements, the accuracy of the
parameter estimations for the C3-model with optimized ex-
perimental designs only improved slightly. Again, the ac-
curacy improved faster, the fewer measurements were per-735

formed per iteration and the best achieved accuracy was in-
dependent of the number of measurements per iteration.

With uniformly distributed experimental designs, the best
accuracy was achieved after twenty-four to sixty measure-
ments. Furthermore, the best achieved accuracy was worse740

by about a factor of ten compared to the best accuracy
achieved by (standard) optimized experimental designs.

The standard approach for optimizing experimental de-
signs resulted in a slightly better accuracy compared to the
robust approach.745

For both approaches, the difference between the accuracy
achieved with the exact solution of the discrete optimization
problem and the accuracy achieved with the approximate so-
lution was small but recognizable and almost constant over
the iterations. Also in these experiments, the solutions of the750
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relaxed continuous optimization problems were almost all
nearly integer.

Again, the different standard deviations of the measure-
ment errors only influenced the best achieved accuracy.

4.3.3 Conclusions regarding the approach for optimiz-755

ing experimental designs

Optimized experimental designs provided a much more accu-
rate parameter estimation than uniformly distributed experi-
mental designs independent of the chosen optimization ap-
proach. Furthermore, only about half as many measurements760

were needed to archive the same accuracy with optimized ex-
perimental designs as with uniformly distributed experimen-
tal designs. In the more complex model, the difference was
even bigger.

The robust approach achieved no higher accuracy com-765

pared to the standard approach. In the complex model, the
robust approach was even slightly less accurate. This may
indicate that the gain in accuracy by taking into account the
nonlinearity is offset by the additional approximations in the
robust approach. Since a considerably higher computational770

effort is associated with the robust approach, the standard ap-
proach should be preferred, at least for these models.

The exact solving of the discrete optimization problems
compared to the approximatively solving only resulted in a
small increase in accuracy. The fact that the approximative775

solutions were almost all nearly integer was another indica-
tion that the difference between both solutions was small.
This fact was also observed, for example, in Körkel (2002)
and Körkel et al. (2004). For these reasons and because the
exact solving requires much more computational effort, the780

approximative solving should be preferred, at least for these
models.

4.4 Efficiency for the experimental designs

We also calculated the efficiencies of the used experimental
designs. Some results are illustrated in Figures 12 and 13.785

Figure 12. Averaged efficiency for the experimental designs from
ten optimization runs with the C2-model and three measurement per
iteration with standard deviation 10−2 of the measurement error.

Figure 13. Averaged efficiency for the experimental designs from
ten optimization runs with the C3-model and three measurement per
iteration with standard deviation 10−2 of the measurement error.

The results emphasized the already seen importance of the
optimization of the experimental designs. In particular, the
advantage in the case of few measurements carried out so
far was highlighted. Again, the slight advantage of the stan-
dard approach over the robust approach was visible. With790

increasing number of accomplished measurements, the se-
lection strategy of new measurements became less important
as the amount and thus the influence of the new measure-
ments compared to those of the accomplished measurements
decreased.795

4.5 Distribution of optimal measuring points

In this subsection, we compare the distribution of the mea-
suring points optimized in the previously described numeri-
cal experiments. Graphical representation of the distribution
of the measuring points from some numerical experiments800

are shown in Figure 14 and 15.

4.5.1 Distribution for the C2-model

Figure 14. Averaged frequency of measurements from ten opti-
mization runs with the C2-model and three measurement per iter-
ation with standard deviation 10−2 of the measurement error.

The optimized measuring points were almost exclusively lo-
cated at the start and end of the inundation periods. At the
start of the inundation period, both approaches in the ex-805

act variant favored lower high water levels unlike both ap-
proaches in approximatively variant which favored higher
high water levels. At the end of the inundation period, the
standard approach in both variants favored lower high wa-
ter levels unlike the robust approach in both variants which810

favored higher high water levels.
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4.5.2 Distribution for the C3-model

Figure 15. Averaged frequency of measurements from ten opti-
mization runs with the C3-model and three measurement per iter-
ation with standard deviation 10−2 of the measurement error.

For the C3-model the optimized measuring points accumu-
lated at the end of the inundation periods. All approaches
favored lower high water levels. With an increasing number815

of measurements per iteration the robust approach in both
variants also prefered measurements in the middle of the in-
undation periods with the highest high water level.

4.5.3 Conclusions regarding the distribution of optimal
measuring points820

The numerical experiments showed that measurements at the
start and end of the inundation periods should be preferred
for the C2-model.

Measurements at the start of the inundations can be justi-
fied by the fact that one parameter of the model is the concen-825

tration at the start of the inundation. The fact that the settling
velocity as second model parameter most affects the concen-
tration at the end of the inundations justifies measurements
here. This can be confirmed by an examination of the ordi-
nary differential equation of the model derived with respect830

to the settling velocity. The derivative of the model with re-
spect to the settling velocity is zero at the start of the inun-
dation and is getting smaller the further the inundation pro-
gresses. Its absolute greatest value it thus reached at the end
of the inundation.835

The experiments with the C3-model showed that here mea-
surements at end of the inundation periods should be pre-
ferred. In this model, the concentration at the start is no pa-
rameter but is affected by a parameter that also influences
the settling velocity. For this reason, measurements are not840

suggested at the start.
For both models the high water level seemed to play a mi-

nor role for the choice of measuring points.
As a rule of thumb one can say that measurements should

be carried out at the end of an inundation period and also845

some at the start if the C2-model is used.

5 Conclusions

In this paper we presented two different approaches for op-
timizing experimental design for parameter estimations. One

method was based on the linearization of the model with re-850

spect to its parameters, the other takes into account a possi-
ble nonlinearity of the model parameters. Both methods were
implemented in our presented Optimal Experimental Design
Toolbox for MATLAB.

By employing the presented approach for two existing salt855

marsh models, we showed that model parameters can be de-
termined much more accurately if the corresponding mea-
surement conditions were optimized. Especially for time-
consuming or costly measurements, it is therefore useful to
optimize the measurement conditions with the Optimal Ex-860

perimental Design Toolbox.
This gain in accuracy is not limited to the application ex-

amples. In general, using the implemented methods, the ac-
curacy of the parameters of any model can be maximized
while minimizing the measurement costs, provided that the865

related assumptions are fulfilled. However, the required ex-
ecution time for the optimization increases with the number
of model parameters and (accomplished and selectable) mea-
surements. Parallelization techniques in the optimization as
well as in the model evaluation itself can counteract this ef-870

fect.
In addition to the parallelization, the optimization in the

toolbox could also be extended to techniques of globaliza-
tion, so that the chance of getting into a local minimum is
reduced.875

The results concerning the application examples have not
significantly differed in spite of various approaches for op-
timizing experimental design. For this reason, the approach
with the least computational effort is recommended. How-
ever, this recommendation can not be applied readily to other880

(more complex) models. Here, the performance of the ap-
proaches should be compared again if possible.

Furthermore, it has been found that measurements at the
beginning and end of the inundation period are particularly
important for the application examples. The high water level885

of the inundation seemed to play a minor role. These results,
however, can not be applied easily to other models. Usually,
a separate optimization of experimental design makes sense
here.
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