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Abstract

Biogeochemical ocean circulation models used to investigate the role of plankton ecosystems in
global change rely on adjustable parameters to capture the dominant biogeochemical dynamics
of a complex biological system. In principle, optimal parameter values can be estimated by fit-
ting models to observational data, including satellite ocean colour products such as chlorophyll5

that achieve good spatial and temporal coverage of the surface ocean. However, comprehen-
sive parametric analyses require large ensemble experiments that are computationally infeasi-
ble with global 3-D simulations. Site-based simulations provide an efficient alternative but can
only be used to make reliable inferences about global model performance if robust quantitative
descriptions of their relationships with the corresponding 3-D simulations can be established.10

The feasibility of establishing such a relationship is investigated for an intermediate com-
plexity biogeochemistry model (MEDUSA) coupled with a widely-used global ocean model
(NEMO). A site-based mechanistic emulator is constructed for surface chlorophyll output from
this target model as a function of model parameters. The emulator comprises an array of 1-D
simulators and a statistical quantification of the uncertainty in their predictions. The unknown15

parameter-dependent biogeochemical environment, in terms of initial tracer concentrations and
lateral flux information required by the simulators, is a significant source of uncertainty. It is
approximated by a mean environment derived from a small ensemble of 3-D simulations rep-
resenting variability of the target model behaviour over the parameter space of interest. The
performance of two alternative uncertainty quantification schemes is examined: a direct method20

based on comparisons between simulator output and a sample of known target model “truths”
and an indirect method that is only partially reliant on knowledge of target model output.

In general, chlorophyll records at a representative array of oceanic sites are well reproduced.
The use of lateral flux information reduces the 1-D simulator error considerably, consistent with
a major influence of advection at some sites. Emulator robustness is assessed by comparing ac-25

tual error distributions with those predicted. With the direct uncertainty quantification scheme,
the emulator is reasonably robust over all sites. The indirect uncertainty quantification scheme
is less reliable at some sites but scope for improving its performance is identified. The results
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demonstrate the strong potential of the emulation approach to improve the effectiveness of site-
based methods. This represents important progress towards establishing a robust site-based ca-
pability that will allow comprehensive parametric analyses to be achieved for improving global
models and quantifying uncertainty in their predictions.

1 Introduction5

A need for better understanding of the role marine biota will play in influencing the nature and
rate of global change in response to human activities has led to the inclusion of process-based
models of ocean biogeochemistry in ocean circulation models (Sarmiento et al., 1993) and more
recently in models of the whole Earth system (Séférian et al., 2013). They are designed to cap-
ture the dominant responses of complex ecosystems to variability in the physical environment.10

The biogeochemistry models vary in complexity from simple models in which the biota are
represented by single phytoplankton and zooplankton types (e.g. Six and Maier-Reimer, 1996;
Palmer and Totterdell, 2001) to more complex functional type models in which a much larger
range of different planktonic groups are represented (e.g Moore et al., 2004; Gregg et al., 2003;
Le Quéré, 2005; Aumont and Bopp, 2006).15

The process-based models are often referred to as mechanistic, as distinct from statistical
or data-based models. Yet they are also semi-empirical, incorporating adjustable parameters.
Such parameters are important in process-based models of complex systems where incomplete
knowledge and practical limits on the degree of complexity that can be resolved make it im-
possible to design a model that represents all relevant mechanisms. Predictions given by each20

model are thus affected by structural uncertainty, associated with the model’s design, and para-
metric uncertainty, associated with its chosen parameter values. The equivalent parameters in
nature are typically highly variable in space and time and among different organisms present in
any assemblage, making the optimal values particularly elusive. Effective use of ocean observa-
tions to constrain model parameters and reduce parametric uncertainty is necessary to improve25

the predictive skill of particular models and to gain a better understanding of inadequacies in
model design.
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Any rigorous exploration of a biogeochemical model’s parameter space is computationally
intensive, requiring many thousands of simulations. This has generally dictated the use of fast
site-based experiments for parametric analyses, following the pioneering work of Fasham and
Evans (1995) and Matear (1995). Parameters are optimized to fit observations at individual sites
(e.g. Losa et al., 2004; Fasham et al., 2006; Friedrichs et al., 2006, 2007; Dowd, 2011; Kidston5

et al., 2011; Fiechter et al., 2013; Prieß et al., 2013a; Ward et al., 2013) or at multiple sites simul-
taneously (Hurtt and Armstrong, 1999; Schartau and Oschlies, 2003; Hemmings et al., 2004;
Friedrichs et al., 2007; Kane et al., 2011; Xiao and Friedrichs, 2014). In these experiments, the
biogeochemistry model is integrated in a 1-D or 0-D framework representing a single water
column at each site, and a local approximation of the physical environment is used as forcing10

data to drive the simulation.
In the site-based study of Dowd (2011), a sequential data assimilation method with a stochas-

tic configuration of a biogeochemistry model was used to estimate the models’ static parameters
in combination with its time varying state (i.e. its prognostic variables). Sequential methods use
a series of analysis cycles in which analysis steps combine observations with model forecasts,15

taking into account the uncertainties in each. The forecast for each step is initialized from the
previous analysis. Dowd (2011) estimated new joint probability distributions for state and pa-
rameters at each observation time on the basis of the new observations and a previous analysis.
However, in most cases variational inverse methods are used, the aim being to constrain the
parameters of the deterministic free-running model. Parameter values are varied with the objec-20

tive of minimizing or maximizing some function of the model-data differences. The solution is
then the best fit to the complete observational data set that satisfies the model equations exactly
(ignoring error introduced by time discretization in the numerical solver). An exception is made
in the inverse approach of Losa et al. (2004) where the model equations are used as a weak
constraint and both parameters and state are estimated. This allows for sources of simulation25

uncertainty that are not associated with the adjustable parameters, such as structural error or
error in the forcing data.

Sequential data assimilation approaches are particularly useful in short-term forecasting,
where the forecast is highly dependent on the initial state and state estimation is the primary
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goal. However, for long-term future projections that must rely on free-running models, the es-
timation of model parameters is paramount. Methods that preserve the integrity of the model
dynamics are inherently better suited to this problem but simulation error impacting on the state
variables cannot be ignored and a more rigorous treatment of simulation uncertainty is needed
before the potential of these methods can be fully realized (Hemmings and Challenor, 2012).5

In this study, we focus specifically on simulation uncertainty introduced by the use of 1-D
simulations to approximate 3-D model behaviour. The uncertainty is primarily associated with
differences in the representation of the physical environment and differences in the horizontal
fluxes and initial values of biogeochemical properties. Despite this uncertainty, site-based cali-
brations have been shown to improve the predictive skill of 3-D models (Oschlies and Schartau,10

2005; Kane et al., 2011; McDonald et al., 2012). However, the relationship between 1-D and
3-D simulations is not well understood in quantitative terms. Parameter vectors that are optimal
in one context are unlikely to be optimal in the other, inevitably compromising the utility of
established parameter estimation methods.

The lack of information about biogeochemical fluxes associated with horizontal advection15

and diffusion is an obvious source of uncertainty. Some consideration has been given to this
problem. Losa et al. (2004) introduced their weak constraint approach primarily to allow for
the neglect of horizontal transport. Fasham et al. (2006) parametrized diffusive fluxes based on
the analysis of a passive tracer release associated with an iron fertilization experiment, while
Friedrichs et al. (2007) included an advective flux divergence term for nutrients based on 3-D20

model output. Fasham et al. (1999) took a different approach, optimizing parameters in a La-
grangian framework to fit data from a survey of the North Atlantic spring bloom. The survey
followed the track of a drogued buoy to minimize the impact of horizontal advection on the
biogeochemical system under study. More typically though, horizontal fluxes are ignored in
site-based calibration studies.25

In a relatively small number of studies, parameters have been optimized for the biogeochem-
istry model within its host 3-D circulation model. This is practical for limited time and space
domains: Garcia-Gorriz et al. (2003) and Huret et al. (2007) estimated parameters for regional
models by assimilating satellite-derived chlorophyll data over periods of order 1 month. Doron
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et al. (2013) assimilated these data at a single point in time into an eddy-permitting model of
the North Atlantic using an adapted Kalman filter analysis with a perturbed parameter ensem-
ble simulation. The ensemble simulation was similarly of 1 month duration. Fan and Lv (2009)
estimated spatially varying parameters for the global domain but with an assimilation window
limited to 5 days. In contrast, Tjiputra et al. (2007) performed much longer global experiments,5

assimilating seasonal maps of surface chlorophyll and nitrate into a global model of the annual
cycle, but relied on a coarse resolution model (3.5◦ horizontal resolution) and, in common with
a number of other studies, only optimized locally in parameter space.

The type of compromises imposed on parametric analyses of 3-D biogeochemical models by
limited computer resources are generic to many different fields in which computer models are10

used. This problem has motivated the development of statistical emulation techniques that al-
low more comprehensive investigations of parameter space to be achieved. A good introduction
is given by O’Hagan (2006). An emulator provides a prediction of a chosen model output, or
a metric used in its assessment, for any setting of the parameter values, together with a measure
of uncertainty in that prediction. A relatively small ensemble of model runs is required to pro-15

vide training data for emulator construction, although this is still a significant overhead for 3-D
models.

Statistical emulation techniques have been applied to the estimation of marine biogeochemi-
cal model parameters in regional studies. Leeds et al. (2013) used emulators for computational
efficiency in a Bayesian hierarchical framework that linked spatially distributed 1-D simula-20

tions. In other work, emulators were constructed for relatively expensive 3-D simulations to
allow the required coverage of parameter space to be achieved: Hooten et al. (2011) used 50
ensemble members to represent a 7-dimensional parameter space, while Mattern et al. (2012)
used a similar ensemble size in a 2 parameter study.

Although, to the authors’ knowledge, the application of statistical emulators to ocean bio-25

geochemistry has so far been limited to regional studies, they are starting to be used at the
global scale for parametric analyses of other Earth system model components, including the
coupled ocean–atmosphere system (Williamson et al., 2013) and atmospheric aerosol concen-
trations (Lee et al., 2012). These studies involved the use of perturbed parameter ensemble
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simulations with global 3-D models. Williamson et al. (2013) investigated a 30-dimensional
parameter space, benefitting from a very large ensemble generated using climateprediction.net,
a distributed computing project in which personal computers are volunteered by members of the
public. Lee et al. (2012) used a much smaller ensemble (80 members) to investigate paramet-
ric uncertainty over an 8-dimensional parameter space. The ensemble size was computation-5

ally practical owing to the coarse resolution of the model and the limited duration of the runs
(4 months).

The application of statistical emulators to global ocean biogeochemical models would make
investigation of the models’ predictive potential more tractable. However, achieving sufficiently
large training ensembles for periods that fully capture the seasonal variability at an appropri-10

ate spatial resolution will be challenging. Mesoscale and sub-mesoscale dynamics are known
to have a strong impact on biogeochemical processes in the upper ocean (Lévy, 2008), yet
global simulations that resolve the ocean mesoscale require considerable computing resources,
severely limiting ensemble size.

Given the potential for improving the representation of biogeochemical cycles by increasing15

model resolution, avoidance of unnecessary trade-offs between resolution and ensemble size
is desirable. Improving 1-D modelling capabilities is a potential solution. The goal would be
to produce a set of site-based simulators that could serve as an efficient and reliable surrogate
model for emulating arbitrary 3-D model outputs with quantified uncertainty. The number of
sites could be adapted according to the required ensemble size and the resources available. Like20

a statistical emulator, the system would provide a prediction of model output and a measure
of uncertainty in that prediction. We refer to the proposed system as a mechanistic emulator
to distinguish it from statistical site-based emulators (Leeds et al., 2013) that treat the target
model as a black box. For some parametric analyses, a mechanistic emulator of this type would
be sufficient. Where more comprehensive analyses are required it would be used to bridge the25

gap between the 3-D target model and one or more statistical emulators of model outputs or
metrics.

Here we introduce an experimental mechanistic site-based emulator and use it to explore the
feasibility of establishing a robust relationship between 1-D and 3-D simulations. The emulator
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predicts annual cycles of surface chlorophyll output produced by a target model of the global
ocean. The aim is to provide a way of exploiting satellite chlorophyll or related ocean colour
products for making reliable inferences about the target model performance for arbitrary trial
parameter vectors, without having to run the corresponding 3-D simulations.

Section 2 describes the components of the mechanistic emulator and the method for its con-5

struction and Sect. 3 gives the experimental method used to evaluate its performance. The results
are presented in Sect. 4. In Sect. 5 the findings are discussed with regard to the potential of the
emulation scheme as an enabling tool for improved parametric analyses of global models, using
satellite ocean colour data in combination with in situ observations. A summary of the work is
given in Sect. 6.10

2 The mechanistic emulator

The site-based emulator combines a surrogate model with a probabilistic prediction of its error
with respect to the 3-D target model. The surrogate model takes the form of an array of 1-D
simulators. Variation of the predicted error distribution of surface chlorophyll output from the
surrogate model over its time and space domain is fully described. The intention is to establish15

a form of traceability between the surrogate model and the target model that allows robust
inferences about target model skill to be made from analyses of surrogate model output.

Inferences about model performance are often made on the basis of a cost function, summa-
rizing the misfit of a simulation to observational data. The cost function typically takes the form

20

J(yP) = (yP−yO)TR−1(yP−yO) (1)

where yO is a vector of n observations, yP is the corresponding vector of predicted values and
R−1 is the inverse of the n×n error covariance matrix (Stow et al., 2009). The superscript T is
the transpose operator. The error covariance matrix describes the predicted error structure of the
model output. It weights the contributions of individual model-data misfits according to their25

significance, taking into account prior expectations of uncertainty.
8
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It is commonly assumed that the individual misfits are independent. The off-diagonal ele-
ments of R are then zero and the cost function can be written

J(yP) =
1

n

n∑
i=1

(Pi−Oi)2
σ2ii

(2)

where Pi and Oi are the elements of yP and yO respectively and σ2ii represents the diagonal
elements of R.5

If both observation and simulation error are relevant in an analysis, the error variance σ2ii is the
predicted variance of the combined error from both sources. When using a surrogate model, the
simulation error includes the surrogate model error with respect to the target model. It may also
include error from other sources such as target model input data or structural error, depending
on the objective of the analysis. Hemmings and Challenor (2012) discuss cost function design10

for different analyses in more detail.
Predicted surrogate model error statistics can be used in a cost function to make the function

more informative about the likely misfit between the target model and the observations. They
do this by increasing the weight given to model-data misfit where the surrogate model error
is expected to be small and decreasing the weight elsewhere. The cost function can then be15

used to evaluate the goodness-of-fit of the target model simulation to the observations, given
the surrogate model output.

In the experimental emulator presented here, the statistical prediction of the error with re-
spect to the target model is restricted to its mean and variance at individual data points. If the
emulator were used in a cost function-based analysis, the predicted error variance would con-20

tribute directly to σ2ii and the predicted mean error would be used to give bias-corrected values
for Pi. Estimation of the mean and variance is a first step towards a more complete uncertainty
quantification that would include the error covariance structure required to fully specify R.

The target model in the present study is NEMO-MEDUSA, combining the MEDUSA 1.0
biogeochemistry model (Model for Ecosystem Dynamics, carbon Utilisation, Sequestration and25

Acidification) described by Yool et al. (2011) with the NEMO ocean model (Nucleus for Euro-
pean Modelling of the Ocean; Madec, 2008).
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2.1 The biogeochemical simulator

The 1-D simulator incorporates a representation of the biogeochemistry that is identical to that
in the target model. MEDUSA is an intermediate complexity model, representing the plankton
ecosystem by 11 compartments in the form of biogeochemical tracers. These include 6 nitro-
gen pools for two phytoplankton groups (diatoms and non-diatoms), two zooplankton groups5

(micro- and meso-zooplankton), slow-sinking detritus and dissolved inorganic nitrogen. The
remaining compartments represent two additional dissolved nutrients required by the phyto-
plankton (silicon and iron), the chlorophyll concentrations associated with the two phytoplank-
ton types and the silicon concentration associated with the diatoms. The effect of fast-sinking
detritus is represented by instantaneous vertical redistribution of material in the water column.10

1-D integrations of MEDUSA are performed in a 3-D context where physical and biogeo-
chemical information from the target model provide environmental input data for the site-based
simulations. The physical environment required by the 1-D simulator is independent of the
biogeochemical model parameters. However, the biogeochemical environment is parameter-
dependent making its representation in a site-based parametric analysis less straightforward.15

The 1-D simulator for MEDUSA is configured using the Marine Model Optimization Testbed
facility described by Hemmings and Challenor (2012). The testbed software, MarMOT 1.1, is
open source and freely available as detailed in Appendix A.

The MEDUSA state variables are the biogeochemical tracer concentrations at each model
grid point. The evolution equation for the concentration cik of the ith biogeochemical tracer at20

depth level k in the 1-D simulator is

dcik
dt

=− (wp +wi)
∂ci
∂z

+
∂

∂z

(
Kρ

∂ci
∂z

)
(3)

+SMSik(C,F ) + pik(Ck,p
?
jk).

The first two terms represent the tendencies (i.e. rates of change) due to vertical flux diver-25

gence. wp is the vertical velocity of the water, wi is the active vertical velocity of the biological
material relative to the water andKρ is the turbulent diffusion coefficient. SMSik is the source-
minus-sink term from the MEDUSA plankton model. It is a function of the state vector C and
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a forcing vector F comprising temperature, downwelling solar radiation at the sea surface and
input of soluble iron from atmospheric dust deposition. SMSik is depth-dependent because the
light available for phytoplankton photosynthesis and the nutrient sources from the remineral-
ization of fast-sinking detritus depend on tracer concentrations at k− 1 shallower levels. wi is
assigned a constant sinking rate for the detritus tracer, corresponding to the MEDUSA sinking5

rate parameter for slow-sinking detritus. It is zero for all other tracers. Values for wp, Kρ and F
are provided by the physical environment from the target model.

The final term in Eq. (3) is a perturbation term used to represent the effect of horizontal flux
divergence. The divergence tendency for the ith tracer pik depends on the local state Ck (a vec-
tor containing the subset of tracer concentrations at depth level k) and an applied perturbation10

p?jk. Tracer-specific perturbations are applied to tracers representing dissolved nutrients and the
nitrogen content of the plankton. These are referred to as primary tracers. The phytoplankton
chlorophyll and silicon tracers (secondary tracers) are affected indirectly, following the pertur-
bations to the corresponding nitrogen tracers in such a way as to preserve the phytoplankton
chlorophyll : nitrogen and silicon : nitrogen ratios. For a primary tracer, j = i. For a secondary15

tracer, j indexes the relevant primary tracer.
The input data set required to define the biogeochemical environment comprises the initial

state and the applied perturbations controlling the tracers’ horizontal flux divergence tendencies.
This is the biogeochemical environment vector

B = {C(to),P
?}. (4)20

C(to) is the initial state vector containing the concentrations of the 11 tracers at each depth level
on the model grid at time to and the vector P ? contains applied perturbations at each depth level
for the 8 primary tracers at 5 day period mid-points for t > to. Perturbations represent the effect
of lateral advection inferred from an analysis of local currents and upstream property gradients
in the 3-D model output. The effect of horizontal diffusion is ignored.25

The advective tendencies of individual tracers are dependent on their upstream gradients and
often tend to co-vary with their local concentrations. It is important to give some attention to
preserving such relationships that are prevalent in the 3-D simulation as far as possible. A partic-
ular example of a prevailing relationship occurs when tracer concentrations are low. If we have
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a negative advective tendency it should increase towards zero as the concentration approaches
zero, otherwise the concentration will become negative. In the 3-D simulation, this happens
naturally because the upstream gradient driving it tends towards zero (assuming the upstream
concentration cannot be negative). In the 1-D simulation, adaptation of tendencies to the local
concentration is necessary to counter any inconsistencies between the two. This concentration5

dependency is introduced by using applied perturbations that represent rates of change of trans-
formed tracers. The choice of transformation determines the form of the dependency and is an
important consideration in simulator design.

Analysis of 3-D simulations indicate that the concentration dependency of horizontal gra-
dients varies temporally and spatially and between different tracers. Use of the square root10

transformation protects against the evolution of negative concentrations and was found by Hem-
mings and Challenor (2012) to be a reasonable compromise between using untransformed and
log-transformed concentrations. A square root transformation was therefore chosen for all pri-
mary tracers at all sites so that a perturbation p? specifies the rate of change of

√
c, where c is

the tracer concentration. The implied concentration tendency is then15

p= 2
√
cp?. (5)

For secondary tracers the tendency is

pi =
ci
cj
pj (6)

where i is the secondary tracer index and j indexes the associated primary tracer. The applied
perturbation diagnosed from 3-D model output is20

p? =−uh · ∇h

√
c (7)

where the subscript h denotes vectors in the horizontal plane and uh is the current velocity.
Differences between the simulator output and that of the target model arise due to the com-

bined effects of a number of sources of simulation error. Specifically these are approximation
error in the physical environment variables due to temporal averaging of the 3-D target model25
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data on which they are based, error in the advective flux divergence tendencies, error introduced
by ignoring horizontal diffusion and differences in solver numerics. Any differences between
the initial state C(to) and the target model state at time to will contribute an additional source
of error.

2.2 The uninformed simulator and biogeochemical environment model5

In a calibration exercise or other parametric analysis, the 1-D simulator is used to learn about
the likely behavior of 3-D target model simulations that have not been performed. For an arbi-
trary trial parameter vector xo, the parameter-specific biogeochemical environment B(xo) is
typically unknown. Instead we use an environment vector derived from a statistical model. The
corresponding 1-D simulator is referred to as the uninformed simulator indicating that it is not10

informed by parameter-specific environment data. Our surrogate model consists of an array of
uninformed simulators at different sites, spanning a range of oceanic conditions.

The statistical model used to define the biogeochemical environment for the uninformed sim-
ulator is constructed with reference to a small ensemble of 3-D simulations, designed to be
representative of the infinite set of 3-D simulations covering a parameter space of interest χ. If15

we denote an output value from the simulator with biogeochemical environment vector B and
parameter vector x by g(B,x) and the corresponding output from the target model by f(x),
then for parameter vector xo

f(xo) = g
(
B,xo

)
+ ε1 (8)

where B is an estimate of the expected environment E[B(x)] : x ∈ χ and ε1 is a stochastic20

residual. This is the uninformed simulator residual and its negated value is the uninformed
simulator error. The simulator output may have biases so the residual ε1 is not assumed to have
zero mean.

The environment model consists of a model for E[B(x)], referred to as the mean environ-
ment model, and a stochastic environment generator that is used in quantifying the uncertainty25

of the simulator output. The environment model assumes multi-variate Gaussian probability
13
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distributions for a vector S(to) that specifies the initial state and for the applied advective flux
perturbation vector P ?. S is an alternative description of the state C. It comprises elements

√
c

for each primary tracer concentration c in C and composition ratios ci/cj for each secondary
tracer concentration ci in C. cj is the concentration of the associated primary tracer at the same
depth level. An estimate of E[B(x)] is given by the ensemble means of S(to) and P ? from the5

3-D ensemble.

2.3 The uninformed emulator

If an array of 1-D simulators is to be used to make robust inferences about the target model, it
must be combined with uncertainty estimates for its predictions of target model output in the
form of predicted error statistics. The combination of the uninformed simulator array with its10

predicted error statistics is referred to here as the uninformed emulator. This is the complete
mechanistic emulator for the target model.

Two different methods are used in this study for quantifying uncertainty in the uninformed
simulator output: a direct method and an indirect method. In the direct method, statistics for ε1
are estimated by comparing simulator and target model output for matching parameter vectors,15

using the target model output available from our small 3-D ensemble. In the indirect method,
the uncertainty introduced by using the mean environment vector B̄ in place of the unknown
environment vector B(xo) is treated separately from that due to other simulator error sources.
It is quantified by an uncertainty analysis, using the stochastic environment generator to create
multiple realizations of the unknown environment. Uncertainty from other sources is estimated20

by applying the direct method to g[B(xo),xo], referred to as the informed simulator. The indi-
rect method is more complicated to apply than the direct method but is less dependent on the
small target model ensemble. This means that the indirect method could be more robust than the
direct method in situations where the ensemble poorly represents the variability of target model
solutions over the parameter space χ.25
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2.3.1 Direct method for uncertainty quantification

In the direct method, values of ε1 for the variable of interest at each point in space and time are
determined from matching pairs of uninformed simulator and target model output values using
Eq. (8). Statistics for ε1 are then estimated from this sample. A conceptual overview of the data
flow in the emulator construction and evaluation process is given in Fig. 1.5

The processing is divided into a construction phase and an application phase. In a practical
application, the construction phase is intended for single execution, whereas the application
phase must be executed for each trial parameter vector. The procedure for assessment of the
uninformed emulator against a known truth is shown as an extension to the application phase.

Error statistics must be determined using target model data that are independent from those10

used in the simulation. This means that, in the construction phase, target model ensemble mem-
bers used to determine ε1 for the simulator output must be different from those used to construct
the mean environment model for the simulator input. Furthermore, any target model ensemble
member used to assess the uninformed emulator performance must be different from any en-
semble member used in the construction phase.15

2.3.2 Indirect method for uncertainty quantification

The indirect method requires an explicit quantification of the uncertainty associated with use
of the mean environment vector B in lieu of unavailable parameter-specific environment infor-
mation. Reliance on B introduces a parameter-dependent source of environment-induced error
into the simulation. The resulting contribution to simulation error is referred to as the paramet-20

ric environment error. To define it, we consider a perfect simulator gT(., .), such that

f(xo) = gT[BT(xo),xo] (9)

where BT is the complete and accurate description of the local biogeochemical environment
in the 3-D simulation, including advective and diffusive flux perturbations. The simulator is
perfect in the sense that it exactly reproduces the results of the 3-D simulation. Introducing25

parametric uncertainty in the biogeochemical environment and representing the environment
15
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by its expectation then gives

f(xo) = gT{E[BT(x)],xo}+ εB : x ∈ χ. (10)

where εB is a stochastic residual, possibly with a non-zero mean. This is the negated parametric
environment error or parametric environment residual.

It is important to note that many different designs are possible for a perfect simulator satisfy-5

ing Eq. (9), having different formulations for concentration dependency in the flux divergence
tendencies. Variants of the applied perturbation P ? will give different results for the simulator
term in Eq. (10), where the environment is not consistent with the simulation state, and there-
fore different residuals. The parametric environment error is therefore not just a property of the
target model but depends also on the simulator design.10

Combining Eqs. (8) and (10), the residual for the target model output with respect to the
uninformed simulator output can be expressed as

ε1 = εS + εB (11)

where εS is a stochastic residual given by

εS = gT{E[BT(x)],xo}− g
(
B,xo

)
. (12)15

εS is the departure of the hypothetical output of the perfect simulator with the true mean envi-
ronment from the output of the uninformed simulator. The first term describes a perfect mean
environment simulation, while the second term described its approximation by the simulator. In
this context, we can refer to the uninformed simulator as a mean environment simulator. We re-
fer to εS as the mean environment simulation residual. Mean environment simulation error (the20

negated residual) is caused by basic simulation errors that are not associated with parametric
uncertainty in the environment.

It is not possible to evaluate the perfect simulator term in Eq. (12) and directly determine
values for εS. However, we can get a handle on the impact of basic simulation errors from
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analysing the informed simulator. The relationship between the target model output for xo and
that of the corresponding informed simulator is given by

f(xo) = g[B(xo),xo] + ε2 (13)

where B(xo) is the environment data derived from 3-D simulation output for xo and ε2 is
a stochastic residual, possibly having non-zero mean, referred to as the informed simulator5

residual. Its negated value is the informed simulator error.
The residuals ε2 and εS are closely related, in that the input B(xo) in the informed simulator

is intended to approximate the true parameter-specific environment in the same way that B
in the uninformed simulator (or mean environment simulator) is intended to approximate the
perfect simulator input E[BT(x)]. Both residuals are affected by basic simulation errors. The10

difference is that the environment in Eq. (12) is not specific to the parameter vector xo.
The uninformed simulator is one of a set of generic simulators, in which the constraint that the

input environment is intended to represent the parameter-specific environment does not apply.
In generic simulators, inconsistencies between the environment and the simulation state are
likely to be greater than in the informed simulator. The mean environment simulation residual εS15

may therefore be more sensitive to the concentration-dependency formulation than the informed
simulator residual ε2. Nevertheless, to model εS we make the pragmatic assumption that it is
identically distributed to ε2. Statistics for ε2 are determined by direct comparison of informed
simulator output with true output records from the target model.

The model for the parametric environment residual εB is derived from a parametric uncer-20

tainty analysis, following Hemmings and Challenor (2012). The environment corresponding
to the trial parameter vector is unknown so we examine the distribution of the residual over
many possible environments, aiming to achieve adequate coverage of the environment space
that maps to the parameter space of interest. The method involves running a 1-D ensemble
simulation based on a sample of environment realizations. These are generated using the mean25

environment model and stochastic environment generator introduced in Sect. 2.2.
The environment generator uses independent statistical models for generating the initial state

and the input flux perturbations. For each of these two data sets, separate multi-variate Gaussian
17
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models are constructed using Empirical Orthogonal Functions that capture the dominant modes
of variability in the target model ensemble output at each site. The statistical models for the
initial state preserve spatial covariances (in the vertical) and covariances between the biogeo-
chemical properties, as characterized by the first 5 EOFs of the sample anomalies, anomalies
being determined with respect to the ensemble means. The statistical models for the advec-5

tive flux perturbations preserve temporal and spatial covariances and covariances between the 8
primary tracers, again as characterized by the first 5 EOFs of the anomalies.

To derive the statistical model for a simulator’s initial state from a target model ensemble of
size n, an n×m matrix Y3d is constructed containing the n available instances of the initial
state, as defined by the alternative state vector S. (m is the number of elements in S.) If y·j is10

the mean and s2j the variance of the jth column of Y3d, then the matrix Z3d with elements

zij =
yij − y·j
sj

(14)

is the normalized form of Y3d for which each column has zero mean and unit variance.
The environment generator uses the eigenvalues and eigenvectors obtained from the spectral

decomposition of the correlation matrix for Z3d:15

Σ = ZT
3dZ3d = VΛVT. (15)

Λ is a diagonal matrix with diagonal elements λ1 ≥ λ2. . .≥ λm containing the eigenvalues of
Σ. Columns of V are the corresponding eigenvectors.

A data set containing N realizations of the alternative state vector is generated by

Z1d = Q1Λ
1
2
p VT

p +Q2

√
1− tr(Λ) (16)20

where the subscript p is used to indicate the first p rows and columns of Λ and columns of V.
(Here p= 5.) Q1 is an n× p matrix of random values and Q2 is a column vector of random
values. The random variates are independent and normally distributed with zero mean and unit
variance. Z1d is back-transformed (re-arranging Eq. 14) to obtain an N ×m matrix containing
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N realizations of the state vector S(to) for the 1-D environment ensemble. The same analysis
is applied to the n available instances of the advective flux perturbation vectors from the 3-D
ensemble to generate N realizations of the P? vector.

Each of the N randomly generated environment realizations is used to provide a separate
estimate of the parametric environment residual corresponding to a possible truth. For the ith5

ensemble member this is

εBi = g(Bi,xo)− g
(
B,xo

)
(17)

where Bi is the ith environment realization generated by the environment model. For the
true environment, Bi would be B(xo), as in the informed simulator. The environment resid-
ual statistics var(εB) and E(εB) are approximated by var(εBi) and E(εBi) : i ∈ {1, . . .,N}.10

In Eq. (17), we rely on the simulator g(., .) to provide estimates for the terms f(xo) and
gT(E[BT(x)],xo) in Eq. (10). Thus, the estimated environment residual statistics are to some
extent affected by basic simulation errors and will not be strictly independent of the statistics
for the mean environment simulation residual εS.

It should be noted that the residual εB and its predicted distribution are dependent on the trial15

parameter vector xo. Hemmings and Challenor (2012) demonstrated that the dependency of en-
vironment error variance estimates on variations in the simulation trajectory over the parameter
space is potentially important in the context of a parametric analysis. For this reason, estimation
of the environment residual statistics must be performed for each trial parameter vector in the
analysis, so is a significant overhead.20

If the underlying distributions of the residuals εS and εB are taken to be Gaussian then they are
fully described by their means and variances. Statistics for the uninformed simulator residual
ε1 are obtained under the assumption that εS and εB can be considered only weakly dependent
such that

E(ε1) = E(εS) + E(εB) (18)25

and

var(ε1)≈ var(εS) + var(εB). (19)
19
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Any indirect dependency between εS and εB that might arise from their dependencies on the
simulator design are ignored. The uninformed simulator statistics are determined by substituting
our estimates for the residual statistics for each error component in Eqs. (18) and (19). In doing
so, we also ignore potential dependency arising from the effect of basic simulation errors on
var(εBi).5

A conceptual overview of the data flow for the indirect method is given in Fig. 2. Once
again, the processing is divided into a construction phase intended for single execution and an
application phase to be applied with each trial parameter vector. The procedure for assessment
of the uninformed emulator is included in the application phase.

3 Experimental method10

Anticipating the use of satellite ocean colour data for model calibration, an emulator was con-
structed for the NEMO-MEDUSA surface chlorophyll output at an array of oceanic sites. The
surface chlorophyll concentration is the sum of the surface level chlorophyll concentrations for
the two phytoplankton types. Data for defining the biogeochemical environment were provided
by a 10 member reference ensemble of global 3-D simulations with the NEMO-MEDUSA tar-15

get model. For emulator assessment, the known “truth” for a given trial parameter vector is
defined by chlorophyll output from a target model simulation with that parameter vector.

3.1 1-D experimental framework

To provide a representative range of oceanic conditions for the experiments, 12 sites were se-
lected, located on a meridional transect along 20◦ W in the North Atlantic at 5◦ intervals from20

5 to 60◦ N. This spans the sub-tropical gyre and temperate regions further north where large
spring blooms are typical, extending into the sub-polar gyre south of Iceland. To the south, it
also crosses a high productivity region off the East African coast between the shelf break and
the Cape Verde Islands.
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Physical forcing data for the 1-D experiments, in the form of vertical velocity wp, the vertical
diffusion coefficient Kρ and temperature are taken from 5 day mean output common to all of
the 3-D NEMO-MEDUSA simulations. 5 day mean time series of downwelling solar radiation
at the sea surface and the soluble iron flux from dust deposition are likewise taken from 5 day
data common to all reference simulations.5

Biogeochemical environment vectors for the 1-D experiments are based on initial state vec-
tors and applied perturbation vectors from 1 or more 3-D simulations. Initial concentrations are
taken from NEMO-MEDUSA restart files. Approximate values for the applied perturbation p?

are derived from the target model’s 5 day mean current vector and primary tracer concentration
fields using Eq. (7).10

1-D simulations use the same vertical grid as the 3-D NEMO-MEDUSA simulations. The
dynamics of interest are largely confined to the upper ocean where the seasonal signal is most
pronounced. A depth threshold of 1000 m was therefore chosen for the simulations, reducing
the number of model levels from 63 to 37 with consequent computational savings. Level 36
spans the 1000 m threshold and Level 37 is included purely to act as a sink for detritus entering15

from above. In the target model, sinking detritus is re-mineralized at the bottom of the water
column. In the simulator it is re-mineralized in Level 37 instead and the vertical velocity and
diffusion at the bottom of Level 36 are set to zero to prevent any interaction between Level 37
and the water column above. Zeroing the vertical velocity does have the effect of introducing an
anomalous divergence in the vertical flow but the effect on the overall simulation is negligible.20

The upper ocean levels have boundaries at depths 6, 12, 19, 25, 32, 39, 46, 54, 62, 71, 80, 90,
100, 112, 124, 137, 152, 168, 187, 207, 229, 254, 281, 312, 347, 386, 429, 477, 531, 591, 656,
729, 809, 896, 991 and 1093 m.

The schemes used for vertical tracer transport are the same as those used in the target model
and are described by Madec (2008). The diffusion scheme is an implicit scheme and the ad-25

vection scheme is the Monotonic Upstream Scheme for Conservative Laws (Van Leer, 1977;
Hourdin and Armengaud, 1999), introduced into NEMO for use in biogeochemical modelling
studies by Lévy et al. (2001). A 1 h forward Euler time step is used.
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3.2 Model parameter space

Full details of the derivation of the parameter space for the emulation experiments are given in
Appendix B. Initially, a 28-dimensional parameter space of interest was defined; 28 parameters
of particular relevance to the seasonal plankton dynamics in the upper ocean were selected from
a set of 60 potential input parameters in the MarMOT 1.1 implementation of MEDUSA. The5

parameter bounds were defined according to a set of rules designed to ensure that parameter
values within the bounds are biologically plausible with respect to their defined roles.

The set of adjustable input parameters differs from the set of internal model parameters de-
fined by Yool et al. (2011) due to a number of modifications made to facilitate parametric analy-
ses. For example, where pairs of parameters such as rate parameters are used in the model for the10

two different phytoplankton types, the diatom parameter has been replaced in the input vector
by the ratio of the two internal parameters. The input non-diatom parameter then scales both of
the internal phytoplankton parameter values without affecting their relationship, while the new
input parameter controls the relationship. The zooplankton parameters are treated similarly. The
changes allow us to consider the effects of a phytoplankton rate parameter or a zooplankton rate15

parameter on the system without having to consider the impact of directly changing the rela-
tionship between rates for closely related plankton types. It is then easier to interpret parameter
effects at a high level of abstraction which facilitates comparison with simpler models where
parameters represent rates for more aggregated plankton compartments.

The dimensionality of the initial parameter space was reduced further with reference to a sen-20

sitivity analysis, performed at the experimental sites, to identify parameters that are influential
with respect to annual primary production and sinking particle flux outputs from the model (see
Appendix B). Improving the reliability of these outputs in the target model will be important
for understanding and predicting change in the global carbon cycle. 8 model parameters were
chosen on the basis of the findings. The corresponding parameter space is defined by Table 1.25

One finding of the sensitivity analysis was that the input parameters controlling the relation-
ship between associated internal parameters for different plankton types were less influential
than the input parameters exerting control over the different plankton types jointly. None of
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the input parameters from the first set were selected. The mapping of input parameters to in-
ternal parameters means that varying any of the 5 non-diatom phytoplankton parameters in
Table 1 will also change the corresponding internal diatom parameters in proportion. The non-
diatom density-independent loss rate and half-saturation concentration for density-dependent
loss will additionally affect the corresponding internal parameters for both zooplankton types5

in proportion and the microzooplankton grazing half-saturation concentration will affect the
corresponding internal parameter for mesozooplankton in the same way.

3.3 3-D reference simulations

A 10 member ensemble of 3-D simulations was used to create a reference sample of NEMO-
MEDUSA output data that is representative of variability in the target model solution over the10

defined parameter space. The 10 parameter vectors are distributed in parameter space accord-
ing to a Latin hypercube design (McKay et al., 1979). For improved coverage, a “maximin"
criterion (Johnson et al., 1990) was applied to 1000 randomly generated hypercubes: the hy-
percube design is selected that maximizes the smallest Euclidean distance between parameter
vector pairs in terms of their positions on a parameter space grid with an equal number of in-15

tervals in each dimension. Grid intervals are in log units for rate parameters and half-saturation
concentrations.

The chosen parameter vectors are given in Table 2. NEMO-MEDUSA integrations were per-
formed for each of the 10 parameter vectors to provide representative output for a 2 year period,
beginning in 1997. The second year, 1998, is the first complete year for which satellite ocean20

colour data from the SeaWiFS sensor are available (although these data are not used in the
present study). The integrations, at 1◦ horizontal resolution, were initialized from the NEMO-
MEDUSA simulation of Yool et al. (2011) at the beginning of 1995 and integrated for 4 years
with their respective modified parameter sets, thereby allowing a 2 year spin-up period prior to
any analysis to attenuate the worst effects of transient behaviour with respect to the seasonal25

cycle in the upper ocean. A longer spin-up time would normally be envisaged for a practical
application, consistent with the intended use of the target model.
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The 3-D reference sample is used in two ways. Chlorophyll records are used for evaluating 1-
D simulation error, while the initial concentrations and horizontal gradients of the biogeochem-
ical tracers are used to provide parameter-specific environment information for 1-D simulator
construction.

3.4 Emulator construction and assessment5

Performance of the basic 1-D simulator array is evaluated, with respect to surface chlorophyll,
for a set of trial parameter vectors for which the true target model output is known. The per-
formance of emulators constructed using the two uncertainty quantification methods is then
assessed. Finally, to explore the importance of the lateral flux perturbations, we assess the per-
formance of simulator arrays in which these are omitted. In this context, the behaviour of an10

alternative array employing informed simulators is examined in addition to that of the unin-
formed simulator array used in the emulator. Doing this allows us to see the impact of omitting
lateral flux perturbations in a scenario where other error sources are minimized. The experimen-
tal methods for the assessments are as follows.

3.4.1 Simulator assessment15

Informed simulator skill is described by error statistics calculated from a set of 10 experiments
with the representative parameter vectors defined in Table 2, so that each experiment corre-
sponds to one of the available 3-D reference simulations. In each experiment, the informed sim-
ulator is initialized at the start of 1997 and run for 2 years. If the set of representative parameter
vectors is denoted by X = {x1, . . .x10} then the trial parameter vector for the ith experiment is20

xi and the environment is defined by the 3-D ensemble member with parameter vector xi.
The error statistics describing the skill of the uninformed simulator were determined from 10

similar experiments, covering the same time period. One experiment was performed for each
parameter vector in X but simulator construction was performed on a leave-one-out basis: in
the ith experiment, the trial parameter vector is xi and the mean environment is derived from the25

9 NEMO-MEDUSA ensemble members with x 6= xi, x ∈X , leaving the NEMO-MEDUSA
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output f(xi) as independent data for validation. Thus, each experiment uses a slightly different
version of the simulator, constructed by applying the same method to a different 9 member
ensemble.

Error statistics are calculated with respect to the log-transformed 5 day mean chlorophyll out-
put. The log transformation applied to the 5 day means acts to stabilize the error variance which5

otherwise tends to increase with increasing chlorophyll concentration. Its use in the analysis of
surface chlorophyll variability is strongly supported by theoretical considerations and empirical
data (Campbell, 1995).

3.4.2 Assessment of the full emulator

Validation of the complete uninformed emulator for surface chlorophyll is by analysis of the10

results from the 10 leave-one-out experiments, taking into account the predicted simulator error
statistics to determine the emulator robustness. These uncertainty estimates are, like the sim-
ulator itself, required to be independent of parameter-specific environment information. Thus,
for the ith experiment, they are derived using the 9 NEMO-MEDUSA ensemble members with
x 6= xi. The uninformed emulator uncertainty is quantified using the direct and indirect meth-15

ods.
When the indirect method is used, the 9 NEMO-MEDUSA ensemble members are used to

derive statistics for the two component residuals εS and εB. In the estimation of the statistics for
the mean environment simulation residual εS (assumed identically distributed to the informed
simulator residual ε2), the 3-D ensemble members are required for comparison with the corre-20

sponding informed simulators to determine informed simulator error. In the estimation of the
statistics for the parametric environment residual εB, the 3-D ensemble is required for building
the environment model used in the parametric uncertainty analysis.

When the direct method is used, the 9 NEMO-MEDUSA ensemble members are used to de-
rive statistics for the uninformed simulator residual ε1. Each of the 9 corresponding uninformed25

simulators require independent data for their mean environment input. In the ith experiment, the
mean environment for the uninformed simulator with parameter vector xj is derived from the 8
NEMO-MEDUSA members with x 6= xi∩x 6= xj . As a result, simulators must be constructed
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with 90 different mean environment estimates to calculate the uncertainty estimates for the 10
experiments.

For the uncertainty quantification analyses, Gaussian error distributions in log-transformed
chlorophyll are assumed so that the resulting probability density functions for the residuals are
fully described by their mean and variance, both of which are allowed to vary in time and be-5

tween sites. The residuals are defined with respect to log-transformed 5 day mean chlorophyll
concentrations. Their predicted distributions are described by their monthly means and vari-
ances, interpolated to 5 day intervals. Appendix C gives the estimation method for the residual
statistics and the resulting time series.

4 Results10

The surface chlorophyll records from the 3-D NEMO-MEDUSA reference ensemble at each
of the experimental sites are shown in Fig. 3. This shows the spatial variation in chlorophyll
from values a little above 0.001 mg m−3 in the oligotrophic gyre at 30◦ N and 35◦ N for Param-
eter Set 6 to seasonal highs associated with the spring bloom in temperate regions (45–60◦ N),
approaching 10 mg m−3 for a number of the parameter vectors. It also illustrates the variabil-15

ity in the seasonal response of the plankton dynamics which is generally stronger at the more
northerly sites.

The variation between records produced by different parameter vectors is large compared
with the seasonal variability. At some sites, particularly 5–10◦ N and 25–35◦ N, the parameter
dependency manifests primarily as a control on the overall chlorophyll concentration level in20

the surface layer, throughout the annual cycles. These are generally the more oligotrophic sites,
where concentrations remain below or very close to 1 mg m−3 for all parameter vectors. At
other sites, particularly in the north, the different parameters also have a notable influence on
the dynamic range and there is some evidence of an impact on the characteristics of the spring
bloom.25

Some parameter vectors tend to have the same effect on overall surface chlorophyll levels at
all sites. For example, Parameter Set 10 gives elevated levels over the whole data set. However,
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this is not generally the case. Parameter Set 6, for example, shows a strong tendency to give low
chlorophyll concentrations at many of the sites but gives some of the higher concentrations at
55 and 60◦ N. With this parameter vector, the phytoplankton light-response controlled by αPn
is exceptionally strong and nutrient-limitation is reduced by low half-saturation concentrations
kN,Pn and kFe,Pn. As a result, the phytoplankton can achieve very high growth rates. This can5

cause blooms that lead to long-term nutrient depletion as a consequence of organic material
sinking out of the euphotic zone. Subsequent growth is then inhibited. At 4 sites (5, 10, 30
and 35◦ N), nitrogen depletion during the 2 year spin-up period results in very low chlorophyll
concentrations at the start of 1997 which remain relatively low throughout 1997 and 1998.

Parameter Sets 1 and 4 also lead to some interesting site-specific impacts. They are associated10

with very low winter-time chlorophyll concentrations at the most northerly sites, particularly in
1997, although are associated with some of the highest concentrations throughout 1997 and
1998 at the most southerly sites. These parameter vectors combine low αPn values with low
values for the grazing half-saturation concentration kµ, reducing phytoplankton production at
low light levels and making them more susceptible to zooplankton grazing. This makes the15

phytoplankton less well-suited to over-wintering at the high latitude sites where light availability
is very low due to the combination of low surface irradiance and deep winter mixing.

The strong variation between parameter vectors indicates the potential for significant con-
straints on the parameter values to be realized by the assimilation of satellite chlorophyll data.

4.1 Emulator prediction of target model output20

Chlorophyll concentrations given by the uninformed simulator at all sites are compared against
the corresponding values from the matching 3-D experiment in Fig. 4. Data are shown for the
1998 annual cycle only so are representative of the simulator performance one year on from its
initialization year, during which errors have had time to develop.

The correlation between simulator and target model values is good. Pearson’s correlation co-25

efficient r for the simulator and target model output is 0.91, indicating that 83 % of the variance
in the log-transformed surface chlorophyll from the simulator array is explained by the target
model output. There are some notable examples of poor performance though. In particular, the
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results for Parameter Set 6 indicate a strong positive bias, with the simulator array overesti-
mating some surface chlorophyll values by an order of magnitude. There are some fairly large
negative biases for other parameter sets, notably Parameter Sets 7 and 10 at mid-range con-
centrations, although these are less systematic. Also, the simulator array poorly reproduces the
relatively low variability in chlorophyll associated with Parameter Set 1.5

The chlorophyll output from the uninformed emulator includes a bias correction term which
depends on the uncertainty quantification method. (This corrects for spatio-temporal biases
rather than for parameter-related biases.) When using the direct uncertainty quantification
method, the bias-corrected error in log-transformed 5 day mean chlorophyll is

dUd = g
(
B,xo

)
+u1− f(xo) (20)10

where u1 is our estimate of E(ε1). When using the indirect method, the bias correction includes
corrections for both the mean environment simulation bias and the bias associated with para-
metric environment uncertainty. The bias-corrected error is then

dUi = g
(
B,xo

)
+uS +uB(xo)− f(xo) (21)

where uS and uB are our estimates of E(εS) and E(εB) respectively and B is our estimate of15

the mean environment. The estimates u1 and uS were determined without reference to results
for Parameter Set 6. These were excluded on the basis of the unrepresentative simulator perfor-
mance, to avoid excessive influence from a single outlier. Time series of u2 and uS are therefore
based on an ensemble size of 8 (or 9, when Parameter Set 6 is the trial parameter vector).

Error statistics for the uninformed emulator results are given in Fig. 5. Results are presented20

for the basic simulator array with no bias correction (u1 = uS = uB = 0) and for the full emu-
lator with bias correction. There are only minor differences between the mean and r.m.s. values
for dUd and dUi.

Biases are reduced by the emulator’s bias correction scheme, irrespective of the method used.
Time series of simulator bias before and after correction show that in both cases the bias correc-25

tion is effective at all sites, with the possible exception of 20◦ N where dUi shows the introduc-
tion of a negative bias in the summer of 1998 when using the indirect uncertainty quantification
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method. In particular, note that the summer 1998 bias at 60◦ N is largely removed and the cor-
rection is particularly effective in removing negative bias at some of the more oligototrophic
sites (5◦ N and 25–30◦ N) and at 50◦ N in 1997.

The relatively high r.m.s. errors for early 1997 at most sites are the consequence of transient
behaviour associated with error in the initial conditions. This source of error seems to influence5

the model primarily in the early half of the year, before the local dynamics start to dominate
over the environmental influence. The lack of parameter-specific information about the lateral
fluxes appears to be a less dominant source of simulation error. Nevertheless, it does contribute
strongly to the relatively large 1998 errors at 5◦ N and at 50◦ N.

4.2 Robustness of the emulator10

The robustness of the uninformed emulator is assessed by comparing the MarMOT-MEDUSA
chlorophyll records with the NEMO-MEDUSA results for the matching parameter sets, taking
into account the quantified emulator uncertainty in terms of the predicted bias and error vari-
ance. The results are presented here in terms of the normalized emulator error, which is the
error in the bias-corrected simulator output scaled by the reciprocal of its predicted standard15

deviation. The scaling factor ensures that the predicted normalized error distribution for both
versions of the emulator is Gaussian with zero mean and unit standard deviation at all times and
locations.

The normalized uninformed emulator error for each log-transformed 5 day mean surface
chlorophyll concentration depends on the uncertainty quantification method. For the direct20

method, it is given by

DUd =
g
(
B,xo

)
+u1− f(xo)

s1
(22)

where s21 is our estimate for var(ε1). For the indirect method, it is

DUi =
g
(
B,xo

)
+uS +uB(xo)− f(xo)√
s2S + s2B(xo)

(23)
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where s2S and s2B are our estimates for var(εS) and var(εB) respectively. s21 and s2S, like the
residual mean estimates u1 and uS, were determined without reference to the results for Pa-
rameter Set 6, so were likewise based on a sample size of 8 (or 9 when Parameter Set 6 is the
trial parameter vector). The denominator in Eq. (22) varies between 0.014 and 0.62 log10 units
and that in Eq. (23) varies between 0.015 and 0.50 log10 units (with chlorophyll concentration5

in mg m−3). Further details of the residuals’ statistics and their variation in time and between
sites can be found in Appendix C.

The normalized uninformed emulator errors for each experiment are shown in Fig. 6. In
Experiment 6 (pertaining to trial Parameter Set 6), the positive errors already noted are extreme,
relative to the predicted error variance. This is a consequence of the unusually large simulator10

errors associated with Parameter Set 6. The atypical behaviour associated with this parameter
vector may be truly representative of the model dynamics over a significant region of parameter
space. However, such detail is not resolved with our small sample so is not represented in
the data used for emulator construction. Large normalized error values in Experiment 6 are
therefore unsurprising.15

When the indirect uncertainty quantification method is used, Fig. 6 shows that there are
also very large extremes associated with the post-initialization phase, particularly at 55◦ N and
60◦ N. These high DUi values occur for experiments with the two parameter vectors that were
seen to cause unusually low winter-time chlorophyll concentrations at the start of 1997 in the
target simulation (Fig. 3, Parameter Sets 1 and 4). Fortunately, at these sites, the extreme error20

appears fairly transient, lasting only a few months. At other sites, in particular at 5◦ N, DUi
remains correlated to some extent with its early 1997 value over the whole 2 year period, sug-
gesting that parametric error in the initial state may be introducing persistent biases. This pattern
seems to be a common feature of the more oligotrophic sites, being reflected also at latitudes
from 25 to 35◦ N. At more northerly sites, there is a tendency for persistent biases over long time25

periods where relatively large errors occur (e.g. at 45◦ N and 50◦ N for the indirect method) but
this pattern develops later with no obvious connection to initialization error.

Comparing the two uncertainty quantification methods, it is seen that DUi initially tends to
be larger than DUd at all sites. The post-initialization DUd values are more consistent with their
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predicted distribution. In particular, the extreme positive DUi values seen in early 1997 are not
replicated in DUd. From these observations, it is clear that the indirect method is generally less
effective at quantifying initial uncertainty. Furthermore, at the oligotrophic sites where the early
1997 biases tend to persist, there is a general tendency for DUi to be larger than DUd over the
2 year period.5

The normalized error distributions for the uninformed emulators are compared with the pre-
dicted distribution in Fig. 7. Results, including 1998 data only, are shown for each site. Ex-
periment 6 is excluded to allow the results for the remaining experiments to be more clearly
represented. The emulator with direct uncertainty quantification appears fairly robust with DUd
distributions broadly similar to the predicted distribution at all sites. The worst performance is10

arguably at 30◦ N where there are a significant proportion of anomalously low values associated
with persistent negative errors in the experiments with Parameter Sets 1 and 4 (Fig. 6). How-
ever,DUi shows a strong tendency to be larger than expected at a number of the sites. In general,
these are the sites that have already been associated with persistent error in some of the exper-
iments (5◦ N, 25–35◦ N, 45–50◦ N). A smaller proportion of the DUd values at 15 and 20◦ N15

are rather larger than predicted. These are associated with extreme negative biases occurring in
Experiment 9 that persist only for a month or two.

Table 3 summarizes the uninformed emulator results in terms of the mean and standard de-
viation of the normalized errors. Statistics are given for all 10 experiments combined and in
brackets for the 9 experiments excluding Experiment 6. The difference between the two sets of20

results illustrate to some extent the sensitivity of the evaluation statistics to sampling error.
When the emulator performance with direct uncertainty quantification is evaluated over all

experiments and all sites, the DUd standard deviation is rather high at 1.41, suggesting that
the emulator is a little over-confident. When Experiment 6 is excluded from the evaluation,
the standard deviation drops to 1.13. Whether or not this is a more appropriate measure of25

performance depends on the extent to which the model dynamics with Parameter Set 6 are
representative of its behaviour over a significant region of parameter space. The performance
with respect to the other parameter vectors is fairly reliable at all sites, with standard deviations
from 0.98 to 1.31 and very little sign of post-correction bias shown by DUd mean values. All
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but 2 of the standard deviations are above 1, indicating a slight tendency for the spread of
the simulator residuals to be under-estimated. When Experiment 6 results are included in the
evaluation data set, this tendency for over-confidence is more evident and there are notable
positive biases at a number of sites (DUd mean greater than 0.3 at 10, 15 and 50◦ N). These are
associated with relatively large DUd standard deviations (1.55 to 2.07).5

The high standard deviation in DUi of 1.82, is consistent with results already presented that
show the emulator with indirect uncertainty quantification has a clear tendency towards over-
confidence in its predictions. If Experiment 6 is excluded, the overall standard deviation is less
at 1.39, but the performance still leaves some room for improvement. The over-confidence is
particularly notable at the highly oligotrophic site at 5◦ N, with a standard deviation of just over10

2 reflecting the persistent parameter-specific biases already noted at this site (Fig. 6). There is
also a tendency for the emulator with indirect uncertainty quantification to significantly under-
estimate chlorophyll concentrations. In particular, the 9 parameter vector sample shows large
negative biases of around −0.7 at some of the other oligotrophic sites (20, 25 and 35◦ N).
Fairly large negative biases of −0.30 and −0.38 are also seen at 5 and 15◦ N respectively.15

Nevertheless, the performance at a number of the sites is good. The subset of 5 sites at 10◦ N,
40–45◦ N and 55–60◦ N has standard deviations in the range 0.74 to 1.32 with small biases
(−0.1 to 0.2).

4.3 The importance of lateral advection

In the majority of site-based calibration studies, the effect of lateral advection is ignored. It is20

useful then to examine the extent to which the skill of our 1-D simulations is dependent on the
explicit representation of the advective flux divergence term. Fig. 8 shows the chlorophyll val-
ues given by the uninformed simulator array compared with the matching target model output
when the uninformed simulators are run with all lateral flux perturbations removed. Compari-
son with Fig. 4 shows that the omission of lateral flux perturbations degrades the performance25

of the simulator array considerably. Pearson’s correlation coefficient r for the simulator and
target model output drops from 0.91 to 0.75, indicating that just 56 % of the variance in the

32



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

log-transformed surface chlorophyll from the simulator array is explained by the target model
output, compared with 83 % in the standard simulator array with lateral flux perturbations.

The impact of omitting lateral flux perturbations is most clearly seen in the performance of the
informed simulator array, where removing the effects of the parametric environment uncertainty
minimizes other sources of error. The initial state error for this simulator array is zero and the5

lateral flux perturbations are parameter-specific. The error for each log-transformed 5 day mean
chlorophyll concentration is defined by

dI = g[B(xo),xo]− f(xo) (24)

where B(xo) is the appropriate set of environmental input data, either including or not including
lateral flux perturbations. Error statistics for the informed simulator results, with and without10

perturbations, are given for each site in Fig. 9.
The use of lateral flux perturbations leads to strong reductions in bias and r.m.s. error at most

of the low and mid-latitude sites to 40◦ N, and at 50◦ N from the summer of 1998 onwards. The
improvement is particularly notable at 10◦ N, 25◦ N, 35◦ N and 40◦ N, where the addition of
these perturbations correct a long-term drift very effectively, albeit with slight over-correction15

of the positive bias at 10◦ N. Performance is a little more equivocal at 20◦ N where perturbation
of the simulation leads to a relatively large over-correction of a negative bias but the overall
r.m.s. error is still reduced.

The perturbed simulator does not perform better everywhere. The main exception is seen at
60◦ N, where the simulator shows a tendency to over estimate chlorophyll in the summer of20

1998. Another exception is an over correction of the positive bias at 50◦ N in 1997 which leads
to a bias of larger magnitude over some parts of the year. These detrimental effects are minor
compared with the overall improvement achieved.

It is clear from Fig. 9 that omitting lateral flux perturbations altogether can lead to particularly
large biases associated with serious drifts. Biases of magnitude 0.6 log10 units, representing25

a factor 4 error in surface chlorophyll, are not uncommon. Examination of the uninformed
simulator results in Fig. 5 before any bias correction shows that even at the sites where the
error is relatively large, the biases are not. The largest biases are of magnitude 0.3 log10 units,
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equivalent to a factor of 2. This indicates that a scheme based on average flux perturbations
for the parameter space (i.e. the mean environment) can reduce the problem of drift to a large
extent, even though the environment information is not parameter specific.

5 Discussion

In this section, the performance of the experimental mechanistic emulator is first examined and5

scope for its improvement identified. Practical application of the site-based emulation scheme
is then considered and its envisaged role in enabling advances in the parametric analysis and
calibration of global biogeochemical models is discussed.

5.1 Mechanistic emulator performance

Two alternative versions of a mechanistic emulator for surface chlorophyll from global NEMO-10

MEDUSA simulations have been evaluated. Each of these site-based emulators uses the same
set of site-specific 1-D simulators. The two emulators differ in the method they employ to
quantify uncertainty in the simulator predictions.

The site-based emulator with direct uncertainty quantification is able to predict the 1998
chlorophyll record for a given parameter vector to an accuracy broadly consistent with its un-15

certainty prediction at all sites. It should therefore serve as a reasonably reliable emulator of
the target model for parametric analyses. There is a slight tendency to under-estimate the un-
certainty, which is likely to be a consequence of the small target model ensemble size used
to represent the known truth (8 or 9). This interpretation would be consistent with a paramet-
ric uncertainty analysis of a regional 3-D biogeochemical model by Fiechter (2012), spanning20

a similar parameter space, in which an ensemble size of 10 was found to give significantly low
estimates for ensemble spread compared with 25, 50 and 100 member ensembles. In a practical
application, the tendency towards over-confidence could be compensated for by a small inflation
factor applied to the residual variance estimate. The optimal factor would be the normalized er-
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ror variance from the evaluation experiments (i.e. 1.28, based on the standard deviation of 1.13
for the 9 trial parameter vector experiments in Table 3).

The emulator with indirect uncertainty quantification is able to predict the 1998 record to
an accuracy consistent with its uncertainty prediction at about half of the experimental sites, so
clearly has some potential. However, it shows a tendency to be over confident in its predictions at5

other sites, particularly at the more oligotrophic sites studied. Its performance therefore requires
some improvement before it can be considered generally robust over a wide range of oceanic
conditions.

The most notable instances of poor emulator performance occur for parameter vectors asso-
ciated with the more extreme behaviour in the target model. This raises the question of whether10

it is really necessary to emulate the target model over such large parameter ranges. Certainly,
restricting the parameter space further should help to make our reference sample more repre-
sentative. In principle, comparisons with observational data at an early stage could be used to
identify implausible target model behaviour and suggest ways in which the parameter space
might be reduced. However, any such constraints based on the sparse sampling of parame-15

ter space achieved by the target model ensemble could greatly increase the risk of excluding
promising parameter combinations and should be undertaken with care. Modifications of the
parameter space that are consistent with our biological understanding of the parameters are the
most easily justified but, acknowledging the high level of abstraction involved in modelling a
system of such complexity, we should avoid over-reliance on subjective priors. Increasing the20

sample size or improving the emulation methods may be preferable.
While the indirect uncertainty quantification method is currently less robust than the direct

method, it has the advantage of being less reliant on the small target model ensemble. Simu-
lator uncertainty due to basic simulation error and parametric environment error are quantified
separately, the latter being the uncertainty due to substitution of the true parameter-specific25

environmental input by a mean environment. The quantification method for basic simulation
uncertainty relies wholly on the target model ensemble. However, that for parametric envi-
ronment uncertainty relies on it only for providing environmental data for a 1-D uncertainty
analysis. The output uncertainty depends on the way in which these input data interact with the
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parameter-specific dynamics in the 1-D simulators and the 1-D ensemble size can be relatively
large. As found by Hemmings and Challenor (2012), the output standard deviation can be highly
dependent on the trial parameter vector (see Appendix C). This parameter dependency cannot
be accounted for by the direct method. For this reason, a refined version of the indirect method
could prove to be more robust than the direct method, particularly if basic simulation errors can5

be reduced so that the uncertainty quantification for this error component becomes less critical.
The presence of very large normalized error values early in 1997 when the indirect uncer-

tainty quantification method is used suggests that the environment model for the initial con-
ditions should be improved, perhaps through the use of different variance-stabilizing transfor-
mations in the EOF analysis used to characterize the environmental uncertainty. Tracer-specific10

transformations should be considered in place of the square root transformations applied to all
primary tracers. Another refinement that may improve performance in the post-initialization
phase would be to include covariances between the initial state and the advective flux diver-
gences of the transformed tracer concentrations, instead of modelling the two separately. The
persistence of biases at some sites over the whole simulation period, in particular those associ-15

ated with poor emulator performance, suggests that such improvements could improve robust-
ness of the emulation of the 1998 chlorophyll records.

A fairly simple way of improving the simulator itself would be to provide physical forcing
based on 3-D model output at higher temporal resolution for the experimental sites, as the im-
pacts of important weather events are attenuated in the 5 day mean output. Improvements in the20

representation of concentration dependency in the simulator’s lateral flux divergence tendencies
are also likely to be beneficial.

Concentration dependency in the 1-D simulations is controlled by the transformation ap-
plied to the tracer concentrations. A promising approach to improving its representation might
be to introduce tracer-specific transformations, possibly varying in space and time, based on25

statistical analyses of 3-D model output. A key consideration will be the need to reduce the
potential for positive feedback cases, where concentration errors reinforce error in the advec-
tive tendencies. This type of positive feedback can cause the growth of large positive errors,
particularly in the dissolved nutrient tracers. It may also lead to excessive nutrient depletion
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rates where an initial tendency towards negative bias in nutrient concentrations is increased by
reduction in lateral supply. Such errors are likely to have a greater impact on surface chlorophyll
at oligotrophic sites, where the phytoplankton dynamics are more sensitive to nutrient concen-
tration. It is at these sites where the emulator with indirect uncertainty quantification appears
least robust. However, an investigation of the surface nutrient records output by the simulator5

(not presented) did not show evidence of severe nutrient depletion that might be expected from
positive feedback.

5.2 Application of the emulation scheme

For calibration of global ocean biogeochemical models against ocean colour data, the spatial ex-
tent of the simulator array can readily be extended to produce a mechanistic emulator with truly10

global coverage based on a larger set of representative sites. Similarly, the emulation procedure
could be extended to records of the annual cycle from multiple years. Importantly, we expect
the method to be applicable to models of much higher resolution than the 1◦ target model used
in the present demonstration, with minimal adaptation. The requirement for a small ensemble
of 3-D reference simulations is relatively modest, making useful parametric analyses feasible15

for eddy-permitting and eddy-resolving global models.
While the emulation scheme has the potential to make considerable reductions in the

number of 3-D simulations required in a parametric analysis, it must be recognized that
even a single 3-D simulation may be a large overhead if long spin-up periods are required.
The 2 year spin-up period employed for producing the reference ensemble in our experi-20

ments is sufficient to demonstrate proof-of-concept. However, biogeochemical models and
carbon cycle models in particular require long spin-up times, typically thousands of years,
to reach equilibrium. This implies that in many practical applications much longer spin-
up times would be needed. Fortunately, recent advances in the estimation of steady state
annual cycles for global models (Khatiwala, 2007, 2008) promise to alleviate this prob-25

lem. The efficient Transport Matrix Method of Khatiwala (2007) has recently been ex-
ploited in parametric analyses where simulations are evaluated against global nutrient data
(Kriest et al., 2010, 2012). It has also been combined with a surrogate-based optimization tech-
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nique for practical parameter estimation (Prieß et al., 2013b). Incorporating these new steady
state estimation techniques into the target model prior to site-based emulation would be partic-
ularly advantageous.

Continued development of the indirect uncertainty quantification method is motivated by its
potential in situations where a known truth is unavailable. Such a situation arises if we want to5

emulate a target model for which we have no model-specific 3-D ensemble but must rely on
results for a related model. For example, we might try to emulate a high-resolution model, for
which we have perhaps just one simulation, by adapting the method to make use of biogeochem-
ical information from lower resolution ensembles. In this scenario, the statistical environment
model could be constructed using the high resolution flow field in combination with upstream10

gradient and initial state information from the low resolution model. Additional uncertainty in
the gradient and state information associated with the change of resolution would be quantified
with reference to the equivalent high resolution model fields. The effect of basic simulation
errors would, of course, have to be quantified with reference to the single high resolution sim-
ulation but this is less likely to be a problem if the basic simulation errors can be made small15

compared with the parametric environment error.
In applying the emulator with indirect uncertainty quantification to each trial parameter vec-

tor, the requirement for a parameter-specific set of 1-D ensemble simulations in the environmen-
tal uncertainty analysis imposes a large overhead. The significance of this overhead depends on
the experimental set up. For a 1◦ target model emulated by a global array of simulators at 10◦ in-20

tervals, the computational savings in replacing the 3-D simulation by the emulator array would
be fairly limited if an ensemble size of 100 were used as in the present study (being largely
those due to the reduced vertical domain and use of pre-calculated physical fields). However,
for a 0.25◦ model with the same array, savings would be considerable. Moreover, it seems likely
that the ensemble size could be reduced and investigation of the sensitivity of performance mea-25

sures to ensemble size would certainly be worthwhile.
In a practical calibration exercise where the uncertainty statistics are required for weighting

model-data misfit to account for simulation uncertainty, we should not ignore temporal covari-
ance in simulation error. Although the covariance structure of the error has not been quantified
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in this study, the results are indicative of strong temporal correlation over long time scales at
some sites. This suggests that it will be important to extend the chosen uncertainty quantification
procedure to predict the temporal error covariances for each site-specific simulator. Correlation
between sites may also need to be considered, particularly if sites are relatively close together.

Although the emphasis of the present study has been on emulating surface chlorophyll, the5

method can in principle be used to emulate other observable variables associated with the target
model. A full set of model outputs are available from the 1-D simulations at each site and
simulation uncertainty measures can similarly be predicted for any of these variables, although
the robustness of such predictions is as yet untested. Use of in situ observations in conjunction
with the satellite ocean colour data will provide valuable additional constraints on parameter10

values, making this an important extension to the mechanistic emulator capability.

5.3 The role of a site-based mechanistic emulator

Thorough investigation of the large multi-dimensional parameter spaces associated with mecha-
nistic biogeochemistry models like MEDUSA will inevitably place great demands on our com-
puter resources. For most parametric analyses, it is envisaged that the mechanistic emulator15

would be used in combination with one or more statistical emulators for which it would provide
the training data and associated uncertainty estimates. This would facilitate the use of rigorous
Bayesian analysis techniques which would otherwise not be computationally feasible. Intro-
ducing mechanistic emulation as an intermediate step should greatly decrease the number of
expensive 3-D simulations that are needed.20

Modern Bayesian calibration methods, following Kennedy and O’Hagan (2001), provide
a comprehensive statistical framework for addressing issues of parametric uncertainty as well
as uncertainty from other sources. They allow estimation of joint posterior distributions for
model parameters and model discrepancy. Model discrepancy, originally referred to as model
inadequacy, quantifies error associated with the model design that cannot be corrected by pa-25

rameter adjustment. Arhonditsis et al. (2008) and Zhang and Arhonditsis (2009) demonstrate
the application of Bayesian calibration methods to aquatic biogeochemical modelling in a 1-D
framework, indicating the value of these methods for quantifying uncertainty associated with
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model predictions. A capability for routine application of these methods to biogeochemistry at
the global scale would contribute to more robust probabilistic predictions of global change.

A flexible alternative to full Bayesian calibration is the well-established history matching ap-
proach adopted by Williamson et al. (2013) in their coupled ocean–atmosphere model analysis.
This relatively simple technique uses perturbed parameter ensembles in combination with an5

implausibility metric to rule out regions of parameter space. The implausibility function takes
into account the relevant uncertainties and can be applied iteratively, introducing additional ob-
servational data at each stage, to rule out successive regions. The initial focus can be on simple
model outputs that are easy to model statistically over the whole parameter space. Subsequent
re-focussing of computational effort on smaller regions of parameter space can then be used to10

develop statistics for more complex outputs.
In this way, history matching can be used as a precursor to Bayesian calibration or, if the

region of parameter space not ruled out by the history matching process is sufficiently small,
further calibration may be omitted in favour of an averaged parameter vector. The emphasis
on defining a “not-ruled-out-yet" region of parameter space, rather than finding the optimal pa-15

rameter vector, is well-suited to ecosystem modelling where the “underdetermination problem"
highlighted by Ward et al. (2010) is ubiquitous.

It is important to recognize that the site-based experimental framework is designed to in-
vestigate relatively short time-scale responses of the biogeochemistry to physical drivers. The
efficiency of the method makes the corresponding output relatively easy to model statistically20

and so is well suited to the early stages of history matching. However, we cannot rule out the
possibility of interactions with the ocean circulation that would compromise performance of
particular parameter vectors in much longer simulations. Further tests would be needed in 3-D
simulations to fully determine suitability.

In designing a calibration strategy for ocean biogeochemical models, we can take advantage25

of the relatively weak coupling between the upper ocean and the interior and the different time-
scales associated with upper ocean processes and the sinking and remineralization of material in
the deep ocean. Site-based methods are best suited to the optimization of parameters associated
with seasonal productivity cycles in the upper ocean, occurring on short time scales compared
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with those for the redistribution of plankton by the large scale circulation. Parameters associated
primarily with slow deep water processes that interact more strongly with the circulation can be
optimized separately in 3-D experiments, without compromizing the seasonal dynamics.

There are parallels with an established system used in terrestrial carbon cycle modelling. This
is the Carbon Cycle Data Assimilation System (Rayner et al., 2005), which uses a two stage5

process to calibrate a terrestrial biogeochemistry model. The first step involves optimization
of parameters controlling phenology and soil moisture by assimilating satellite data related
to vegetation activity. The second step then uses fields from the optimized model as input to
a simpler model version, combined with a 3-D atmospheric transport model, for constraining
the remaining model parameters to fit atmospheric CO2 data.10

5.4 Site-based process model analysis

As a final point, it should be stressed that we have focused here on enabling parametric analyses
for a coupled model system, where the optimal parameter values are conditional on a particu-
lar representation of the physical ocean. This is important for applications of biogeochemistry
models in specific host model configurations. However, there is also a need to be able to eval-15

uate and improve the fidelity of the biogeochemistry model with respect to the processes it is
designed to represent, independently of a particular physical simulation. This is emphasized by
parameter optimization experiments of Friedrichs et al. (2006) which show that likely error in
the physical forcing data can have a large effect on the biogeochemical simulations, leading to
inappropriate posterior parameter values.20

Site-based methods can be adapted to allow for such error by including a quantification of
uncertainty in the physical environment in the analysis as suggested by Hemmings and Chal-
lenor (2012). By doing this, we aim to emulate the output that would be obtained from the
biogeochemistry model if it were embedded in a perfect physical simulation. History matching
could then be used to rule out areas of parameter space that are inconsistent with a plausible25

representation of the biogeochemical dynamics. Computing effort would be focused primarily
on data-rich sites, including established biogeochemical time series observatories.
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A statistical model of the biogeochemical environment would be required for the 1-D simula-
tions at each site. The methods introduced here provide the basis for constructing such a model.
However, they would need to be refined to allow for additional uncertainty involved in mak-
ing inferences about a hypothetical perfect physics ensemble from analysis of a practical 3-
D ensemble. The development of a robust method is more likely to be achievable if a good5

observationally-constrained statistical description of the local flow field can be established.
Then, only the upstream tracer gradient and initial state information would need to be inferred
from the 3-D model analysis. Furthermore, it should be possible to take initial state informa-
tion from an observation-based statistical model of the real-world state, say from a climatology.
Inferences about the model would then be restricted to its behaviour over relatively short time10

scales. However, this seems likely to be the most practical approach.
In principle, the site-based capability could be adapted for use in a Lagrangian framework

allowing a Eulerian simulator array to be augmented by 1-D simulations following Argo floats
or surface drifter trajectories. Physical data from Eulerian observatories and Lagrangian plat-
forms, in combination with satellite Earth observation data could be used in conjunction with15

3-D simulations to develop observationally-constrained statistical representations of the physi-
cal environment to which the biogeochemistry responds. Bringing these different components
of the global observation system together in a robust statistical framework for model calibration
and assessment will be an important step in developing a reliable predictive capability for the
Earth system that accounts for the role of marine biogeochemistry in global change.20

6 Summary and conclusions

A mechanistic site-based emulator for annual cycles of surface chlorophyll output from the
global NEMO-MEDUSA model was presented. The emulation scheme introduces two fun-
damental improvements to our site-based biogeochemical modelling capabilities: an explicit
representation of the lateral flux divergences of the model tracers, following Hemmings and25

Challenor (2012), and a quantification of output uncertainty with respect to the target model.
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The emulator relies on an array of 1-D simulators of the target model dynamics. In the ab-
sence of parameter-specific 3-D model information about the environment at each site, the sim-
ulators use a mean environment provided by a small ensemble of target model simulations. This
3-D ensemble is designed to be representative of variability in the model dynamics over the
parameter space of interest. It provides information about the local environment in the form5

of estimates of the required initial state and lateral flux divergences, together with their un-
certainties. The use of lateral flux information reduces simulator error considerably, consistent
with a major influence of advection at some sites, and this has been instrumental in achieving
a promising level of performance.

Two different versions of the mechanistic emulator have been evaluated. One is constructed10

using a direct uncertainty quantification method, in which output uncertainty is quantified by
comparison with a known truth. The other is constructed using an indirect method, in which
output uncertainty is inferred from separate analyses for two contributing factors: the set of ba-
sic simulation errors and the parametric environment error. Uncertainty due to basic simulation
errors is quantified by applying the direct method to the simulator with a known parameter-15

specific environment. Parametric environment error is the error in the simulator output when
an unknown parameter-specific environment is approximated by the mean environment (an es-
timate of the expectation of the environment over the parameter space of interest). Uncertainty
associated with this error is quantified by 1-D uncertainty analyses.

The analysis for NEMO-MEDUSA indicates that the emulator with direct uncertainty quan-20

tification should provide a reasonably robust site-based emulation capability for the surface
chlorophyll output from 3-D models. The indirect uncertainty quantification scheme, although
more expensive in terms of the number of 1-D simulations required, has the advantage of ac-
counting for the dependency of simulation uncertainty on the trial parameter vector. However,
as implemented here, it was found to be less robust. Nevertheless, a number of improvements25

to the method have been suggested which are expected to improve its reliability. Irrespective
of whether this leads to the performance of the indirect method exceeding that of the direct
method in terms of robustness, the indirect method provides the basis for a more flexible ap-
proach that is less reliant on target model simulations. The potential of both versions of the
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emulation scheme to improve the effectiveness of site-based approaches to parametric analysis
of ocean biogeochemical models is clear.

Our experimental mechanistic emulator serves as a prototype for an improved site-based ca-
pability. This facility would allow robust inferences to be made about the parameter-dependent
behaviour of global biogeochemical models on the basis of analyses performed on representa-5

tive arrays of 1-D simulators. It would thus enable the routine execution of relevant parameter
perturbation ensembles with 100s of members. In conjunction with statistical emulators, this
would enable comprehensive investigations of large parameter spaces to be performed.

In addition, the new developments in the treatment of lateral advection and quantification
of environmental uncertainty for 1-D simulators will be important for performing analyses of10

biogeochemistry models that are based on their representation of the biogeochemical dynamics,
rather than being conditional on a particular representation of the physical circulation. This
type of process-based analysis is essential for assessing and improving the fidelity of process
representation in biogeochemical models.

Site-based analyses of both coupled and stand-alone biogeochemistry models promise to15

make important contributions to our ability to constrain model parameters and quantify biogeo-
chemical uncertainty in ocean and Earth system model predictions.

Appendix A: Code availability

MarMOT 1.1 is open source software available under the CeCILL Free Software License Agree-
ment. It is designed for use on UNIX-based systems, including LINUX and Mac OS X. The20

original code was released on 21st November 2013. The current version, MarMOT 1.1.1, re-
leased on 23rd January 2015, is functionally equivalent to the original but includes modifica-
tions to address a known portability issue and improve reliability. A tar archive containing the
MarMOT 1.1.1 distribution can be downloaded from the National Oceanography Centre’s web
site at http://noc.ac.uk/project/marmot or supplied by the corresponding author on request. The25

software release includes a set of command line tools for handling MarMOT-compatible data
tables. Full documentation and test data are included with the distribution.
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The MEDUSA 1.0 code is available as a supplement to Yool et al. (2011). A version of
this original code with adaptations for interfacing with the MarMOT testbed is included in the
MarMOT 1.1.1 distribution.

Appendix B: Defining the parameter space

The first step in parametric analysis of a model, whether for purposes of uncertainty analysis5

or calibration, is defining the parameter space to be investigated. Our primary interest here is
in exploring uncertainty in the seasonal cycle and its impact on annual primary production and
the export of material from the euphotic zone. We therefore want to investigate plankton system
parameters that have a significant influence on these processes. These are identified by a formal
sensitivity analysis involving 28 relevant model parameters varied over ranges consistent with10

their defined roles in the model.

B1 Initial parameter selection

The MEDUSA 1.0 model as described by Yool et al. (2011) has over 60 parameters. Our fo-
cus is on the seasonal cycle in the euphotic zone with the ultimate aim of using satellite-derived
chlorophyll data to constrain upper ocean plankton dynamics in the model. On this basis, a num-15

ber of parameter groups are excluded from the model analysis. These are the parameters of the
inorganic iron and carbonate systems and parameters associated with the remineralization of
sinking particles that occurs mainly in the ocean interior. Parameters related to stoichiome-
try are, in general relatively well known compared with many of the other parameters and are
also excluded from the analysis. However, this is largely a pragmatic decision to reduce the20

size of the parameter space; sensitivity to these parameters within their expected ranges should
ideally be explored in future studies. The parameters referred to are the carbon : nitrogen and
iron : nitrogen ratios for the organic components and the parameters controlling the variable
chlorophyll : carbon ratios for the two phytoplankton types and the diatom silicon : nitrogen ra-
tios.25
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The remaining set of parameters used in MEDUSA includes parameters that are conceptually
related in such a way as to complicate the interpretation of parametric analyses in which they are
varied independently. For example, the two phytoplankton types each have their own set of rate
parameters, so adjusting a rate parameter for one phytoplankton type affects the relative rates
for each type. There are no individual parameters controlling the overall rates associated with5

phytoplankton as an aggregated biotic group. To avoid problems of this kind, the input param-
eter set in the MarMOT 1.1 configuration of MEDUSA has been modified from the parameter
set used internally.

The 37 input parameters relevant to this study and their relationships to the internal param-
eters specified in Yool et al. (2011) are shown in Tables 4 to 6. The standard values tabulated10

are those used in the standard simulation of Yool et al. (2011) or their equivalents. The standard
simulation is referred to in the National Oceanography Centre’s archive as EXP276 (available
on request from A. Yool; axy@noc.ac.uk). There are inconsistencies between values for 3 of
the zooplankton density-dependent loss parameters in Table 6 (fµ2,Zµ, fkZµ and fµ2,Zm) and
values appearing in Yool et al. (2011) since the latter were incorrect. The correct standard simu-15

lation values for the microzooplankton maximum loss rate and half saturation concentration are
µ2,Zµ = 0.1 and kZµ = 0.5 respectively (in units of d−1 and mmol N m−3). These match the
corresponding standard simulation values for phytoplankton. The correct value for the meso-
zooplankton maximum loss rate µ2,Zm is 0.2 d−1.

Pairs of rate or half-saturation concentration parameters for the different phytoplankton or20

zooplankton types have been replaced by a base value, pertaining to the smaller plankton type
(non-diatoms or microzooplankton), and a relative value for the larger type (diatoms or meso-
zooplankton). This leads to new parameters that are non-dimensional factors. For the diatom
growth process these are fαPd, fVPd, fkN,Pd and fkFe,Pd. For mesozooplankton growth we have
fgm and fkm. The new parameters for the diatom loss processes are fµ1,Pd, fµ2,Pd, fkPd. For25

the zooplankton loss processes, the microzooplankton values fµ2,Zµ and fkZµ are defined in
terms of the non-diatom phytoplankton values and the mesozooplankton values fµ2,Zm, fkZm
are defined in terms of the microzooplankton values. This suite of modifications allow individ-
ual parameters, the base values, to be varied without affecting the relationships between closely
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associated parameters. The parameter relationships can be controlled independently using the
new parameters.

A similar approach is taken for assimilation efficiencies and feeding preference parameters.
The carbon assimilation efficiency for zooplankton grazers has been re-expressed in terms of
their nitrogen assimilation efficiency by a non-dimensional offset parameter aβC. The value5

is the fraction of the maximum possible offset determined by the constraint that assimilation
efficiencies must logically be within the range 0–1. Mesozooplankton feeding preferences have
been re-expressed in a hierarchical way so that instead of preference factors for each individual
food type, there is an overall preference for live food (as opposed to detritus) pmLive and two
conditional preferences: a preference for phytoplankton given live food pc, mP and a preference10

for non-diatoms given phytoplankton pc, mPn.
Yool et al. (2011) used identical values for some parameter pairs and groups to avoid intro-

ducing arbitrary complexity. The new definition of the input parameter parameter set described
here allows the values of associated internal parameters to be kept the same while varying their
values via the base parameter. Adding additional complexity over that of the original model is15

not justified for the present calibration experiments so the relevant non-dimensional factors are
fixed at 1 wherever identical parameter values were used by Yool et al. (2011), thereby further
reducing dimensionality of the parameter space. By the same argument, aβC is fixed at 0.

The standard value for the fast detritus fraction of mesozooplankton losses D2frac is 1, im-
plying that all mesozooplankton losses are treated as fast-sinking detritus. Adjusting this value20

would cause the losses to be divided between slow and fast sinking detritus adding a small
amount of additional complexity to the model processes. Again, we chose to avoid introducing
this new complexity and left this parameter fixed.

As a consequence of excluding less relevant parameter groups from the analysis and choosing
to avoid the introduction new complexity, an initial parameter space of 28 dimensions was25

considered in the present study. The remaining parameters are constrained a priori to take their
standard values; this constraint effectively becomes part of the model design. Further dimension
reduction was performed objectively on the basis of a sensitivity analysis.
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B2 Parameter ranges

Acceptable ranges for each of the parameters to be included in the analysis are defined according
to a set of rules as follows.

Rule 1: for all positive parameters with no inherent upper limit, bounds are symmetric about
the prior value on a geometric scale. This applies to rate parameters and half-saturation concen-5

trations, whether expressed in absolute or relative units. Rate parameter bounds are set initially
at half and double the prior. A factor of 5 is used for half-saturation concentrations.

Rule 2: for fractions, such as efficiencies and feeding preferences, limits are initially set at
±0.25. Limits of 0.05 and 0.95 are imposed on the lower and upper bounds respectively and the
bounds are adjusted if necessary.10

Rule 3: the sign of differences between associated internal parameters is preserved. This is
done for rates and half-saturation concentrations by imposing 1 as a lower or upper limit for the
ranges of the parameters that are expressed as relative values, depending on whether their priors
are greater than or less than 1. The relevant bound is adjusted if necessary.

Rule 4: if one or other bound is adjusted in applying Rule 3, then symmetry is used to reset15

the opposite bound. Geometric symmetry is applied to rates and half-saturation concentrations.
This rule applies a constraint on the difference between associated parameters that is dependent
on their difference in the prior parameter set.

The resulting parameter space is defined by Table 7. Log-transformed values are used for
some parameters when dividing up the parameter space for sampling purposes. The dimensions20

to which this applies are indicated in the table.

B3 Parameter sensitivity analysis

Following the initial parameter selection, further reduction in the dimensionality of the param-
eter space to be explored in the calibration process is based on the potential impact of parame-
ters on annual primary production and the ratio of annual particulate export to annual primary25

production, referred to as the pe-ratio. (The inorganic fraction of particulate carbon export asso-
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ciated with carbonate production is excluded.) The value of the pe-ratio at 207 m is used since
this is the greatest depth at which photosynthesis can occur in the model.

Annual mean values for 1998 at 12 sites were determined for 5000 different parameter vectors
in the 28 dimensional parameter space. The parameter vectors were distributed in parameter
space using a Latin hypercube design (McKay et al., 1979) with a “maximin" criterion (Johnson5

et al., 1990) applied to 10 randomly generated hypercubes. For generating the design points,
distance is defined in terms of positions on a parameter space grid with an equal number of
intervals in each dimension. Grid intervals are in log units for rate parameters and half-saturation
concentrations. The sensitivity analysis was performed using the 1-D experimental framework
described in Sect. 3, with the time step increased to 2 h for efficiency. 1-D simulations were10

initialized from the standard 3-D simulation of Yool et al. (2011) at the start of 1997, allowing
one complete annual cycle for adjustment to the new parameter values and the 1-D context to
reduce the impact of transient behaviour. Lateral fluxes were ignored.

The results of an initial sensitivity analysis for all 28 parameters were examined to identify
parameters that have a clear impact on the primary production and the pe-ratio. Parameters15

that individually explained less than 5 % of the variance in both variables at all sites were then
automatically excluded. The sensitivities of the two variables to the remaining parameters are
summarized in Table 8 in terms of the number of sites out of 12 at which the parameter explains
at least 5 % of the variance and the proportion of variance explained given by the squared
Pearson correlation coefficient r2.20

There are 9 parameters that explain more that 5 % of the variance in both model outputs. Of
these, kC has a relatively weak effect on both and is excluded. Of the remaining 3 parameters,
VPn is the only one with any stronger influence than kC on either output, having some impact
on primary production. However, its effect does not appear to be any greater than the least
influential of the other parameters to be retained. Given its lack of influence on pe-ratio, it is25

discarded along with fkm and µ2,Pn leaving an 8-dimensional parameter space for the emulation
experiments.

The sensitivity analysis was repeated in the 8 dimensional parameter space, again with a sam-
ple size of 5000 parameter vectors. Discarding the other 20 parameters reduced the total vari-
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ance in primary production at each site by between 5 and 38 %. The reduction in the pe-ratio
variance was generally less, varying from 6 to 19 %. The parametric uncertainty in primary pro-
duction and pe-ratio associated with the final 8-dimensional parameter space is illustrated by
the coefficient of variation (ratio of standard deviation to mean) for the two variables at each
site. The coefficient of variation for primary production ranges from 0.29 (at 15◦ N) to 0.48 (at5

55◦ N). That for the pe-ratio is generally greater, ranging from 0.38 (at 60◦ N) to 1.06 (at 30◦ N).

Appendix C: Quantification of simulator uncertainty

Uncertainty for the log-transformed 5 day mean chlorophyll output is quantified in terms of
time series of the predicted monthly means and variances of the uninformed simulator residual.
In the direct uncertainty quantification method, these statistics are derived from differences be-10

tween the 5 day uninformed simulator output and the corresponding target model output over
all parameter vectors in the Construction Phase ensemble. In the indirect method, they are de-
rived from the sums of the mean and variance estimates for the mean environment simulation
residual εS and the parametric environment residual εB. The εS statistics are estimated from
differences between the 5 day informed simulator output and the target model output over the15

parameter vectors in the Construction Phase ensemble. The εB statistics are estimated from the
5 day output of a parametric uncertainty analysis using 100 ensemble members.

For each residual, the mean and variance of the 5 day probability distributions are estimated
from the relevant ensemble-based sample: ui, i ∈ {1, . . .,n}. The unbiased population variance
estimator20

s2u =

∑n
i=1 (ui−u)2

n− 1
(C1)

is used. The 5 day statistics are then used to derive monthly means and variances which are
interpolated to give continuous time series um(t) and s2m(t) respectively for uncertainty quan-
tification. The procedure for calculating the time series from the 5 day statistics is as follows.

5 day samples are grouped in pseudo-monthly bins (intervals of 30.42 days) and the monthly25

mean residual um is estimated from the k sample means in each bin using the unweighted
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average, so

um =
1

k

k∑
i=1

ui (C2)

where ui is the mean of the ith 5 day sample. um is then linearly interpolated between monthly
mid-points to obtain um(t). Values for early January 1997 and late December 1998 are equated
to those at the respective monthly mid-point. um(t) is the estimate of the expected residual used5

for bias correction.
The true residual for the trial parameter vector xo can be expressed as

ψo(t,xo) = um(t) + εµ + εψ (C3)

where εµ is the departure of the true residual mean from the estimated residual mean:

εµ = µ(t)−um(t) (C4)10

and εψ is the departure of the true residual from the true residual mean:

εψ = ψo(t,xo)−µ(t). (C5)

For the purposes of uncertainty quantification, these departures are assumed to be independent
Gaussian random variables with zero means and variances s2µ(t) and s2ψ(t) respectively, derived
from the sample data. Variances s2µ and s2ψ are determined for each pseudo-monthly bin. The15

monthly variance estimate for the residual is then given by

s2m = s2µ + s2ψ. (C6)

This is converted to a continuous time series by interpolation and end-point extrapolation, as
for the residual means, to obtain s2m(t).
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For each bin, s2µ is given by the monthly variance of the anomaly between the 5 day sample
mean u and the expected residual estimate um at the 5 day interval mid-point. So

s2µ =

∑k
i=1 (ai− a)2

k− 1
(C7)

where

ai = ui−um(ti). (C8)5

s2ψ is given by the pooled estimates of the residual variance

s2ψ =
1

k

k∑
i=1

s2u,i (C9)

where s2u,i is the variance estimated from the ith 5 day sample.
Determination of monthly means and variances for the residuals from the 5 day samples is

expected to give more robust estimates. However, the increase in effective sample size depends10

on the extent to which samples are temporally correlated over each pseudo-monthly bin. This is
not quantified in the present study.

Time series of uninformed simulator residual statistics given by the direct and indirect un-
certainty quantification methods are shown in Fig. 10. (Note that for an arbitrary residual εX,
um is denoted uX and sm is denoted sX.) For both methods, the time series determined for all15

10 trial parameter experiments are shown. The statistics for the uninformed simulator residual
ε1 predicted by the direct method do not account for dependency of the true residual distribu-
tions on the trial parameter vectors. Thus, variation in the time series between experiments is
due only to sampling uncertainty. The ε1 statistics predicted by the indirect method do account
for this parameter dependency and the variation between experiments is then in part due to the20

parameter-specific dynamics of the environment ensemble simulation used for the parametric
uncertainty analysis.
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Time series for the statistics of the component residuals contributing to the uninformed simu-
lator statistics given by the indirect method are shown in Fig. 11. The statistics for the mean en-
vironment simulation residual εS, like the ε1 statistics given by the direct method, differ between
experiments only due to sampling uncertainty. They exhibit less variation between experiments
than the ε1 statistics, reflecting the lack of dependency of the true distribution of εS on the trial5

parameter vector. The statistics for the parametric environment residual εB, the componenent
residual that explicitly accounts for the trial parameter vector dependency in the uninformed
simulator uncertainty, show much greater variation between experiments.

The Supplement related to this article is available online at
doi:10.5194/gmdd-0-1-2015-supplement.10
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Table 1. 8-dimensional MEDUSA parameter space for target model emulation.

Parameter Description and units Lower bound Upper bound

αPn chlorophyll-specific initial slope of P-I curve for non-diatoms
g C (g Chl)−1 (W m−2)−1 d−1

7.5 30

kN,Pn N nutrient uptake half-saturation concentration for non-diatoms
mmol N m−3

0.1 2.5

kFe,Pn Fe nutrient uptake half-saturation concentration for non-diatoms
mmol Fe m−3

0.000066 0.0017

kµ microzooplankton grazing half-saturation concentration
mmol N m−3

0.16 4

φ zooplankton grazing inefficiency
–

0.05 0.45

µ1,Pn non-diatom phytoplankton density-independent loss rate
d−1

0.01 0.04

kPn non-diatom phytoplankton half-saturation concentration for
density-dependent loss
mmol N m−3

0.1 2.5

wg detrital sinking rate
m d−1

1.5 6

59



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Table 2. Representative sample from 8-dimensional MEDUSA parameter space.

Parameter set αPn kN,Pn kFe,Pn kµ φ µ1,Pn kPn wg

1 12.2 1.54 0.00104 0.19 0.27 0.0325 0.31 1.61
2 10.6 1.12 0.00021 0.94 0.39 0.0283 0.22 4.87
3 18.5 2.13 0.00011 0.36 0.23 0.0123 1.54 5.60
4 8.0 0.31 0.00145 0.26 0.15 0.0246 0.81 3.22
5 14.0 0.81 0.00055 0.68 0.35 0.0107 0.43 2.12
6 28.0 0.12 0.00008 1.79 0.11 0.0214 0.12 2.44
7 9.2 0.43 0.00015 3.41 0.19 0.0187 0.16 1.85
8 21.2 0.22 0.00076 1.30 0.07 0.0141 0.59 3.69
9 24.4 0.16 0.00039 0.49 0.43 0.0162 1.12 4.24
10 16.1 0.59 0.00028 2.47 0.31 0.0373 2.13 2.80
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Table 3. Uninformed emulator robustness evaluation for all 10 experiments and for the 9 experiments
excluding Experiment 6.

Direct UQ Method Indirect UQ Method
Site DUd mean DUd std. dev. DUi mean DUi std. dev.

60◦ N 0.03 (0.08) 1.17 (1.16) 0.15 (0.20) 0.98 (0.89)
55◦ N 0.01 (−0.03) 1.17 (1.07) −0.02 (−0.07) 1.10 (0.97)
50◦ N 0.48 (0.05) 1.88 (0.98) 0.58 (−0.15) 3.06 (1.43)
45◦ N 0.16 (0.03) 1.19 (0.99) 0.08 (−0.07) 1.48 (1.32)
40◦ N −0.19 (−0.07) 1.41 (1.29) −0.12 (−0.10) 0.98 (0.99)
35◦ N 0.16 (0.04) 1.06 (1.02) −0.47 (−0.72) 1.89 (1.77)
30◦ N 0.07 (−0.04) 1.15 (1.15) 0.36 (0.03) 1.88 (1.53)
25◦ N −0.07 (−0.03) 1.08 (1.12) −0.76 (−0.70) 1.63 (1.69)
20◦ N −0.04 (−0.07) 1.33 (1.31) −0.64 (−0.66) 1.04 (1.01)
15◦ N 0.47 (−0.01) 2.07 (1.21) 0.23 (−0.38) 2.60 (1.29)
10◦ N 0.36 (0.01) 1.55 (1.03) 0.19 (−0.10) 1.21 (0.74)
5◦ N 0.03 (−0.07) 1.23 (1.22) −0.09 (−0.30) 2.10 (2.01)

ALL 0.12 (−0.01) 1.41 (1.13) −0.04 (−0.25) 1.82 (1.39)
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Table 4. MEDUSA phytoplankton parameters (MarMOT 1.1 configuration).

Symbol Description and units Standard value

αPn chlorophyll-specific initial slope of P-I curve for non-diatoms
g C (g chl)−1 (W m−2)−1 d−1

15

fαPd = αPd
αPn

chlorophyll-specific initial slope of P-I curve for diatoms relative to that for
non-diatoms
–

0.75

VPn maximum non-diatom growth rate
at 0 ◦C
d−1

0.53

fVPd = VPd
VPn

maximum growth rate at 0 ◦C of diatoms relative to that of non-diatoms
–

0.9434

kN,Pn N nutrient uptake half-saturation concentration for non-diatoms
mmol N m−3

0.5

fkN,Pd = kN,Pd
kN,Pn

N nutrient uptake half-saturation concentration for diatoms relative to that
for non-diatoms
–

0.5

kSi Si nutrient uptake half-saturation concentration for diatoms
mmol Si m−3

0.75

kFe,Pn Fe nutrient uptake half-saturation concentration for non-diatoms
mmol Fe m−3

0.00033

fkFe,Pd = kFe,Pd
kFe,Pn

Fe nutrient uptake half-saturation concentration for diatoms relative to that
for non-diatoms
–

2.03
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Table 5. MEDUSA zooplankton parameters (MarMOT 1.1 configuration).

Symbol Description and units Standard value

gµ maximum microzooplankton grazing rate
d−1

2

fgm = gm
gµ

maximum grazing rate of mesozooplankton relative to that of microzooplankton
–

0.25

kµ microzooplankton grazing half-saturation concentration
mmol N m−3

0.8

fkm = km
kµ

grazing half-saturation concentration for mesozooplankton relative to that of microzoo-
plankton
–

0.375

φ zooplankton grazing inefficiency
–

0.2

βN zooplankton N assimilation efficiency
–

0.69

aβC = βC−βN

βN
,βC ≤ βN

aβC = βC−βN

1−βN
,βC > βN

offset of zooplankton C assimilation efficiency from that of N as a fraction of maximum
offset possible
–

0

kC zooplankton net C growth efficiency
–

0.8

pµPn microzooplankton grazing preference for live food (non-diatom phytoplankton)
–

0.75

pmLive = pmPn + pmPd + pmZµ mesozooplankton grazing preference for live food (phytoplankton or microzooplankton)
–

0.85

pc, mP = pmPn+pmPd
pmPn+pmPd+pmZµ

mesozooplankton conditional grazing preference for phytoplankton, given live food
–

0.5882

pc, mPn = pmPn
pmPn+pmPd

mesozooplankton conditional grazing preference for non-diatoms, given phytoplankton
–

0.3
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Table 6. MEDUSA plankton loss-related parameters (MarMOT 1.1 configuration).

Symbol Description and units Standard value

µ1,Pn non-diatom phytoplankton density-independent loss rate
d−1

0.02

fµ1,Pd = µ1,Pd
µ1,Pn

density-independent loss rate of diatoms relative to that of non-diatom phytoplankton
–

1

fµ1,Zµ =
µ1,Zµ
µ1,Pn

density-independent loss rate of microzooplankton relative to that of non-diatom phytoplankton
–

1

fµ1,Zm = µ1,Zm
µ1,Zµ

density-independent loss rate of mesozooplankton relative to that of microzooplankton
–

1

µ2,Pn non-diatom phytoplankton maximum density-dependent loss rate
d−1

0.1

kPn non-diatom phytoplankton half-saturation concentration for density-dependent loss
mmol N m−3

0.5

fµ2,Pd = µ2,Pd
µ2,Pn

maximum density-dependent loss rate of diatoms relative to that of non-diatom phytoplankton
–

1

fkPd =
kkPd
kPn

density-dependent loss half-saturation concentration of diatoms relative to that of non-diatom phytoplankton
–

1

fµ2,Zµ =
µ2,Zµ
µ2,Pn

maximum density-dependent loss rate of microzooplankton relative to that of non-diatom phytoplankton
–

1

fkZµ =
kZµ

kPn
density-dependent loss half-saturation concentration of microzooplankton relative to that of non-diatom phyto-
plankton
–

1

fµ2,Zm = µ2,Zm
µ2,Zµ

maximum density-dependent loss rate of mesozooplankton relative to that of microzooplankton
–

2

fkZm = kZm
kZµ

density-dependent loss half-saturation concentration of mesozooplankton relative to that of microzooplankton
–

1.5

D1frac fast detritus fraction of diatom losses
–

0.75

D2frac fast detritus fraction of mesozooplankton losses
–

1

Diss diatom frustule dissolution rate
d−1

0.006

wg detrital sinking rate
m d−1

3
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Table 7. MEDUSA parameter space for 28-dimensional sensitivity analysis.

Parameter Standard value Lower bound Upper bound Transformation

αPn 15 7.5 30 log
fαPd 0.75 0.56 1 log
VPn 0.53 0.27 1.1 log
fVPd 0.9434 0.89 1 log
kN,Pn 0.5 0.1 2.5 log
fkN,Pd 1.5 1 2.3 log
kSi 0.75 0.15 3.8 log
kFe,Pn 0.00033 0.000066 0.0017 log
fkFe,Pd 2.03 1 4.1 log
gµ 2 1 4 log
fgm 0.25 0.13 0.5 log
kµ 0.8 0.16 4 log
fkm 0.375 0.14 1 log
φ 0.2 0.05 0.45
βN 0.69 0.44 0.94
kC 0.8 0.55 0.95
pµPn 0.75 0.5 0.95
pmLive 0.85 0.6 0.95
pc, mP 0.5882 0.34 0.84
pc, mPn 0.3 0.05 0.55
µ1,Pn 0.02 0.01 0.04 log
µ2,Pn 0.1 0.05 0.2 log
kPn 0.5 0.1 2.5 log
fµ2,Zm 2 1 4 log
fkZm 1.5 1 2.3 log
D1frac 0.75 0.5 0.95
Diss 0.006 0.003 0.012 log
wg 3 1.5 6 log
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Table 8. Parameter sensitivity of annual mean model output from 28 dimensional analysis, showing
parameters that explain 5 % or more of the variance in either variable at 1 or more sites.

Parameter Primary Production Particulate Export Ratio at 207 m Selected ?
No. of sites
with r2 ≥ 0.05

Maximum
r2

No. of sites
with r2 ≥ 0.05

Maximum
r2

αPn 8 0.44 4 0.08 yes
VPn 4 0.15 0 < 0.05 no
kN,Pn 5 0.22 2 0.10 yes
kFe,Pn 9 0.34 3 0.08 yes
kµ 5 0.17 2 0.13 yes
fkm 0 < 0.05 1 0.05 no
φ 4 0.15 7 0.17 yes
kC 3 0.07 2 0.10 no
µ1,Pn 6 0.11 11 0.10 yes
µ2,Pn 3 0.06 0 < 0.05 no
kPn 4 0.22 7 0.15 yes
wg 6 0.17 11 0.38 yes
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Figure 1. Data flow for emulator construction and application to the prediction of target model output
where simulator uncertainty is quantified by the direct method. A1 and A2 are arbitrary sets of indices
satisfying A1∩A2 = ∅. Simulation steps are indicated by circles. The dotted lines and uncoloured boxes
indicate data flow for validating emulator performance against a known truth. They are not part of the
practical application procedure, where the truth would be unknown.
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tion steps are indicated by circles. The dotted lines and uncoloured boxes indicate data flow for validating
emulator performance against a known truth. They are not part of the practical application procedure,
where the truth would be unknown.
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Figure 3. 5 day mean surface chlorophyll output from 3-D NEMO-MEDUSA simulations for the 10
parameter vectors in Table 2, colour coded by Parameter Set number.
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Figure 4. 5 day mean surface chlorophyll output for 1998 at all 12 sites from the uninformed simulator,
compared with that from the matching 3-D NEMO-MEDUSA reference simulation. Results are shown
for the 10 different parameter vectors in Table 2, colour coded by Parameter Set number.
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Figure 5. Uninformed emulator error statistics for log10(surface chlorophyll) (mg m−3) over 10 exper-
iments, one experiment for each of the parameter vectors in Table 2: (a) bias and (b) r.m.s. error. The
statistics are shown for the simulators without bias correction and for the bias-corrected simulator array,
which is the uninformed emulator. The emulator statistics are given for emulator versions constructed
using direct and indirect uncertainty quantification methods (i.e. for errors dUd and dUi).
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Figure 6. Normalized uninformed emulator error for emulator versions constructed using (a) the direct
uncertainty quantification method (DUd) and (b) the indirect uncertainty quantification method (DUi).
Errors are shown for the 10 different parameter vectors in Table 2, colour coded by Parameter Set number.
Off scaleDUi values not shown at the beginning of 1997 go up to about 26 at 55◦ N and about 35 at 60◦ N.
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Figure 7. 1998 distributions of the normalized error for the uninformed emulator constructed using the
direct and indirect uncertainty quantification methods: DUd and DUi. Results for 9 of the 10 parame-
ter vector experiments are combined. Experiment 6, for which large extremes occur, is excluded. The
predicted normalized error distribution, over-plotted for reference, is Gaussian with zero mean and unit
standard deviation at all times and locations.
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Figure 8. 5 day mean surface chlorophyll output for 1998 at all 12 sites from the uninformed simulator
with lateral flux perturbations set to zero, compared with that from the matching 3-D NEMO-MEDUSA
reference simulation. Results are shown for the 10 different parameter vectors in Table 2, colour coded
by Parameter Set number.
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Figure 9. Informed simulator error statistics for log10(surface chlorophyll) (mg m−3) over 10 experi-
ments, one experiment for each of the parameter vectors in Table 2. (a) bias and (b) r.m.s. error. The
statistics are shown for informed simulators with and without lateral flux perturbations.
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Figure 10. Statistics for the uninformed simulator residual ε1, predicted by the direct and indirect uncer-
tainty quantification methods for all 10 experiments: (a) residual means u1 and uS+uB; (b) residual stan-
dard deviations s1 and

√
s2S + s2B. Values are in log10(chlorophyll) units with chlorophyll in mg m−3.
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Figure 11. Predicted statistics for the mean environment simulation residual εS and the parametric envi-
ronment residual εB for all 10 experiments: (a) residual means uS and uB; (b) residual standard devia-
tions sS and sB. Values are in log10(chlorophyll) units with chlorophyll in mg m−3.
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