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Abstract 5 

The Rainfall-Response Aquifer and Watershed Flow Model (RRAWFLOW) is a lumped-6 

parameter model that simulates streamflow, springflow, groundwater level, or solute transport 7 

for a measurement point in response to a system input of precipitation, recharge, or solute 8 

injection. I introduce the first version of RRAWFLOW available for download and public use 9 

and describe additional options. The open-source code is written in the R language and is 10 

available at http://sd.water.usgs.gov/projects/RRAWFLOW/RRAWFLOW.html along with an 11 

example model of streamflow. RRAWFLOW includes a time-series process to estimate 12 

recharge from precipitation and simulates the response to recharge by convolution; i.e., the 13 

unit-hydrograph approach. Gamma functions are used for estimation of parametric impulse-14 

response functions (IRFs); a combination of two gamma functions results in a double-peaked 15 

IRF. A spline fit to a set of control points is introduced as a new method for estimation of 16 

nonparametric IRFs. Several options are included to simulate time-variant systems. For many 17 

applications, lumped models simulate the system response with equal accuracy to that of 18 

distributed models, but moreover, the ease of model construction and calibration of lumped 19 

models makes them a good choice for many applications; e.g., estimating missing periods in a 20 

hydrologic record. RRAWFLOW provides professional hydrologists and students with an 21 

accessible and versatile tool for lumped-parameter modeling. 22 

1 Introduction 23 

1.1 Lumped versus distributed models 24 

Hydrologic models, commonly referred to as a “lumped-parameter” or “lumped” models, 25 

generally have a small number of parameters, each representing a property of the entire 26 

hydrologic system; conceptually, many physical processes are lumped into a few parameters. 27 

http://sd.water.usgs.gov/projects/RRAWFLOW/RRAWFLOW.html
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In contrast to lumped models, distributed models discretize the system into small 1 

compartments or cells, each of which has several parameters defined. All hydrologic models, 2 

however, are lumped to some degree. Models that frequently are considered physically based 3 

simulate numerous small-scale physics by lumping these processes into simplified 4 

mathematical forms (Beven, 1989). The use of the term “physically based” to describe any 5 

hydrologic model, therefore, should be discouraged (Beven and Young, 2013). Both 6 

distributed and lumped models, however, have components that can represent different 7 

hydrologic processes that can be interpreted in physically meaningful ways (Beven and 8 

Young, 2013). For example, the IRF estimated in many lumped models represents the 9 

physical response to an impulse into the system and provides mechanistic insights into that 10 

system, including the peak response time and magnitude and the hydrologic memory of the 11 

system (von Asmuth and Knotters, 2004; Beven and Young, 2013; Young, 2013). The IRF 12 

could be measured directly at the outflow point (e.g., a spring) if a short, intense recharge 13 

event follows a long, dry period. Most commonly however, the outflow, or system response, 14 

results from a series of superposed responses to repeating recharge events, and the lumped 15 

model is used to estimate the IRF iteratively and to simulate the system response.  16 

In a comparison of lumped models to distributed models, Reed et al. (2004) concluded that 17 

lumped models had better overall performance than distributed models but also cited several 18 

other studies indicating that distributed or semi-distributed models may or may not provide 19 

improvement over lumped models. In another comparison, Smith et al. (2013) concluded that 20 

distributed models provided improvements over lumped models in 12–24% of the cases 21 

tested, depending on the criteria of evaluation. The mixed results of these comparisons 22 

indicate that lumped models are a good choice when the objectives do not require a 23 

distributed model.  24 

A major advantage of a lumped model is its ease of construction and calibration because of 25 

the small number of parameters to estimate and because there is no need to assemble large 26 

datasets representing the physical properties of the system. Lumped models are useful for 27 

karst aquifers, where the geometry of the conduit network frequently is unknown. Lumped 28 

models provide an efficient means to simulate the response to possible future changes in the 29 

system input (e.g., precipitation). A lumped groundwater model might be more effective than 30 

a distributed model in regard to conditional validation and predictive modeling because of its 31 

simplicity, as will be discussed. The primary advantage of distributed models is to simulate 32 
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the response to possible changes within the system, such as urban development or increased 1 

groundwater pumping, for example. The choice to use a lumped or distributed model, 2 

therefore, depends on a study’s objectives and available resources; a lumped model likely is 3 

the better choice if it meets the study’s objectives.  4 

1.2 RRAWFLOW overview 5 

The Rainfall-Response Aquifer and Watershed Flow Model (RRAWFLOW) is a lumped 6 

model that is partially based on unit-hydrograph theory applied to streamflow (Nash, 1959). 7 

RRAWFLOW simulates a time-series record for a measurement point of streamflow, 8 

springflow, groundwater level, or solute transport in response to a system input of 9 

precipitation, recharge, or solute injection. A preliminary version of RRAWFLOW was 10 

developed by Long and Mahler (2013) and used to classify karst aquifers and characterize 11 

time-variant systems. This preliminary version also was used by Symstad et al. (2014) to 12 

simulate future scenarios of streamflow and groundwater level in a cave in Wind Cave 13 

National Park, United States and by the U.S. Geological Survey to simulate future scenarios 14 

of springflow and groundwater levels (https://nccwsc.usgs.gov/display-15 

project/4f8c652fe4b0546c0c397b4a/52d5615ae4b0f19e63da8647). Although this preliminary 16 

version was applied primarily, but not exclusively, to karst, RRAWFLOW is suitable for 17 

aquifers and watersheds of any type, and non-karst systems generally are easier to model than 18 

karst systems. Convolution, as used in RRAWFLOW, has been applied extensively to non-19 

karst surface-water and groundwater systems (e.g., Nash, 1959; Blank et al., 1971; Delleur 20 

and Rao, 1971; Dooge, 1973; Neuman and de Marsily, 1976; Maloszewski and Zuber, 1982; 21 

Besbes and de Marsily, 1984; Beven, 1989; Jakeman and Hornberger, 1993; von Asmuth et 22 

al., 2002; Reed et al., 2004; von Asmuth and Knotters, 2004; Olsthoorn, 2008; Jurgens et al., 23 

2012; Smith et al., 2013). 24 

The purpose of this paper is to present a new version of RRAWFLOW with added 25 

functionality, to make the code publicly available, and to guide users in its operation. New 26 

functions in this version include (1) the gamma function for parametric impulse-response 27 

functions (IRFs), (2) a spline curve or straight-line segments fit through a set of control points 28 

for nonparametric IRFs, (3) a new option for time-variant systems that uses a continuously 29 

changing IRF scale, (4) two methods to determine wet and dry periods, and (5) any user-30 

defined IRF. To my knowledge, the spline-curve method previously has not been used for the 31 

https://nccwsc.usgs.gov/display-project/4f8c652fe4b0546c0c397b4a/52d5615ae4b0f19e63da8647
https://nccwsc.usgs.gov/display-project/4f8c652fe4b0546c0c397b4a/52d5615ae4b0f19e63da8647


 4 

IRF. The RRAWFLOW open-source code written in the R language (http://www.r-1 

project.org/index.html) can be downloaded from 2 

http://sd.water.usgs.gov/projects/RRAWFLOW/RRAWFLOW.html along with a user’s manual, 3 

example model, and a quick-start guide for the R novice. 4 

Time-invariant and time-variant systems were described by Jenkins and Watts (1968). For 5 

example, Larocque et al. (1998) described high-flow periods exhibiting distinctly different 6 

response characteristics from low-flow periods. RRAWFLOW includes several options to 7 

simulate time-variant systems that generally are not available for distributed watershed 8 

models (e.g., PRMS; http://wwwbrr.cr.usgs.gov/projects/SW_MoWS/PRMS.html). If a 9 

distributed model is required for a specific study, RRAWFLOW might be a complimentary 10 

exploratory tool to analyze the system’s sensitivity to time-variant response characteristics. 11 

RRAWFLOW is useful for estimation of missing periods in a hydrologic record and as an 12 

educational tool for hands-on instruction of some of the basic principles in hydrology. Several 13 

example applications that demonstrate model options and calibration and validation 14 

procedures are included herein. Input, output, and calibration files are available from the 15 

RRAWFLOW website for one of these examples.   16 

2 The model 17 

The model‘s time-step interval is determined by the input data record, which must have equal 18 

time steps, and model output is generated for the same time step.  Hydrological and 19 

meteorological data commonly are available for a daily time step, which is suitable for most 20 

simulations over a time frame of months to decades. Time steps shorter than one day can be 21 

used when high-resolution responses are of interest. Any time-step interval can be used 22 

because the equations are not time-unit specific. However, the time step should be equal to or 23 

less than the quickest identifiable response; longer time steps will result in a loss of 24 

information about response dynamics (Jakeman and Hornberger, 1993). RRAWFLOW also is 25 

independent of specific units for flow, water level, or solute concentration, and the user 26 

should maintain unit consistency. Air temperature is always in °C. 27 

2.1 Precipitation recharge 28 

Effective precipitation for a watershed is the amount of precipitation that results in 29 

streamflow exiting the watershed. This consists of infiltration to groundwater below the root 30 

http://www.r-project.org/index.html
http://www.r-project.org/index.html
http://sd.water.usgs.gov/projects/RRAWFLOW/RRAWFLOW.html
http://wwwbrr.cr.usgs.gov/projects/SW_MoWS/PRMS.html
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zone that reemerges as streamflow, springflow, shallow groundwater interflow, and overland 1 

runoff. Processes that apply to effective precipitation for watershed modeling also apply to 2 

infiltration recharge to groundwater that causes a response in springflow or groundwater 3 

level, except that overland runoff generally does not contribute to groundwater recharge. In 4 

RRAWFLOW, the term “recharge” is used for both watershed modeling and groundwater 5 

modeling. Methods used in RRAWFLOW to simulate precipitation recharge are described in 6 

Long and Mahler (2013), and the equations also are presented in Appendix A herein for 7 

convenience and reference from the RRAWFLOW User’s Manual. 8 

2.2 Other recharge options 9 

Recharge estimated outside of RRAWFLOW can be used as model input. For example, this 10 

applies to precipitation recharge estimated by a soil-water-balance model (e.g., Westenbroek 11 

et al., 2010) or sinking-stream recharge in karst aquifers that can be estimated by methods 12 

such as those described by Hortness and Driscoll (1998). This is system-input option 2 (Table 13 

1). 14 

2.3 Convolution 15 

Convolution is a time-series operation (Jenkins and Watts, 1968; Smith, 2003) that is 16 

commonly used in non-distributed hydrologic models to simulate streamflow, springflow, or 17 

groundwater level in response to recharge (e.g., Nash, 1959; Dooge, 1973; Dreiss, 1989; 18 

Olsthoorn, 2008). The use of convolution in modeling also has been described as a linear-19 

reservoir model and a transfer-function model (e.g., Nash, 1959; Young, 2013; von Asmuth et 20 

al., 2002). The discrete form of the convolution integral for uniform time steps used in 21 

RRAWFLOW is 22 

𝑦𝑖 = ∆𝑡 ∑ 𝛽𝑗ℎ𝑖−𝑗𝑢𝑗 + 𝜑𝑖 + 𝑑0𝑖
𝑗=0   i,j = 0, 1, …, N   (1) 23 

where hi-j is the IRF; uj is the input, or forcing function; j and i are time-step indices 24 

corresponding to system input and output, respectively; N is the number of time steps in the 25 

output record; βj is an optional time-varying IRF scaling coefficient; φi represents the errors 26 

resulting from measurement inaccuracy, sampling interval, or simplifying model assumptions; 27 

and d0 is a hydraulic-head datum used in simulation of groundwater levels.  d0 is the level to 28 

which hydraulic head would converge on if the local recharge was eliminated. Local recharge 29 
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is assumed to be the only forcing that results in hydraulic-head fluctuation or that causes 1 

hydraulic head to rise above d0. The errors φi are not explicitly simulated but are shown in Eq. 2 

(1) for clarity. 3 

The quantity i – j represents the delay time from impulse to response, and the IRF represents a 4 

distribution of these delay times. In RRAWFLOW, the input function uj can be recharge or 5 

input of a solute. The system response yi can be streamflow exiting a watershed, springflow 6 

from a groundwater system, groundwater level, or solute concentration at an outlet. 7 

Physically, the IRF is the system response yi per unit impulse of uj and also can be described 8 

as the response produced by a system when the input is a delta function (Smith, 2003). 9 

Conceptually, convolution is the superposition of a series of IRFs that are initiated at the time 10 

of each impulse of uj and are scaled proportionally by the magnitude of the corresponding 11 

impulse (Fig. 1). 12 

2.4 Solute transport 13 

RRAWFLOW can simulate transport of a solute, similarly to the approach of Maloszewski 14 

and Zuber (1982). In this case, the user-provided system input uj is the solute concentration. A 15 

constant recharge rate is assumed; i.e., the concentration is not weighted by a variable 16 

recharge rate. The response in solute concentration at the outlet of a system is simulated by 17 

the convolution integral (Eq. 1) with the IRFs described in the following section. Convolution 18 

temporally disperses a system input of a solute, according the IRF characteristics, at the 19 

system outlet. This is system-input option 3 (Table 1). 20 

2.5 Impulse-response function (IRF) 21 

The IRF characterizes the relation between system input and output by convolution (Eq. 1) 22 

and has been described by other terms, including instantaneous unit hydrograph, transfer 23 

function, and kernel (e.g., Nash, 1959; Dreiss, 1989; Berendrecht et al., 2003; Smith, 2003; 24 

Jukić and Denić-Jukić, 2006). However, the term “transfer function“ should only be applied 25 

to the Fourier transform of the IRF (Smith, 2003). The IRF of a hydrologic system can be 26 

approximated by a parametric function, where its shape is defined by one or more parameters, 27 

or a nonparametric function that is not constrained by common curve types.  28 
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 Parametric IRFs 1 

Parametric functions that have been used to approximate the IRF for hydrologic systems 2 

include exponential, lognormal, and gamma functions (Nash, 1959; Besbes and de Marsily, 3 

1984; Jakeman and Hornberger, 1993; von Asmuth et al., 2002; Berendrecht et al., 2003; von 4 

Asmuth and Knotters, 2004; Long, 2009; Long and Mahler, 2013). The gamma function is 5 

equivalent to the Pearson type III function: the three parameters of the Pearson type III 6 

function can be combined into the two parameters of the gamma function (Haan, 2002). 7 

Estimation of parametric IRFs generally consists of model-calibration techniques to optimize 8 

the parameters with the aim of minimizing the difference between the observed and simulated 9 

system response; i.e., fitting the model. The parametric functions previously described (other 10 

than Pearson type III) have one or two of these fitting parameters. As the number of fitting 11 

parameters increases, the risk of over-fitting the model also increases; i.e., fitting the errors φ 12 

in Eq. (1). 13 

For a parametric approximation of the IRF, RRAWFLOW uses the gamma function:  14 
1

( )
( )

tt et
η η λλγ

η

− −

=
Γ   , 0λ η >     (2) 15 

1

0
( ) t

t
t e dtηη

∞ − −

=
Γ = ∫        (3) 16 

where λ and η are unitless shape parameters, and the mean and variance are η/λ and η/λ2, 17 

respectively. Eq. (3) is approximated in RRAWFLOW by the discrete form 18 

0

1( )
N

t

t t
t t eηη − −

=

Γ = ∆ ∑        (4) 19 

where t is time centered on each discrete time step; t0 and N are time centered on the initial 20 

and final time steps, respectively; and Δt is the time step duration. The gamma function can 21 

produce a variety of shapes, including exponential (η = 1), reverse-J (η < 1), and positively 22 

skewed shapes with a peak at t = (η – 1)/λ (Fig. 2; Haan, 2002). The gamma function can 23 

produce nearly identical shapes to those of the lognormal function when η > 1, and therefore, 24 

can produce nearly all possible shapes of the exponential and lognormal functions combined 25 

when η ≥ 1, plus the additional reverse-J shape when η < 1. The RRAWFLOW option to use 26 

parametric IRFs is specified as IRF type 1 (Table 1). 27 
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The gamma function (Eq. 2), which has an area under its curve of unity, requires the 1 

additional scaling coefficient ε for use as the IRF in many hydrologic applications:  2 

( ) ( )h t tεγ=         (5)       3 

where ε [unitless] compensates for hydrologic systems that do not have a one-to-one relation 4 

between system input and output (Olsthoorn, 2008). For example, if (1) the system input uj is 5 

in cubic meters per day of recharge, (2) the system response yi is springflow with the same 6 

units, and (3) 100% of this recharge emerges as springflow with nothing else contributing to 7 

springflow, then ε would be set to unity. For most other hydrologic applications, ε would not 8 

equal unity. Similarly, if 100% of a solute entering the system does not exit the system at the 9 

observation point, then the area under the IRF should be less than unity (ε < 1). Maloszewski 10 

and Zuber (1982) simulated solute transport with IRFs that were approximated by the 11 

exponential or dispersion-model functions. The gamma function has a similar shape to that of 12 

the dispersion-model function and could be used as an approximation of the dispersion-model 13 

function, or the exact dispersion-model function can be provided to RRAWFLOW as a user-14 

defined IRF.  15 

RRAWFLOW allows the use of as many as two superposed gamma functions, herein referred 16 

to as double-gamma IRFs, to produce additional IRF shapes such as a double-peaked curve; 17 

several examples of these are shown in Long and Mahler (2013), except with different 18 

combinations of lognormal and exponential functions. Approaches similar to this have been 19 

used to represent the components of quick flow and slow flow in watershed modeling 20 

(Jakeman and Hornberger, 1993) and for conduit and diffuse flow in karst systems (Pinault et 21 

al., 2001; Long, 2009; Long and Mahler, 2013). In these examples, each parametric function 22 

represents one of two flow components. The use of a double-gamma IRF also might be useful 23 

when a single function cannot produce the necessary IRF approximation (e.g., an extra-long 24 

tail). The scaling coefficient ε can be set to different values for the two gamma functions; e.g., 25 

to allow for a larger component of slow flow than of quick flow.  26 

 Nonparametric IRFs 27 

The process of determining an unknown IRF from observed system input and output data is 28 

known as deconvolution (e.g., Neuman and de Marsily, 1976). To define a nonparametric 29 

IRF, an ordinate value is defined for each time step, and any shape desired is possible. 30 

Deconvolution methods include Fourier harmonic time-series analysis (Blank et al., 1971; 31 



 9 

Delleur and Rao, 1971), linear programming (Neuman and de Marsily, 1976), and time-1 

moment analysis (Dreiss, 1989). Estimations of nonparametric IRFs by model calibration 2 

include those described by Pinault et al. (2001) and Jukić and Denić-Jukić (2006). A potential 3 

problem with nonparametric IRFs is that hundreds or even thousands of IRF ordinates may be 4 

needed to define the IRF, depending on the IRF length and time step. Optimization of each 5 

individual ordinate would result in a mathematically underconstrained and over-fit model. An 6 

extreme example of over-fitting is to determine the IRF by means of deconvolution in the 7 

frequency domain (Smith, 2003) that results in a numerically perfect model fit but also an IRF 8 

that commonly is highly oscillatory and cannot be explained physically (Blank et al., 1971; 9 

and Delleur and Rao, 1971) because the errors φ (Eq. 1) are included in the fitting process. 10 

Filtering the IRF in the frequency domain (i.e., transfer function; Smith, 2003) or smoothing 11 

the IRF in the time domain (Long and Derickson, 1999) are options for IRF estimation by 12 

Fourier analysis, which may require trial-and-error calibration. Further, an over-fitted model 13 

results in a poor model fit when tested on a conditional validation period that was sequestered 14 

from the fitting process. Pinault et al. (2001), Jukić and Denić-Jukić (2006), and Ladouche et 15 

al. (2014) described different methods to constrain the nonparametric IRF and reduce the 16 

number of fitting parameters.  17 

The method proposed herein uses a small number of ordinates to define a smoothly shaped 18 

nonparametric IRF: ordinates of the IRF are defined at spaced intervals (IRF control points), 19 

and a spline curve is fit through these points (Fig. 3) (IRF type 2, Table 1). Another option is 20 

to apply straight-line segments connecting the control points (IRF type 3, Table 1). Similar to 21 

parametric IRFs, these two nonparametric options are convenient for the estimation of the IRF 22 

through model calibration and conditional validation because of the ability to control the 23 

number of fitting ordinates. If a model is suspected of having been over-fit, the number of 24 

control points should be reduced; this consists of increasing the control-point intervals, 25 

resulting in a smoother shape, or by reducing the tail length by setting posterior control points 26 

to zero. Trial and error generally is required to determine the optimum number of control 27 

points for a given application. The minimum number of control points is two: at least one to 28 

define the non-zero part of the curve and one to define where the function becomes zero.  29 

Another option allows a predefined IRF to be supplied to RRAWFLOW if the IRF is 30 

determined by some other method (IRF type 4, Table 1). The scaling coefficient ε is not used 31 

for nonparametric IRFs because the area is defined by the ordinate values.  32 
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 Linearity and time variance 1 

The terms “linear,” “nonlinear,” time variant,” and “time invariant” may cause some 2 

confusion. Estimated recharge (Appendix A) is a nonlinear process, where recharge as a 3 

fraction of precipitation varies with antecedent soil-moisture conditions. Convolution (Eq. 1), 4 

which simulates the system response to recharge, is a linear system (Jenkins and Watts, 1968; 5 

Dooge, 1973). This linear system can be either time variant or time invariant, depending on 6 

whether or not the IRF changes with time (Jenkins and Watts, 1968). Most commonly, a time-7 

invariant (i.e., static) IRF is assumed in hydrologic convolution models (e.g., von Asmuth et 8 

al., 2002; Denić-Jukić and Jukić, 2003). In many hydrologic systems, however, the IRF 9 

changes with changing climatic conditions, resulting in a change in response characteristics 10 

(Larocque et al., 1998; Long and Mahler, 2013). Additional details and examples of time-11 

variant IRFs for hydrologic applications include Pinault et al. (2001), Jukić and Denić-Jukić 12 

(2006), and Long and Mahler (2013). 13 

 Time-variance (TV) options 14 

RRAWFLOW has three options for time variance in convolution (Table 1). In time-variance 15 

(TV) option 1, the IRF is time invariant, or static. TV option 1 should be used for solute 16 

transport simulations. TV option 2 applies a time-variant IRF, similarly to the method 17 

proposed by Long and Mahler (2013), which uses a minimal number of fitting parameters but 18 

also represents the dominant transient characteristics of the system. In this method, the 19 

system-input record is separated into climatically wet or dry periods. One IRF represents all 20 

of the wet periods, and the other represents all of the dry periods. The IRF scaling variable β 21 

(Eq. 1) is set to unity for TV options 1 and 2. 22 

All of the parametric and nonparametric IRF-type options previously described can be used in 23 

TV option 2 (Table 1). An advantage of this method is that both the size and shape of the IRF 24 

can change, while the fitting parameters are kept to a minimum, because IRFs are not defined 25 

continuously but rather for two different periods only. A potential disadvantage of this 26 

method is that the IRF changes abruptly between wet and dry periods; however, this was not a 27 

detrimental factor for several models in which this method was applied (Long and Mahler, 28 

2013). Also, the superposition of many responses applied in convolution results in smooth 29 

transitions in the simulated response between wet and dry periods. Jukić and Denić-Jukić 30 
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(2006) proposed a similar time-variant approach, where three different IRFs were applied to 1 

one of three different hydrologic periods determined by an index of antecedent recharge. 2 

Pinault et al. (2001) varied the IRF’s vertical scale continuously with hydraulic head. 3 

However, because hydraulic head also is used for model calibration, this approach cannot 4 

undergo conditional validation or be used to simulate periods without observed system-5 

response data; e.g., future periods that might be simulated with climate projections. TV option 6 

3 in RRAWFLOW (Table 1) is similar to the approach of Pinault et al. (2001), except that the 7 

IRF scaling variable β (Eq. 1), varies according to the input for convolution uj (e.g. recharge) 8 

by 9 

j jmxβ =                 0m ≠              (6) 10 

where xj is the moving average of uj (Eq. 1) that is scaled to range from 0 to 1, and m 11 

determines the range of β. A moving average of uj is used so that the IRF transitions 12 

smoothly. Generally, β is assumed to vary directly with x (m > 0). Advantages of this method 13 

are that it requires fewer fitting parameters than TV option 2 and the IRF does not change 14 

abruptly; the disadvantage is that only the vertical scale of the IRF changes, whereas the 15 

shape is static. All of the parametric and nonparametric IRF-type options previously described 16 

can be used in this option. TV option 3 has longer run times than TV options 1 or 2 because 17 

of the additional computation required, mainly within the convolution loop.  18 

For time-invariant systems, the cross-correlation function (CCF) has the same shape as the 19 

IRF but only if the input to the convolution process is completely random (Jenkins and Watts, 20 

1968). If the convolution input has a strong autocorrelation, typical of recharge in hydrologic 21 

systems, then there is large error in using the CCF to estimate the IRF (Jenkins and Watts, 22 

1968; Bailly-Comte et al., 2011) and therefore should be avoided.  23 

2.6 Determining wet and dry periods 24 

RRAWFLOW includes two options to determine wet and dry periods on the basis of the 25 

precipitation input record when using TV option 2. The first option assigns each calendar year 26 

to a wet period if the annual mean precipitation is greater than the overall mean Pmean for the 27 

entire input record, and other years are set to dry years (wet-switch option 1, Table 1). The 28 

second option sets wet and dry periods according to the slopes of a cumulative precipitation 29 

function in which upward or downward slopes indicate wet or dry periods, respectively (wet-30 
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switch option 2, Table 1). This option (1) calculates a record, at the model time step, of the 1 

cumulative departure from Pmean, (2) calculates the annual mean cumulative departure 2 

(CDmean) from this record, (3) sets each time step within a year to wet if an increase in CDmean 3 

from the previous year occurred, and (4) sets all other periods to dry. Finally, this record of 4 

wet and dry time steps is shifted backward in time by 6 months. The reason for this shift is 5 

that the wet periods for option 2 tend to lag behind those of option 1 if no shift is applied. 6 

However, because the two methods are calculated differently, wet periods from option 2 can 7 

begin either before or after those of option 1, depending on the year; the same is true for the 8 

beginning of dry periods. The shift can be changed in the RRAWFLOW code if desired by 9 

editing the parameter “shift.” A third option allows the user to provide a record of wet and dry 10 

periods in the model input (wet-switch option 0, Table 1). 11 

2.7 Model outputs 12 

Model outputs consist of time series for simulated system response yi, the dry-period and wet-13 

period IRFs (if using TV option 2), the soil-moisture index si (Eq. A1, Appendix A), and the 14 

input to convolution uj. Other outputs consist of a coefficient of efficiency E to measure the 15 

similarity between simulated and observed system response (residuals) and the hydrologic 16 

memory of the system. This system memory is the time that the response to an impulse 17 

effectively persists, which is defined by the length of the IRF. Because the gamma function is 18 

asymptotic and has infinite length, system memory is arbitrarily defined in RRAWFLOW as 19 

time tm on the IRF time scale at which 95% of the curve area is in the range 0 – tm.  20 

2.8 Evaluating model fit and over-fitting 21 

The calibration period is the period of the data record used to calibrate the model. By default 22 

in RRAWFLOW, the conditional validation period is the part of the data record following the 23 

calibration period that is used to test the model calibration against system-response 24 

observation data not used in calibration (i.e., model prediction of streamflow or springflow). 25 

Assessing the conditional validation period is an indication of the expected model 26 

performance to predict a future period on the basis of climate simulations, for example. 27 

Moreover, this assessment indicates if the model is being over-fit. This validation is 28 

considered conditional because the model cannot yet be tested against additional 29 

observational data that will be available in the future (Beven and Young, 2013). 30 
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RRAWFLOW calculates a modified form of the Nash–Sutcliffe coefficient of efficiency 1 

(Nash and Sutcliffe, 1970; Legates and McCabe, 1999) to quantify model fit, as proposed by 2 

Long and Mahler (2013). This modification calculates the coefficient of efficiency E for a 3 

partial period, either calibration or conditional validation, in a manner that allows the two 4 

periods to be compared directly: 5 

( )

( )

2

2
1

obs sim
p

p
obs mean

T T

y y
E

ly y l

 ∑ − 
= −

  ∑ −     
       (7)

  6 

where yobs and ysim are time series of the observed and simulated system responses, 7 

respectively; ymean is the mean value of yobs; the subscripts p and T refer to the partial and total 8 

periods, respectively; and l is the time length of the respective period. Conceptually, E is the 9 

ratio of the magnitude of model residuals (numerator) to the overall variability in the 10 

observation record (denominator) subtracted from unity and theoretically can vary from −∞ 11 

(poorest fit) to unity (perfect fit).  12 

In addition to quantifying model fit, E provides a useful way to evaluate possible over-fitting 13 

of the model. Although model fit for the calibration period might improve as parameters are 14 

added, if the validation period indicates that this added complexity is not helpful, the model 15 

has been over-fit (von Asmuth et al., 2002). To test this condition, E is calculated for the 16 

calibration and conditional validation periods separately (Ecal and Eval) by the modified Nash–17 

Sutcliffe coefficient of efficiency (Eq. 7), which makes Ecal and Eval directly comparable 18 

(Long and Mahler, 2013). This method is particularly important for comparison of two 19 

periods with different fluctuation amplitudes.  20 

Legates and McCabe (1999) describe limitations of correlation-based measures to quantify 21 

model fit, such as the coefficient of determination R2, and the benefits of the Nash–Sutcliffe 22 

coefficient of efficiency and the index of agreement. The sum of the squared and weighted 23 

residuals (Doherty, 2005) is another useful metric used for this purpose. Hartmann, et al. 24 

(2013) provides an example of using multiple metrics to evaluate model performance. 25 

A value of Ecal that is much larger than Eval might indicate over-fitting, in which case a 26 

simpler model (i.e., fewer fitting parameters) should be tested. For example, if a double-27 

gamma IRF is used, then a second model calibration with a single-gamma IRF could be tested 28 

to determine if greater similarity in the Eval and Ecal values is achieved. For nonparametric 29 
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IRFs, a reduction in the number of IRF control points could be tested. A time-variant IRF 1 

requires more parameters than a time-invariant IRF, and this also can be tested. Thoroughly 2 

considering model complexity in light of Eval and Ecal provides context for conditional 3 

validation. For example, Long and Mahler (2013) described decision criteria to evaluate 4 

model complexity and the number of fitting parameters on the basis of Ecal and Eval, with 5 

several examples of calibrated models.  6 

The number of gamma functions or fitting parameters might correspond to different 7 

conceptual models of the system, and model complexity issues can be investigated by testing 8 

multiple conceptual models (e.g., Hartmann et al., 2013). Numerous other researchers have 9 

investigated issues related to model complexity and its effect on model-prediction uncertainty 10 

(e.g., Young et al., 1996; Jakeman and Hornberger, 1993; Arkesteijn and Pande, 2013). 11 

Prediction uncertainly crucially depends on model complexity (Arkesteijn and Pande, 2013). 12 

Although Vapnik–Chervonenkis generalization theory suggests that models with higher 13 

complexity tend to have higher prediction uncertainty, model complexity is not necessarily 14 

proportional to prediction uncertainty (Fienen et al., 2010). Doherty and others (2010) 15 

described a method for predictive uncertainty and sensitivity that tests the range of each 16 

parameter’s potential values on the basis of expert knowledge and propagates this uncertainty 17 

to model predictions. Estimating this potential range of IRF parameter values, however, might 18 

be more difficult than, for example, estimating hydraulic conductivity or streambed roughness 19 

in a distributed model. Although a rigorous assessment of prediction uncertainty is beyond the 20 

scope of this article, effective tools are available for this purpose (Doherty, 2005; Fienen et 21 

al., 2010). 22 

3 Example model applications 23 

The model was applied to three hydrologic systems in the United States with responses of 24 

streamflow, springflow, and groundwater level. Several examples with different 25 

RRAWFLOW options and different levels of parameterization are described, including 26 

examples of model over-fitting. The hydrologic systems were selected to provide a wide 27 

range of examples that required different levels of model complexity. The first hydrologic 28 

system is streamflow from a watershed, for which a simple model was appropriate. Karst 29 

settings were selected for the second and third hydrologic systems to provide examples in 30 

which more complex models are needed. For precipitation and air-temperature inputs, gridded 31 



 15 

data (e.g. Daymet: http://daymet.ornl.gov/) can be used, or a single weather station can be 1 

assumed to represent the recharge area. All examples used a daily time step.  2 

Model spin-up is the initial simulation period in which antecedent effects of the system are 3 

not fully incorporated into the simulation, which can result in large errors. When the 4 

simulation is past the number of time steps equal to the system memory, then the system 5 

antecedent effects are fully incorporated into the model. Therefore, the model input record 6 

must start n time steps prior to the calibration period, where n is the system memory, as a 7 

number of time steps. Because the system memory is not known until the IRF is estimated, it 8 

is useful to start the simulation at the earliest date for which input data are available. 9 

Estimated system-input values can be used if observation data are not available for the spin-10 

up period, and a constant value equal to the long-term mean can be used if a better estimate is 11 

not available; in this case, the antecedent effects will be smoothed. Another option is to select 12 

a period from the input data record and use this as input for the spin-up period. 13 

The parameter optimization software PEST (Doherty, 2005) was used for parameter 14 

estimation in these examples. RRAWFLOW is a stand-alone model independent of PEST 15 

and, therefore, can be used with any optimization method, including trial and error. For 16 

optimization of nonparametric IRFs, the last control point was used to set the system memory 17 

by assigning a fixed (non-optimized) value of zero to that control point (Fig. 3). Posterior to 18 

this point, a series of control points fixed at zero was specified, resulting in a spline fit with a 19 

constant value of zero.  20 

3.1 Streamflow in Boxelder Creek 21 

Boxelder Creek is located in the Black Hills of South Dakota, USA, with a watershed area of 22 

250 km2 upstream from U.S. Geological Survey streamgage 06422500, with daily streamflow 23 

available from http://waterdata.usgs.gov/nwis. The watershed primarily is pine forest and 24 

contains metamorphic rocks of Precambrian age (Carter et al., 2001). Gridded daily 25 

precipitation and air temperature data from the Daymet dataset are available at 1-km grid 26 

spacing for 1980–2013. These data were obtained from the Geo Data Portal 27 

(http://cida.usgs.gov/gdp/) and spatially averaged for the watershed to produce a daily time 28 

series of precipitation and air temperature for 1980–2013, which was used as model input. 29 

The calibration period was 1980–1996, and conditional validation was applied to 1997–2013 30 

http://daymet.ornl.gov/
http://waterdata.usgs.gov/nwis
http://cida.usgs.gov/gdp/
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(Fig. 4). A 5-year model spin-up period was applied by inserting data for 1980–1984 into the 1 

period 1975–1979. This estimated spin-up period affected the calibration period minimally, 2 

because the system memory was only about 3-months long.   3 

The example models described used system-input option 1 (precipitation recharge, Table 1). 4 

Five example models are presented for Boxelder Creek, all of which used single-gamma IRFs 5 

(Table 2). All other trials with double-gamma IRFs resulted in minimization of one of the 6 

IRFs, indicating that single-gamma IRFs were appropriate for this system. All Boxelder Creek 7 

gamma functions optimized to η < 1, the reverse-J shape (Fig. 5). Example BC1 used TV 8 

option 1 (time-invariant IRF, Table 1), resulting in Ecal and Eval values of 0.62 and 0.46, 9 

respectively (Table 2). Examples BC2 and BC3 used TV option 2 (time-variant IRF) with 10 

wet-dry options 1 and 2, respectively. For BC3, Eval was higher (0.56) than for BC1 and BC2 11 

(Table 2). Example BC4 and BC5 used TV option 3, in which a time-variant IRF that changes 12 

continually was used with a single-gamma IRF and moving-average (MA) windows of 1 and 13 

10 years (Eq. 6), respectively. Of the five examples, BC3 had the highest Eval value; BC5 had 14 

the second highest Eval value but with fewer parameters (Table 2). Comparison of model fit 15 

for examples BC4 and BC5 indicates that the time-variant aspects of this system respond to 16 

general climatic changes over decadal periods more so than annual. Table 3 shows optimized 17 

IFR parameters for selected example models. 18 

3.2 Springflow from Barton Springs 19 

Barton Springs is a group of springs that flow from the Edwards aquifer, a carbonate aquifer 20 

in south-central Texas that is contained mostly within the Edwards Group (Lower Cretaceous 21 

geologic age). Model input data consisting of daily precipitation and air temperature and 22 

system-response observation data used for model evaluation are described in Long and 23 

Mahler (2013) along with details describing the hydrogeology, physiography, and climate. 24 

These example models used system-input option 1 (precipitation recharge, Table 1). Seven 25 

example models are presented for Barton Springs (Table 2). Model fit varied more widely 26 

than for the Boxelder Creek models, possibly as a result of karst features in the Edwards 27 

aquifer that result in complex groundwater flow. For this reason, IRFs with added complexity 28 

were tested for the Barton Springs examples, and examples of over-fitting are demonstrated. 29 

Generally, Ecal is proportional to the number of optimized parameters for each example; 30 
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however, high Ecal values often resulted in low values of Eval, which might indicate over 1 

fitting (Table 2).  2 

Examples F1–F9 used wet-switch option 2. Examples F1, F5, F7 used gamma functions with 3 

an increasing number of parameters for the three examples, which were characterized as low 4 

Eval (F1), good Eval (F5), and an over-fit model (F7) that is indicated by a high Ecal and low 5 

Eval (Table 2). Example F5, with a moderate number of parameters, is considered the best 6 

choice of the three. Examples F8 and F9 used 7 and 16 optimized control points, respectively, 7 

in total (Figs. 6 and 7); F8 was considered a good choice, and F9 was over fit with too many 8 

control points (Table 2). Of the time-variant examples F5–F9, the two examples with the 9 

smallest number of optimized parameters (F5 and F8) had the largest Eval values (Table 2).  10 

Examples F2 and F3 used TV option 3, with a single-gamma IRF and moving-average (MA) 11 

windows of 1 and 10 years (Eq. 6), respectively, but resulted in low Eval values. Similarly to 12 

Boxelder Creek, increasing the MA window from 1 to 10 years improved Ecal and Eval values, 13 

which indicates that the time-variant aspects of this system respond to general climatic 14 

changes over decadal periods more so than annual.  15 

PEST was used to calculate 95% confidence intervals for the optimized parameters, as 16 

described in Doherty (2005), which are shown graphically for example F8 (Figs. 6). Example 17 

F9, with a total of 16 control points, had 32% wider parameter confidence intervals than did 18 

example F8, with 7 control points. Confidence intervals generally widen with an increasing 19 

number of parameters because of a decrease in individual parameter sensitivity.   20 

3.3 Groundwater level in well LA88C 21 

Well LA88C, located in western South Dakota, is open to the karstic Madison aquifer that is 22 

composed of limestone and dolostone of Mississippian geologic age. Model input data 23 

consisting of daily precipitation and air temperature and system-response observation data 24 

used for model evaluation are described in Long and Mahler (2013) along with details 25 

describing the hydrogeology, physiography, and climate. The example models described used 26 

system-input option 1 (precipitation recharge, Table 1). 27 

Examples W1–W3 used TV option 2 with wet-switch option 2 for time variance (Table 1). 28 

All three examples for well LA-88C optimized to double-peaked IRFs, which were necessary 29 
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for this system, as indicated by additional tests of single-peaked IRFs, probably as result of 1 

karst features (Figs. 8–10). In example W2, the last two control points for the wet period and 2 

the last control point for the dry period were optimized to zero, resulting in only 15 non-zero 3 

control points. Of the three examples for well LA88C, W3 had the fewest optimized IRF 4 

parameters and resulted in the largest Eval value (Table 2), indicating that this is a good 5 

choice. IRFs for example W3 approach zero abruptly, resulting in negative values in the 6 

spline curve (Fig. 10); in these cases, RRAWFLOW sets all negative IRF ordinates to zero.  7 

4 Discussion and conclusions 8 

Although RRAWFLOW can be applied to any type of watershed or aquifer, karst aquifers 9 

might require more complex models. A non-karst system was compared with two karst 10 

systems, which indicated that the best model choices for the karst systems generally had a 11 

larger number of parameters than the best choices for the non-karst system (Table 2). Also, 12 

differences between wet- and dry-period IRFs were more pronounced for the karst systems 13 

than for Boxelder Creek (Figs. 5–9), possibly as result of heterogeneity. Example F5 is a karst 14 

example with a reverse-J (η < 1) dry-period IRF and a delayed-peak (η > 1) wet-period IRF 15 

(Table 3), indicating a distinct different between wet and dry periods. In karst aquifers, 16 

fluctuating groundwater levels might saturate or desaturate different conduit networks that 17 

result in different hydrologic responses between wet and dry periods.  18 

Watersheds simulated by Long and Mahler (2013) and Long (2009), which included karst and 19 

non-karst systems, had IRF shapes that were similar in some cases to the reverse-J shape for 20 

Boxelder Creek (Fig. 5), except that double-exponential IRFs were used to achieve this shape. 21 

A single reverse-J gamma function (Fig. 5) requires only three parameters, whereas the 22 

double-exponential IRF requires four parameters. IRFs for karst and non-karst watersheds 23 

commonly have quick-flow and slow-flow components (Jakeman and Hornberger, 1993; 24 

Long, 2009; Long and Mahler, 2013). The reverse-J IRF (Fig. 5) also exhibits quick-flow and 25 

slow-flow components in the form of a high peak and long tail, respectively, but fewer 26 

parameters for the gamma function is an advantage over the exponential function.  27 

Examples F5 (gamma function) and F8 (control points) are the two preferred models for 28 

Barton Springs and are nearly identical in terms of Eval and the number of optimized 29 

parameters (Table 2). Choosing between these two models, therefore, might be a matter of 30 
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modeler preference. Use of the gamma function has the advantage of being a common 1 

function. The control-points method has the advantage of not being constrained to a 2 

parametric function, and confidence intervals for the IRF can be easily shown in a graph (Fig. 3 

6). Showing confidence intervals for a gamma function also could be done but with additional 4 

steps involved, in which the gamma function would be calculated for all combinations within 5 

the 95% parameter confidence intervals (i.e., Monte Carlo analysis). Then this family of 6 

curves would be plotted, and the maximum upper and lower curve extents would show the 7 

confidence intervals for the IRF. A disadvantage of the control-points method is the need to 8 

select the temporal locations of control points and also to set the system memory a priori by 9 

setting a zero-value control point at the end of the IRF. These settings generally require trial 10 

and error.  11 

RRAWFLOW is useful for estimation of missing periods of a hydrologic record and is 12 

suitable for hydrograph-separation methods to estimate stream base flow, as described by 13 

Jakeman and Hornberger (1993) and Long (2009). For the simulated hydrograph, 14 

RRAWFLOW can be used to compute the base-flow component by executing the model 15 

without the quick-flow IRF. If using a single reverse-J gamma IRF instead of a double-16 

exponential IRF that can be easily separated, the reverse-J function would need to be 17 

separated into its quick-flow (peak) and slow-flow (tail) components. To estimate the base-18 

flow component of the observed hydrograph, a graphical separation program can be used, 19 

such as PART (Rutledge, 1998); however, because the different options and settings in PART 20 

(or similar programs) result in different base-flow estimates, the RRAWFLOW estimated 21 

base flow is helpful as guide to using PART (Long, 2009). For example, the PART settings 22 

can be adjusted so that the observed hydrograph separation has similar characteristics to those 23 

of the simulated hydrograph separation. The RRAWFLOW-simulated hydrograph separation 24 

also could be used as a benchmark model for comparison to more elaborate methods, such as 25 

geochemical hydrograph separation (e.g., Rimmer and Hartmann (2014). 26 

Comparison of the modified Nash–Sutcliffe coefficient of efficiency for the calibration and 27 

conditional validation periods (Ecal and Eval) is useful for assessing over-fitting. Conceptual-28 

model options that maximize Eval can be evaluated by multiple tests. Too many fitting 29 

parameters, as well as too few, can result in low values of Eval. The ratio Eval/Ecal might be a 30 

useful metric for comparison of different models and possibly in setting the lengths of the 31 

calibration and validation periods. As in any model, this all should be considered in reference 32 
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to a physical understanding of the system; e.g., two distinct permeability domains might be 1 

best simulated by two gamma functions. 2 

The record length of the observed response should be considered in light of the system 3 

memory: there is less confidence in the predictive strength of a model if the observed 4 

response is shorter than the system memory than if it is longer, because, in the former case, 5 

the effects of the IRF tail are not fully tested against observation. Ideally, the validation 6 

period alone should be longer than the system memory, and if it is several times longer, then 7 

the full range of the IRF is tested several times over.  8 

Konikow and Bredehoeft (1992) discuss the numerous uses of the term “validation,” which 9 

has resulted in confusion, and also highlighted philosophical considerations associated with 10 

this term. They argue that conditional validation, as described herein [split-sample test in 11 

Konikow and Bredehoeft (1992)], is not useful for distributed groundwater models because of 12 

their limited predictive accuracy that results from non-unique solutions in calibration of 13 

complex models. Further, they argue that the split-sample-test period must be independent of 14 

any antecedent effects from the calibration period, which they say rarely can be achieved for a 15 

large-scale aquifer system. These arguments highlight an advantage of lumped models, 16 

because (1) a small number of parameters minimizes the problem of non-unique solutions, (2) 17 

selecting one model from multiple models via a validation process also reduces the problem 18 

of non-unique solutions, and (3) a lumped model provides an estimate of the system memory, 19 

which indicates the time span for antecedent effects following a calibration period. With 20 

regard to this third point, more than one half of the groundwater sites simulated by Long and 21 

Mahler (2013) had conditional validation periods that extended beyond the antecedent effects 22 

of the calibration period, and therefore, Eval could be calculated for this restricted period only 23 

if desired. 24 

Additional functionality can be added to RRAWFLOW by the user and could possibly be 25 

included in future versions. For example, additional methods to estimate parametric or 26 

nonparametric IRFs (e.g., the dispersion-model IRF) or the degree-day method for estimating 27 

snowmelt (Rango and Martinec; 1995) could be added. If there were a need to include 28 

precipitation recharge and sinking-stream recharge simultaneously in one system, this could 29 

easily be added. An adjustment to the calculation of the soil-moisture index s could be 30 

included to account for watershed changes such as tree coverage. The shape and scale of the 31 
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solute-transport IRF could be weighted by a variable recharge rate. Revisions, additions, and 1 

corrections to the RRAWFLOW code can be sent to the author of this article for potential 2 

incorporation into subsequent official versions. The code is not yet available in the 3 

comprehensive R archive network (CRAN) but could be included in the future. Optimization 4 

packages also are available in CRAN and could be built seamlessly into RRAWFLOW. 5 

5 Code availability 6 

The RRAWFLOW program written in R language, RRAWFLOW manual, quick-start guide, 7 

and an example model are included in a download package available at 8 

http://sd.water.usgs.gov/projects/RRAWFLOW/RRAWFLOW.html. The model included is 9 

example BC3 for Boxelder Creek (Table 2). It is not necessary to know the R language to 10 

execute the model, but R must be installed on the user’s computer. The example is set up to 11 

run on the Microsoft® Windows operating system but could be slightly modified to run on a 12 

Linux operating system. RRAWFLOW is in the public domain, and no license is needed.  13 

Although the example model is set up for parameter optimization using the PEST software 14 

program (Doherty, 2005), RRAWFLOW can be used with any optimization routine, including 15 

trial and error. All RRAWFLOW input and output files are included along with PEST input, 16 

output, and executable files. The file 00_Quick_Start_Guide.pdf in the download package 17 

contains instructions for executing RRAWFLOW in the R environment and basic instructions 18 

for PEST execution for this example. The RRAWFLOW manual has detailed input and output 19 

instructions. The download package can be used as a template for a new modeling project by 20 

editing the input files accordingly. The R language program and PEST can be downloaded at 21 

no cost from http://www.r-project.org/index.html and http://www.pesthomepage.org/, 22 

respectively.  23 
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assumed by the USGS in connection therewith. 2 

Appendix A: Precipitation recharge 3 

To simulate recharge from direct precipitation, a soil-moisture index s [unitless] is estimated 4 

for each time step in RRAWFLOW. Quantitatively, s is the fraction of precipitation that 5 

infiltrates and becomes recharge. To account for the antecedent effects of rainfall on soil 6 

moisture, the past rainfall record is weighted by a backward-in-time exponential decay 7 

function (Jakeman and Hornberger, 1993): 8 

( )1
11i i i is cr sκ −
−= + −  

9 

( ) ( )21 1
1 21 1 ...i i i i ic r r rκ κ− −
− −

 = + − + − +        (A1) 
10 

i = 0, 1, …, N         0 ≤ s ≤ 1                                                                 11 

where c [L-1] is a scaling coefficient to constrain the value of s; κ [unitless] adjusts the effect 12 

of antecedent rainfall and is related to evapotranspiration; r is total rainfall [L]; and i is the 13 

time step. In RRAWFLOW, this method is option 1 for system input (Table 1). For watershed 14 

modeling, the value of c can be set to satisfy the assumption that the total recharge volume 15 

within a watershed is equal to the total outflow volume for the calibration period. This 16 

assumption neglects the net change in total watershed storage during this period, which is 17 

assumed to be small in comparison to the total inflow or outflow for the same period. Also, 18 

this assumption does not apply if recharge to the watershed exits the watershed through deep 19 

groundwater and bypasses the stream outlet. Recent rainfall has the largest effect on s in Eq. 20 

(A1), whereas earlier rainfall has the least effect.  21 

The effect of changing air temperatures on evapotranspiration is accounted for by (Jakeman 22 

and Hornberger, 1993): 23 

[ ]exp (20 )i iT fκ α= −  f > 0,       (A2) 24 

where α [unitless] is a scaling coefficient; T [°C] is mean air temperature at the land surface; 25 

and f is a temperature modulation factor [°C-1]. As air temperature T decreases, s in Eq. (A1) 26 
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increases with sufficient past rainfall. RRAWFLOW can be executed without air-temperature 1 

data if unavailable (air-temperature option 2 in Table 1). Recharge for each time step ui [L] is 2 

calculated as the fraction s of precipitation by 3 

i i iu r s=           (A3) 4 

Typically, s is largest during wet periods and rarely reaches a maximum value of 1.0 (Fig. 5 

14). 6 

Considerations for parameters c and κ  7 

An additional function of parameters c and κ is to adjust for differences in the runoff effects 8 

between watershed and groundwater modeling. Also, for groundwater applications, c in Eq. 9 

(A1) cannot be determined empirically if the recharge area that affects a spring or well is not 10 

precisely defined. Therefore, for groundwater applications, c can be set to a value that results 11 

in a predefined maximum s value or estimated mean recharge rate, or c can be optimized 12 

through model calibration. In practice, the error in the estimation of c is compensated by an 13 

adjustment in the IRF area during model calibration; e.g., an overestimation of c by 10% 14 

would result in a 10% underestimation in IRF area. 15 

Depending on the values of c and κ, the value of s can incorrectly have values <0 or >1; when 16 

this occurs, RRAWFLOW sets s to 0 or 1, respectively. This is most likely to occur early in 17 

the calibration process when parameter values might be far from optimum, and forcing the 18 

constraint 0 ≤ s ≤ 1 assists in the efficiency of the calibration process. To ensure that the range 19 

of s is appropriate for the model area, this parameter should always be plotted after model 20 

calibration; i.e., s should be a physically plausible function that fluctuates in response to local 21 

precipitation and air temperature (Fig. 11). For example, in humid climates with high annual 22 

precipitation, s might frequently have a value >0.9, which is less likely in dry climates.  23 

Snow precipitation 24 

For cold climates where winter snowfall is common, a method proposed by Long and Maher 25 

(2013) is applied. To determine the form of precipitation for each time step, an air 26 

temperature threshold value Ts is set, below which precipitation is assumed to occur as snow 27 

(typically Ts = 0°C). To determine time steps when melting occurs, a melting threshold value 28 
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Tm is set. If daily snow-depth data are available, Tm can be determined empirically as the mean 1 

air temperature for time steps when snow depth decreases to zero from a previous time step 2 

with a snow depth greater than zero. Long and Mahler (2013) determined that Tm = 9°C for a 3 

study area in central North America. Sublimation is accounted for by a sublimation fraction 4 

Sf. Snow precipitation is summed for each series of snow-precipitation time steps occurring 5 

prior to each snowmelt time step by 6 

1
(1 )

N

m f i
i

p S p
=

= − ∑   Ti < Ts      (A4) 7 

where pm is the accumulated snow precipitation that is assumed to melt when Ti > Tm, Sf is the 8 

sublimation fraction [unitless], pi is the snow precipitation in height of water, and N is the 9 

number of snow-precipitation time steps occurring between melt time steps. Prior to 10 

calculating Eq. (A1),  pm is added to the rainfall record for the time step following a snowmelt 11 

time step because snowmelt is assumed to have the same effect as rainfall on the value of s. 12 
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Table 1. RRAWFLOW options. 1 

System input   2 
1 = System input is precipitation that results in recharge to the system (Eqs. 1–4). 3 
2 = System input is recharge estimated outside of RRAWFLOW (skip Eqs. 1–4). 4 
3 = System input is solute concentration (skip Eqs. 1–4). 5 

System output 6 
1 = System output is groundwater level. 7 
2 = System output is springflow or streamflow. 8 
3 = System output is solute concentration (System input = 3). 9 

IRF type 10 
1 = Parametric IRF—gamma functions. 11 
2 = Nonparametric IRF—spline fit to IRF control points. 12 
3 = Nonparametric IRF—linear fit to IRF control points. 13 
4 = Nonparametric IRF—user-defined IRF. 14 

Time-variance (TV) option 15 
1 = Time-invariant (static) IRF. 16 
2 = Wet-period IRF and dry-period IRF are defined separately, and each are time invariant within these 17 
respective periods. 18 
3 = Variable IRF vertical scale, where β in Eq. (1) is variable. 19 

Wet-switch option 20 
0 = The wet and dry periods are provided by the user. 21 
1 = Wet and dry periods are calculated by RRAWFLOW. Any calendar year when the mean precipitation is 22 
above the mean for the entire precipitation record is a wet year, and other years are dry years. 23 
2 = Wet and dry periods are calculated by RRAWFLOW according to the annual cumulative departure from 24 
mean precipitation.  25 

Air-temperature option 26 
1 = Use air temperature adjustment (Eq. A2). 27 
2 = Do not use air temperature adjustment.  28 

29 
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Table 2. Summary of example models. The shaded rows indicate the best choices. [--, not 1 

applicable] 2 

Site Example Figure 

Time-
variance 

(TV) 
option1 

Wet-
switch 
option2 

Description of impulse-
response function (IRF) 

No. of 
optimized 

IRF 
parameters 

Time 
variant Ecal Eval Comments 

Boxelder 
Creek 

BC1 -- 1 -- Single-gamma IRF (static) 3 no 0.62 0.46 Low Eval 

BC2 -- 2 1 Single-gamma IRFs 6 yes 0.63 0.47 Low Eval 

BC3 5 2 2 Single-gamma IRFs 6 yes 0.61 0.56 Best Eval 

BC4 -- 3 -- 
Single-gamma, variable-
scale IRF; 1-year window 4 yes 0.63 0.46 Low Eval 

BC5 -- 3 -- 
Single-gamma, variable-
scale IRF; 10-year window 4 yes 0.68 0.53 

Good Eval  and 
small number of 
parameters 

Barton 
Springs 

F1 -- 1 -- Single-gamma IRF (static) 3 no 0.84 0.63 Low Eval 

F5 -- 2 2 Single-gamma IRFs 6 yes 0.88 0.72 Good Eval 

F7 -- 2 2 Double-gamma IRFs  12 yes 0.90 0.63 Over fit 

F8 6 2 2 7 optimized control points 7 yes 0.88 0.72 Good Eval 

F9 7 2 2 
16 optimized control 
points 16 yes 0.92 0.61 Over fit 

F2 -- 3 -- 
Single-gamma, variable-
scale IRF; 1-year window 4 yes 0.80 0.46 Low Eval 

F3 -- 3 -- 
Single-gamma, variable-
scale IRF; 10-year window 4 yes 0.84 0.61 Low Eval 

Well 
LA88C 

W1 8 2 2 Double-gamma IRFs  12 yes 0.92 0.73 -- 

W2 9 2 2 
18 optimized control 
points (double-peaked 
IRF) 

18 yes 0.93 0.70 -- 

W3 10 2 2 
10 optimized control 
points (double-peaked 
IRF) 

10 yes 0.88 0.75 
Best Eval and 
smallest number 
of parameters 

 3 

 4 

5 
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Table 3. Impulse-response function (IRF) parameters for selected example models. 1 
Example BC3 BC5 F5 F7 W1 

Site Boxelder 
Creek 

Boxelder 
Creek 

Barton 
Springs 

Barton 
Springs 

Well 
LA88C 

Dry period 
 

   

λ1 1.45E-02 2.08E-02 2.15E-04 5.26E-04 5.15E-03 

η1 5.40E-01 4.15E-01 6.26E-01 6.61E-01 1.15E+00 

ε1 8.32E+00 1.07E+01 2.01E+01 1.65E+01 1.08E+02 

λ2 0 0 0 3.82E-02 1.31E-02 

η2 0 0 0 5.10E+01 6.36E+00 

ε2 0 0 0 4.98E+00 1.42E+02 

Wet period 
    λ3 6.34E-03 0 6.39E-03 7.77E-03 1.57E-03 

η3 3.12E-01 0 1.14E+00 1.22E+00 1.16E+00 

ε3 9.68E+00 0 1.09E+01 1.11E+01 2.50E+02 

λ4 0 0 0 9.53E-02 1.89E-02 

η4 0 0 0 4.95E+01 3.86E+01 

ε4 0 0 0 8.03E-01 5.28E+01 

 2 

  3 
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List of figures 1 
Figure 1. Superposition of sequential impulse-response functions (IRFs). Each IRF is in response to an 2 
impulse of the input function uj and is scaled by the magnitude of that impulse. 3 

Figure 2. Gamma functions for different values of its two shape parameters. 4 

Figure 3. Impulse-response function defined by a spline curve fit through control points. The last 5 
control point with a value of zero is not adjusted during model calibration.  6 

Figure 4. Example B3: observed (gray) and simulated (black) flow for Boxelder Creek. 7 

Figure 5. Example B3: impulse-response functions (IRFs) for Boxelder Creek using single-gamma 8 
IRFs. 9 

Figure 6. Example F8: nonparametric impulse-response functions (IRFs) for Barton Springs using a 10 
total of 7 control points showing (a) optimized IRFs and (b) upper and lower 95% confidence limits 11 
for the IRFs.  12 

Figure 7. Example F9: nonparametric impulse-response functions for Barton Springs using a total of 13 
16 control points. 14 

Figure 8. Example W1: impulse-response functions (IRFs) for well LA88C using double-gamma IRFs 15 
for both periods; i.e., wet and dry.  16 

Figure 9. Example W2: nonparametric impulse-response functions for well LA88C using a total of 18 17 
control points. 18 

Figure 10. Example W3: nonparametric impulse-response functions for well LA88C using a total of 19 
10 control points. 20 

Figure 11. The soil-moisture parameter s (Eq. A1) for example BC2. The function s typically is largest 21 
during wet periods (shaded gray). 22 
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