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Abstract

Within the framework of the Dust Observations for Models (DO4Models) project, the
performance of three commonly used dust emissions schemes is investigated in this
paper using a box model environment. We constrain the model with field data (surface
and dust particle properties as well as meteorological parameters) obtained from a dry5

lake bed with a crusted surface in Botswana during a three month period in 2011. Our
box model results suggest that all schemes fail to reproduce the observed horizontal
dust flux. They overestimate the magnitude of the flux by several orders of magnitude.
The discrepancy is much smaller for the vertical dust emission flux, albeit still overes-
timated by up to an order of magnitude. The key parameter for this mismatch is the10

surface crusting which limits the availability of erosive material even at higher wind
speeds. In contrast, direct dust entrainment was inferred to be important for several
dust events, which explains the smaller gap between modelled and measured vertical
dust fluxes. We conclude that both features, crusted surfaces and direct entrainment,
need to be incorporated in dust emission schemes in order to represent the entire15

spectra of source processes. We also conclude that soil moisture exerts a key control
on the shear velocity and hence the emission threshold of dust in the model. In the
field, the state of the crust is the controlling mechanism for dust emission. Although the
crust is related to the soil moisture content to some extent, we are not able to deduce
a robust correlation between state of crust and soil moisture.20

1 Introduction

Atmospheric mineral dust is the dominant aerosol species in terms of mass (Andreae,
1996; Textor et al., 2006), yet it is one of the major sources of uncertainty in the climate
system (Forster et al., 2007; Boucher et al., 2013) despite recent efforts to reduce these
uncertainties from an remote sensing (Ginoux et al., 2010, 2012; Ashpole and Wash-25

ington, 2012; Brindley et al., 2012), physico-chemical (Redmond et al., 2010; Formenti
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et al., 2011), or modelling point of view (Huneeus et al., 2011; Knippertz and Todd,
2012; Klose and Shao, 2012). Numerical models are a key tool for predicting weather
and climate. Given the interaction between mineral dust and the climate system (e.g.
radiation (Pérez et al., 2006), clouds (Bangert et al., 2012), and weather systems such
as tropical cyclones, Evan et al., 2006) it is important for models to simulate the dust5

cycle well. Key elements of model dust emission schemes are largely based on em-
pirical data from wind tunnel experiments. Their emitted dust loadings have often be
tuned to match global (Pérez et al., 2011; Huneeus et al., 2011) or regional (Laurent
et al., 2006; Heinold et al., 2009; Haustein et al., 2012) satellite or in-situ dust data
(Holben et al., 1998; Remer et al., 2002; Kahn et al., 2005) rather than attending to the10

efficacy of the emissions in key regions. None of the currently existing schemes has
been thoroughly assessed with field data at the scale of a numerical model grid box.

Prompted by this apparent gap in appropriate data with which to evaluate numeri-
cal model dust emission schemes, DO4Models aims to provide dust source-area pro-
cessed data tailored to regional climate model grid-box resolution (12km×12km) in15

order to test the performance of three dust emission schemes. These data have been
obtained from an undisturbed source area, Sua Pan, Botswana. In this paper in we
report on the performance of three emission schemes and quantitatively evaluate their
performance at process level.

Using a box model approach and DO4Models field campaign data from 2011, we20

first quantify the magnitude and frequency of the simulated dust emission fluxes by
comparing them with observed fluxes at the field sites. Three state-of-the-art schemes
are employed: Marticorena and Bergametti (1995) (hereinafter MB95), the scheme of
Alfaro and Gomes (2001) (AG01), and that of Shao (2004) (SH04). Secondly, we ex-
amine the impact of three sand transport formulations upon the simulated dust fluxes:25

the model of Owen (1964) (OW64), Lettau and Lettau (1978) (LL78), and Marticorena
and Bergametti (1995) (which itself is based on White, 1979). These formulations pre-
dict a range of sand transport rates that vary by an order of magnitude and eventually
control the dust production of the model as discussed and illustrated in Shao (2008)
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(their Fig. 6.9) and Sherman and Li (2012) (their Fig. 4). Thirdly, we test the impact
the input parameters have on the horizontal-to-vertical-mass-flux-ratio α (sandblast-
ing mass efficiency) and the threshold friction velocity u∗thr. The analysis is associated
with an assessment of the box model performance as a function of surface roughness
length, soil moisture content, and soil particle size distribution. The sensitivity of the5

simulated emission fluxes to observed soil and surface properties is discussed in the
context of apparent model mismatches. Critical model components responsible for the
discrepancies are identified.

The background to state-of-the-art dust emission schemes and an introduction of
the observational data obtained during the field campaign is given in Sect. 2. The10

parameterizations used in the newly developed box model are introduced in Sects. 3.1–
3.3, including the model evaluation strategy (Sect. 3.4). We describe and discuss the
model performance in Sects. 4.1–4.3 and discuss their implications in Sect. 4.4. Our
findings are summarized in Sect. 5.

2 Background15

The dust emission process is commonly described by three major mechanisms. Dust
emission by (1) aerodynamic lift, by (2) saltation bombardment (sandblasting), and by
(3) disintegration of aggregates (auto-abrasion) as illustrated in Shao et al. (2011b).
Several parameterization schemes have been developed to describe these mecha-
nisms (e.g. Marticorena and Bergametti, 1995; Shao and Lu, 2000; Alfaro and Gomes,20

2001; Shao, 2004). See Darmenova et al. (2009) for a comprehensive review. Auto-
abrasion is considered only by Shao (2004). Typically, each scheme parameterizes the
following quantities in separate steps or modules: (a) the threshold friction velocity for
particle movement, (b) the horizontal saltation flux (defined as the vertical integral of
the streamwise particle flux density) which describes the motion of saltating particles,25

and (c) the vertically emitted dust flux (defined as the emitted dust mass concentration
per unit area and time) which determines the dust loading in the first model layer.

5742

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/5739/2014/gmdd-7-5739-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/5739/2014/gmdd-7-5739-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 5739–5789, 2014

DO4Models box
model results

K. Haustein et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

The threshold friction velocity is specified over a smooth surface, requiring a drag
partition correction to account for roughness elements at the surface, and a moisture
correction to reflect moisture content in the soil which acts to inhibit the emissions.
The saltation flux is proportional to the shear velocity, represented by a large array
of parameterization options (Sherman and Li, 2012). The smooth threshold friction5

velocity, the saltation flux as well as the vertical emission flux are also functions of the
size distribution and chemical composition of the soil particles (Kang et al., 2011).

The 2011 DO4Models field campaign provided the data to evaluate the dust emis-
sion schemes. The setup and the instrumentation deployed within a 12km×12km grid
during the campaign is described in detail in Wiggs et al. (2014). The grid is located10

at Sua Pan (20.55◦ S and 25.95◦ E) in Botswana and includes 11 sites covering a wide
range of soil characteristics and surface erodibilities (Fig. 1). It constitutes a typical dry
lake bed but differs considerably from purely dry sources and, of course, from wind
tunnel conditions. Most notably, Sua Pan is a crusted surface (cement-like or plate-like
crusts with cracks as classified in Ishizuka et al., 2008) as it can be found in many dust15

source regions worldwide. It is particularly challenging for dust emission schemes as
most of them are not explicitly developed for crusted surface types.

The observing period was from 24 July to 14 October 2011. Each site was equipped
with meteorological instruments in order to monitor wind speed, temperature and
relative humidity (AWS/MET+ sites). The instrumentation also comprised 6 wind20

anemometers at a heights of 0.25, 0.47, 0.89, 1.68, 3.18, 6.0m (according to the log-
arithmic wind profile), a pyranometer, and two moisture sensors, each at a depth of
0–3 and 9–12cm. Total irradiance sensors and rain gauges were available at the yel-
low sites (AWS). For the dust, a saltation sensor (Sensit) which counts hits of saltation
particles just above the surface, a dust trak which measures the dust concentration at25

3.18m height (PM1, PM2.5, PM10, PMtot), two deposition traps at 1.68m height to sam-
ple the monthly deposition flux, and four BSNE (Big Spring Number Eight) dust traps
(Fryrear, 1986) at 0.25, 0.47, 0.89, 1.89m height to determine the average horizontal
flux over a 14 days period were deployed. The BSNE allow for an estimation of the
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integrated vertical flux and are used to convert the Sensit frequency data into a hori-
zontal mass flux. Two stations (D2 and I8) had no dust trak installed (MET sites). Two
CIMEL sun photometers were deployed (inside and outside the grid) in order to obtain
the atmospheric Aerosol Optical Depth (AOD) and the Ångström exponent.

The chemical composition, the roughness and the texture of the soil, the surface,5

and the fluff material was measured at each site. The crust was assessed physically
over 10m transects three times at each site during the field campaign. In case of the
minimally processed sample, Ethanol is used to preserve the in situ state, while the
fully disturbed sample has been digested to systematically remove salts, carbonates,
and organics. Finally, the potential threshold shear velocity at 96 sites across the grid10

(including the AWS, MET sites) has been measured with the Pi-SWERL wind tunnel
(King et al., 2011), providing a potential dust source map for the grid in 2011 (Wiggs
et al., 2014).

To drive the box model, we are using roughness length data (z0) which were as-
sumed to be constant in each direction for three consecutive days, derived from 10 min15

wind observations. Observed volumetric soil moisture content at 0–3cm depth (w)
which closely matches the soil moisture provided by atmospheric models in their up-
permost soil layer is used. For the purpose of grid-wide box model comparison, we
take the arithmetic mean values of z0 and w in 2011 (Table 1). Also, the minimally and
the fully disturbed soil size distributions are used (Table 1). For the direct model com-20

parison, the shear velocity (u∗) is used. It is obtained using the wind profile data and
the surface roughness data. The saltation flux QOBS is assumed to be proportional to
the Sensit counts, calibrated using the BSNE data. The vertical distribution of the dust
mass collected in the BSNE’s follows an exponential function which is well in agree-
ment with empirical considerations. The total vertical dust flux (FOBS) is estimated from25

the dust trak concentration data in the following way: FOBS = (PMtot−PM2.5) ·u′
∗. PMtot is

the total and PM2.5 is the particulate matter smaller than 2.5 µm in diameter. The fluctu-
ating component of the shear velocity is calculated as u′

∗ = u∗−u∗, with u∗ as the mean
shear velocity. As we are interested in the positive dust flux, FOBS is considered as
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contributing emission flux only if FOBS,t −FOBS,t−1 > σ, with σ as the standard deviation
of FOBS. The time interval ∆t is two minutes for all parameters.

The deduced fluxes are not a direct flux measurement. Both, QOBS and FOBS are
subject to considerable uncertainties (Wiggs et al., 2014). Additionally, the length of
the time interval ∆t (predetermined by the dust trak sample rate) causes higher fre-5

quencies of u∗ to be filtered out. As a result, peak winds (expressed in terms of surface
gustiness) and u∗thr are likely to be underestimated. Given that gustiness was found
to be more important than the mean wind for the dust emission flux (Engelstaedter
and Washington, 2007), the omission of peak winds might lead to biases. Potential
solutions are discussed in Sects. 4.1 and 4.4. Since no severe dust event could be10

observed in the course of the 2011 campaign period, difficulties arise in establishing
a relationship between u∗ and the fluxes over a wider range of values. We therefore
cannot rule out an unexpected increase in the emission flux which deviates from the-
oretical considerations. We have however high confidence in the identification of the
emission signal resulting from specific wind events.15

3 Box model development

This paper investigates a newly constructed set of box models which can either be
run with synthetic data to test the range of potential changes in dust emission due
to individual model parameters, or which can be driven with observational data. Input
parameters are the shear velocity (u∗), the surface roughness (z0), the soil moisture20

content (w) and the mass size distribution of the soil (∆Dp). Four parent particle size
populations are considered for all simulations (diameter range in parenthesis): clay
(0–2 µm), silt (2–50 µm), fine/medium sand (FMS; 50–500 µm), and CS; coarse sand
(500–1000 µm). They cover the typical size range and chemical composition of dust
particles in desert regions. In regional and global numerical dust models these four25

populations are converted into soil texture classes (Tegen et al., 2002) in order to match
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the information provided by the global soil data sets (e.g. FAO-UNESCO, 1974; Zobler,
1986, 1999).

3.1 The Marticorena scheme

The MB95 emission scheme as implemented in the box model starts with the calcu-
lation of the semi-empirically derived threshold friction velocity over smooth surfaces5

(u∗dry) (Iversen and White, 1982; Greeley and Iversen, 1985). Required input parame-

ters are the air density (ρair), the soil particle density (ρp = 2.5g m−3 for clay; 2.65g m−3

for the rest), and the median particle diameter (Dp). The calculation of the threshold
velocity u∗thr over a rough surface with potentially wet soil conditions requires the appli-
cation of a moisture (Fécan et al., 1999) (H) and a roughness correction (MacKinnon10

et al., 2004; Marticorena et al., 2006) (R) for u∗dry:

u∗thr(Dp,z0,w) =
u∗dry(Dp)

R(z0)
·H(w) (1)

with:

R(z0) = 1−
ln
(

z0
z0s

)
ln
(

0.7 ·
(
cMB95/McK04

z0s

)0.8
) (2)15

and:

H(w) =

{
(1+1.21 · (w −w ′)0.68)0.5 w > w ′

1 w < w ′ (3)

The roughness correction after MacKinnon et al. (2004) (McK04) has originally been20

developed for vegetated terrain, but has the advantage of spanning a wider range of
5746
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roughness values which turns out to be important in our case as discussed in Sect. 4.2.
The constant cMcK04 is assumed to be 122.5m and the constant cMB95 is set to 0.1m
(Marticorena et al., 2006). Either cMB95 or cMcK04 can be used in Eq. (2). Both correc-
tions follow the concept of a drag partition between mobile sand particles at the ground
(smooth roughness z0s) and larger non-erodible roughness elements (aeolian rough-5

ness z0). For a more detailed discussion on the concept of the characteristic rough-
ness length scales we refer to Menut et al. (2013). We treat the local scale roughness
(smooth roughness) as 1/30 of the median diameter Dp of the undisturbed coarse mode
particles (Marticorena and Bergametti, 1995). The moisture correction applies in cases
when the soil moisture w exceeds the threshold w ′ = 0.0014 · (%clay)2 +0.17 · (%clay).10

The higher the clay content in the soil, the less likely dust production occurs under
a given soil moisture content.

The sand transport model after White (1979) is used, adjusted by a correction factor
CMB95 of 2.61 (Marticorena and Bergametti, 1995) to obtain the streamwise horizontal
saltation flux QMB95(Dp):15

QMB95(Dp) = CMB95 ·
ρair

g
·u3

∗ ·
(

1+
u∗thr(Dp)

u∗

)
·
(

1−
u2
∗thr(Dp)

u2
∗

)
(4)

Alternatively, the sand transport formulations after Owen (1964) (OW64) and Lettau
and Lettau (1978) (LL78) are applied for sensitivity test purposes.

OW64 considers the concentration and vertical distribution of saltating grains in the20

saltation layer above the ground, making use of the grain size velocity ws. The momen-
tum flux is derived by relating upward and downward moving particles in the saltation
layer. C1 and C2 (empirical constants to specify the ratio between ws and u∗) have
values of 0.25 and 0.33, respectively (Sherman and Li, 2012):

QOW64(Dp) =
ρair

g
·u3

∗ ·
(

1−
u∗thr(Dp)2

u2
∗

)
·
(
C1 +C2 ·

ws

u∗

)
(5)25
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LL78 accounts for excess shear velocity relative to u∗thr. We use a factor of 6.7 for
CLL78, and Dref is the reference grain size with a diameter of 250 µm as used in wind
tunnel experiments (Bagnold, 1941):

QLL78(Dp) = CLL78 ·

√
Dp

Dref

ρ
g
· (u∗ −u∗thr(Dp)) ·u2

∗ (6)
5

The integrated horizontal flux G relates QMB95/OW64/LL78 with the relative surface area
fraction Srel, which is the percentage of soil grains with diameter Dp relative to the
total surface covered by soil particles. The minimally disturbed field soil sample size
distribution is used in our case.

The integrated vertical mass flux FMB95(Dp) in the case of the MB95 scheme is ob-10

tained by means of an empirical approach which assumes a constant horizontal-to-
vertical-mass-flux-ratio α for each size bin. We use values between 10−5 and 10−7 cm−1

for the four corresponding parent soil types as suggested by Tegen et al. (2002). While
this approach reflects aggregate disintegration to some extent as the emitted particle
size spectra shifts towards smaller particles compared to the horizontal mass flux, only15

mobilized particles (expressed in terms of G) will eventually be emitted. We try to min-
imize this problem by weighing each of the four bins according to its fraction in the
fully disturbed field soil sample (see Table 1). The resulting sum of the four bins then
determines the total α.

3.2 The Shao scheme20

The SH04 emission scheme is a more physical approach. Shao (2004) relate the bind-
ing energy of the dust particles to the threshold shear velocity. Over smooth surfaces,
Shao and Lu (2000) derived u∗dry by adjusting the empirical expression of Greeley and
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Iversen (1985):

u∗dry(Dp) =

√
AN ·

ρ ·g ·Dp

ρair
+

Γ
ρair ·Dp

(7)

The interparticle cohesion force is considered as the combined effect of the van der
Waals force and electrostatic force. It is assumed to be proportional to the soil particle5

size (Shao and Lu, 2000). The parameter Γ accounts for the magnitude of the cohesive
force and has values between 1.65×104 and 5.0×104 kg s−2. We use the smallest
value which seems to fit best for the applied particle size range (Zhao et al., 2006).
The parameter AN is a dimensionless threshold friction velocity which is expressed as
a function of the particle Reynolds number Ret. The weak dependence upon Ret for10

dust particles led to a recommended factor of 0.0123 (Shao and Lu, 2000).
For R(z0) in Eq. (1), a double drag partition scheme is proposed which treats bare

and vegetated surfaces independently (Raupach, 1992; Raupach et al., 1993). In fact,
it introduces a roughness density in terms of the frontal area covered by the non-
erodible roughness elements present at the surface. As there is no vegetation present,15

we simplify the scheme such that it only depends on β (ratio of shear stress threshold
of the bare erodible surface to the total shear stress threshold), σ (ratio of the basal to
frontal area of the roughness elements), m (spatio-temporal variations of the underlying
surface stress), and λ(z0) (roughness density of the non-erodible elements):

R(z0) =

√
1

1−m ·σ · λ(z0)
·
√

1
1+m ·β · λ(z0)

(8)20

Although a wide range of β values has been measured depending on surface type
(King et al., 2005), we adopt values from Raupach et al. (1993) for β as well as σ and m
(β = 90; σ = 1; m = 0.5). For λ(z0), we take the values (based on field measurements,
Marticorena et al., 2006) given in Table 2 in Darmenova et al. (2009) according to our25

observed z0 values at each field site. For H(w), a straight forward formulation based
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on wind tunnel experiments (Shao et al., 1996) as proposed by Zhao et al. (2006) is
applied in the SH04 scheme as one choice:

H(w) =

{
e22.7·w w < 0.03

e95.3·w−2.03 w > 0.03
(9)

The sand transport formulation based on the OW64 model (Owen, 1964) is used in5

the SH04 horizontal flux parameterization. The dimensionless constant CSH04 can vary
between 1.8–3.1 and is set to 2.45 in our experiments (Kawamura, 1964; Shao, 2008):

QSH04(Dp) = CSH04 ·
ρair ·u

3
∗

g
·
(

1−
u∗thr(Dp)

u∗

)
(10)

The integrated horizontal flux G relates QSH04 with the relative surface area fraction10

of each bin (denoted here as pA(Dp) instead of Srel). As for MB95, we use the size
distribution of the minimally disturbed soil sample.

For the integrated vertical mass flux, Shao (2001) proposed a scheme that accounts
for saltation bombardment and aggregate disintegration. We use the simplified version
introduced by Shao (2004). The size range of particles emitted by saltation bombard-15

ment differs from that of saltating particles (those in the horizontal saltation flux). While
SH04 specifies a certain size range, we keep the original size range of the four parent
soil types for saltating as well as sandblasted particles. However, we account for the
changing size range by applying the prescribed (i.e. observed) minimally (pm(Dpm))
and fully disturbed (pf(Dpf)) volume size distributions. It is assumed that the undis-20

turbed soil sample represents the saltating particles while the fully disturbed soil sam-
ple represents the smaller particles which control the vertical emission dust mass flux
(and hence account for aggregate disintegration). If strong erosion occurs, the scheme
acts to shift the soil particle size distribution towards the fully disturbed sample. Fur-
thermore, the ratio of auto-abrasion is parameterized by the free-dust-to-aggregated-25

dust-mass-ratio σp = pm(Dpm)/pf(Dpf). The corresponding vertical flux formulation is
5750
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the following:

FSH04(Dpm,Dpf) = cγ ·ηf(Dpf) · ((1−γ)+ (γ ·σp)) · (1+σm) ·
QSH04(Dpm) ·g

u2
∗

(11)

Here, γ is specified as γ = e−(u∗−u∗thr)
3

, while ηf(Dpf) refers to the mass fraction of the
dust particles having diameters less than 20 µm. We assume the mass fractions of the5

fully disturbed soil sample to be representative for that (it contains only clay and silt
sized particles in most cases as shown in Table 1). The parameter σm depends on u∗,
the plastic pressure p of the soil surface and the bulk soil density ρb. Together with cγ,
the latter two values are taken from Shao (2004) assuming sandy loamy soil conditions
on average at the field site. The flux of the individual bins is finally integrated over the10

entire particle size range.

3.3 The Alfaro scheme

Similar to Shao (2004), Alfaro and Gomes (2001) offer a more sophisticated scheme
for the conversion of the horizontal flux into the vertical mass flux compared to MB95.
However, AG01 requires the calculation of the saltation mass flux as a prior condition.15

While AG01 has been combined with the MB95 horizontal flux scheme before (Menut
et al., 2005; Darmenova et al., 2009), in our experiments we use the SH04 horizon-
tal flux as input parameter. It enables us to evaluate the performance of two complex
vertical flux schemes which both attempt to describe the physical processes involved.
Instead of four size bins, we use a discretized full-resolution soil size distribution in or-20

der to calculate the SH04 horizontal flux as it is required for the AG01 scheme. The size
distribution is assumed to follow a multimodal lognormal shape with geometric mean
diameters identical to the parent soil size bins (2, 15, 160, 710 µm) (Menut et al., 2005).
Accordingly, the relative surface area fraction Srel is recalculated for the discretized par-
ticle size spectra, with Dpk referring to the diameter of the discretized full-resolution soil25

size distribution in the range of Dpmin and Dpmax with number Nclass.
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The AG01 scheme takes the individual kinetic energy Ekin of saltating soil grains re-
quired to entirely separate dust particles from each other by overcoming the interpar-
ticle cohesion forces into account. The dust emitted by sandblasting is characterized
by three modes i which are considered to be independent of the soil grain type (Alfaro
et al., 1998; Menut et al., 2005). As soil aggregate size or model wind speed increases,5

first coarse mode particle with lowest cohesion energy ei becomes released by Ekin,
followed by intermediate and fine mode particles. The vertical dust flux in this case
becomes:

FAG01(Dpi,Dmk) =
Nclass∑
k=1

π
6
·ρ ·βAG01 ·

pi (Dpk) ·D3
mi

ei
dG(Dpk) (12)

10

Here, Dmi is the mean mass diameter of the three soil grain modes (1.5, 6.7,
14.2 µm), βAG01 is an empirically derived parameter (163m s−2), and pi (Dpk) are the
fractions of Ekin required for the release of the dust particles in the respective mode
(Alfaro et al., 1997). Note that the AG01 scheme does not provide a size resolved dust
emission flux as the discretized particle size spectrum in which the interparticle energy15

exchange forces act comprises a distinctively different size range than that of the emis-
sion flux. One could redistribute the accumulated dust over the four parent soil classes
according to the observed disturbed size sample, but this would not be an actual pre-
diction of this particular emission scheme. As noted by Darmenova et al. (2009), it is
unlikely that interparticle cohesion can ever be predicted with the desired accuracy in20

order to resolve this problem in a satisfactory manner.

3.4 Box model experiments

To test the box model, we first run the model with observational wind, moisture and
roughness data and compare the simulated dust emission fluxes with observed emis-
sion fluxes (Sect. 4.1). In a second step, the model response as a function of the25

shear velocity is tested and compared with observations. In order to find out what the
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reasons for potential model mismatches might be, in a third step we use erodibility pa-
rameters (soil moisture, roughness length and particle size distribution) retrieved from
field observation data to drive the model (Sect. 4.2). This enables us to (1) estimate the
sensitivity of the model to simulate dust emission, and (2) attribute the discrepancies to
specific components of the emission schemes, or the choice of the emission scheme5

itself. We also test the critical parameter α as a function of u∗.
The set of experiments used in these exercises is schematically shown in Table 2.

Each experiment uses a specific model setup based on the schemes introduced in
Sect. 2: the sand transport model, the saltation flux and vertical dust flux scheme.

For the first runs, we only use experiment 1a, 4a and 5a. We focus on the most10

emissive period during the 2011 campaign, selecting a 30 day interval with three ma-
jor dust events (17 September–17 October 2011). The field campaign begins with the
end of the dry season in March/April. Conditions become increasingly dry with average
daytime maximum temperatures typically reaching > 35 ◦C (Wiggs et al., 2014). Note
that the rate of decrease in soil moisture varies between each individual field site and15

throughout time. Higher surface temperatures are accompanied by increasing bound-
ary layer turbulence. Both, the increased availability of momentum and deflatable dust
explain the more active late season during the first part of the DO4Models campaign.
The dust emission season ended with the first rains in mid-October.

For the second and third set of model runs, the box model is configured to repre-20

sent a single atmospheric model grid cell. We use the temporally resolved average
roughness, soil moisture, and particle size distribution to drive the model. For each
experiment setup, the model is manipulated with (a) all corrections schemes switched
on, (b) the drag partition correction scheme (Eq. 2) switched off, (c) the soil moisture
correction scheme (Eq. 3) switched off, and (d) both correction schemes switched off.25

Darmenova et al. (2009) pointed out that the soil moisture correction after Zhao
et al. (2006) (see Eq. 9) might be excessively sensitive to changes in the soil moisture
content. This will be tested using the MB95 formulation given in Eq. (3). The same will

5753

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/5739/2014/gmdd-7-5739-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/5739/2014/gmdd-7-5739-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 5739–5789, 2014

DO4Models box
model results

K. Haustein et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

be done with Eq. (2) for roughness. In addition, the corresponding sensitivity of the
simulated fluxes is discussed in the context of the observed fluxes.

4 Results and discussion

We start with an overview of observed dust emissions from the field site and compare
them with the box model results in Sect. 4.1. We then test the emission schemes over5

a range of shear velocities and quantify the differences with observations (Sect. 4.2).
This is followed by an exploration of box model components in an attempt to diag-
nose model-observed differences in emission (Sect. 4.3). The examination of the box
model results is accompanied by a discussion of the errors and uncertainties involved.
The applicability of the existing emission schemes is discussed on the basis of our10

model results and implications for regional and global dust modelling are highlighted in
Sect. 4.4.

4.1 Model performance during the field campaign

During our chosen period of highest emission activity, three major dust events were
recorded: 25 September (DOY 268), 2 October (DOY 275), and 3 October (DOY 276)15

as evident in the observational data at two minute temporal resolution (Figs. 2–4).
Peak wind speeds at 6m height reached up to 18m s−1. Corresponding maximum u∗
values as high as 0.9m s−1 were observed (with regard to ∆t = 2min). Two smaller
events were recorded on 17 September (DOY 260) and on 6 October 2011 (DOY 279),
though u∗ did not reach a threshold of 0.4 m s−1 at all sites. Simultaneously during these20

wind events, decreasing Ångström exponents obtained from CIMEL data indicated dust
loadings rather than biomass burning as the dominant aerosol type. The comparison
between observed and simulated horizontal and vertical fluxes is shown in Figs. 2–4,
corresponding with the baseline Exps. 1a (MB95), 4a (SH04) and 5a (AG01), respec-
tively. In order to provide a representative view of dust emissions, the most emissive25
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site I4 (red border), the heavily crusted site L5 (blue border), and three average sites,
B3, D10, and J11 were evaluated to provide perspectives on the role of surface type
and emissivity.

Site I4 shows a pronounced flux signal during the three major dust events (Fig. 2c).
Another small event was recorded on 6 October 2011 (DOY 279). The temporal agree-5

ment between the time series of observed fluxes and the time series of peak shear
velocities over the 17 September–17 October period (2min temporal resolution) is high-
est at site I4, particularly for MB95. However the modelled horizontal flux – associated
with the saltation flux – overestimates the observed horizontal flux by 3 to 4 orders of
magnitude. This discrepancy exists regardless of the strength of the dust event. The10

modelled vertical emission flux – associated with the sandblasting process – overes-
timates the observed vertical flux approximately by an order of magnitude. While the
model performance is ultimately measured in terms of vertical emission flux (arguably
with much smaller a model vs. observation mismatch), the horizontal-to-vertical-mass-
flux-ratio α differs by 2 to 3 orders of magnitude between model and observation (see15

Fig. 6 and discussion in Sect. 4.3.1).
At sites B3 and D10 only one major saltation event was recorded (Fig. 2a and g).

Likewise, vertical dust flux was measured only once at B3 (Fig. 2b). D10 did not emit
at all (Fig. 2h). Due to the low soil moisture at both sites (considerable drop for B3 after
DOY 270), the emission threshold in the MB95 model is frequently exceeded lead-20

ing to substantially more frequent dust emissions. As at site I4, the modelled saltation
flux during the recorded saltation event on 2 October (DOY 275) at sites B3 and D10
is strongly overestimated by 3 orders of magnitude. The vertical dust flux at B3 dur-
ing the same event is overestimated by 1 to 2 orders of magnitude. Frequent Sensit
hits were recorded (expressed in terms of QOBS in Fig. 2e) at L5, but no vertical dust25

emission flux was observed (Fig. 2f) as a result of very smooth surface conditions in
combination with very wet sub-surface conditions (Wiggs et al., 2014). Equally wet soil
conditions at J11 lead to the suppression of dust emissions in the model (Fig. 2i and j).
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As a consequence, the model does not simulate dust emission during the event on 25
Sept (DOY 268).

There are more frequent dust emissions with higher concentrations simulated with
SH04 compared with MB95 (Fig. 5). The saltation flux is also strongly overestimated
by approx. 4 orders of magnitude, whereas the vertical dust emission flux is overes-5

timated by 1 to 2 orders of magnitude. The effect of the drop in soil moisture at site
B3 is now clearly noticeable (Fig. 3a and b). Unambiguously, the emission threshold
is exceeded far more often in the model at sites I4 and D10 (Fig. 3c, d, g and h). Site
D10 reveals the advantage of the more complex SH04 scheme. Saltation flux does not
necessarily result in a coincident vertical dust mass flux. Modelled emission frequency10

at D10 is noticeably lower than saltation frequency – a tendency which is shared by
the observations. Site L5 is similar with SH04 to MB95 (Fig. 3e and f). The temporal
agreement between observed and modelled fluxes at site J11 is clearly better than with
MB95 (Fig. 3i and j).

There is close agreement in the case of the saltation fluxes between AG01 and15

SH04. The modelled vertical fluxes in both schemes are different to those in MB95,
LL78, and OW64 in two ways though: (1) vertical fluxes are more frequent in cases
of frequent modelled saltation fluxes, and (2) vertical fluxes with AG01 are lower than
in any other scheme used in our experiments. The observed dust emission flux is
overestimated by less than an order of magnitude in the model with AG01. While all20

fluxes at D10 are generally larger than the observed ones (Fig. 4h), the opposite is true
for sites B3, I4, and J11 (Fig. 4b, d and j). FAG01 comes close to FOBS at these sites
– a promising outcome given that overestimation is the dominant feature of all model
experiments.

In essence, both frequency and strength of the dust emission flux is poorly repro-25

duced in the three emission schemes. The emission threshold is least underestimated
in MB95. The vertical emission flux is least overestimated in AG01.
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4.2 Examination of dust transport/emission schemes

Before we elaborate on the potential causes for this mismatch between observed
and modelled fluxes as well as for the substantial differences between the emission
schemes, we explore the impact of the emission and sand transport schemes upon
the simulated saltation and vertical flux in a wider context. We focus on Exps. 1a–5a5

and Exps. 1d–5d as shown in Fig. 5a and b and Fig. 5c and d, respectively. The simu-
lated horizontal (Fig. 5a and c) and vertical fluxes (Fig. 5b and d) represent the sum of
the individual fluxes for each parent soil type (thin lines). Note that the AG01 scheme
(Exp. 5a) uses a sub-bin size distribution of which only the total sum is shown. Box
model fluxes are computed using observed data as before, averaged over the entire10

time period of the field campaign and all grid points (see Table 1). This assumption –
though valid for surface roughness – may lead to an underestimation of the simulated
emission flux as the soil moisture decreased noticeably with time at a few sites (Wiggs
et al., 2014).

The cloud of observed emission fluxes (FOBS) is split in two groups. Low emission15

fluxes in the range of u∗ between 0.2–0.4m s−1 and higher FOBS for u∗ > 0.35m s−1.
There appears to be a lower threshold for the vertical flux at ∼ 0.05mg m−2 s−1 for
those observations related to higher wind speeds. At the lower end, there is no clear
indication that soil and surface features are systematically different than at the higher
end. The latter is dominated by the dusty site I4. L5 (pink dots) with numerous Sensit20

counts for reasons outlined before.
Model Exps. 1a–5a (Fig. 5a and b) confirm the results of the preceding section.

The saltation flux in model schemes is overestimated by 3 to 4 orders of magnitude,
while the simulated vertical flux is overestimated by 1 to 2 orders of magnitude in all
schemes. AG01 shows the smallest mismatch regarding the vertical flux (cyan line in25

Fig. 5b). Both, SH04 and AG01 have a 0.3m s−1 lower threshold shear velocity than
MB95. The difference is caused by the different formulations of the soil moisture cor-
rection as discussed in Sect. 4.3. MB95 is deployed with three dust transport models
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(Exps. 1a–3a) which have constant threshold shear velocities given the common emis-
sion parameterization. However, the dust fluxes are lower with the OW64 (red line in
Fig. 5b) and higher with the LL78 sand transport formulation (black line in Fig. 5b).
OW64 overestimates the observed vertical the least. As our observed u∗ is limited to
0.85m s−1, we can only speculate whether we would have observed disproportionally5

increasing saltation flux rates with higher surface shear stress.
Model Exps. 1d–5d (Fig. 5c and d) reveals a surprisingly close range of threshold

shear values for all schemes. They start to emit at u∗ ∼ 2m s−1 with no exception. Even
the FMS, CS, and silt flux starts within a narrow range of shear velocities. While the
simulated emission fluxes are still too high, the underlying sand transport concept in all10

schemes is robust regarding the minimum emission threshold. The agreement might
well have to do with the wind tunnel background in which these models were tested.
Beyond the minimum erosion threshold, soil moisture content and surface roughness
fundamentally control the frequency of occurrence of dust emissions.

Summarizing the key aspects of the two sections, we find that the model (1) strongly15

overestimates the saltation flux and moderately overestimates the vertical emission
flux, and (2) tends to be very sensitive to changes in moisture and roughness leading
to inconsistent or inaccurate emission thresholds for individual field sites. The gen-
eral discrepancy between model results and observations indicates that the emission
schemes have problems to represent key physical processes over crusted soil surfaces20

properly.

4.3 Potential reasons for the model discrepancies

In this section, we aim to understand the causes of the box model-observation discrep-
ancies. Specifically, we aim to identify the parameters that contribute the largest to the
model-observed differences. Considering the empirical basis of the emission schemes,25

it is worth noting that MB95 (mainly based on the formulation after Iversen and White,
1982) as well as SH04 (based on the formulation after Greeley and Iversen, 1985) rely
on the theoretical concept of equilibrium between forces acting on a spherical loose
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particle at rest and under the influence of an air stream. As cautioned by Marticorena
and Bergametti (1995), this theoretical assumption is bound to break down if loose par-
ticles are hidden under a resistant crust. The same is true for the concept of equilibrium
between gravitational and interparticle cohesion forces which is the basis of SH04 as
it was developed in Shao and Lu (2000). While SH04 allows adjustment to the magni-5

tude of the cohesive force (parameter Γ), MB95 is limited in this regard. Deficiencies
arising from the MB95 saltation flux formulation are directly passed to the vertical flux
estimate. In turn, the explicit formulation of α in SH04 could potentially reduce intrinsic
weaknesses of the saltation flux formulation.

4.3.1 Problems in the simulated fluxes10

Given that the model overestimates the saltation flux much more than the vertical flux –
irrespective of the emission scheme – evaluation of the vertical-to-horizontal-flux ratio
α is necessary. In Fig. 6, the discrepancy between the observed and modelled ratio
is represented by the distance between the filled coloured dots (αOBS) and the open
couloured dots (αMB95; Exp. 1a) or triangles (αSH04; Exp. 4a), respectively. The tem-15

poral resolution between two flux measurements in our data is two minutes, which
requires conincident observations of FOBS > 0.0mg m−1 s−1 and QOBS > 0.0µg m−2 s−1

to determine αOBS. This condition is only met at site I4 for two dozens of 2min mea-
surement intervals, mainly referring to DOY 275 (Fig. 6c). B3 provides sparse additional
values (Fig. 6a). The remaining sites are plotted in order to show the variability of the20

modelled α(MB95/SH04).
With the simple MB95 scheme in place, α is strictly constant at each site. The more

complex SH04 scheme allows for a varying α in response to changes in soil composi-
tion, surface roughness and soil moisture content. The observed changes in z0 and w
over the three months field interval have a profound impact on the modelled α as can25

be seen in Fig. 6a (B3) and 6i (D10). The SH04 ratio varies by up to three orders of
magnitude and can either be smaller or larger than the constant MB95 ratio. The high-
est variability is found for u∗ values closest to the corresponding u∗thr. The decrease of
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α at D10 is solely confined to u∗ < 0.5m s−1. For stronger shear stresses, the variability
decreases to one order of magnitude, controlled mainly by the difference in local soil
moisture content. Despite the model variability, what is really striking is the mismatch of
2 to 4 orders of magnitude between observed and modelled α at I4 (Fig. 6c) as initially
outlined in Sect. 4.1. The weak observed saltation flux causes α to be unprecedentedly5

high. The majority of the α values lie between 10−3 and 10−1 cm−1.
On the basis of the surface conditions at our most emissive site I4, which features

a thin crust with open cells filled with very fine deflatable particles, we hypothesize
that saltating particles are likely to be trapped by the salt containing fluff in these open
cells which then absorbs the saltation momentum. Under the assumption that I4 is not10

a source for larger saltating particles itself, it represents a net sink for creeping and
saltating particles, which leads to a cessation in the saltation flux. While the horizon-
tal flux ceases, the comparably high shear stress maintains the vertical flux of smaller
particles, though at a less efficient rate. Hence direct entrainment has a larger share in
the total emission flux. Whether the shape of the cells or the chemical properties of the15

fluff material are the major cause for I4 to be a saltation sink, remains to be explored.
In contrast to I4, sustained particle motion (hitting the Sensit counter persistently) was
observed at site L5 during the wind events, without ever recording actual vertical emis-
sion of finer particles. Wet sub-surface conditions led to the development of a fresh but
very smooth and resistant crust at L5. Counterintuitively, the smooth surface allowed20

coarser particles (advected from contiguous Pan surfaces with broken crust) to move
easily. We assume that the observed horizontal saltation flux at L5 is a spurious result
of the very exceptional surface conditions due to L5’s situation on the grid.

Neither the shape of a partly crusted and rippled surface, nor the crust itself is rep-
resented in our schemes and this is likely the main cause of the large gap between25

observed and modelled fluxes. While the theoretical basis of the sand transport and
dust emission schemes is well established and often successfully reproduced (e.g.
Shao, 2001, 2008), the observed crust puts a considerable limit on their applicability
in our case. One might argue that it is of lesser relevance to reproduce the saltation
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flux quantitatively correctly in the model as long as the vertical emission flux is cor-
rectly balanced, but this inevitably implies the acceptance of fundamental errors in the
parameterization of the nature of the dust emission process. While the initial emission
threshold is very sensitive to z0, w, and particle size, these factors become less im-
portant at higher wind speeds as the sand transport scheme controls the bulk of the5

vertical dust emission flux.
This study is not the first to report on diverging α values. Based on measurements

with a Sand Particle Counter (saltation flux) and an Optical Particle Counter, Shao et al.
(2011a) obtained similar values to ours for α over bare soil during the Japan Australia
Dust Experiment (JADE) experiment (Ishizuka et al., 2008, 2014). On the basis of their10

findings, they proposed that convective turbulent dust emission might play an important
role. We concur with this proposition as we have indeed been observing frequent dust
devils over the Pan, indicative of large eddies generated by localized momentum fluxes
to the surface which intermittently receives a surge of strong shear stress leading to
direct dust entrainment (Klose and Shao, 2013). Ishizuka et al. (2014) also highlight15

the size dependency of the emission flux as evident in their field data. Other studies
matched empirical expectations quite well. For example, Gillette (1978) using test soils,
Nickling and Gillies (1993) in Mali, Gillette et al. (1997) and Nickling et al. (2000) at
Owens Lake, USA, Nickling et al. (1999) in Queensland, Australia, Rajot et al. (2003)
in Niger, or Gomes et al. (2003) in Spain, they all found α values in good agreement20

with theory. These studies have in common that wind tunnels were used to determine
the fluxes experimentally, a fact that might well be key to understand the difference
between their reported results and our field data.

4.3.2 Problems in the correction schemes

The remaining variability of the calculated dust fluxes is determined by the correc-25

tion schemes for surface roughness and soil moisture content – both known to have
a large impact on modelled mineral dust emission fluxes (Menut et al., 2013). The
full range of sensitivities for the baseline experiments (1a, 4a) is shown in Fig. 7. For
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z0, the observed range is: 0.001cm < z0 < 1.0cm. The minimum and maximum value
for w has also been chosen according to the respective range of observed values:
0.01 < w < 0.16. It is expressed in equivalent terms of percent water per soil volume.
For Exp. 1a, the range of u∗thr varies between 0.25–1.15m s−1. The threshold shear
velocity is equally sensitive to both, z0 and w, yielding a corresponding inhibition of the5

simulated fluxes. The higher u∗thr, the lower the simulated fluxes once the threshold is
exceeded. Exp. 4a is similarly sensitive to z0. In turn, for increasing w, it tends to in-
crease the emission threshold exponentially rather than linearly. As noted in Sect. 3.2,
it is the scheme after Fécan et al. (1999) as used in MB95. The scheme proposed by
Zhao et al. (2006) (Eq. 9) would span twice the range of potential u∗thr values which10

cannot be reconciled with the observed sensitivity (not shown).
In Fig. 7, the observed fluxes are divided into the same sub-categories. The results

show that sites with the highest observed saltation fluxes have a very limited range
of z0 (0.1–1cm). Likewise, the range of w is confined to low values (0–0.03m3 m−3)
for those sites. The stronger fluxes at higher u∗ are tied to lower w values. Lower z015

(smoother surface) corresponds well with emission at lower u∗ values. Emission flux
for u∗ > 0.6 is observed only for w < 0.03m3 m−3 (with very few exceptions). At the
lower end, medium roughness dominates. Occasionally, we measured dust at sites with
w > 0.06m3 m−3 despite u∗ < 0.4m s−1. The fact that the sample size is small and the
inherent measurement uncertainties are large (as discussed in Sect. 2) is suggestive20

of an artefactual behavior. However, observed local dust devils can pick up substantial
amounts of dust which the dust traks at 3m height would easily record. The fraction
of the emitted mass flux at low u∗ with respect to the total mass flux might not be
significant during dust event with a high saltation flux, but the omission of frequent
low dust emission below the saltation threshold can lead to measurable systematic25

underestimation of the dust emission flux.
In Fig. 7e and f, the roughness scheme proposed by Raupach et al. (1993) (Eq. 8) is

applied. Lesser sensitivity of u∗thr to changes in z0 is found with this scheme. Although
it spans a range of u∗thr values which is in good agreement with the observations, it
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is rather insensitive to variations in aerodynamic surface roughnesses > 0.5cm. Given
that the majority of our observed z0 values is < 0.5cm, the applicability of the SH04
roughness correction scheme seems questionable, despite having selected the re-
maining parameters such that they fit the category for bare surfaces with dense solid
obstacles. In Fig. 8d and h, Exps. 4b and 4d are compared with observations as a func-5

tion of u∗. It can be seen that u∗thr of the vertical flux is basically insensitive to changes
in roughness in case of SH04. Rather, u∗thr is controlled by the soil moisture alone.
In case of MB95, u∗thr is equally controlled by surface roughness and soil moisture
(Fig. 8c, e and g).

The MB95 drag partition scheme relates z0 with roughness densities of solid obsta-10

cles. A major limitation is its non-applicability for larger obstacles. At the Pan surface,
large crustal plates got lifted by compressive stress due to drying of the crust mate-
rial. These vertically displaced plates reached 10–20cm height, stretching over several
100m in a wavelike pattern with high lateral cover. High surface roughnesses were
also reported by Greeley et al. (1997) from space-borne observations for Death Val-15

ley, USA, or Marticorena et al. (2006) from ground-based observations for Tunisia. The
ridge-induced change in roughness has been studied and shown to be important in
reducing the saltation flux (Kardous et al., 2005). To account for higher roughnesses,
MacKinnon et al. (2004) (McK04) corrected the MB95 scheme such that it is applicable
for rougher surface conditions. In their case, the higher surface roughness is caused20

by vegetation (Central Mojave Desert, USA). Hence doubts remain as to whether the
assumptions made are perfectly valid for our purposes, despite the fact the the scheme
performs better than the SH04 roughness correction.

With regard to the soil moisture correction, both, the parameterizations developed by
Fécan et al. (1999) (MB95) and by Shao et al. (1996) (SH04) require the exact knowl-25

edge of the moisture in the top 1–2cm soil layer. We consider our 0–3cm moisture
measurement to be representative of this layer. The key aspects regarding the sensi-
tivity of the threshold shear velocity outlined in Sect. 4.2 are reconfirmed in Fig. 8a, b,
g and h. We find high variability of u∗thr as a function of roughness and soil moisture for
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individual field sites (Fig. 8a and b) as well as for the average flux over all field sites.
As apparent in Fig. 8e and f, corresponding to Exps. 1c and 4c, the sole application of
the soil moisture correction leads to good agreement between simulated and observed
u∗thr with respect to the average flux and most of the individual field sites. Focusing on
the most emissive site I4, u∗thr is slightly underestimated. Both formulations (MB95 and5

SH04) are empirically derived and hence not universally applicable for all soil moisture
conditions. As pointed out by Shao (2008), they fail to be reproducible in data sets
other than those from which the formulation was initially derived. The soil at Sua Pan,
for example, contains a high fraction of hydrated salts in contrast to many other desert
soil samples.10

From a vertical emission flux point of view, it seems plausible to assume that the best
performing model setup would reproduce the full range of observed u∗thr values. Omit-
ting the questionable observations with fluxes > 0.001mg m−2 s−1, best agreement in
that sense is achieved in Exps. 1b and 4b (Fig. 8e and f). Note that the small average
roughness (∼ 0.175cm) renders the SH04 drag partition correction rather insensitive15

(Exp. 4c; Fig. 8d) to variations of the surface properties as previously mentioned. The
McK04 drag partition scheme leads to better agreement as long as the moisture cor-
rection remains switched off (not shown).

The fact that none of the evaluated model correction schemes can be used without
limitiations as they struggle to reproduce the observed range of u∗thr, is attributable to20

two principal shortcomings: (1) the roughness correction does parameterize uneven-
ness of the terrain, but is not designed to account for different shapes such as open
cells. (2) The moisture correction does parameterize the wetness of the soil, but does
not incorporate moisture-dependent chemical properties of the soil which may lead to
crust formation.25

4.4 Implications for dust modelling

Sua Pan is observed to be a major Southern Hemisphere dust source. It is therefore
crucial to ensure that we not only understand the physics of the dust emission process
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better, but to be able to represent it in state-of-the-art model dust emission schemes.
Our results suggest that there is a critical problem with the current generation of dust
emission schemes as they tend to vastly overestimate the observed fluxes. Reasons
are primarily related to the fact that existing schemes cannot represent all the relevant
physical processes. As stated in Sect. 4.3.1, observed small scale surface features5

such as large crusted ripples or small open cells within an otherwise crusted surface
are not described in the existing schemes. Failing to include a crust leads to a higher
availability of sediment in the model as, in the field, deflatable fluff material is either
trapped in open cells of the crust (absorbing saltation momentum), or buried under
a thick crust. Also the availability of coarse material is limited due to the surface char-10

acteristics. Crusted surfaces are a common feature of major dust sources. Our findings
may imply that most of the modelled global dust emissions are based on partly invalid
assumptions.

Why – despite these limitations – are current emission schemes able to reproduce
the global dust cycle fairly well? Apart from the potential counterbalancing effect of15

equally erroneous dry and wet deposition assumptions, the fact that global emissions
are controlled by a few very productive sources which are driven by frequent and ex-
cessive exceedance of the threshold wind speeds tends to eradicate problems which
occur at wind speeds just above u∗thr. For example, neither the drag partition nor the
soil moisture correction will have a seizable effect once u∗thr is exceeded. Furthermore,20

the signal-to-noise-ratio increases with higher wind speeds, acting to minimize biases
introduced by inaccurate representation of the surface conditions. Instead, invariable
parameters such as the soil size distribution become the dominant source of error.

Another – and perhaps the most important – reason for the acceptably good repro-
duction of the global dust budget is the fact that many models assume an empirical25

background size distribution (Zender et al., 2003) rather than modelling it explicitly.
Equally important, the concept of preferential dust sources (Ginoux et al., 2001; Bullard
et al., 2011), which acts to nudge the models towards the observed dust emission pat-
terns by relaxing back the threshold emission and, in essence, removing the crusting
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issue from the modelling process. The fact that none of the current model emission
schemes is able to reproduce the spatial distribution of the major dust sources correctly
without applying either of these auxiliary steps reinforces our concerns regarding the
validity of the emission schemes.

Given the important role that surface crust seem to play, we recommend that these5

features are represented in the models. A crustiness parameter to correct u∗thr could
be defined as the aggregated state of the dry ground surface for resistant crusts as pro-
posed by Ishizuka et al. (2008). Using available maps of aerodynamic surface rough-
ness length (Prigent et al., 2005; Laurent et al., 2008), an adjusted version which takes
crust cover into account may be possible. In addition, the spatial–temporal consider-10

ations can help to find an appropriate tuning constant to constrain the spatial hetero-
geneity. This is particularly true as only a small portion of the grid (I4 in our case)
controls the bulk of the emissions. What remains elusive so far is whether the small
range of roughness and soil moisture values for which we measured dust fluxes at the
grid is indicative of a systematic relation between z0, w and the properties of the crust.15

The aspect of spatial heterogeneity is also related to model resolution. A typical
grid box in a regional climate or NWP model corresponds with the size of our grid
in the field (12km×12km). One such single grid box is treated as a homogeneous
surface, with soil moisture, soil size distribution and surface roughness being equal
everywhere. In an ideal modelling world, not only have the grid box average values to20

provide a balanced portrait of the emissive area fraction, but they also have to fit the
observations of available soil adequately. In the real world, most models make use of
the soil texture classes after Tegen et al. (2002). In our box model experiments, the
soil texture class which comes closest to our grid average size distribution is the loamy
sand category. Comparing the emission flux obtained with the size distribution given by25

this fixed category and the observed size distribution, we find that the resulting model
saltation flux is significantly reduced in case of the fixed category (not shown). Recently
published new data set of soil mineralogy for dust productive soils could alleviate the
problem (Nickovic et al., 2012; Journet et al., 2014). Ideally, a correction which aims
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at splitting the dictated size distribution into a minimally and fully disturbed subset of
data could be introduced. As it is difficult a goal to achieve, the SH04 scheme should
preferentially be used as it tries to account for the shift in the size distribution at least
to some extent.

Finally, our results indicate that direct entrainment of dust particles plays a moderate5

role in the emission process. This assumption is based on the low correlation between
simulated and observed fluxes with the tested emission schemes, particularly for the
saltation flux. Although the impact of this emission mechanism is thought to be small as
far as global climate simulations are concerned (since it is confined to low shear stress
conditions), Engelstaedter and Washington (2007) highlighted that surface gustiness10

at dust hotspots exerts a much stronger temporal control on the timing of emissions
than the large-scale winds. If they are correct, direct entrainment during such gusts
will very likely play a role with concomitant effects on the global scale. Undoubtedly,
direct entrainment matters for regional short-term applications (e.g. local dust storm
warnings). As current schemes do not capture these aspects well, we recommend15

taking stochastic effects into account (Klose and Shao, 2012, 2013). While we cannot
resolve the dust particle size distribution temporally, other studies have shown the size
dependency of the emission flux to be important. As a result, Ishizuka et al. (2014)
proposed a size dependent power low relation and Kok et al. (2014) developed an
emission parameterization based on the brittle fragmentation theory (Kok, 2011). Both20

options offer another route for improvement with regard to current schemes.

5 Conclusions

The performance of current state-of-the-art dust emission schemes has been tested
against observational data retrieved during the 2011 DO4Models field campaign in
Botswana. The capabilities of these schemes to describe the physical processes which25

are thought to play a role in the dust emission process have been explored. We have
found that all models fail to reproduce the observed dust fluxes in all experiments,
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regardless of their level of complexity. In particular, the horizontal saltation flux is over-
estimated by several orders of magnitude, causing the commonly used concept of an
approximately constant horizontal-to-vertical-flux-ratio to break down. The main reason
is that the field site is characterized by a crust of varying thickness and extension.

The current results suggest that the observed saltation flux is several orders of mag-5

nitude lower than anticipated from theoretical considerations, even at our most emissive
field site. Yet the measured vertical dust emission flux is closer to theoretical expecta-
tions. We therefore infer that saltation, sandblasting and aggregate disintegration are
not the only emission processes at play. Rather, these results indicate that direct dust
entrainment plays a vital role too. Since none of the tested schemes accounts for direct10

entrainment as explicitly mentioned in Shao (2004), the dicrepancy in the horizontal-to-
vertical-flux-ratio is explicable. Stochastic schemes such as the one recently proposed
by Klose and Shao (2012) might help to overcome this problem. We believe that our
results provide a fairly robust starting point to test these emerging new schemes.

Furthermore, we have found that the most sensitive parameter for the determination15

of the emission threshold in the model, the soil moisture, does not always relate to the
potential emissivity of the site. Some sites with low enough soil moisture values to allow
for dust emission did in fact not emit owing to a thick and continuous crust. As a result,
spatio-temporal variations of the emission flux are large, both in the observations and
in the box model. The agreement for individual field sites is often poor, which is indeed20

indicative of a rather loose relationship between soil and surface properties and the
resulting dust flux. The agreement between model and field data is, however, accept-
able in the baseline experiments at the most emissive site. Encouragingly, the wettest
site (with a smooth and thick crust) was essentially non-emissive during the 2011 field
campaign.25

The sensitivity experiment also taught us that even the least sensitive soil mois-
ture correction for u∗thr (Fécan et al., 1999) still tends to be too sensitive. The drag
partition correction for u∗thr is less sensitive, but only the scheme proposed by MacKin-
non et al. (2004) is applicable over the entire range of observed aerodynamic surface
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roughnesses, despite the fact that it was originally proposed for vegetated desert sur-
faces. Using a minimally and a fully disturbed soil size distribution data set at each
site for the model calculation of the horizontal and the vertical dust mass flux, respec-
tively, the observed particle size range could be realistically represented by virtue of
the availability of soil aggregate and soil individual particle size information.5

Having systematically examined the impacts of the major emission model compo-
nents, we highlight the following key findings and implications:

– OW64 transport scheme reduces the quantitative bias

– Soil moisture sensitivity is too high in the Fecan scheme

– McK04 drag partition correction outperforms MB9510

– SH04 scheme captures observed spatial variability better

– Crust properties have large impact on emitted dust mass

– Spatio-temporal crust variability needs to be parameterized

– Stochastic approach for direct entrainment is desirable.

In this context, we note that atmospheric model’s meteorological fields are another15

key factor which may well outweigh the impact of spatio-temporal variability or mea-
surement uncertainty (e.g. Darmenova et al., 2009; Knippertz and Todd, 2012). We
address this aspect in an upcoming study using a state-of-the-art climate model.

We would like to emphasize that it is certainly necessary to include missing pro-
cesses in dust emission schemes if one wants to move forward towards a more realistic20

description of the emission process. This is particularly true if one is aiming on provid-
ing regional or local dust emission forecasts, bearing also in mind that surface gusti-
ness is a controlling factor for dust emission (Engelstaedter and Washington, 2007).
A better constraint dust emission flux inherently helps to reduce uncertainties in other
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parts of the dust cycle, preferentially in the deposition flux. As many of the most emis-
sive dust spots worldwide share common soil and surface properties, we argue that the
incorporation of parameterizations which reflect mechanisms that are characteristic for
crusted soils can potentially improve the overall accuracy of the models, particularly
over regions which feature frequent changes between dry and wet conditions as most5

monsoon regions do.
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Table 1. Minimally and fully disturbed soil size distribution for each field site at Sua Pan. The
mass fraction (in percent) for each parent soil type is given. FMS is fine/medium sand and CS
is coarse sand. (m) refers to minimally disturbed and (f) to fully disturbed soil. (∗) In few cases
the fluff material could not be sampled. The non-emissive crust sample is used instead. Two
right hand columns are average surface roughness (∅z0 in cm) and soil moisture content (∅w
in m3 m−3) at each site and averaged over the grid.

Site Type Clay (m) Silt (m) FMS (m) CS (m) Clay (f) Silt (f) FMS (f) CS (f) ∅z0 ∅w

B3 MET+ 0.0 15.7 49.9 34.4 22.0 67.3 10.3 0.4 0.236 0.060
B7 AWS 0.6 27.4 62.8 9.2 16.2 71.6 12.1 0.1 0.200 0.151
D2 MET 0.0 0.9 74.5 24.6 18.2 51.8 30.0 0.1 N/A N/A
D5 MET+ 0.6 18.1 34.6 46.7 23.7 61.7 12.6 2.0 0.291 0.147
D10 MET+ 0.1 18.7 59.8 21.4 27.6 71.7 0.7 0.0 0.292 0.040
G2 MET+ 0.0 11.2 72.1 16.7 22.0 67.3 10.7 0.0 0.293 0.077
G6 AWS 0.3 16.8 54.5 28.4 30.3 69.7 0.0 0.0 0.391 0.113
I4 MET+ 0.0 11.3 73.2 15.5 29.3 68.8 1.8 0.0 0.230 0.072
I8 MET 0.2 10.1 48.0 41.7 25.9 74.1 0.0 0.0 N/A N/A
J11∗ MET+ 0.6 15.8 40.6 43.0 23.8 76.2 0.0 0.0 0.108 0.166
L5∗ AWS 0.3 15.4 61.8 22.6 32.4 67.6 0.0 0.0 0.006 0.168

ALL ∅ 0.2 14.2 56.0 29.6 25.4 67.9 6.5 0.2 0.175 0.096
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Table 2. Individual model setup (1–5) and the conducted experiments (a–d). The sand transport
models (STM) used for the two principal horizontal flux (HFlux) models (MB95, SH04) and the
selected vertical flux(VFlux) schemes with the number of the corresponding setup are given.
The lower case letters refer to the sensitivity experiments with the correction schemes. (∗)
Experiments are carried out for each model setup (1–5).

Exp HFlux STM VFlux dragC moistC u∗thr

1 MB95 MB95 MB95

a* " " " ON ON ON
b* " " " ON OFF ON
c* " " " OFF ON ON
d* " " " OFF OFF ON

2 MB95 OW64 MB95
3 MB95 LL78 MB95
4 SH04 SH04 SH04
5 SH04 SH04 AG01

5780

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/5739/2014/gmdd-7-5739-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/5739/2014/gmdd-7-5739-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 5739–5789, 2014

DO4Models box
model results

K. Haustein et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 1. The Sua Pan 12km×12km grid with 3 AWS sites (yellow dots) and another 8
MET/MET+ sites (red dots). The colours indicate different soil conditions present through-
out the campaign, measured from 24 July to 14 October 2011 (pink/green=well developed
stable crust; yellow=degraded semi-stable old crust; red= reworked new emissive crust;
blue= shallow groundwater with thin stable crust).
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Figure 2. Horizontal and vertical flux for Exp. 1a at 5 field sites: B3 (a, b), I4 (c, d), L5 (e, f),
D10 (g, h), J11 (i, j). The observed (modelled) saltation and vertical fluxes are shown in grey
(blue) and black (dark red) dots. The period between DOY 260 (17 September) and DOY 290
(17 October 2011) is shown. The box model is driven with observed u∗ values. On the left hand
side, the shear velocity is shown (orange). On the right hand side, the soil moisture content
below 0.05kg kg−1 is shown (dark yellow). Site I4 is referred to as dusty site (c, d). Site L5
emitted least throughout the 2011 campaign (e, f). I4 and L5 are marked with red and blue
borders throughout the manuscript.
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Figure 3. Same as Fig. 2 but for Exp. 4a.
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Figure 4. Same as Fig. 2 but for Exp. 5a.
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a b

c d

Figure 5. Horizontal and vertical emission flux for Exps. 1a–5a (a, b) and Exps. 1d–5d (c, d).
Coloured circles are the field observations.
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a b c

e f g

h i j

Figure 6. The temporal evolution of the simulated vertical-to-horizontal-flux ratio α for Exp. 1a
(open cirlces) and 4a (open triangles) is shown in comparison to the observed values (closed
circles). The colour refers to 10 day time intervals during the field season, with the start DOY
given for each period. 9 out of 11 field sites are shown. In cases of FOBS without simultaneous
QOBS, α is zero. Note that there are situations in which vertical emission flux was measured
without saltating particles.
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a b
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f

z0 (w=1%)
z0 (w=5%)
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w (z0=1cm)

e

Figure 7. Horizontal and vertical emission flux for the baseline Exp. 1a (a, b) and Exp. 4a (c–f).
The entire range of observed surface roughness and soil moisture is plotted as a function of
u∗. Likewise, the observational data are split into groups of different roughness and moisture.
Lowest observed z0 are indicated by red dots, highest observed z0 by orange and yellow dots.
Lowest observed w are indicated by black and dark grey open circles around the dots, higher
observed w by brown and light grey open circles. Modelled z0 are set to two groups of 0.001cm
and 1cm, whereas modelled w are set to three groups of 1, 5, and 10 %, respectively.
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Figure 8. Vertical emission flux for Exps. 1a–1d (a, c, e, g), and 4a–4d (b, d, f, h). Coloured
circles are the observed fluxes. The simulated grid average flux is shown in black. The fluxes
of the individual field sites are complementary given by the dotted coloured lines. The dashed
grey lines refer to the model particle size categories as specified on the top left.
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