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Abstract

This model description paper introduces a new finite element model for the simulation
of non-linear shallow water flows, called Firedrake-Fluids. Unlike traditional models that
are written by hand in static, low-level programming languages such as Fortran or C,
Firedrake-Fluids uses the Firedrake framework to automatically generate the model’s5

code from a high-level abstract language called UFL. By coupling to the PyOP2 parallel
unstructured mesh framework, Firedrake can then target the code in a performance-
portable manner towards a desired hardware architecture to enable the efficient parallel
execution of the model over an arbitrary computational mesh. The description of the
model includes the governing equations, the methods employed to discretise and solve10

the governing equations, and an outline of the automated solution process. The verifi-
cation and validation of the model, performed using a set of well-defined test cases, is
also presented along with a roadmap for future developments and the solution of more
complex fluid dynamical systems.

1 Introduction15

Traditional approaches to numerical model development involve the production of hand-
written, low-level (e.g. C or Fortran) code for the specific set of equations that need to
be solved. This task alone can be highly error-prone, often resulting in sub-optimal
code, and can make the efficiency, readability and longevity of the codebase difficult to
maintain (Rognes et al., 2013; Farrell et al., 2013; Mortensen et al., 2011; Maddison20

and Farrell, 2014). Moreover, parallelisation of the code is usually accomplished by in-
troducing explicit calls to parallel programming libraries such as OpenMP or CUDA. By
doing so, computational scientists are frequently faced with the additional task of hav-
ing to re-write their model’s code as new parallel hardware architectures and platforms
emerge. At the current rate that new hardware is introduced, this development work-25

flow is unsustainable and places an infeasible requirement on the developer to not only
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be a subject/domain specialist adept in computational methods, but also well-versed
in software engineering and parallelisation principles. A change to the traditional pro-
gramming paradigm is clearly necessary if numerical model development is to continue
in a sustainable manner.

Recent investigations into the use of automated solution techniques have shown5

great potential in mitigating some of the issues faced with traditional approaches to
writing numerical models. The FEniCS project (Logg et al., 2012) is a well-known ex-
ample of a framework which uses such a solution technique to automatically generate
low-level model code to solve ordinary and partial differential equations (using the fi-
nite element method) from a near-mathematical high-level language, rather than by10

hand. This hides complexity through abstraction, and allows users to focus only on the
problem specification and the end results of simulations. Furthermore, optimal or near-
optimal performance can be achieved through code optimisations that would be tedious
to implement by hand (Ølgaard and Wells, 2010). These benefits have been realised in
numerous applications in the geosciences. For example, the use of the FEniCS frame-15

work by Maddison and Farrell (2014) allowed the runtime of their adjoint models to
be as small (or even smaller) than an equivalent model generated and optimised by
hand, and the extension of FEniCS by Rognes et al. (2013) to solve partial differential
equations on the sphere permits ocean and atmospheric models to be written with just
a few lines of high-level code rather than several thousand lines of low-level C or For-20

tran code. Several other application areas using automated solution techniques have
demonstrated similar benefits (see e.g. the works by Farrell et al., 2013; Funke and
Farrell, 2014; Logg et al., 2012).

Despite the success of FEniCS, the portability of its performance across different
current and future high-performance computing hardware is limited since the gen-25

erated code is independent of the architecture it can execute on. In contrast, the
Firedrake project (Imperial College London, 2013) is geared towards performance-
portability across different hardware platforms (e.g. multi- and many-core CPUs and
GPUs), as well as the efficient handling of mesh topology (e.g. taking advantage of the
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semi-structured nature of a three-dimensional layered mesh extruded in the vertical,
as often employed in ocean/atmospheric applications), and computational operations
(e.g. avoiding the re-assembly of time-independent finite element discretisation ma-
trices by caching them (Maddison and Farrell, 2014)). Essentially, Firedrake provides
the same high-level problem solving interface, with enhanced performance benefits.5

Performance-portability is achieved by interfacing with the PyOP2 parallel unstructured
mesh computation framework, which targets the automatically generated code towards
specific high-performance computing platforms (Rathgeber et al., 2012; Markall et al.,
2013). Recent application of PyOP2’s code optimisation strategies has demonstrated
up to a factor 4 speed-up compared to running FEniCS-generated code (Luporini10

et al., 2014). Furthermore, for a suite of benchmark problems (including Cahn–Hilliard,
advection–diffusion and Poisson equation-based problems), Firedrake is at least as
fast, if not faster, than the FEniCS framework (Rathgeber, 2014). In addition to per-
formance benefits, the abstraction-based approach employed by Firedrake can also
help future-proof models from hardware changes and removes a great deal of effort15

required by computational scientists to maintain the codebase.
In light of the issues surrounding the use of static, hand-coded numerical mod-

els, and the benefits that the Firedrake framework can bring, a new numerical model
called Firedrake-Fluids has been developed for computational fluid dynamics (CFD)-
related applications. The long-term goal of the project is to facilitate a re-engineering20

of Fluidity (Piggott et al., 2008), another CFD package (also developed at Imperial
College London) comprising hand-written Fortran code whose efficiency, readability
and longevity has become challenging to maintain as the package has grown over
many years. In contrast to Fluidity, Firedrake-Fluids has been written in the high-level
Unified Form Language (UFL) and uses Firedrake to automate the solution process.25

Currently it is capable of solving the non-linear shallow water equations which are
widely used in the ocean modelling community for applications such as tidal turbine
dynamics (Divett et al., 2013; Kramer et al., 2014; Martin-Short et al., 2014), array
optimisation (Funke et al., 2014), tsunami modelling (Hill et al., 2014), flow dynamics
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over submerged islands (Lloyd and Stansby, 1997), and dam breaching and flooding
(Capart and Young, 1998). In addition to the core model, Firedrake-Fluids offers upwind
stabilisation methods, a variety of diagnostic fields, and the Smagorinsky LES model
(Smagorinsky, 1963) for the parameterisation of turbulence.

Section 2 details the set of equations that are solved and the assumptions under5

which they are valid. Section 3 describes the numerical methods that are used to dis-
cretise and solve the governing equations, followed by an overview of the automated
solution techniques employed by the Firedrake framework. Section 4 presents results
from a suite of test cases used to verify the correctness of the numerical model’s im-
plementation, and show how well it describes the physics. A discussion regarding the10

future developments and direction of Firedrake-Fluids is presented in Sect. 5, along
with some concluding remarks in Sect. 6. Finally, Sect. “Code availability” contains in-
formation regarding the availability of the Firedrake-Fluids codebase, the license under
which it is released, and where the model’s documentation can be found.

2 Model equations15

The model described in this paper solves the non-linear, non-rotational shallow water
equations. These are a set of depth-averaged equations which model the dynamics of
a free surface and associated depth-averaged velocities (Zhou, 2004). For modelling
purposes, the free surface is split up into a mean component H and a perturbation
component h (where h is generally assumed to be much smaller than H) as illustrated20

in Fig. 1.
The shallow water equation set comprises a momentum equation and a continuity

equation, each of which are defined below.
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2.1 Momentum equation

The momentum equation is solved in non-conservative form such that

∂u
∂t

+u · ∇u = −g∇h+∇ ·T−CD
||u||u

(H +h)
, (1)

where t is time, g is the acceleration due to gravity (set to 9.8 m s−2 throughout this5

paper), u ≡ u(x,y) is the depth-averaged velocity, and CD is the non-dimensional drag
coefficient. The stress tensor T is given by

T = ν
(
∇u+∇uT

)
− 2

3
ν (∇ ·u)I, (2)

where ν is the kinematic viscosity, which is assumed to be isotropic here, and I is the10

identity tensor1.

2.2 Continuity equation

The continuity equation is given by

∂h
∂t

+∇ · ((H +h)u) = 0. (3)
15

3 Methods

3.1 Automated code generation

Solving a given set of equations in the Firedrake framework requires only the weak
forms of the model equations (along with associated boundary and initial conditions) to

1Note that, when using discontinuous basis functions for the velocity field (see Sect. 3.2),
the form of the stress tensor is currently restricted to T = ν∇u.
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be expressed in a near-mathematical language called Unified Form Language (UFL),
an embedded language that uses Python as its host (Alnæs et al., 2014). An example
of a model defined in UFL which solves a two-dimensional advection–diffusion problem
is given in Fig. 2 (with associated results in Fig. 3), and highlights how the implemen-
tation can be accomplished with just a few lines of intuitive statements. This one file5

containing approximately 50 lines of UFL is automatically compiled into over 600, much
more complicated, lines of low-level C code which are executed over the entire mesh
by PyOP2 to perform the assembly of the finite element system.

The UFL code is compiled at run-time, using a modified version of the FEniCS Form
Compiler (FFC)2 (Kirby and Logg, 2006; Luporini et al., 2014), into an intermediate10

representation as an abstract syntax tree (AST) before being passed into the PyOP2
library, as shown in Fig. 4. Furthermore, optimal numbering of the solution nodes in the
domain is important to avoid cache misses and ensure efficient computation; therefore,
the topology of any mesh that is provided by the user (e.g. from the Gmsh mesh gener-
ator (Geuzaine and Remacle, 2009)) is described using a PETSc DMPlex object which15

is also passed to PyOP2 along with the AST. PyOP2 then performs additional optimi-
sations on the AST using the COFFEE compiler (Luporini et al., 2014) which outputs
the model’s optimised low-level C code. Finally, PyOP2 calls a back-end compiler (e.g.
GNU gcc or the Intel C compiler for CPUs) to compile the generated code on demand
at run-time (known as just-in-time compilation), and then executes it efficiently over20

the entire domain. As previously mentioned, in addition to targetting the code towards
multi-core CPUs, PyOP2 can also target the generated code towards a specific parallel
platform using, for example, the PyOpenCL and PyCUDA compilers for GPUs.

2The original version of FFC which is part of the FEniCS project compiles the UFL into
low-level C++ code called UFC (Kirby and Logg, 2006; Logg and Wells, 2010), whereas the
modified version in Firedrake first compiles the UFL into an abstract syntax tree for further
manipulation and optimisation by the PyOP2 framework (Luporini et al., 2014).
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3.2 Spatial and temporal discretisation

The spatial discretisation of the model equations is performed using the Galerkin finite
element method. The first step of the method involves deriving the variational/weak
form of the model equations by multiplying them through by a so-called test function
w ∈ H1(Ω)3, where H1(Ω)3 is the first Hilbertian Sobolev space (Elman et al., 2005),5

and integrating over the whole domain Ω; this yields, in the case of the momentum
equation (Eq. 1):∫
Ω

w · ∂u
∂t

dV+
∫
Ω

w · (u · ∇u) dV = −
∫
Ω

gw · ∇h dV−
∫
Ω

∇w ·T dV−
∫
Ω

CDw ·
||u||u

(H +h)
dV. (4)

Note that the stress term has been integrated by parts and it is assumed that the normal10

stress at all boundaries is zero. In this weak form, a solution u ∈ H1(Ω)3 is sought for
all w ∈ H1(Ω)3.

The test function and the solution u (also known as the trial function) are then re-
placed by discrete representations, given by a linear combination of basis functions

{φi}
Nu_nodes

i=1 which may be continuous or discontinuous across the cells/elements of the15

mesh:

w =
Nu_nodes∑
i=1

φiwi , (5)

u =
Nu_nodes∑
i=1

φiui , (6)

where Nu_nodes is the number of velocity solution nodes in the mesh, wi are arbitrary,20

and the coefficients ui are sought using a numerical solution method. The free surface
perturbation field h, which needs to be solved for in addition to the velocity field, is also
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represented by a (possibly different) set of basis functions {ψi}
Nh_nodes

i=1 :

h =
Nh_nodes∑
i=1

ψihi , (7)

where Nh_nodes is the number of free surface solution nodes, and hi are the coefficients
to be found.5

The discrete system of size Nu_nodes ×Nu_nodes for the momentum equation then
becomes:

M
∂u
∂t

+A(u)u+Ku = −Ch+D(u,h)u, (8)

where M, A, K, C and D are the mass, advection, stress, gradient and drag discreti-10

sation matrices, respectively. The notation A(u) and D(u,h) is used to highlight the
non-linear dependence of the matrices on the velocity and free surface fields. A similar
process is performed for the continuity equation (Eq. 3), resulting in a full block-coupled
system.

The temporal discrisation is performed using the implicit backward Euler method,15

yielding:

M
un+1 −un

∆t
+A(un+1)un+1 +Kun+1 = −Chn+1 +D(un+1,hn+1)un+1, (9)

where the superscript n represents the current time level and n+1 represents the
next time level. The backward Euler method gives first-order accuracy in time. Newton20

iteration is employed to deal with the non-linearity introduced via the advection and
drag terms, although this does not need to be implemented explicitly by the model
developer; instead, it can be performed using a PETSc Scalable Nonlinear Equations
Solvers (SNES) object.
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A wide variety of basis functions of arbitrary order are available through FIAT (the
FInite element Automatic Tabulator) (Kirby, 2004). For the simulations presented in this
paper, only the P2-P1 (i.e. piecewise-quadratic basis functions representing the veloc-
ity field and piecewise-linear basis functions representing the free surface field) and P0-
P1 (i.e. piecewise-constant (discontinuous) basis functions for velocity and piecewise-5

linear basis functions for the free surface) element pairs will be considered. Unless
otherwise stated, the P2-P1 element pair will be used in preference to P0-P1, in order
to obtain higher-order solutions.

3.3 Solution methods

Firedrake assembles the full block-coupled form of the discrete system of linear equa-10

tions and attempts to solve it using a suite of iterative (as well as direct) numerical
solution methods. Firedrake links with the PETSc library which contains a variety of
linear solvers and preconditioners (Balay et al., 2006), and has proven itself in facilitat-
ing geoscientific model development (Katz et al., 2007). For the simulations presented
here, the GMRES linear solver (Saad and Schultz, 1986) is chosen and used in con-15

junction with the fieldsplit preconditioner (Brown et al., 2012) which is especially suited
to block-coupled systems such as the one considered here.

3.4 Setup and execution

Firedrake-Fluids uses an XML-based configuration file, normally edited with the Dia-
mond graphical user interface (GUI) (Ham et al., 2009), to set up simulations. Users can20

enter options concerning the simulation’s name, the path to any input files (e.g. mesh
files), the fields to be solved, discretisation options, and also the inclusion of auxiliary
models such as the Smagorinsky LES model (Smagorinsky, 1963). In addition, initial
and boundary conditions for each field can be specified either as a constant value,
or as a C++ expression for time-varying or spatially-varying conditions. An example25
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of the GUI is shown in Fig. 5. In the case of the shallow water model, all simulation
configuration files have the extension.swml (Shallow Water Markup Language).

All UFL model code is stored in the models directory of Firedrake-Fluids. Execution
of, for example, the shallow water model is performed by calling the Python interpreter
and providing the path to the simulation configuration file; an example for the test case5

involving flow past a square cylinder (discussed in Sect. 4) would be:
python models/shallow_water.py
tests/swe_flow_past_a_square/
swe_flow_past_a_square.swml
Solution fields are written to files in VTK format for visualisation.10

4 Verification and validation

The following subsections describe some of the key verification and validation test
cases included in Firedrake-Fluids. These tests are executed using the Buildbot au-
tomated testing framework whenever a change is made to the software (Farrell et al.,
2011) to ensure that any bugs introduced during the development of Firedrake-Fluids15

(or through the development of Firedrake itself and other dependencies such as
PETSc) are detected and promptly resolved by the developers.

4.1 Convergence analysis

Since no general analytical solution to the shallow water equations exists, the Method
of Manufactured Solutions (MMS) (Roache, 2002) was used to perform a convergence20

analysis and verify the correctness of the model implementation. The first step of MMS
involves inventing or “manufacturing” a function and modifying the original equation
such that this manufactured function is the analytical solution of the modified equation.
Substituting this function into the shallow water equations will generate a non-zero
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source term which can then be placed on the right-hand side, such that the manufac-
tured/invented solution is now the analytical solution to this modified set of equations.

A two-dimensional domain with dimensions 0 ≤ x ≤ 1 m and 0 ≤ y ≤ 1 m was used
for the MMS simulations. Simulations were run with three different structured meshes
with characteristic element lengths ∆x=0.2, 0.1 and 0.05 m. The time-steps were set5

to ∆t=0.01, 0.005, 0.0025 s respectively, to enforce a near-constant bound on the
Courant number. A zero initial condition was used for both the velocity and free surface
fields, and Dirichlet boundary conditions which agreed with the analytical/manufactured
solutions for the velocity and free surface were enforced along all walls of the domain.

Both the P2-P1 and P0-P1 element pairs were considered. The manufactured solu-10

tions were h = sin(x)sin(y) and u = [cos(x)sin(y),sin(x2)+ cos(y)]T. The physical pa-
rameters, given in Table 1, were chosen arbitrarily and used across all the simulations.

The P2-P1 element pair was first considered to check the Galerkin method with con-
tinuous basis functions. As shown in Fig. 6a and b, this exhibited second-order con-
vergence for both the velocity field and the free surface field which gave confidence in15

the correctness of the implementation. While third-order convergence may have been
expected for the velocity field because of the use of a P2 function space, the reduced
order of convergence was the result of the coupling between the velocity and free sur-
face fields such that the lower order of convergence in the free surface field dominated.
A similar effect can be seen with the P0-P1 where both the velocity and free surface20

perturbation fields exhibited only first order convergence; it was the error in the velocity
field that dominated here.

4.2 Dam failure

Dam failure (also known as dam break) problems are commonly used to test the perfor-
mance of shallow water models. The presence of a discontinuity in the initial condition25

makes them particularly difficult to accurately solve. Both one-dimensional and two-
dimensional results are presented.
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The one-dimensional case considers a channel 0 ≤ x ≤ 2000 m. A dam wall is lo-
cated at x=1000 m which holds back the water contained in the upstream reservoir.
The water in the reservoir has a total depth of 10 m, while downstream the total wa-
ter depth is set to 5 m. The water is initially at rest. At t = 0 the dam is instantaneously
removed, thereby simulating its failure, allowing water to rush into the downstream sec-5

tion. Typical shock characteristics for the velocity and free surface perturbation fields
were observed and compared well with the semi-analytical solutions of the correspond-
ing one-dimensional Riemann problem shown in Fig. 7 at t = 60 s. Note that the simu-
lation used an element length of ∆x=5 m and a time-step of 0.25 s, as per the simula-
tions of Liang et al. (2008) which consider the same scenario. The kinematic viscosity10

was set to 1 m2 s−1, and the drag coefficient was set to zero.
The two-dimensional case considers a square domain with dimensions 0 ≤ x ≤

200 m and 0 ≤ y ≤ 200 m. A 10 m-thick dam is placed in the centre of the domain as
shown in Fig. 8. In this scenario, only a partial failure of the dam is simulated; wa-
ter rushes into the downstream area through a 75 m-long breach in the dam wall. As15

before, the water is initially at rest. The upstream reservoir contains water with a to-
tal height of 10 m, while the downstream section contains water with a total height of
5 m. No-normal flow boundary conditions are applied along all walls (including those of
the dam). Once again, the time-step (∆t=0.2 s) and the characteristic element length
(∆x=5 m) were the same as those chosen by Liang et al. (2008). The kinematic vis-20

cosity was set to 1 m2 s−1, and the drag coefficient was set to zero.
The results at t=7.2 s are shown in Fig. 9. The water that rushed into the down-

stream area formed a tidal bore wave which has started to spread out laterally, while
a depression/rarefaction wave has started to propagate upstream. Furthermore, small
vortices are visible where the flow has separated from the dam wall immediately down-25

stream of the breach, resulting in a total free surface height of less than 5 m (the initial
mean height downstream). These qualitative results closely agree with those from the
numerical simulations by Liang et al. (2008) and Mingham and Causon (1998).
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4.3 Tidal flow over a regular bed

The test case described by Bermudez and Vazquez (1994) considers tidal flow in
a one-dimensional domain of length L=14 000 m. The mean water height (and hence
the topography of the bed) is defined by

H(x) = 50.5− 40x
L

−10sin
[
π
(

4x
L

− 1
2

)]
. (10)5

The initial conditions h(x,0) = 0 and u(x,0) = 0 are applied along with the following
boundary conditions for the free surface and velocity:

h(0,t) = 4−4sin
[
π
(

4t
86400

+
1
2

)]
, (11)

10

to simulate an incoming sinusoidally-varying tidal wave, and

u(L,t) = 0, (12)

at the outflow boundary.
This simulation was performed with a mesh element length of ∆x=14 m. The time-15

step ∆t was set to 2.5 s and the simulation finished at t=9117.5 s (the same time
considered by Zhou, 2004). The kinematic viscosity was set to 1 m2 s−1, and the drag
coefficient was set to zero. The results in Fig. 10 illustrate how the velocity of the
flow increases in deeper regions of the body of water as expected. The numerical
results also display good accuracy with the analytical solutions given by Bermudez and20

Vazquez (1994), thereby further validating the numerical model.

4.4 Tidal flow over an irregular bed

A second version of the tidal flow test case considered previously is one that involves
an irregular bed topology, with sharp peaks and troughs which can be a challenge to
represent accurately. This test case is described by Zhou (2004).25
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The test case considers a one-dimensional domain of length L=1500 m. The irregu-
lar topography of the bed B(x) is defined in Table 2, and the mean water height is given
by H(x) = 20−B(x). The initial conditions h(x,0) = −4 and u(x,0) = 0 are applied along
with the following boundary conditions for the free surface and velocity:

h(0,t) = −4sin
[
π
(

4t
86400

+
1
2

)]
, (13)5

u(L,t) = 0, (14)

The element length ∆x=7.5 m and the time-step ∆t=0.3 s, as per the setup of Zhou
(2004). The simulation was performed until t=10 800 s. All remaining components of
the setup were the same as the regular bed test case described in Sect. 4.3.10

Figure 11 once again demonstrates a good match between the numerical results
and the analytical solution, and demonstrates the robustness of the numerical model
in accurately representing more rapidly varying areas of the solution.

4.5 Flow past a square cylinder

Simulations of laboratory-scale flow past solid objects are commonly used to val-15

idate turbulence models due to the vast amount of available experimental data at
high Reynolds numbers. In this work, the Smagorinsky LES model in Firedrake-Fluids
was employed to evaluate its ability to parameterise the effects of turbulent flow past
a square cylinder. The setup used in the experiments by Lyn and Rodi (1994) and Lyn
et al. (1995) (and the numerical simulations by Rodi et al., 1997) was considered.20

The dimensions of the domain are given in terms of the width/length of the square
d =0.04 m in Fig. 12. An unstructured mesh with a characteristic element length
∆x=d/15, generated with Gmsh (Geuzaine and Remacle, 2009), was used; this value
of ∆x is comparable to the minimum element lengths used in the numerical simulations
presented in the paper by Rodi et al. (1997). The free surface mean height was set to25

H = 4d (the depth of the experimental flow tank). The physical kinematic viscosity of

5713

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/5699/2014/gmdd-7-5699-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/5699/2014/gmdd-7-5699-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 5699–5738, 2014

Firedrake-Fluids
(v0.1)

C. T. Jacobs and
M. D. Piggott

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

the fluid was set to 10−6 m2 s−1, which corresponded to a Reynolds number of 21 400
when using d as the length scale. The Smagorinsky LES model parameterised the
turbulence via an eddy viscosity (Smagorinsky, 1963; Deardorff, 1970)

ν′ = (Cs∆e)2 |S|. (15)
5

where Cs is the Smagorinsky coefficient (set to 0.164 here, within the typical range of
Cs values (Deardorff, 1971)), and ∆e is an estimate of the local mesh size which is
defined here as the square root of the area of each element. |S| is the modulus of the
strain rate tensor defined by

S =
1
2

(
∇u+∇uT

)
. (16)10

This eddy viscosity, which models the dissipating effects of small-scale turbulent ed-
dies on the resolved flow, is added to the physical viscosity in the stress term of the
momentum equation.

Initially the velocity and free surface perturbation fields were set to zero. At the inlet,15

a constant velocity boundary condition of 0.535 m s−1 was enforced; the inflow was
laminar and no turbulent eddies were seeded along the boundary. No-normal flow
boundary conditions were applied along the side walls, while no-slip boundary con-
ditions were applied along all walls of the square. At the outflow, a Flather boundary
condition (Flather, 1976) (specifying an external velocity equal to that at the inlet, and20

a free surface perturbation of zero) was used to allow flow out of the domain whilst
minimising reflections. A time-step of ∆t = 5×10−4 s was chosen, and the simulation
was performed until t=15 s.

Soon after the flow began to enter the domain through the inlet, boundary layers
began to form around the sides of the square where the transition to turbulence took25

place. A strong recirculating region formed immediately behind the square, followed by
continuous turbulent vortex shedding which commenced after approximately 4 s of sim-
ulation time. The vortex street is clearly visible in Fig. 13 which shows the x component
of the velocity field at t=10 s.
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The stream-wise velocity along the centreline, time-averaged over a period of 15 s
from the start of the simulation, was compared with the experimental data presented by
Lyn et al. (1995) and Rodi et al. (1997); the results in Fig. 14 show a good match with
the experimental data behind the square cylinder in the recirculating region where tur-
bulent vortex shedding occurs, thereby illustrating the benefits of using the Smagorin-5

sky LES model to accurately capture the turbulent flow characteristics. However, the
wake recovery region was poorly represented; the unfortunate lack of accuracy in this
region has also been observed in other numerical models (Rodi et al., 1997), and ad-
ditional parameterisations and the full three-dimensionality of the problem may need to
be considered to properly represent the wake.10

5 Roadmap

The long-term aim is to extend Firedrake-Fluids into a suite of numerical models which
encompass a much wider range of flow types, as well as additional equation sets
(e.g. the full Navier–Stokes equations) and constitutive equations (e.g. for describing
Darcy’s law in porous media). Essentially, Firedrake-Fluids seeks to facilitate a com-15

plete re-engineering of the Fluidity CFD code, whilst maintaining the mature modelling
functionality that Fluidity offers.

One of the first application areas that Firedrake-Fluids will focus on, using the shallow
water model described in this paper, is flow around tidal turbines. This will contribute to
an on-going effort towards understanding the potential of renewable energy systems.20

The multi-scale nature of the application will necessitate the use of high-performance
computing, and Firedrake’s ability to target code towards more modern hardware archi-
tectures such as GPU clusters will be utilised. Regarding the application area itself, the
integration of adjoint optimisation models is of particular related interest. For example,
recent progress in the optimisation of the layout of a tidal turbine farm using the FEniCS25

automated solution framework has proven to be a successful technique for maximising
the theoretical amount of generated power (Funke et al., 2014). The DOLFIN-adjoint
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library (Farrell et al., 2013) was used for this purpose. Although FEniCS and Firedrake
both expect UFL statements as input, not all of the UFL interfaces are compatible with
each other at present; a similar adjoint library for Firedrake (Firedrake-adjoint) is there-
fore under development by the authors of DOLFIN-adjoint, and its use in the shallow
water model is one of the shorter-term goals of the Firedrake-Fluids project. The issue5

of compatibility is being addressed by the developers of Firedrake.
Realistic tidal and atmospheric modelling simulations will require boundary values to

be read in from forcing files. Popular formats include NetCDF and ERA-40/GRIB, for
which robust data readers will be required. Therefore, another short-term item on the
roadmap is the evaluation and integration of existing readers into the Firedrake-Fluids10

framework (or their development in-house, should no suitable reader exist).
Further to the existing Smagorinsky (1963) LES turbulence model, the roadmap fea-

tures support for additional turbulence parameterisations including RANS-type models,
such as those considered by Mortensen et al. (2011) for the FEniCS framework. Alter-
native discretisation schemes, including control volume methods which have desirable15

boundedness and conservativeness properties (Wilson, 2009), and high-order slope
limiters for the existing discontinuous Galerkin method, will also be implemented. It
is expected that a large proportion of this work will need to be undertaken within the
Firedrake and PyOP2 frameworks, in addition to Firedrake-Fluids, in order to correctly
describe the mesh topology (including that of the dual mesh in the case of control20

volume methods).

6 Conclusions

This model description paper has introduced a new open-source finite element model,
Firedrake-Fluids, for the simulation of shallow water flows. The model is written in the
high-level, near-mathematical Unified Form Language and uses the Firedrake frame-25

work (coupled with the PyOP2 library) to automate the solution process and provide
performance-portability across different hardware platforms. The automated solution
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approach allows the focus to be on the equations that are solved and the numerical
results, and removes the requirement for model developers to be experts in parallel
programming and software engineering. Furthermore, the high-level specification of
the problem facilitates better maintainability of the Firedrake-Fluids code base; in com-
parison with the shallow water model in the Fluidity CFD code, which features static5

hand-written Fortran, the Firedrake-Fluids source code is considerably shorter and
more intuitive. Firedrake-Fluids uses approximately 400 lines (excluding comments and
blank lines), compared to many thousands to perform the same task in Fluidity. Note
that the 400 lines include code to obtain user settings, initial conditions, etc from the
simulation configuration file, and to make the model as generic as possible; if the model10

were to be written for a specific setup, the number of lines could potentially be further
minimised to just a few dozen.

At run-time, the high-level model specification defined in Firedrake-Fluids is con-
verted by Firedrake (and the PyOP2 framework) into optimised, low-level C code. This
is then compiled with a back-end compiler appropriate for the target architecture (e.g.15

the Intel compiler for CPUs, the CUDA C compiler for NVIDIA GPUs, or OpenCL for
AMD GPUs). As new high-performance architectures are introduced in the future, only
the PyOP2 layer which deals with code targetting needs to be modified; model devel-
opers are not burdened with the task of specialising the model code itself, which is
presently a common problem even in modern finite element models.20

Several verification and validation test cases were performed to ensure the correct-
ness of Firedrake-Fluids and its ability to accurately simulate physical problems. These
included a convergence analysis with different finite element pairs, a simulation of dam
breaching, and tidal flow dynamics over different seabed topologies. Overall, the nu-
merical results were highly satisfactory and displayed good agreement with analytical25

solutions, experimental data and observations.
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Code availability

Firedrake-Fluids is an open-source software package that has been released under
the GNU General Public License (Version 3). The codebase is hosted by GitHub
in a public repository and can be obtained at the following URL: https://github.com/
firedrakeproject/firedrake-fluids. The particular version of Firedrake-Fluids considered5

in this paper (version 0.1) is available from the releases page.

Acknowledgements. This work was funded by Imperial College London. The authors acknowl-
edge the use of the Imperial College High Performance Computing Service.
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Table 1. Parameters used in the MMS test cases.

Parameter Description Value

CD Drag coefficient 0.0025
ν Kinematic viscosity 0.6 m2 s−1

H Mean free surface height 20 m
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Table 2. Bed heights along the seabed from Zhou (2004).

x (m) Bed height B(x) (m)

0 0
50 0
100 2.5
150 5
250 5
300 3
350 5
400 5
425 7.5
435 8
450 9
475 9
500 9.1
505 9
530 9
550 6
565 5.5
575 5.5
600 5
650 4
700 3
750 3
800 2.3
820 2
900 1.2
950 0.4
1000 0
1500 0
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2 C. T. Jacobs and M. D. Piggott: Firedrake-Fluids (v0.1)

Despite the success of FEniCS, the portability of its perfor-
mance across different current and future high-performance70

computing hardware is limited since the generated code is
independent of the architecture it can execute on. In con-
trast, the Firedrake project (Imperial College London, 2013)
is geared towards performance-portability across different
hardware platforms (e.g. multi- and many-core CPUs and75

GPUs), as well as the efficient handling of mesh topol-
ogy (e.g. taking advantage of the semi-structured nature of
a three-dimensional layered mesh extruded in the vertical,
as often employed in ocean/atmospheric applications), and
computational operations (e.g. avoiding the re-assembly of80

time-independent finite element discretisation matrices by
caching them (Maddison and Farrell, 2014)). Essentially,
Firedrake provides the same high-level problem solving in-
terface, with enhanced performance benefits. Performance-
portability is achieved by interfacing with the PyOP2 par-85

allel unstructured mesh computation framework, which tar-
gets the automatically generated code towards specific high-
performance computing platforms (Rathgeber et al., 2012;
Markall et al., 2013). Recent application of PyOP2’s code op-
timisation strategies has demonstrated up to a factor 4 speed-90

up compared to running FEniCS-generated code (Luporini
et al., Submitted). Furthermore, for a suite of benchmark
problems (including Cahn-Hilliard, advection-diffusion and
Poisson equation-based problems), Firedrake is at least as
fast, if not faster, than the FEniCS framework (Rathge-95

ber, Submitted). In addition to performance benefits, the
abstraction-based approach employed by Firedrake can also
help future-proof models from hardware changes and re-
moves a great deal of effort required by computational sci-
entists to maintain the codebase.100

In light of the issues surrounding the use of static, hand-
coded numerical models, and the benefits that the Fire-
drake framework can bring, a new numerical model called
Firedrake-Fluids has been developed for computational fluid
dynamics (CFD)-related applications. The long-term goal of105

the project is to facilitate a re-engineering of Fluidity (Pig-
gott et al., 2008), another CFD package (also developed at
Imperial College London) comprising hand-written Fortran
code whose efficiency, readability and longevity has become
challenging to maintain as the package has grown over many110

years. In contrast to Fluidity, Firedrake-Fluids has been writ-
ten in the high-level Unified Form Language (UFL) and uses
Firedrake to automate the solution process. Currently it is
capable of solving the non-linear shallow water equations
which are widely used in the ocean modelling community115

for applications such as tidal turbine dynamics (Divett et al.,
2013; Kramer et al., 2014; Martin-Short et al., Submitted),
array optimisation (Funke et al., 2014), tsunami modelling
(Hill et al., Submitted), flow dynamics over submerged is-
lands (Lloyd and Stansby, 1997), and dam breaching and120

flooding (Capart and Young, 1998). In addition to the core
model, Firedrake-Fluids offers upwind stabilisation meth-
ods, a variety of diagnostic fields, and the Smagorinsky LES

model (Smagorinsky, 1963) for the parameterisation of tur-
bulence.125

Section 2 details the set of equations that are solved and the
assumptions under which they are valid. Section 3 describes
the numerical methods that are used to discretise and solve
the governing equations, followed by an overview of the
automated solution techniques employed by the Firedrake130

framework. Section 4 presents results from a suite of test
cases used to verify the correctness of the numerical model’s
implementation, and show how well it describes the physics.
A discussion regarding the future developments and direc-
tion of Firedrake-Fluids is presented in Section 5, along with135

some concluding remarks in Section 6. Finally, section 7 con-
tains information regarding the availability of the Firedrake-
Fluids codebase, the license under which it is released, and
where the model’s documentation can be found.

2 Model equations140

The model described in this paper solves the non-linear, non-
rotational shallow water equations. These are a set of depth-
averaged equations which model the dynamics of a free sur-
face and associated depth-averaged velocities (Zhou, 2004).
For modelling purposes, the free surface is split up into a145

mean component H and a perturbation component h (where
h is generally assumed to be much smaller than H) as illus-
trated in Figure 1.

H

h

Figure 1. Diagram showing the mean free surface height H (also
known as the depth or the distance to the seabed, shaded gray) and
the free surface perturbation h, within the shallow water model.

The shallow water equation set comprises a momentum
equation and a continuity equation, each of which are defined150

below.

2.1 Momentum equation

The momentum equation is solved in non-conservative form
such that

∂u

∂t
+ u · ∇u =−g∇h+∇ ·T−CD

||u||u
(H +h)

, (1)155

Figure 1. Diagram showing the mean free surface height H (also known as the depth or the
distance to the seabed, shaded gray) and the free surface perturbation h, within the shallow
water model.
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Figure 2. Sample Python code which uses the high-level Unified Form Language (UFL) to
solve the advection–diffusion equation with the finite element method. The solution field c has
a Gaussian profile at t=0, which is then advected with a prescribed velocity field u = [0.1,0]T.
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Figure 3. Visualisation of the solution field c at t=0, 2.5, and 5 s from the advection–diffusion
problem defined in Fig. 2. The initial Gaussian profile is advected from left-to-right, out of the
domain, and slowly diffuses over time. The field has been warped in the z direction.
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4 C. T. Jacobs and M. D. Piggott: Firedrake-Fluids (v0.1)

Finally, PyOP2 calls a back-end compiler (e.g. GNU gcc or
the Intel C compiler for CPUs) to compile the generated code
on demand at run-time (known as just-in-time compilation),
and then executes it efficiently over the entire domain. As200

previously mentioned, in addition to targetting the code to-
wards multi-core CPUs, PyOP2 can also target the generated
code towards a specific parallel platform using, for example,
the PyOpenCL and PyCUDA compilers for GPUs.

Firedrake framework

PyOP2 framework

Unified Form
Language (UFL)

FEniCS Form
Compiler (FFC)

DMPlex objects

PyOP2 interface

Weak form of the
problem

UFL passed to
form compiler.

Code generation
begins

Mesh in
e.g. Gmsh format

Description of
mesh topology

COFFEE optimiser and compiler

Parallel scheduling
and code generation

CPU-targetted
(MPI/OpenMPI

backends)

GPU-targetted
(CUDA/OpenCL

backends)

Code for
future

architectures

Intermediate
representation

(abstract syntax tree)
passed to PyOP2

C kernels with parallel loops
to execute kernels

efficiently over mesh

Code targetted towards
specific hardware architectures

Figure 4. Overview of the key components of the Firedrake and
PyOP2 frameworks (Rathgeber, Submitted).

3.2 Spatial and temporal discretisation205

The spatial discretisation of the model equations is per-
formed using the Galerkin finite element method. The first
step of the method involves deriving the variational/weak
form of the model equations by multiplying them through

by a so-called test function w ∈H1(Ω)3, where H1(Ω)3 is210

the first Hilbertian Sobolev space (Elman et al., 2005), and
integrating over the whole domain Ω; this yields, in the case
of the momentum equation (1):∫
Ω

w · ∂u
∂t

dV +

∫
Ω

w · (u · ∇u) dV =

−
∫
Ω

gw · ∇h dV +

∫
Ω

∇w ·T dV215

−
∫
Ω

CDw · ||u||u
(H +h)

dV. (4)

Note that the stress term has been integrated by parts and it
is assumed that the normal stress gradient at all boundaries is
zero. In this weak form, a solution u ∈H1(Ω)3 is sought for
all w ∈H1(Ω)3.220

The test function and the solution u (also known as
the trial function) are then replaced by discrete represen-
tations, given by a linear combination of basis functions
{φi}Nu_nodes

i=1 which may be continuous or discontinuous
across the cells/elements of the mesh:225

w =

Nu_nodes∑
i=1

φiwi, (5)

u =

Nu_nodes∑
i=1

φiui, (6)

where Nu_nodes is the number of velocity solution nodes in
the mesh, wi are arbitrary, and the coefficients ui are sought230

using a numerical solution method. The free surface pertur-
bation field h, which needs to be solved for in addition to the
velocity field, is also represented by a (possibly different) set
of basis functions {ψi}Nh_nodes

i=1 :

h=

Nh_nodes∑
i=1

ψihi, (7)235

where Nh_nodes is the number of free surface solution nodes,
and hi are the coefficients to be found.

The discrete system of size Nu_nodes×Nu_nodes for the
momentum equation then becomes:

M
∂u

∂t
+ A(u)u + Ku =−Ch+ D(u,h)u, (8)240

where M, A, K, C and D are the mass, advection, stress,
gradient and drag discretisation matrices, respectively. The
notation A(u) and D(u,h) is used to highlight the non-
linear dependence of the matrices on the velocity and free
surface fields. A similar process is performed for the conti-245

nuity equation (3), resulting in a full block-coupled system.

Figure 4. Overview of the key components of the Firedrake and PyOP2 frameworks (Rathge-
ber, 2014).
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Figure 5. The Diamond (Ham et al., 2009) graphical user interface for editing Firedrake-Fluids
simulation configuration files.
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Figure 6. The orders of convergence for (a) the free surface field and (b) the velocity field, in
the P2-P1 and P0-P1 MMS test cases.
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Figure 7. Numerical solutions of the 1-D dam failure problem. The semi-analytical solutions,
found by solving a set of equations defined in the book by Trangenstein (2009), are also plotted.
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Figure 7. Numerical solutions of the 1D dam failure problem. The
semi-analytical solutions, found by solving a set of equations de-
fined in the book by Trangenstein (2009), are also plotted.

The two-dimensional case considers a square domain with
dimensions 0 ≤ x≤ 200 m and 0 ≤ y ≤ 200 m. A 10 m-
thick dam is placed in the centre of the domain as shown in
Figure 8. In this scenario, only a partial failure of the dam385

is simulated; water rushes into the downstream area through
a 75 m-long breach in the dam wall. As before, the water is
initially at rest. The upstream reservoir contains water with a
total height of 10 m, while the downstream section contains
water with a total height of 5 m. No-normal flow boundary390

conditions are applied along all walls (including those of the
dam). Once again, the time-step (∆t = 0.2 s) and the char-
acteristic element length (∆x = 5 m) were the same as those
chosen by Liang et al. (2008). The kinematic viscosity was
set to 1 m2s−1, and the drag coefficient was set to zero.395

The results at t = 7.2 s are shown in Figure 9. The wa-
ter that rushed into the downstream area formed a tidal bore
wave which has started to spread out laterally, while a de-
pression/rarefaction wave has started to propagate upstream.

200 m

200 m

10 m

30 m

95 m

Figure 8. Dimensions of the domain for the 2D dam failure prob-
lem. The dam (with a 75 m-wide breach) is situated in the centre.

Furthermore, small vortices are visible where the flow has400

separated from the dam wall immediately downstream of the
breach, resulting in a total free surface height of less than 5
m (the initial mean height downstream). These qualitative re-
sults closely agree with those from the numerical simulations
by Liang et al. (2008) and Mingham and Causon (1998).405

Figure 9. Free surface perturbation h at time t = 7.2 s, from the 2D
dam failure simulation. The field has been warped in the z direction
to emphasise the collapse of the water column.

Figure 8. Dimensions of the domain for the 2-D dam failure problem. The dam (with a 75 m-
wide breach) is situated in the centre.
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Figure 9. Free surface perturbation h at time t=7.2 s, from the 2-D dam failure simulation. The
field has been warped in the z direction to emphasise the collapse of the water column.
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8 C. T. Jacobs and M. D. Piggott: Firedrake-Fluids (v0.1)

4.3 Tidal flow over a regular bed

The test case described by Bermudez and Vazquez (1994)
considers tidal flow in a one-dimensional domain of length
L = 14,000 m. The mean water height (and hence the topog-
raphy of the bed) is defined by410

H(x) = 50.5− 40x

L
− 10sin

[
π

(
4x

L
− 1

2

)]
. (10)

The initial conditions h(x,0) = 0 and u(x,0) = 0 are ap-
plied along with the following boundary conditions for the
free surface and velocity:

h(0, t) = 4− 4sin

[
π

(
4t

86,400
+

1

2

)]
, (11)415

to simulate an incoming sinusoidally-varying tidal wave, and

u(L,t) = 0, (12)

at the outflow boundary.
This simulation was performed with a mesh element420

length of ∆x = 14 m. The time-step ∆t was set to 2.5 s and
the simulation finished at t = 9,117.5 s (the same time con-
sidered by Zhou (2004)). The kinematic viscosity was set to
1 m2s−1, and the drag coefficient was set to zero. The results
in Figure 10 illustrate how the velocity of the flow increases425

in deeper regions of the body of water as expected. The nu-
merical results also display good accuracy with the analytical
solutions given by Bermudez and Vazquez (1994), thereby
further validating the numerical model.

4.4 Tidal flow over an irregular bed430

A second version of the tidal flow test case considered pre-
viously is one that involves an irregular bed topology, with
sharp peaks and troughs which can be a challenge to repre-
sent accurately. This test case is described by Zhou (2004).

The test case considers a one-dimensional domain of435

length L = 1,500 m. The irregular topography of the bed
B(x) is defined in Table 2, and the mean water height is given
by H(x) = 20−B(x). The initial conditions h(x,0) =−4
and u(x,0) = 0 are applied along with the following bound-
ary conditions for the free surface and velocity:440

h(0, t) =−4sin

[
π

(
4t

86,400
+

1

2

)]
, (13)

u(L,t) = 0, (14)

The element length ∆x = 7.5 m and the time-step ∆t =
0.3 s, as per the setup of Zhou (2004). The simulation was445

performed until t = 10,800 s. All remaining components of
the setup were the same as the regular bed test case described
in Section 4.3.

Figure 10. Numerical solutions from the tidal flow simulation over
a regular bed, at t = 9,117.5 s. The analytical solutions are given by
Bermudez and Vazquez (1994) and almost completely overlap the
numerical solutions. Note that the free surface plot (a) includes the
mean free surface height, such that the y axis represents h+H .

Figure 11 once again demonstrates a good match between
the numerical results and the analytical solution, and demon-450

strates the robustness of the numerical model in accurately
representing more rapidly varying areas of the solution.

4.5 Flow past a square cylinder

Simulations of laboratory-scale flow past solid objects are
commonly used to validate turbulence models due to the vast455

amount of available experimental data at high Reynolds num-
bers. In this work, the Smagorinsky LES model in Firedrake-
Fluids was employed to evaluate its ability to parameterise
the effects of turbulent flow past a square cylinder. The setup
used in the experiments by Lyn and Rodi (1994) and Lyn460

et al. (1995) (and the numerical simulations by Rodi et al.
(1997)) was considered.

Figure 10. Numerical solutions from the tidal flow simulation over a regular bed, at t=9117.5 s.
The analytical solutions are given by Bermudez and Vazquez (1994) and almost completely
overlap the numerical solutions. Note that the free surface plot (a) includes the mean free
surface height, such that the y axis represents h+H .

5734

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/5699/2014/gmdd-7-5699-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/5699/2014/gmdd-7-5699-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 5699–5738, 2014

Firedrake-Fluids
(v0.1)

C. T. Jacobs and
M. D. Piggott

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 11. Numerical solutions from the tidal flow simulation with an irregular bed topography.
The analytical solutions (Zhou, 2004; Bermudez and Vazquez, 1994) agree very well with the
numerical solutions from Firedrake-Fluids.
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10 C. T. Jacobs and M. D. Piggott: Firedrake-Fluids (v0.1)

x

y

14d

4.5d d 19.5d

Figure 12. The dimensions of the two-dimensional domain contain-
ing a square cylinder (filled black) of length/width d. The incoming
flow is from the left boundary, as denoted by the black arrows.

Figure 13. Visualisation of the x component of the velocity field,
from the simulation of flow past a square at t = 10 s.

using the Smagorinsky LES model to accurately capture the
turbulent flow characteristics. However, the wake recovery515

region was poorly represented; the unfortunate lack of accu-
racy in this region has also been observed in other numerical
models (Rodi et al., 1997), and additional parameterisations
and the full three-dimensionality of the problem may need to
be considered to properly represent the wake.520

5 Roadmap

The long-term aim is to extend Firedrake-Fluids into a suite
of numerical models which encompass a much wider range
of flow types, as well as additional equation sets (e.g. the
full Navier-Stokes equations) and constitutive equations (e.g.525

for describing Darcy’s law in porous media). Essentially,
Firedrake-Fluids seeks to facilitate a complete re-engineering

Figure 14. Time-averaged stream-wise velocity along the centreline
from the simulation of flow past a square. Note that the velocity has
been normalised by the inlet velocity U = 0.535 ms−1.

of the Fluidity CFD code, whilst maintaining the mature
modelling functionality that Fluidity offers.

One of the first application areas that Firedrake-Fluids will530

focus on, using the shallow water model described in this
paper, is flow around tidal turbines. This will contribute to
an on-going effort towards understanding the potential of re-
newable energy systems. The multi-scale nature of the ap-
plication will necessitate the use of high-performance com-535

puting, and Firedrake’s ability to target code towards more
modern hardware architectures such as GPU clusters will be
utilised. Regarding the application area itself, the integration
of adjoint optimisation models is of particular related inter-
est. For example, recent progress in the optimisation of the540

layout of a tidal turbine farm using the FEniCS automated
solution framework has proven to be a successful technique
for maximising the theoretical amount of generated power
(Funke et al., 2014). The DOLFIN-adjoint library (Farrell
et al., 2013) was used for this purpose. Although FEniCS545

and Firedrake both expect UFL statements as input, not all of
the UFL interfaces are compatible with each other at present;
a similar adjoint library for Firedrake (Firedrake-adjoint) is
therefore under development by the authors of DOLFIN-
adjoint, and its use in the shallow water model is one of the550

shorter-term goals of the Firedrake-Fluids project. The issue
of compatibility is being addressed by the developers of Fire-
drake.

Realistic tidal and atmospheric modelling simulations will
require boundary values to be read in from forcing files. Pop-555

ular formats include NetCDF and ERA-40/GRIB, for which
robust data readers will be required. Therefore, another short-
term item on the roadmap is the evaluation and integration of
existing readers into the Firedrake-Fluids framework (or their
development in-house, should no suitable reader exist).560

Figure 12. The dimensions of the two-dimensional domain containing a square cylinder (filled
black) of length/width d . The incoming flow is from the left boundary, as denoted by the black
arrows.
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Figure 13. Visualisation of the x component of the velocity field, from the simulation of flow
past a square at t=10 s.
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Figure 14. Time-averaged stream-wise velocity along the centreline from the simulation of flow
past a square. Note that the velocity has been normalised by the inlet velocity U =0.535 m s−1.
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