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Abstract

This model description paper introduces a new finite element model for the simulation of non-
linear shallow water flows, called Firedrake-Fluids. Unlike traditional models that are written by
hand in static, low-level programming languages such as Fortran or C, Firedrake-Fluids uses the
Firedrake framework to automatically generate the model’s code from a high-level abstract lan-5

guage called UFL. By coupling to the PyOP2 parallel unstructured mesh framework, Firedrake
can then target the code towards a desired hardware architecture to enable the efficient paral-
lel execution of the model over an arbitrary computational mesh. The description of the model
includes the governing equations, the methods employed to discretise and solve the governing
equations, and an outline of the automated solution process. The verification and validation10

of the model, performed using a set of well-defined test cases, is also presented along with a
roadmap for future developments and the solution of more complex fluid dynamical systems.

1 Introduction

Traditional approaches to numerical model development involve the production of hand-written,
low-level (e.g. C or Fortran) code for the specific set of equations that need to be solved. This15

task alone can be highly error-prone, often resulting in sub-optimal code, and can make the
efficiency, readability and longevity of the codebase difficult to maintain (Rognes et al., 2013;
Farrell et al., 2013; Mortensen et al., 2011; Maddison and Farrell, 2014). Moreover, parallelisa-
tion of the code is usually accomplished by introducing explicit calls to parallel programming
libraries such as OpenMP or CUDA. By doing so, computational scientists are frequently faced20

with the additional task of having to re-write their model’s code as new parallel hardware ar-
chitectures and platforms emerge. At the current rate that new hardware is introduced, this
development workflow is unsustainable and places an infeasible requirement on the developer
to not only be a subject/domain specialist adept in computational methods, but also well-versed
in software engineering and parallelisation principles. A change to the traditional programming25
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paradigm is clearly necessary if numerical model development is to continue in a sustainable
manner.

Recent investigations into the use of automated solution techniques have shown great poten-
tial in mitigating some of the issues faced with traditional approaches to writing numerical mod-
els. The FEniCS project (Logg et al., 2012) is a well-known example of a framework which uses5

such a solution technique to automatically generate low-level model code to solve ordinary and
partial differential equations (using the finite element method) from a near-mathematical high-
level language, rather than the user having to write the low-level code themselves. This hides
complexity through abstraction, and allows users to focus only on the problem specification
and the end results of simulations. Furthermore, optimal or near-optimal performance can be10

achieved through code optimisations that would be tedious to implement by hand (Ølgaard and
Wells, 2010). These benefits have been realised in numerous applications in the geosciences. For
example, the use of the FEniCS framework by Maddison and Farrell (2014) allowed the runtime
of their adjoint models to be as small (or even smaller) than an equivalent model generated and
optimised by hand. Also, the extension of FEniCS by Rognes et al. (2013) to solve partial dif-15

ferential equations on the sphere permits ocean and atmospheric models to be written with just
a few lines of high-level intuitive code (although the potential of writing fewer, more intuitive
lines of model code is not unique to automated code generation approaches, as demonstrated by
the interfaces of other modelling frameworks such as OpenFOAM (OpenFOAM, 2014), deal.II
(Bangerth et al., 2007), Dune (Dedner et al., 2010) and FreeFem++ (Hecht, 2012)). Several20

other application areas using automated solution techniques have demonstrated similar benefits
(see e.g. the works by Farrell et al. (2013); Funke and Farrell (Submitted); Logg et al. (2012)).

The Firedrake project aims to further extend the abstractions offered by automated solu-
tion approaches, by creating a separation of concerns between the automated low-level dis-
cretisation of the model equations and its execution on the underlying computational mesh25

(Rathgeber et al., Submitted), whilst still keeping the same high-level problem solving interface
for end-users. This provides the potential for easier portability of the generated code across
different hardware platforms (e.g. multi- and many-core CPUs and GPUs), as well as the ef-
ficient handling of computations over a given mesh topology (e.g. taking advantage of the

3
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semi-structured nature of a three-dimensional layered mesh extruded in the vertical, as often
employed in ocean/atmospheric applications). This is achieved by interfacing with the PyOP2
parallel unstructured mesh computation framework, which targets the automatically generated
code towards specific high-performance computing platforms (Rathgeber et al., 2012; Markall
et al., 2013; Luporini et al., 2015). In addition, the enhanced abstraction-based approach em-5

ployed by Firedrake can also help future-proof models from hardware changes and removes a
great deal of effort required by computational scientists to maintain the codebase.

In light of the issues surrounding the use of static, hand-coded numerical models, and the
benefits that the Firedrake framework can bring, a new numerical model called Firedrake-
Fluids has been developed for computational fluid dynamics (CFD)-related applications. The10

long-term goal of the project is to facilitate a re-engineering of Fluidity (Piggott et al., 2008),
another CFD package (also developed at Imperial College London) comprising hand-written
Fortran code whose efficiency, readability and longevity has become challenging to maintain
as the package has grown over many years. In contrast to Fluidity, Firedrake-Fluids has been
written in the high-level Unified Form Language (UFL) and uses Firedrake to automate the so-15

lution process. Currently it is capable of solving the non-linear shallow water equations which
are widely used in the ocean modelling community for applications such as tidal turbine dy-
namics (Divett et al., 2013; Kramer et al., 2014; Martin-Short et al., 2015), array optimisation
(Funke et al., 2014), tsunami modelling (Hill et al., Submitted), flow dynamics over submerged
islands (Lloyd and Stansby, 1997), and dam breaching and flooding (Capart and Young, 1998).20

In addition to the core model, Firedrake-Fluids offers upwind stabilisation methods, a variety
of diagnostic fields, and the Smagorinsky LES model (Smagorinsky, 1963) for the parameteri-
sation of turbulence.

Section 2 details the set of equations that are solved and the assumptions under which they
are valid. Section 3 describes the numerical methods that are used to discretise and solve the25

governing equations, followed by an overview of the automated solution techniques employed
by the Firedrake framework. Section 4 presents results from a suite of test cases used to verify
the correctness of the numerical model’s implementation, and show how well it describes the
physics. A discussion regarding the future developments and direction of Firedrake-Fluids is

4
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presented in Section 5, along with some concluding remarks in Section 6. Finally, section 7
contains information regarding the availability of the Firedrake-Fluids codebase, the license
under which it is released, and where the model’s documentation can be found.

2 Model equations

The model described in this paper solves the non-linear, non-rotational shallow water equations.5

These are a set of depth-averaged equations which model the dynamics of a free surface and
an associated depth-averaged velocity field (Zhou, 2004). This velocity field is denoted by u =
u(x,y, t) (where x and y are the spatial coordinates, and t is time). For modelling purposes,
the free surface is split up into a mean component H =H(x,y) and a perturbation component
h= h(x,y, t) as illustrated in Figure 1. Note that h is generally assumed to be much smaller10

than H .
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Figure 1. Diagram showing the mean free surface height H (also known as the depth or the distance to
the seabed, shaded gray) and the free surface perturbation h, within the shallow water model.

The shallow water equation set comprises a momentum equation and a continuity equation,
each of which are defined below. The unknown fields u and h are sought.

2.1 Momentum equation

The momentum equation is solved in non-conservative form such that

∂u

∂t
+u · ∇u =−g∇h+∇ ·T−CD

||u||2u
(H +h)

, (1)5

where t is time, g is the acceleration due to gravity (set to 9.8 ms−2 throughout this paper), and
CD is a non-dimensional drag coefficient. The Euclidean norm ||u||2 =

√
u ·u is used here, and

throughout the rest of this paper. The stress tensor T is given by

T = ν
(
∇u+∇uT

)
− 2

3
ν (∇ ·u)I, (2)

where ν is the kinematic viscosity, which is assumed to be isotropic here, and I is the identity10

tensor1.
1The interior penalty method (Arnold, 1982) is applied to the stress term when using discontinuous

basis functions for the velocity field (see Section 3.2), since the gradient of velocity has to be treated
carefully at the boundaries between discontinuous elements. Although it is possible to extend the UFL
implementation to the full stress tensor, the current implementation of the method restricts the form to
T = ν∇u for simplicity. In the near-future when tensor function spaces are supported in the Firedrake
library, the Bassi-Rebay method (Bassi and Rebay, 1997) will be implemented instead and will consider
the full form of the stress tensor.

7
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2.2 Continuity equation

The continuity equation is given by

∂h

∂t
+∇ · ((H +h)u) = 0. (3)

2.3 Initial and boundary conditions

In order to march the equations forward in time, initial conditions for the prognostic fields h5

and u

h(x,y, t= 0) = h0,u(x,y, t= 0) = u0, (4)

must be specified.
Throughout the simulation, values of the free surface perturbation field h may be enforced

(in the strong sense) at the boundary using a Dirichlet boundary condition10

h= hD on Γ, (5)

where Γ⊂ Ω is the portion of the boundary on which the boundary condition (hD in this case)
is applied. Note that this boundary condition can vary both in time and in space.

In addition to the standard Dirichlet boundary condition for the velocity field

u = uD on Γ, (6)15

where uD is the value of the velocity to be enforced at the boundary, there are two other condi-
tions that may be applied. The no-normal flow condition enforces

u ·n = 0 on Γ. (7)

where n is the unit normal vector.

8
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The Flather (1976) boundary condition enforces

u−u∗ =

√
g

H
(h−h∗) on Γ, (8)

where u∗ and h∗ are the expected velocity and free surface perturbation exterior to the domain,
respectively. Any difference between the expected and simulated free surface is allowed to
propagate out of the domain, thereby minimising spurious reflections from the boundary. Note5

that both of these boundary conditions can only be applied in the weak sense; the velocity value
must be applied in the surface integral term, which only appears if the divergence term in the
continuity equation is integrated by parts. An option for doing this is available in the simulation
configuration file, discussed later in Section 3.4.

2.4 Turbulence modelling10

The core shallow water model on its own has no way of capturing the effects of turbulence,
unless the underlying mesh is of a suitably fine resolution to perform a Direct Numerical Sim-
ulation (DNS) at all turbulence length scales. This is often prohibitively expensive, and so tur-
bulence parameterisation is required. The Smagorinsky Large Eddy Simulation (LES) model
represents one possible way of doing this. It parameterises the turbulence via an eddy viscosity15

(Smagorinsky, 1963; Deardorff, 1970)

ν ′ = (Cs∆e)
2 |S|. (9)

where Cs is the Smagorinsky coefficient, and ∆e is an estimate of the local mesh size which is
defined here as the square root of the area of each element (in the 2D case). |S| is the modulus
of the strain rate tensor defined by20

S =
1

2

(
∇u+∇uT

)
, |S|=

√
2
∑
i

∑
j

SijSij . (10)

9
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where Sij is the (i,j)-th component of S. The eddy viscosity ν ′, which models the dissipating
effects of small-scale turbulent eddies on the resolved flow, is added to the physical viscosity ν
in the stress term of the momentum equation.

3 Methods

3.1 Automated code generation5

Solving a given set of equations in the Firedrake framework requires only the weak forms of
the model equations (along with associated boundary and initial conditions) to be discretised
(both temporally and spatially) and expressed in a near-mathematical language called Unified
Form Language (UFL), an embedded language that uses Python as its host (Alnæs et al., 2014).
An example of a model defined in UFL which solves a two-dimensional advection-diffusion10

problem is given in Figure 2 (with associated results in Figure 3), and highlights how the im-
plementation can be accomplished with just a few lines of intuitive statements. This one file
containing approximately 50 lines of UFL is automatically compiled into over 600, much more
complicated, lines of low-level C code which are executed over the entire mesh by PyOP2 to
perform the assembly of the finite element system.15

10
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Figure 2. Sample Python code which uses the high-level Unified Form Language (UFL) to solve the
advection-diffusion equation with the finite element method. The solution field c has a Gaussian profile
at t = 0, which is then advected with a prescribed velocity field u = [0.1,0]T.

12
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Figure 3. Visualisation of the solution field c at t = 0, 2.5, and 5 s from the advection-diffusion problem
defined in Figure 2. The initial Gaussian profile is advected from left-to-right, out of the domain, and
slowly diffuses over time. The field has been warped in the z direction.

The UFL code is compiled at run-time, using a modified version of the FEniCS Form Com-
piler (FFC)2 (Kirby and Logg, 2006; Luporini et al., 2015), into an intermediate representation
as an abstract syntax tree (AST) before being passed into the PyOP2 library, as shown in Fig-
ure 4. Furthermore, optimal numbering of the solution nodes in the domain is important to
avoid cache misses and ensure efficient computation; therefore, the topology of any mesh that5

is provided by the user (e.g. from the Gmsh mesh generator (Geuzaine and Remacle, 2009)) is
described using a PETSc DMPlex object which is also passed to PyOP2 along with the AST.
PyOP2 then performs additional optimisations on the AST using the COFFEE compiler (Lu-
porini et al., 2015) which outputs the model’s optimised low-level C code. Finally, PyOP2 calls
a back-end compiler (e.g. GNU gcc or the Intel C compiler for CPUs) to compile the gen-10

erated code on demand at run-time (known as just-in-time compilation), and then executes it
efficiently over the entire domain. As previously mentioned, in addition to targeting the code
towards multi-core CPUs, PyOP2 can also target the generated code towards a specific parallel
platform using, for example, the PyOpenCL and PyCUDA compilers for GPUs. Note that, how-
ever, as a result of current implementation restrictions (e.g. the solution of non-linear problems15

is not yet possible with PyOP2 on GPUs) the work presented in this paper only considers the
compilation of code using the GNU gcc compiler on CPUs.

2The original version of FFC which is part of the FEniCS project compiles the UFL into low-level
C++ code called UFC (Kirby and Logg, 2006; Logg and Wells, 2010), whereas the modified version in
Firedrake first compiles the UFL into an abstract syntax tree for further manipulation and optimisation
by the PyOP2 framework (Luporini et al., 2015). The modified version of FFC is available from the
MAPDES Bitbucket repository: https://bitbucket.org/mapdes/ffc. Revision 6c0d70d in the master
branch was used when performing the simulations presented in this paper.

14
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Figure 4. Overview of the key components of the Firedrake and PyOP2 frameworks (Rathgeber, 2014).
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3.2 Spatial and temporal discretisation

The spatial discretisation of the model equations is performed using the Galerkin finite element
method. The first step of the method involves deriving the variational/weak form of the model
equations by multiplying them through by a so-called test function w ∈H1(Ω)3, whereH1(Ω)3

is the first Hilbertian Sobolev space (Elman et al., 2005), and integrating over the whole domain5

Ω; this yields, in the case of the momentum equation (1):∫
Ω

w · ∂u
∂t

dV +

∫
Ω

w · (u · ∇u) dV =

−
∫
Ω

gw · ∇h dV−
∫
Ω

∇w ·T dV

−
∫
Ω

CDw ·
||u||2u
(H +h)

dV. (11)

Note that the stress term has been integrated by parts and it is assumed that the normal stress10

gradient at all boundaries is zero. In this weak form, a solution u ∈H1(Ω)3 is sought for all
w ∈H1(Ω)3.

The test function and the solution u (also known as the trial function) are then replaced by
discrete representations, given by a linear combination of basis functions {φi}

Nu_nodes
i=1 which

may be continuous or discontinuous across the cells/elements of the mesh:15

w =

Nu_nodes∑
i=1

φiwi, (12)

u =

Nu_nodes∑
i=1

φiui, (13)

17
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where Nu_nodes is the number of velocity solution nodes in the mesh, wi are arbitrary, and
the coefficients ui are sought using a numerical solution method. The free surface perturbation
field h, which needs to be solved for in addition to the velocity field, is also represented by a
(possibly different) set of basis functions {ψi}

Nh_nodes
i=1 :

h=

Nh_nodes∑
i=1

ψihi, (14)5

where Nh_nodes is the number of free surface solution nodes, and hi are the coefficients to be
found.

The discrete system of size Nu_nodes×Nu_nodes for the momentum equation then becomes:

M
∂u

∂t
+A(u)u =−Ch−Ku−D(u,h)u, (15)

where M, A, K, C and D are the mass, advection, stress, gradient and drag discretisation10

matrices, respectively. The notation A(u) and D(u,h) is used to highlight the non-linear de-
pendence of the matrices on the velocity and free surface fields. A similar process is performed
for the continuity equation (3), resulting in a full block-coupled system.

The temporal discretisation is performed using the implicit backward Euler method, yielding:

M
un+1−un

∆t
+A(un+1)un+1 =15

−Chn+1−Kun+1−D(un+1,hn+1)un+1, (16)

where the superscript n represents the current time level and n+1 represents the next time level.
The backward Euler method gives first-order accuracy in time. Newton iteration is employed to
deal with the non-linearity introduced via the advection and drag terms, although this does not
need to be implemented explicitly by the model developer; instead, it can be performed using20

a PETSc Scalable Nonlinear Equations Solvers (SNES) object. Other temporal discretisation
approaches such as the Crank-Nicolson method can be readily implemented in UFL, but are not
currently available in Firedrake-Fluids.

18
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A wide variety of basis functions of arbitrary order are available through FIAT (the FInite
element Automatic Tabulator) (Kirby, 2004). For the simulations presented in this paper, only
the P2-P1 (i.e. piecewise-quadratic basis functions representing the velocity field and piecewise-
linear basis functions representing the free surface field) and P0-P1 (i.e. piecewise-constant
(discontinuous) basis functions for velocity and piecewise-linear basis functions for the free5

surface) element pairs will be considered. Unless otherwise stated, the P2-P1 element pair will
be used in preference to P0-P1, in order to obtain higher-order solutions. However, users are free
to choose the order and continuity of the basis functions through the simulation configuration
file (discussed in Section 3.4). Currently, Firedrake-Fluids only allows Lagrange polynomial
basis functions to be used, although other basis function families are available through FIAT10

(e.g. Raviart-Thomas).
In Section 2, it was mentioned that the form of the stress tensor is currently restricted in the

case of using discontinuous basis functions. In the future, once tensor function spaces become
available in the Firedrake framework, the Bassi-Rebay method (Bassi and Rebay, 1997) will be
implemented instead and will consider the full form of the stress tensor. In addition, some more15

complicated numerical techniques cannot be formulated in the UFL language, such as slope
limiters. However, it is possible to implement them in lower-level code in the form of a PyOP2
C kernel which interacts directly with the nodal data to accomplish this.

3.3 Solution methods

Firedrake assembles the full block-coupled form of the discrete system of linear equations, and20

attempts to solve it using the PETSc library (Balay et al., 2014). PETSc contains a variety
of linear solvers and preconditioners, and has proven itself in facilitating geoscientific model
development (Katz et al., 2007). It is possible to use, for example, the GMRES or Conjugate
Gradient iterative method, and preconditioners such as Jacobi and SOR. For the simulations
presented in this paper, the GMRES linear solver (Saad and Schultz, 1986) is chosen and used25

in conjunction with the fieldsplit preconditioner (Brown et al., 2012) which is especially suited
to block-coupled systems such as the one considered here.
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The block-coupled system takes the general form

[
A B
C D

][
u
h

]
=

[
fu
fh

]
(17)

for matrix blocks A, B, C and D, and right-hand sides fu and fh.
The matrix on the LHS can be factorised using LDU block factorisation to give (Elman et al.,

2008)5

[
I 0

CA−1 I

][
A 0
0 S

][
I A−1B
0 I

]
(18)

where S =D−CA−1B is the Schur complement. The inverse of the factorised system is given
by

P =

[
I −A−1B
0 I

][
A−1 0

0 S−1

][
I 0

−CA−1 I

]
(19)

It is the goal of the fieldsplit preconditioner to find approximations to the actions of S−1 and10

A−1 which will in turn give an approximation to the action of P which can be used to precon-
dition the block-coupled system. PETSc features a wide configuration space for its fieldsplit
preconditioner, permitting the use of different iterative (or direct) solvers and preconditioners
for the ‘sub-problems’ S−1 and A−1. Unless stated otherwise, incomplete LU (ILU) factorisa-
tion will be used as an approximate solver for S−1 and A−1 in all simulations presented here15

(except when running in parallel, where block Jacobi is applied globally and the individual
blocks are solved sequentially using ILU (Balay et al., 2014)). The convergence criterion for all
iterative solvers is a relative error of 10−7.
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3.4 Setup and execution

Firedrake-Fluids uses an XML-based configuration file, normally edited with the Diamond
graphical user interface (GUI) (Ham et al., 2009), to set up simulations. Users can enter op-
tions concerning the simulation’s name, the path to any input files (e.g. mesh files), the fields
to be solved, discretisation and linear solver options, and also the inclusion of auxiliary models5

such as the Smagorinsky LES model (Smagorinsky, 1963). In addition, initial and boundary
conditions for each field can be specified either as a constant value, or as a C++ expression for
time-varying or spatially-varying conditions. An example of the GUI is shown in Figure 5. In
the case of the shallow water model, all simulation configuration files have the extension .swml
(Shallow Water Markup Language).10
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Figure 5. The Diamond (Ham et al., 2009) graphical user interface for editing Firedrake-Fluids simula-
tion configuration files.

All UFL model code is stored in the models directory of Firedrake-Fluids. Execution of, for
example, the shallow water model is performed by calling the Python interpreter and providing
the path to the simulation configuration file; an example for the test case involving flow past a
square cylinder (discussed in Section 4) would be:
python models/shallow_water.py tests/swe_flow_past_a_square/5

swe_flow_past_a_square.swml
Simulation settings are first read in using the libspud library (Ham et al., 2009). This is

followed by the execution of the UFL statements which define the model. Note that the weak
form of the shallow water equations is defined in UFL only once, before entering the time-
stepping loop. Upon entering the time-stepping loop for the first time, the form is compiled and10

the low-level assembly code is generated. For subsequent time-steps, caching is used such that
no re-compilation of the UFL is necessary. Solution fields are currently written to files in VTK
format for visualisation.

Note that the UFL code for the LES model described in Section 2.4 is defined in a separate
class within the Firedrake-Fluids package (in the file les.py) for modularity, and to facilitate15

its re-use in future numerical models that may require turbulence parameterisation. In the case
of the shallow water model implemented in shallow_water.py, the UFL for the LHS and
RHS of the eddy viscosity equation (9) is first imported, and a separate solver computes the
eddy viscosity field at the start of each time-step, using the velocity from the previous time-
step. The viscosity used in the stress term is then updated, but doing so does not require the20

re-compilation of the UFL. Similarly, at the end of each time-step in shallow_water.py,
diagnostic fields such as the divergence of a vector field, the Courant number, or the grid Peclet
number field, can be computed. The routines used to compute these diagnostic fields are con-
tained in diagnostics.py.
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4 Verification and validation

The following subsections describe some of the key verification and validation test cases in-
cluded in Firedrake-Fluids. These tests are executed using the Buildbot automated testing frame-
work whenever a change is made to the software (Farrell et al., 2011) to ensure that any bugs
introduced during the development of Firedrake-Fluids (or through the development of Fire-5

drake itself and other dependencies such as PETSc) are detected and promptly resolved by the
developers.

4.1 Convergence analysis

Since no general analytical solution to the shallow water equations exists, the Method of Man-
ufactured Solutions (MMS) (Roache, 2002) was used to perform a convergence analysis and10

verify the correctness of the model implementation. The first step of MMS involves inventing
or ‘manufacturing’ a function and modifying the original equation such that this manufactured
function is the analytical solution of the modified equation. Substituting this function into the
shallow water equations will generate a non-zero source term which can then be placed on the
right-hand side, such that the manufactured/invented solution is now the analytical solution to15

this modified set of equations.
A two-dimensional domain with dimensions 0≤ x≤ 1 m and 0≤ y ≤ 1 m was used for

the MMS simulations. Simulations were run with three different structured meshes with char-
acteristic element lengths ∆x = 0.2, 0.1 and 0.05 m, comprising 36, 121 and 441 vertices,
respectively. The time-steps were set to ∆t = 0.01, 0.005, 0.0025 s respectively, to enforce a20

near-constant bound on the Courant number. A zero initial condition was used for both the
velocity and free surface fields, and Dirichlet boundary conditions which agreed with the ana-
lytical/manufactured solutions for the velocity and free surface were enforced along all walls of
the domain. All simulations were run until the steady-state conditions ||un+1−un||2 ≤ 10−6

and ||hn+1−hn||2 ≤ 10−6 were attained.25
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Both the P2-P1 and P0-P1 element pairs were considered. The manufactured solutions were
h= sin(x)sin(y) and u = [cos(x)sin(y),sin(x2) + cos(y)]T. The physical parameters, given
in Table 1, were chosen arbitrarily and used across all the simulations.
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Table 1. Parameters used in the MMS test cases.

Parameter Description Value

CD Drag coefficient 0.0025
ν Kinematic viscosity 0.6 m2s−1

H Mean free surface height 20 m

The P2-P1 element pair was first considered to check the Galerkin method with continuous
basis functions. As shown in Figures 6(a) and 6(b), this exhibited second-order spatial con-
vergence for the free surface and approximately third-order convergence for the velocity field,
giving confidence in the correctness of the implementation. Note that the discretisation error
will be a combination of a first-order error (in ∆t) from the backward Euler time-stepping5

scheme, and (in the case of a P2 velocity field) third-order error (in ∆x) from the choice of spa-
tial discretisation. The choices of ∆t and ∆x in the simulations presented here are such that the
spatial term dominates. However, if the mesh is refined further (and the time-step decreased ac-
cordingly to maintain the same bound on the Courant number), the third-order spatial term will
decrease at a much faster rate than the first-order temporal term which may begin to dominate.10

In the case of P0-P1, both the velocity and free surface perturbation fields exhibited only first-
order spatial convergence. While second-order spatial convergence may have been expected for
the free surface field because of the use of a P1 function space, the reduced order of convergence
was likely the result of the coupling between the fields and the use of a first-order upwind
scheme for the advection term at discontinuous element boundaries. The low-order scheme may15

have introduced additional, dominating error that polluted both solution fields via the coupled
system, thereby keeping the overall spatial convergence at no higher than first-order.
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Figure 6. The orders of convergence for (a) the free surface field and (b) the velocity field, in the P2-P1
and P0-P1 MMS test cases.

All simulations were run in serial on a dual-core Intel Core i7-3537U processor with a clock
speed of 2 GHz and at least 2 GB of available RAM. In the P2-P1 case, the run-times were
3.8 s, 6.9 s and 31.7 s, for the meshes with ∆x = 0.2, 0.1 and 0.05 m, respectively. Note that
these simulations were run with a ‘warm’ cache such that the high-level UFL has already been
compiled down to low-level C code; from a ‘cold’ cache (i.e. including the code compilation5

time), the run-times were 9.4 s, 12.5 s and 37.7 s. In both the P2-P1 and P0-P1 cases, the
simulations typically required 2–3 non-linear Newton iterations per time-step, and the number
of GMRES solver iterations taken per non-linear iteration varied between 12 and 17. However,
in the P0-P1 case, the ‘warm’ cache run-times were significantly larger as a result of more
time-steps being required to reach steady-state: 41.4 s, 85.8 s, 177.8 s.10

4.2 Dam failure

Dam failure (also known as dam break) problems are commonly used to test the performance
of shallow water models. The presence of a discontinuity in the initial condition makes them
particularly difficult to accurately solve. Both one-dimensional and two-dimensional results are
presented.15

The one-dimensional case considers a channel 0 ≤ x≤ 2,000 m. A dam wall is located at
x = 1,000 m which holds back the water contained in the upstream reservoir. The water in
the reservoir has a total depth of 10 m, while downstream the total water depth is set to 5 m.
The water is initially at rest. At t= 0 the dam is instantaneously removed, thereby simulating its
failure, allowing water to rush into the downstream section. Typical shock characteristics for the20

velocity and free surface perturbation fields were observed and compared well with the semi-
analytical solutions of the corresponding one-dimensional Riemann problem shown in Figure 7
at t= 60 s. Note that the simulation used an element length of ∆x = 5 m and a time-step of 0.25
s, as per the simulations of Liang et al. (2008) which consider the same scenario. The kinematic
viscosity was set to 1 m2s−1, and the drag coefficient was set to zero.25
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Figure 7. Numerical solutions of the 1D dam failure problem. The semi-analytical solutions, found by
solving a set of equations defined in the book by Trangenstein (2009), are also plotted.

The two-dimensional case considers a square domain with dimensions 0 ≤ x≤ 200 m and 0
≤ y ≤ 200 m. A 10 m-thick dam is placed in the centre of the domain as shown in Figure 8. In
this scenario, only a partial failure of the dam is simulated; water rushes into the downstream
area through a 75 m-long breach in the dam wall. As before, the water is initially at rest. The
upstream reservoir contains water with a total height of 10 m, while the downstream section5

contains water with a total height of 5 m. No-normal flow boundary conditions are applied
along all walls (including those of the dam). Once again, the time-step (∆t = 0.2 s) and the
characteristic element length (∆x = 5 m) were the same as those chosen by Liang et al. (2008).
The kinematic viscosity was set to 1 m2s−1, and the drag coefficient was set to zero.
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200 m

200 m
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95 m

Figure 8. Dimensions of the domain for the 2D dam failure problem. The dam (with a 75 m-wide breach)
is situated in the centre.

The results at t = 7.2 s are shown in Figure 9. The water that rushed into the downstream area
formed a tidal bore wave which has started to spread out laterally, while a depression/rarefaction
wave has started to propagate upstream. Furthermore, small vortices are visible where the flow
has separated from the dam wall immediately downstream of the breach, resulting in a total free
surface height of less than 5 m (the initial mean height downstream). These qualitative results5

closely agree with those from the numerical simulations by Liang et al. (2008) and Mingham
and Causon (1998).
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Figure 9. Free surface perturbation h at time t = 7.2 s, from the 2D dam failure simulation. The field has
been warped in the z direction to emphasise the collapse of the water column.

4.2.1 Solver performance

The performance of the iterative solver in combination with the fieldsplit preconditioner was
investigated on a much larger system. The mesh was refined such that the characteristic element
length was set to ∆x = 0.25 m, resulting in 817,488 vertices. The time-step ∆twas also lowered
to 0.01 s to maintain the same upper bound on the Courant number. The strong scaling of the5

iterative solver (GMRES, with the fieldsplit preconditioner) and the assembly of the system
is shown in Figure 10. All of these performance simulations were performed on ARCHER (a
Cray XC30 supercomputer), comprising 12-core Intel Ivy Bridge processors running with a
clock speed of 2.7 GHz, with 32 GB of RAM available to each one.
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Figure 10. Strong scaling of the 2D dam break simulation, with ∆x = 0.25 m. The total run-time spent
in the assembly and solver over 10 time-steps is shown. The internal Firedrake/PyOP2 and PETSc timers
were used to obtain the timing data. As expected, the time spent in assembly does not vary significantly
between runs since it is independent of the difference in solver setups.

The GMRES iterative method was also used in conjunction with the SOR preconditioner
when computing the action of the matrices A−1 and S−1. This resulted in fewer ‘outer’ itera-
tions (typically 2 or 3) when solving the block-coupled system as a whole as a result of a better
preconditioned system. On the other hand, incomplete LU decomposition provided a relatively
less accurate approximation toA−1 and S−1 (resulting in typically 10–30 ‘outer’ iterations) but5

was faster than the GMRES with SOR runs, as shown in Figure 10, despite the extra ‘outer’
iterations. It is for this reason that incomplete LU factorisation was used as the preconditioner
of the ‘sub-problems’ A−1 and S−1 throughout this paper. Note that smaller systems with ∆x
= 0.5 m and 1 m were also investigated; it was found that the number of solver iterations was
near constant as the size of the system changed, regardless of the setup of the fieldsplit precon-10

ditioner.
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4.3 Tidal flow over a regular bed

The test case described by Bermudez and Vazquez (1994) considers tidal flow in a one-dimensional
domain of length L = 14,000 m. The mean water height (and hence the topography of the bed)
is defined by

H(x) = 50.5− 40x

L
− 10sin

[
π

(
4x

L
− 1

2

)]
. (20)5

The initial conditions h(x,0) = 0 and u(x,0) = 0 are applied along with the following Dirich-
let boundary conditions for the free surface and velocity:

h(0, t) = 4− 4sin

[
π

(
4t

86,400
+

1

2

)]
, (21)

to simulate an incoming sinusoidally-varying tidal wave, and

u(L,t) = 0, (22)10

at the outflow boundary.
This simulation was performed with a mesh element length of ∆x = 14 m. The time-step

∆t was set to 2.5 s and the simulation finished at t = 9,117.5 s (the same time considered by
Zhou (2004)). The kinematic viscosity was set to 1 m2s−1, and the drag coefficient was set
to zero. The results in Figure 11 illustrate how the velocity of the flow increases in deeper15

regions of the body of water as expected. The numerical results also display good accuracy with
the analytical solutions given by Bermudez and Vazquez (1994), thereby further validating the
numerical model. The total run-time of the simulation was 26 minutes when run in serial on
a dual-core Intel Core i7-3537U processor with a clock speed of 2 GHz and at least 2 GB of
available RAM.20
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Figure 11. Numerical solutions from the tidal flow simulation over a regular bed, at t = 9,117.5 s.
The analytical solutions are given by Bermudez and Vazquez (1994) and almost completely overlap the
numerical solutions. Note that the free surface plot (a) includes the mean free surface height, such that
the y axis represents h+H .

4.4 Tidal flow over an irregular bed

A second version of the tidal flow test case considered previously is one that involves an irregu-
lar bed topology, with sharp peaks and troughs which can be a challenge to represent accurately.
This test case is described by Zhou (2004).

The test case considers a one-dimensional domain of length L = 1,500 m. The irregular5

topography of the bed B(x) is defined in Table 2, and the mean water height is given by
H(x) = 20−B(x). The initial conditions h(x,0) =−4 and u(x,0) = 0 are applied along with
the following Dirichlet boundary conditions for the free surface and velocity:

h(0, t) =−4sin

[
π

(
4t

86,400
+

1

2

)]
, (23)

10

u(L,t) = 0, (24)

The element length ∆x = 7.5 m and the time-step ∆t = 0.3 s, as per the setup of Zhou (2004).
The simulation was performed until t = 10,800 s. All remaining components of the setup were
the same as the regular bed test case described in Section 4.3.
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Table 2. Bed heights along the seabed from Zhou (2004).
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x (m) Bed height B(x) (m)

0 0
50 0
100 2.5
150 5
250 5
300 3
350 5
400 5
425 7.5
435 8
450 9
475 9
500 9.1
505 9
530 9
550 6
565 5.5
575 5.5
600 5
650 4
700 3
750 3
800 2.3
820 2
900 1.2
950 0.4
1000 0
1500 0
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Figure 12 once again demonstrates a good match between the numerical results and the an-
alytical solution, and demonstrates the robustness of the numerical model in accurately repre-
senting more rapidly varying areas of the solution. The total run-time of the simulation was 56.7
minutes when run in serial on a dual-core Intel Core i7-3537U processor with a clock speed of
2 GHz and at least 2 GB of available RAM.5
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Figure 12. Numerical solutions from the tidal flow simulation with an irregular bed topography. The
analytical solutions (Zhou, 2004; Bermudez and Vazquez, 1994) agree very well with the numerical
solutions from Firedrake-Fluids.
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4.5 Flow past a square cylinder

Simulations of laboratory-scale flow past solid objects are commonly used to validate turbu-
lence models due to the vast amount of available experimental data at high Reynolds numbers.
In this work, the Smagorinsky LES model in Firedrake-Fluids was employed to evaluate its
ability to parameterise the effects of turbulent flow past a square cylinder. The setup used in the5

experiments by Lyn and Rodi (1994) and Lyn et al. (1995) (and the numerical simulations by
Rodi et al. (1997)) was considered.

The dimensions of the domain are given in terms of the width/length of the square d = 0.04 m
in Figure 13. An unstructured mesh with a characteristic element length ∆x = d/15, generated
with Gmsh (Geuzaine and Remacle, 2009), was used; this value of ∆x is comparable to the10

minimum element lengths used in the numerical simulations presented in the paper by Rodi
et al. (1997). The free surface mean height was set toH = 4d (the depth of the experimental flow
tank). The physical kinematic viscosity of the fluid was set to 10−6 m2s−1, which corresponded
to a Reynolds number of 21,400 when using d as the length scale. The Smagorinsky coefficient
Cs in the Smagorinsky LES model was set to 0.164, within the typical range of Cs values15

(Deardorff, 1971).
Initially the velocity and free surface perturbation fields were set to zero. At the inlet, a

constant velocity boundary condition of 0.535 ms−1 was enforced; the inflow was laminar and
no turbulent eddies were seeded along the boundary. No-normal flow boundary conditions were
applied along the side walls, while no-slip boundary conditions were applied along all walls of20

the square. At the outflow, a Flather boundary condition (Flather, 1976) (specifying an external
velocity equal to that at the inlet, and a free surface perturbation of zero) was used to allow flow
out of the domain whilst minimising reflections. A time-step of ∆t = 5 × 10−4 s was chosen,
and the simulation was performed until t = 15 s.

The simulation was performed on ARCHER (a Cray XC30 supercomputer) using two 12-25

core Intel Ivy Bridge processors running with a clock speed of 2.7 GHz, with 32 GB of RAM
available to each one. The total run time was 7.7 hours.
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Figure 13. The dimensions of the two-dimensional domain containing a square cylinder (filled black) of
length/width d. The incoming flow is from the left boundary, as denoted by the black arrows.

Soon after the flow began to enter the domain through the inlet, boundary layers began to
form around the sides of the square where the transition to turbulence took place. A strong
recirculating region formed immediately behind the square, followed by continuous turbulent
vortex shedding which commenced after approximately 4 s of simulation time. The vortex street
is clearly visible in Figure 14 which shows the x component of the velocity field at t = 10 s.5
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Figure 14. Visualisation of the x component of the velocity field, from the simulation of flow past a
square at t = 10 s.

The stream-wise velocity along the centreline, time-averaged over a period of 15 s from the
start of the simulation, was compared with the experimental data presented by Lyn et al. (1995)
and Rodi et al. (1997); the results in Figure 15 show a good match with the experimental data
behind the square cylinder in the recirculating region where turbulent vortex shedding occurs,
thereby illustrating the benefits of using the Smagorinsky LES model to accurately capture the5

turbulent flow characteristics. However, the wake recovery region was poorly represented; the
unfortunate lack of accuracy in this region has also been observed in other numerical models
(Rodi et al., 1997), and additional parameterisations and the full three-dimensionality of the
problem may need to be considered to properly represent the wake.
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Figure 15. Time-averaged stream-wise velocity along the centreline from the simulation of flow past a
square. Note that the velocity has been normalised by the inlet velocity U = 0.535 ms−1.
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5 Roadmap

The long-term aim is to extend Firedrake-Fluids into a suite of numerical models which en-
compass a much wider range of flow types, as well as additional equation sets (e.g. the full
Navier-Stokes equations) and constitutive equations (e.g. for describing Darcy’s law in porous
media). Essentially, Firedrake-Fluids seeks to facilitate a complete re-engineering of the Flu-5

idity CFD code, whilst maintaining the mature modelling functionality that Fluidity offers. In
addition to the potential for portability of the low-level code across different backends, such
as the Intel C compiler and CUDA, it is hoped that Firedrake will also enable the portability
of the code’s performance. This has yet to be demonstrated on large-scale problems, and will
therefore be one of the main focusses of this work in the future.10

One of the first application areas that Firedrake-Fluids will consider, using the shallow water
model described in this paper, is flow around tidal turbines. This will contribute to an on-going
effort towards understanding the potential of renewable energy systems. The multi-scale nature
of the application will necessitate the use of high-performance computing, and Firedrake’s abil-
ity to target code towards more modern hardware architectures such as GPU clusters will be15

utilised. Regarding the application area itself, the integration of adjoint optimisation models is
of particular related interest. For example, recent progress in the optimisation of the layout of a
tidal turbine farm using the FEniCS automated solution framework has proven to be a success-
ful technique for maximising the theoretical amount of generated power (Funke et al., 2014).
The DOLFIN-adjoint library (Farrell et al., 2013) was used for this purpose. Although FEniCS20

and Firedrake both expect UFL statements as input, not all of the UFL interfaces are compatible
with each other at present; a similar adjoint library for Firedrake (Firedrake-adjoint) is therefore
under development by the authors of DOLFIN-adjoint, and its use in the shallow water model
is one of the shorter-term goals of the Firedrake-Fluids project. The issue of compatibility is
being addressed by the developers of Firedrake.25

Realistic tidal and atmospheric modelling simulations will require boundary values to be
read in from forcing files. Popular formats include NetCDF and ERA-40/GRIB, for which ro-
bust data readers will be required. Therefore, another short-term item on the roadmap is the
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evaluation and integration of existing readers into the Firedrake-Fluids framework (or their de-
velopment in-house, should no suitable reader exist).

Further to the existing Smagorinsky (1963) LES turbulence model, the roadmap features sup-
port for additional turbulence parameterisations including RANS-type models, such as those
considered by Mortensen et al. (2011) for the FEniCS framework. Alternative discretisation5

schemes, including control volume methods which have desirable boundedness and conserva-
tiveness properties (Wilson, 2009), and high-order slope limiters for the existing discontinu-
ous Galerkin method, will also be implemented. It is expected that a large proportion of this
work will need to be undertaken within the Firedrake and PyOP2 frameworks, in addition to
Firedrake-Fluids, in order to correctly describe the mesh topology (including that of the dual10

mesh in the case of control volume methods).

6 Conclusions

This model description paper has introduced a new open-source finite element model, Firedrake-
Fluids, for the simulation of shallow water flows. The model is written in the high-level, near-
mathematical Unified Form Language and uses the Firedrake framework (coupled with the15

PyOP2 library) to automate the solution process. Furthermore, the Firedrake library provides the
potential for porting the code across to different hardware backends, although this has not been
demonstrated here and will be a consideration of future work. The automated solution approach
allows the focus to be on the equations that are solved and the numerical results, and removes the
requirement for model developers to be experts in parallel programming and software engineer-20

ing. Furthermore, the high-level specification of the problem facilitates better maintainability
of the Firedrake-Fluids code base; in comparison with the shallow water model in the Fluidity
CFD code, which features static hand-written Fortran, the Firedrake-Fluids source code is con-
siderably shorter and more intuitive. This is a result of the near-mathematical notation used, and
the fact that code generation and assembly are handled by the external Firedrake and PyOP225

libraries. Firedrake-Fluids uses approximately 400 lines (excluding comments and blank lines),
compared to many thousands to perform the same task in Fluidity. Note that the 400 lines in-
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clude code to obtain user settings, initial conditions, etc from the simulation configuration file,
and to make the model as generic as possible; if the model were to be written for a specific
setup, the number of lines could potentially be further minimised to just a few dozen. It should
be noted that this benefit is not unique to the Firedrake-Fluids model, nor to UFL in general,
since it is also possible to write models with a relatively small amount of code with other pack-5

ages such as OpenFOAM (OpenFOAM, 2014), deal.II (Bangerth et al., 2007), Dune (Dedner
et al., 2010) and FreeFem++ (Hecht, 2012).

At run-time, the high-level model specification defined in Firedrake-Fluids is converted by
Firedrake (and the PyOP2 framework) into optimised, low-level C code. This is then compiled
with a back-end compiler appropriate for the target architecture; however, this work has only10

considered the GNU gcc compiler for CPUs, since it is not yet possible to assemble and run the
non-linear problems detailed in this paper on GPUs. As new high-performance architectures
are introduced in the future, only the PyOP2 layer which deals with code targeting needs to be
modified; model developers are not burdened with the task of specialising the model code itself,
which is presently a common problem even in modern finite element models.15

Several verification and validation test cases were performed to ensure the correctness of
Firedrake-Fluids and its ability to accurately simulate physical problems. These included a con-
vergence analysis with different finite element pairs, a simulation of dam breaching, and tidal
flow dynamics over different seabed topologies. Overall, the numerical results were highly sat-
isfactory and displayed good agreement with analytical solutions, experimental data and obser-20

vations.

7 Code availability

Firedrake-Fluids is an open-source software package that has been released under the GNU
General Public License (Version 3). The codebase is hosted by GitHub in a public repository
and can be obtained at the following URL: https://github.com/firedrakeproject/firedrake-fluids.25

The particular version of Firedrake-Fluids considered in this paper (version 0.1) is available
from the releases page.
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