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Abstract

This paper describes assimilation of trace gas observations into the chemistry trans-
port model SILAM using the 3D-Var method. Assimilation results for year 2012 are
presented for the prominent photochemical pollutants ozone (O3) and nitrogen dioxide
(NO2). Both species are covered by the Airbase observation database, which provides5

the observational dataset used in this study.
Attention is paid to the background and observation error covariance matrices, which

are obtained primarily by iterative application of a posteriori diagnostics. The diagnos-
tics are computed separately for two months representing summer and winter condi-
tions, and further disaggregated by time of day. This allows deriving background and10

observation error covariance definitions which include both seasonal and diurnal varia-
tion. The consistency of the obtained covariance matrices is verified using χ2 diagnos-
tics.

The analysis scores are computed for a control set of observation stations withheld
from assimilation. Compared to a free-running model simulation, the correlation coeffi-15

cient for daily maximum values is improved from 0.8 to 0.9 for O3 and from 0.53 to 0.63
for NO2.

1 Introduction

During the last 10–15 years, assimilating observations into atmospheric chemistry
transport models has been studied with a range of computational methods and ob-20

servational datasets. The interest has been driven by the success of advanced data
assimilation methods in numerical weather prediction (Rabier, 2005), as well as by
development of operational forecast systems for regional air quality (Kukkonen et al.,
2012). Furthermore, the availability of remote sensing data on atmospheric compo-
sition has permitted construction of global analysis and forecasting systems such as25

those described by Benedetti et al. (2009) and Zhang et al. (2008).
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Data assimilation is classically (e.g. Kalnay, 2003) defined as the numerical process
of using model fields and observations to produce a physically and statistically consis-
tent representation of the atmospheric state – often in order to initialize the subsequent
forecast. The main techniques used in atmospheric models include the optimal inter-
polation (OI, Gandin, 1963), variational methods (3D-Var and 4D-Var, Le Dimet and5

Talagrand, 1986; Lorenc, 1986), and the stochastic methods based on the Ensemble
Kalman Filter (EnKF, Evensen, 2003, 1994). Each of the methods has been applied in
air quality modelling. Statistical interpolation methods were used by Blond and Vautard
(2004) for surface ozone analyses and by Tombette et al. (2009) for particulate matter.
The EnKF method has been utilized by several authors (Constantinescu et al., 2007;10

Curier et al., 2012; Gaubert et al., 2014) especially for ozone modelling. The 3D-Var
method has been applied in regional air quality models by Jaumouillé et al. (2012) and
Schwartz et al. (2012), while the computationally more demanding 4D-Var method has
been demonstrated by Elbern and Schmidt (2001) and Chai et al. (2007). Partly due
to its significance in relation to health effects, the most commonly assimilated chemical15

component has been ozone.
Performance of most data assimilation methods depends on correctly prescribed

background error covariance matrices (BECM). This is particularly important for 3D-
Var, where the BECM is prescribed and fixed throughout the whole procedure, in con-
trast to the EnKF based assimilation methods, where the BECM is described by the20

ensemble of states, and to the 4D-Var method, where the BECM is prescribed but
evolves implicitly within the assimilation window.

A range of methods of varying complexity have been employed in previous studies
on chemical data assimilation. The “National Meteorological Centre” (NMC) method in-
troduced by Parrish and Derber (1992) is based on using differences between forecasts25

with differing lead times as a proxy for the background error. Kahnert (2008), as well as
Schwartz et al. (2012), applied the NMC method for estimating the BECM for assim-
ilation of aerosol observations. Chai et al. (2007) based the BECM on a combination
of NMC method and the observational method of Hollingsworth and Lönnberg (1986).
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The observational method was used in assimilation of NO2 and O3 observations also
by Kumar et al. (2012).

The BECM can also be estimated using ensemble modelling; this approach was
taken by Massart et al. (2012) for global and by Jaumouillé et al. (2012) for regional
ozone analyses. Finally, Desroziers et al. (2005) presented a set of diagnostics which5

can be used to adjust the background and observation error covariances. This method
has been previously applied in chemical data assimilation for example by Schwinger
and Elbern (2010) and Gaubert et al. (2014).

In contrast to short and medium range weather prediction, the influence of initial
condition on an air quality forecast has been found to diminish as the forecast length10

increases. For ozone, Blond and Vautard (2004) and Wu et al. (2008) found the effect
of adjusted initial condition to extend for up to 24 h. Among other reactive gases, NO2
has been a subject for studies of Silver et al. (2013) and Wang et al. (2011). However,
the shorter lifetime of NO2 limits the timescale for forecast improvements especially
in summer conditions. An approach for improving effectiveness of data assimilation15

for short-lived species is to extend the adjusted state vector with model parameters.
Among the possible choices are emission and deposition rates (Bocquet, 2012; Curier
et al., 2012; Elbern et al., 2007; Vira and Sofiev, 2012).

The aim of the current paper is to describe and evaluate a regional air quality analy-
sis system based on assimilating hourly near-surface observations of NO2 and O3 into20

the SILAM chemistry transport model. The assimilation scheme was initially presented
by Vira and Sofiev (2012); in the current study, the scheme is applied to photochemical
pollutants and moreover, we discuss how its performance can be improved by introduc-
ing statistically consistent background and observation error definitions. The analysis
fields are produced for the assimilated species at hourly frequency using the standard25

3D-Var assimilation method (Lorenc, 1986). The diagnostics of Desroziers et al. (2005)
are applied in this work for estimating the background and observation error standard
deviations, in particular resolving their seasonal and diurnal variations. The evalua-
tion is performed for year 2012 using stations withheld from assimilation. In addition to
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assessing the analysis quality, the effectiveness of assimilation for initializing the model
forecasts is evaluated.

2 Materials and methods

This section presents the SILAM dispersion model, the utilized observation datasets,
and describes the assimilation procedure.5

2.1 The SILAM dispersion model and experiment setup

This study employs the SILAM chemistry transport model (CTM) version 5.3. The
model utilizes the semi-Lagrangian advection scheme of Galperin (2000) combined
with the vertical discretization described by Sofiev (2002) and the boundary layer
scheme of Sofiev et al. (2010). Wet and dry deposition are parameterized as described10

in Sofiev et al. (2006).
Chemistry of ozone and related reactive pollutants is simulated using the Carbon

Bond 4 chemical mechanism (Gery et al., 1989). However, the NO2 analyses are
produced with separate simulations employing the DMAT chemical scheme of Sofiev
(2000). This follows the setup used in operational air quality forecasts with the SILAM15

model, where the two model runs are necessary since the primary and secondary
inorganic aerosols are only included in the DMAT scheme.

The SILAM model has been previously applied in simulating regional ozone and NO2
concentrations (Huijnen et al., 2010; Langner et al., 2012; Solazzo et al., 2012), for
global-scale aerosol simulations (Sofiev et al., 2011) as well as for simulating emission20

and dispersion of allergenic pollen (Siljamo et al., 2012). The daily, European-scale
air quality forecasts contributing to the MACC-II project are publicly available at http:
//macc-raq.gmes-atmosphere.eu.

In this study, the model is configured for a European domain covering the area be-
tween 35.2◦ and 70.0◦ N and −14.5◦ and 35.0◦ E with a regular lon-lat grid. The vertical25
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discretization consists of eight terrain-following levels reaching up to about 6.8 km. The
vertical coordinate is geometric height. The model is driven by operational ECMWF IFS
forecast fields, which are initially extracted in a 0.125 ◦ lon-lat grid and further interpo-
lated to the CTM resolution. Chemical boundary conditions are provided by the MACC
reanalysis (Inness et al., 2013), which uses the MOZART global chemistry-transport5

model.
The emissions of anthropogenic pollutants are provided by the MACC-II European

emission inventory (Kuenen et al., 2014) for the reference year 2009. The biogenic iso-
prene emissions, required by the CB4 run, are simulated by the BEM emission model
(Poupkou et al., 2010).10

Three sets of SILAM simulations are carried out in this study. First, the background
and observation error covariance matrices are calibrated using one-month simulations
for June and December 2011. The results of calibration are used in reanalysis simu-
lations covering year 2012. Finally, a set of 72 h hindcasts is generated for the period
between 16 July and 5 August 2012, to evaluate the forecast impact of assimilation.15

The hindcasts are initialized from the 00:00 UTC analysis fields. The timespan includes
an ozone episode affecting parts of Southern and Western Europe (EEA, 2013). The
reanalysis and hindcasts use identical meteorological and boundary input data, and
hence, the hindcasts only assess the effect of chemical data assimilation.

The analysis and forecast runs are performed at a horizontal resolution of 0.2◦. The20

setup for calibrations runs (June and December 2011) is identical except that a coarser
horizontal resolution of 0.5◦ is chosen in order to reduce the computational burden. The
model timestep is 15 min for both setups.

2.2 Observations

This study utilises the hourly observations of NO2 and O3 at background stations avail-25

able in the Airbase database (http://acm.eionet.europa.eu/databases/airbase/) main-
tained by the European Environmental Agency. Separate subsets are employed for
assimilation and evaluation.
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Two sets of stations are withheld for evaluation. The first set, referred here as the
MACC set, has been used in the regional air quality assessments within the MACC
and MACC-II projects (Rouïl, 2013, also Curier et al., 2012). The second set consists
of the stations reported as EMEP stations in the database. The MACC validation sta-
tions include about third of the available background stations for each species, and are5

chosen with the requirement to cover the same area as the assimilation stations. How-
ever, due to uncertainties in representativeness of suburban or urban stations, only
rural stations are considered for the evaluation of the 2012 reanalyses. The EMEP
network is sparser and has no particular relation to the assimilation stations. It can
be noted that the EMEP stations included in Airbase do not comprise the full EMEP10

monitoring network.
All other stations are available for assimilation. However, to reduce the effect of rep-

resentativeness errors, data from urban stations are not assimilated, and for NO2, also
suburban stations are excluded. For ozone, the data from suburban stations are assim-
ilated, however, the observation errors are assessed separately for suburban and rural15

stations, as outlined in Sect. 3. The station sets are presented on a map in Fig. 1.
The statistical indicators used for model evaluation are correlation, mean bias and

root mean squared error (RMSE). Since air quality models are frequently used to evalu-
ate daily maximum concentrations, the indicators are evaluated separately for the daily
maximum values.20

2.3 The 3D-Var assimilation

In the 3D-Var method, the analysis xa minimises the cost function

J(x) =
1
2

(y −H(x))T R−1 (y −H(x))+
1
2

(x−xb)T B−1 (x−xb) , (1)

where xb is the background state, y is the vector of observations, and H is the ob-25

servation operator. The uncertainties of the background state xb and the observations
y are described by the background and observation error covariance matrices B and
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R, respectively. In this study, the control variable x consists of the three-dimensional
airborne concentration field for either NO2 or ozone. The m1qn3 minimization code
(Gilbert and Lemaréchal, 1989) is used for solving the optimisation problem (Eq. 1).

For the surface measurements, the operator H is linear and consists of horizontal
interpolation only, since the surface concentrations are considered to be represented5

by the lowest model level. Following the hourly observation frequency, the analysis
is performed every hour followed by a one-hour forecast. The forecast provides the
background field for the subsequent analysis.

3 Background and observation error covariance matrices

The numerical formulation of the BECM in the current work follows the assumptions10

made by Vira and Sofiev (2012). We assume that the background error correlation is
homogeneous in space, and its horizontal component is described by a Gaussian func-
tion of distance between the grid points. Furthermore, we assume that the background
error standard deviation σb is independent of location. This allows writing the BECM
as B = σ2

bC, where C is the correlation matrix and σb is the background error standard15

deviation.
For estimation of the parameters for the covariance matrices B and R, we combined

the NMC method, which is used for determining the correlation matrix C, and the ap-
proach of Desroziers et al. (2005), which is used for diagnosing the observation and
background error standard deviations.20

In the NMC method, the difference between two forecasts valid at a given time is
taken as a proxy of the forecast error. In this work, the proxy dataset is extracted
from 24 and 48 h regional air quality forecasts for year 2010. The forecasts are gen-
erated with the SILAM model in a configuration similar to the one used in this study.
Since no chemical data assimilation is used in the forecasts, the differences are due to25

changes in forecasted meteorology and boundary conditions only. The lead times are
chosen to allow sufficient spread to develop between the forecasts. The forecast data
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are segregated by hour resulting in separate sets for hours 00:00, 06:00, 12:00 and
18:00 UTC, and the correlations are interpolated for all other times of day.

The horizontal and vertical components of the correlation matrix C are estimated
separately. The horizontal correlation is determined by the length scale L, which is ob-
tained by fitting a Gaussian correlation function to the dataset. First, the sample corre-5

lation matrix C̃ of the forecast differences is calculated. Then, the Gaussian correlation
function is fitted to the empirical correlations C̃i j by minimizing

f (L) =
∑

|ri−rj |<d

∣∣∣C̃ij −Ci j (L)
∣∣∣2

, (2)

where the fitted correlation function is Ci j (L) = exp(−(|xi−xj |
2+|yi−yj |

2)/L2). To reduce10

the effect of spurious long-distance correlations due to the limited sample size, the fit-
ting is restricted to grid points ri closer than d = 1000 km to each other. The distances,
shown in Table 1, are computed for the lowest model layer.

The vertical correlation function is obtained directly as the sample correlation across
all vertical columns for each time of day. As an example, the correlation matrix obtained15

for NO2 at 12:00 UTC is shown in Fig. 2.
Since the NMC dataset includes only meteorological perturbations, it is expected

to underestimate the total uncertainty of the CTM simulations. Hence, the standard
deviations are not diagnosed from the NMC dataset, but instead, and approach based
on a posteriori diagnostics is taken. The approach, devised by Desroziers et al. (2005),20

is based on a set of identities which relate the BECM and OECM to expressions which
can be estimated statistically from a set of analysis and corresponding background
fields.

First, the standard deviation σ(i )
obs of the i th observation component is equal to

E [(y(i ) −y
(i )
a )(y(i ) −y

(i )
b )] = σ(i )2

obs, (3)25

where E denotes the expectation, y is the observation vector and ya =H(xa) and yb =
H(xb) are evaluated from the analysis and background fields, respectively.
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The background error covariance matrix cannot be uniquely expressed in obser-
vation space. However, assuming that each observation only depends (linearly) on
a single model grid cell (i.e. horizontal interpolation is neglected), then

E [(y(i )
a −y

(i )
b )(y(i ) −y

(i )
b )] = σ(i )2

b . (4)
5

The identities (3) and (4) hold for an ideally defined analysis system, provided that
the background and observation errors are normally distributed and assuming the ob-
servation operator is not strongly nonlinear.

Furthermore, Eqs. (3) and (4) can be used to tune the parameters σobs and σb by
means of fixed point iteration. First, a set of analyses is produced using initial parameter10

values. Then, the left-hand sides of Eqs. (3) and (4) are evaluated as averages over
the analyses, resulting in new parameter values. The procedure is then repeated using
the updated σb and σobs to produce a new set of analyses.

In this work, the observation error covariance matrix R is assumed diagonal. The
initial values for σobs and σb were set to 11.2 and 20.6 µg m−3 for O3, and 4.0 and15

8.0 µg m−3 for NO2. The values correspond to typical mean squared errors for a free-
running model, which are attributed to the model and observation error variances in the
ratio of 80/20, respectively. The standard deviations, together with the correlation matri-
ces obtained with the NMC procedure, are then employed in the iterations to calculate
a set of hourly analyses for the two calibration periods spanning June and Decem-20

ber 2011.
The choice of calibration periods representing both winter and summer conditions

is motivated by the strong seasonal variations in both O3 and NO2. Both σobs and σb
are segregated by hour, while for O3 σobs is also evaluated separately for suburban
stations. For the reanalysis of year 2012, the standard deviations, obtained separately25

for June and December, are interpolated linearly for all other months.
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Finally, the overall consistency can be evaluated by checking the identity (Ménard
et al., 2000)

E (χ2) = N, (5)

where χ2 = 2J(xa) is twice the value of cost function (Eq. 1) at the minimum, and N is5

dimension of the observation vector y. The identity (Eq. 5) tests the overall consistency
of the analysis and is affected by both B and R.

4 Results and discussion

The SILAM model was run for year 2012 with and without assimilation. Since the 3D-
Var analyses require no additional model integrations in form of iterations or ensemble10

simulations, the hourly analyses increase the simulation runtime by only 10–15 %.
The effect of assimilation to the yearly-mean concentrations on lowest model level is

shown in Fig. 3. On average, the ozone concentrations are increased by the assimila-
tion especially around the Mediterranean Sea, which indicates corresponding low bias
in the free model run. The main changes in NO2 levels are confined to somewhat more15

limited areas; in particular areas near major mountain ranges (Alps and Pyrenees)
show enhanced NO2 levels in the analysis run.

4.1 Background and observation error covariance matrices

Refining the background and observation standard deviations iteratively both improves
the consistency of the assimilation setup as measured by the χ2 indicator (Eq. 5),20

and improves the model-measurement comparison on the validation stations over the
calibration period. However, after five iterations (for both June and December), the
changes in χ2 become slow and the validation scores no longer improve. Hence, the
values for σobs and σb in fifth iterations were taken as the final values for 2012 reanaly-
sis. The changes in χ2 and model-measurement RMSE are summarized in Table 2.25
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The diagnosed observation and background error standard deviations for O3 and
NO2 are shown in Fig. 4. For June, the standard deviations for ozone range between
11 and 21 µg m3 for rural stations. For December, the diurnal variation is flatter, but the
absolute values essentially not reduced, in contrast to the general seasonality of O3.

Especially for summertime night conditions, the values are higher than the values5

adapted in most of the earlier studies (Chai et al., 2007; Curier et al., 2012; Jaumouillé
et al., 2012). However, the errors are comparable to the observation errors diagnosed
using the CHIMERE model by Gaubert et al. (2014). The main error component is likely
to be due to lack of representativeness: using the AIRNOW observation network, Chai
et al. (2007) found standard deviations between 5 and 13 ppb for observations inside10

a grid cell with 60 km resolution. The maximum values occurred during night time.
The diagnosed observation and background error parameters are subject to uncer-

tainty, since they are not uniquely determined (Schwinger and Elbern, 2010). Also, the
parameters depend on the assumptions made regarding the correlation function. Nev-
ertheless, the relative magnitude of observation errors during night is interesting for15

interpreting the model-to-measurement comparisons.
The diagnosed background errors for ozone are between 5 and 9 µg m3 depend-

ing on month and time of day. For June, the diagnosed errors are largest between
09:00–10:00 and 21:00–22:00 UTC, which coincides with transitions between stable
and convective boundary layers in summertime conditions. For December, only minor20

diurnal variation is observed.
The observation error standard deviation for NO2 varies between 2.8 and 5.2 µg m3

for rural stations. Suburban or urban stations were not assimilated for NO2. Contrary to
ozone, the diurnal variation of background and observation errors both correlate with
the diurnal variation of the pollutant.25

The BECM and OECM were adjusted to optimize self-consistency for two months
in 2011. To assess the robustness of the obtained formulations, the χ2 indicator was
computed also for all analysis steps for the 2012 reanalysis simulation.
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As seen in Fig. 6, the analyses using the adjusted BECM and OECM generally sat-
isfy the consistency relation better throughout the year, when compared to the first-
guess values. The yearly-mean values for χ2 are 1.05 and 0.97 for ozone and NO2,
respectively.

Overall, the assimilation system is based on rather simplistic assumptions regarding5

the background and observation error statistics. In addition to computational efficiency,
this approach benefits of having few tuning parameters, and the remaining parameters
(σobs, σb and L) can be estimated using an automated procedure. As shown in the fol-
lowing section, the refined background and observation error definitions provide a clear
improvement on analysis scores at the control stations, despite the rather limited train-10

ing datasets.

4.2 Evaluation against independent observations

Tables 3 and 4 present the analysis skill scores for runs with both first guess and final
BECM and OECM, and for the free-running model with no assimilation.

In terms of correlation and RMSE, both analysis and free model runs show better15

performance for predicting the daily maximum than hourly values. This applies to both
O3 and NO2, although the difference is more marked for ozone. The opposite holds for
bias, which tends to be higher when calculated for daily maxima.

The comparison reveals a number of contrasts between the “MACC” and “EMEP”
validation stations. First, the free-running model shows better performance for NO2 on20

the EMEP stations, while for ozone, the performance is better on the MACC stations.
On the other hand, the data assimilation has stronger impact on the scores for the
MACC validation stations. This is especially visible for NO2, which is consistent with
the shorter lifetime of NO2 compared to O3. The shorter lifetime would make the MACC
validation stations, which are generally located closer to the assimilation stations, more25

sensitive to the assimilation.
For ozone, the assimilation had uneven effect on the model bias. While the correla-

tion and RMSE were always improved by assimilation, the analyses have slightly larger
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negative mean bias (−4.6 vs. −4.0 µg m3 on MACC stations) than the free model. This
is confirmed by the average diurnal profile shown in Fig. 5. However, the diurnal vari-
ation of analysis errors is flatter, and the strongest bias no longer coincides with the
afternoon hours, when the highest O3 concentrations are typically observed.

The analysis biases for O3 are not surprising given the similar bias in the free-running5

simulation, since the analysis scheme assumes an unbiased model. This also explains
why assimilation setup including tuned OECM and BECM produces more biased analy-
ses compared to the first-guess setup, as seen in Fig. 5. As shown by Dee (2005), such
issues can in principle be addressed by the assimilation system. However, a possible
bias correction scheme should be implemented with care, since also observational bi-10

ases could arise due to representativeness errors.
The assimilation setup obtained by iterative tuning of observation and background

error parameters has consistently better RMSE and correlation than the first guess
assimilation setup.

The O3 and NO2 observations were assimilated into separate model runs. Assimila-15

tion of O3 had only minor influence on NO2 in the CB4 simulation; however, the mean
bias was reduced by about 5 % on average for the MACC validation stations. Because
the DMAT simulation does not include ozone as a tracer, the impact of NO2 assimilation
on ozone fields was not evaluated in this study.

4.3 Forecast experiments20

In order to quantify the usefulness of data assimilation forecast applications, a set
of simulations without data assimilation were generated using the analysis fields at
00:00 UTC as initial conditions. The forecast experiment covered time between 16 July
and 5 August 2012.

The effect of chemical data assimilation on forecast performance was assessed as25

a function of the forecast lead time. Figures 7 and 8 present the correlation and bias
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for the O3 and NO2 forecasts, respectively, and compare them to the corresponding
indicators for the analyses and the control run.

For ozone, the forecast improvements due to data assimilation were largely limited
to the first 24 h of forecast. Also, the forecast initialized at 00:00 UTC from analysis
shows a larger negative bias for the daytime than the free model run. This is a re-5

sult of the corresponding night time positive bias of the free model run. The bias is
effectively removed in the 00 analysis; however, the subsequent forecast is unable to
recover the level observed during daytime. The correlation coefficient during daytime
is nevertheless improved slightly (from 0.75 to 0.78) by initializing from analysis. While
the forecast shows somewhat reduced positive bias for hours between 18 and 30 (ie.10

the following night), the subsequent daytime scores are already almost unchanged by
assimilation. The results in Fig. 7 are computed for the MACC station network; similar
impact is observed on the EMEP stations.

Due to the shorter chemical lifetime, the effect of initial condition on forecasts of
NO2 can be expected to vanish more quickly than for ozone. This has been confirmed15

in the previous works based on assimilation of data from the OMI instrument. Under
summer conditions, Wang et al. (2011) found assimilation to provide no improvement
in RMSE with regard to surface observations, while Silver et al. (2013) reported the
NO2 concentration to relax to its background values within 3–4 h.

In the forecast experiments performed within this study, the effect of assimilation on20

NO2 forecast scores was limited to the first 6 forecast hours, which coincides with the
night in most of the domain. Hence, under summertime conditions, the analyses are
only marginally useful for improving forecasts of NO2.

5 Conclusions

An assimilation system coupled to the SILAM chemistry transport model has been25

described along with its application in reanalysis of ozone and NO2 concentrations
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for year 2012. Furthermore, the impact of using the O3 and NO2 analyses to initialize
forecasts has been assessed for an ozone episode occurring in July 2012.

The assimilation consistently improves the model-measurement comparison for sta-
tions not included in assimilation. For daily maximum values, the correlation coefficient
is improved over the free running model from 0.8 to 0.9 for O3 and from 0.53 to 0.635

for NO2 on rural validation stations. The respective biases are also decreased, how-
ever, a bias of −7.4 µg m−3 remains in the O3 analyses due to a negative bias in the
free-running model.

Initializing the forecasts from the analysis fields provided an improvement in ozone
forecast skill for maximum of 24 h. For NO2, the improvement was limited to a window10

of 6 h. These findings are similar to the results published in previous studies.
The diagnosed observation error standard deviations for ozone have a strong diurnal

variation, and reach up to about 21 µg m−3 during night. These values are higher than
usually assumed in chemical data assimilation, but corroborate well with the results
obtained by Gaubert et al. (2014) with similar diagnostics.15

The 3D-Var based assimilation has a low computational overhead. This makes it
especially suitable for reanalyses in yearly or longer time scales, as well as for high-
resolution forecasting under operational time constraints.
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Table 1. Correlation length scales L (km) diagnosed from the NMC dataset.

UTC hour

Species 00:00 06:00 12:00 18:00

O3 45.5 51.0 57.6 59.5
NO2 35.8 39.0 41.1 42.3
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Table 2. The χ2/N consistency indicator and RMSE on rural MACC validation stations during
the first and fifth iteration for tuning the observation and background error standard deviations.

O3 NO2

χ2/N RMSE χ2/N RMSE

Jun First guess 0.86 20.94 0.39 6.14
5th iteration 1.05 18.93 1.16 5.80

Dec First guess 0.74 17.39 1.20 9.91
5th iteration 1.05 16.89 1.14 9.54
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Table 3. Comparison of performance indicators for ozone in the 2012 reanalysis. The scores
are given for station sets “MACC” and “EMEP” as defined in Sect. 2.2. For the analysis runs,
scores are shown for the different background error covariance matrices discussed in Sect. 3.

Hourly Daily maximum

Corr Bias RMSE Corr Bias RMSE

MACC No assimilation 0.67 −4.00 24.91 0.80 −11.39 22.09
Assimilation, first guess B 0.77 −4.62 21.35 0.86 −2.71 15.51
Assimilation, final B 0.8 −4.64 19.2 0.9 −7.4 14.52

EMEP No assimilation 0.58 −6.32 24.06 0.71 −12.11 22.00
Assimilation, first guess B 0.66 −5.79 21.83 0.77 −5.32 17.96
Assimilation, final B 0.68 −6.00 20.22 0.8 −9.57 17.15
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Table 4. Comparison of performance indicators for NO2 in the 2012 reanalysis. Station sets
MACC and EMEP and assimilation options are as in Table 3.

Hourly Daily maximum

Corr Bias RMSE Corr Bias RMSE

MACC No assimilation 0.50 −1.18 9.01 0.53 −3.41 13.58
Assimilation, first guess B 0.58 −0.25 8.6 0.61 −0.96 12.78
Assimilation, final B 0.6 −0.38 8.04 0.63 −2.35 12.01

EMEP No assimilation 0.52 0.47 6.19 0.55 −0.02 9.17
Assimilation, first guess B 0.55 1.17 6.45 0.59 1.75 9.63
Assimilation, final B 0.57 0.99 5.92 0.6 0.74 8.66

5613

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/5589/2014/gmdd-7-5589-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/5589/2014/gmdd-7-5589-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 5589–5621, 2014

Assimilation of
surface NO2 and O3

observations into the
SILAM chemistry
transport model

J. Vira and M. Sofiev

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 1. The stations networks used for assimilation and validation for O3 (left) and NO2
(right). The assimilation stations for O3 include rural and suburban stations, for NO2 only rural
stations. For validation, only rural stations are shown.
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Figure 1. The stations networks used for assimilation and validation for O3 (left) and NO2 (right). The assimilation stations for O3 483 
include rural and suburban stations, for NO2 only rural stations. For validation, only rural stations are shown. 484 

 485 

Figure 2. Vertical correlation function for NO2 at 12UTC. 486 
Figure 2. Vertical correlation function for NO2 at 12:00 UTC.
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Figure 3. Yearly mean concentration (µg m−3, left-hand panels) on lowest model layer and dif-
ference (assimilated – not assimilated, right-hand panels) due to assimilation of O3 (top panels)
and NO2 (bottom panels).
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Figure 4. Diagnosed background (dashed) and observation error (solid lines) standard devia-
tions on rural stations for O3 (left) and NO2 (right). Red lines correspond to the calibration made
for June 2011, blue lines correspond to calibration for December 2011.
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Figure 4. Diagnosed background (dashed) and observation error (solid lines) standard deviations on rural stations for O3 (left) 492 
and NO2 (right). Red lines correspond to the calibration made for June 2011, blue lines correspond to calibration for December 493 
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Figure 5. Diurnal variation of model bias. The first guess assimilation setup is shown in red and the final setup in blue. The 497 
reference run with no assimilation is drawn in green. The values are shown for the rural MACC validation stations and averaged 498 
over each day of year 2012 and over the stations. 499 
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Figure 5. Diurnal variation of model bias. The first guess assimilation setup is shown in red and
the final setup in blue. The reference run with no assimilation is drawn in green. The values are
shown for the rural MACC validation stations and averaged over each day of year 2012 and
over the stations.

5618

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/5589/2014/gmdd-7-5589-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/5589/2014/gmdd-7-5589-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 5589–5621, 2014

Assimilation of
surface NO2 and O3

observations into the
SILAM chemistry
transport model

J. Vira and M. Sofiev

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 6. The χ2/Nobs consistency indicator for hourly analyses of O3 (left) and NO2 (right). The
values in blue and green are shown for the first-guess and final assimilation setups, respectively.
Note the different scales for O3 and NO2.
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Figure 7. The model bias and correlation for the MACC validation stations as a function of
forecast length (blue lines). The corresponding indicators the analyses (black) and control run
(green) are shown averaged by time of day and replicated over the forecast window.
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Figure 8. As Fig. 7, but for NO2.
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