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Abstract 6 

This paper describes assimilation of trace gas observations into the chemistry transport model SILAM 7 

(System for Integrated modeLling of Atmospheric coMposition) using the 3D-Var method. Assimilation 8 

results for the year 2012 are presented for the prominent photochemical pollutants ozone (O3) and 9 

nitrogen dioxide (NO2). Both species are covered by the Airbase observation database, which provides the 10 

observational dataset used in this study.  11 

Attention is paid to the background and observation error covariance matrices which are obtained 12 

primarily by iterative application of a posteriori diagnostics. The diagnostics are computed separately for 13 

two months representing summer and winter conditions, and further disaggregated by time of day. This 14 

allows deriving background and observation error covariance definitions, which include both seasonal and 15 

diurnal variation. The consistency of the obtained covariance matrices is verified using 
2

 diagnostics. 16 

The analysis scores are computed for a control set of observation stations withheld from assimilation. 17 

Compared to a free-running model simulation, the correlation coefficient for daily maximum values is 18 

improved from 0.8 to 0.9 for O3 and from 0.53 to 0.63 for NO2. 19 

1 Introduction 20 

During the last 10-15 years, assimilating observations into atmospheric chemistry transport models has 21 

been studied with a range of computational methods and observational datasets. The interest has been 22 

driven by the success of advanced data assimilation methods in numerical weather prediction (Rabier, 23 

2005), as well as by development of operational forecast systems for regional air quality (Kukkonen et al., 24 

2012). Furthermore, the availability of remote sensing data on atmospheric composition has permitted 25 

construction of global analysis and forecasting systems such as those described by Benedetti et al. (2009) 26 

and Zhang et al. (2008). Assimilation of satellite observations into stratospheric chemistry models has been 27 

demonstrated eg. by Errera et al.(2008). 28 



Data assimilation is defined (eg. Kalnay, 2003) as the numerical process of using model fields and 29 

observations to produce a physically and statistically consistent representation of the atmospheric state - 30 

often in order to initialize the subsequent forecast. The main techniques used in atmospheric models 31 

include the optimal interpolation (OI, Gandin 1963), variational methods (3D-Var and 4D-Var, Le Dimet and 32 

Talagrand, 1986; Lorenc, 1986), and the stochastic methods based on the Ensemble Kalman Filter (EnKF, 33 

Evensen, 2003, 1994). Each of the methods has been applied in air quality modelling. Statistical 34 

interpolation methods were used  by Blond and Vautard (2004) for surface ozone analyses and by 35 

Tombette et al. (2009) for particulate matter. The EnKF method has been utilized by several authors 36 

(Constantinescu et al., 2007; Curier et al., 2012; Gaubert et al., 2014) especially for ozone modelling. The 37 

3D-Var method has been applied in regional air quality models by Jaumouillé et al. (2012) and Schwartz et 38 

al. (2012), while the computationally more demanding 4D-Var method has been demonstrated by Elbern & 39 

Schmidt (2001) and Chai et al. (2007). Partly due to its significance in relation to health effects, the most 40 

commonly assimilated chemical component has been ozone 41 

Performance of most data assimilation methods depends on correctly prescribed background error 42 

covariance matrices (BECM). This is particularly important for 3D-Va r, where the BECM is prescribed and 43 

fixed throughout the whole procedure, in contrast to the EnKF based assimilation methods, where the 44 

BECM is described by the ensemble of states, and to the 4D-Var method, where the BECM is prescribed but 45 

evolves implicitly within the assimilation window.  46 

A range of methods of varying complexity have been employed to estimate the BECM in previous studies 47 

on chemical data assimilation. The “National Meteorological Centre” (NMC) method introduced by Parrish 48 

& Derber (1992) is based on using differences between forecasts with differing lead times as a proxy for the 49 

background error. Kahnert (2008), as well as Schwartz et al. (2012), applied the NMC method for estimating 50 

the BECM for assimilation of aerosol observations.  Chai et al. (2007) based the BECM on a combination of 51 

NMC method and the observational method of Hollingsworth & Lönnberg (1986). The observational 52 

method was used in assimilation of NO2 and O3 observations also by Kumar et al. (2012).  53 

The BECM can also be estimated using ensemble modelling; this approach was taken by Massart et al. 54 

(2012) for global and by Jaumouillé et al. (2012) for regional ozone analyses. Finally, Desroziers et al. (2005) 55 

presented a set of diagnostics which can be used to adjust the background and observation error 56 

covariances. This method has been previously applied in chemical data assimilation for example by 57 

Schwinger and Elbern (2010) and Gaubert et al. (2014). 58 

In contrast to short and medium range weather prediction, the influence of initial condition on an air 59 

quality forecast has been found to diminish as the forecast length increases. For ozone, Blond and Vautard, 60 

(2004) and Wu et al. (2008) found that the effect of the adjusted initial condition extended for up to 24 61 



hours. Among other reactive gases, NO2 has been a subject for studies of Silver et al. (2013) and Wang et 62 

al. (2011). However, the shorter lifetime of NO2 limits the timescale for forecast improvements especially 63 

in summer conditions.  64 

 An approach for improving effectiveness of data assimilation for short-lived species is to extend the 65 

adjusted state vector with model parameters. Among the possible choices are emission and deposition 66 

rates (Bocquet, 2012; Curier et al., 2012; Elbern et al., 2007; Vira and Sofiev, 2012). 67 

The aim of the current paper is to describe and evaluate a regional air quality analysis system based on 68 

assimilating hourly near-surface observations of NO2 and O3 into the SILAM chemistry transport model. 69 

The assimilation scheme was initially presented by Vira and Sofiev (2012); in the current study, the scheme 70 

is applied to photochemical pollutants and moreover, we discuss how its performance can be improved by 71 

introducing statistically consistent background and observation error matrices. The analysis fields are 72 

produced for the assimilated species at hourly frequency using the standard 3D-Var assimilation method 73 

(Lorenc, 1986). The diagnostics of Desroziers et al. (2005) are applied in this work for estimating the 74 

background and observation error standard deviations, in particular resolving their seasonal and diurnal 75 

variations. The evaluation is performed for year 2012 using stations withheld from assimilation. In addition 76 

to assessing the analysis quality, the effectiveness of assimilation for initializing the model forecasts is 77 

evaluated.    78 

The following Section 2 presents the model setup and briefly reviews the 3D-Var assimilation method. The 79 

procedure for estimating the background and observation error covariance matrices is discussed in Section 80 

3. The assimilation results for O3 and NO2 for the year 2012 are discussed in Section 4. Section 5 concludes 81 

the paper. 82 

2 Materials and methods 83 

This section presents the SILAM dispersion model, the observation datasets used, and describes the 84 

assimilation procedure.  85 

2.1 The SILAM dispersion model and experiment setup 86 

This study employs the SILAM chemistry transport model (CTM) version 5.3. The model utilizes the semi-87 

Lagrangian advection scheme of Galperin (2000) combined with the vertical discretization described by 88 

Sofiev (2002) and the boundary layer scheme of Sofiev et al. (2010). Wet and dry deposition are 89 

parameterized as described in Sofiev et al. (2006). 90 

Chemistry of ozone and related reactive pollutants is simulated using the Carbon Bond 4 chemical 91 

mechanism (CB4, Gery et al., 1989). However, the NO2 analyses are produced with separate simulations 92 



employing the DMAT chemical scheme of Sofiev (2000). This follows the setup used in operational air 93 

quality forecasts with the SILAM model, where the two model runs are necessary since the primary and 94 

secondary inorganic aerosols are only included in the DMAT scheme.  The SILAM model has been previously 95 

applied in simulating regional ozone and NO2 concentrations (Huijnen et al., 2010; Langner et al., 2012; 96 

Solazzo et al., 2012), for global-scale aerosol simulations (Sofiev et al., 2011) as well as for simulating 97 

emission and dispersion of allergenic pollen (Siljamo et al., 2012). The daily, European-scale air quality 98 

forecasts contributing to the MACC-II project are publicly available at http://macc-raq.gmes-99 

atmosphere.eu.  100 

In this study, the model is configured for a European domain covering the area between 35.2° and 70.0° N 101 

and -14.5° and 35.0° E with a regular lon-lat grid. The vertical discretization consists of eight terrain-102 

following levels reaching up to about 6.8 km. The vertical coordinate is geometric height. The model is 103 

driven by operational ECMWF IFS forecast fields, which are initially extracted in a 0.125 degree lon-lat grid 104 

and further interpolated to the CTM resolution. Chemical boundary conditions are provided by the MACC 105 

reanalysis (Inness et al., 2013), which uses the MOZART global chemistry-transport model.  106 

The emissions of anthropogenic pollutants are provided by the MACC-II European emission inventory 107 

(Kuenen et al., 2014) for the reference year 2009. The biogenic isoprene emissions, required by the CB4 108 

run, are simulated by the BEM emission model (Poupkou et al., 2010). 109 

Three sets of SILAM simulations are carried out in this study. First, the background and observation error 110 

covariance matrices are calibrated using one-month simulations for June and December 2011. The results 111 

of calibration are used in reanalysis simulations covering year 2012. Finally, a set of 72 hour hindcasts is 112 

generated for the period between 16 July and 5 August, 2012, to evaluate the forecast impact of 113 

assimilation. The hindcasts are initialized from the 00 UTC analysis fields. The timespan includes an ozone 114 

episode affecting parts of Southern and Western Europe (EEA, 2013). The reanalysis and hindcasts use 115 

identical meteorological and boundary input data, and hence, the hindcasts only assess the effect of 116 

chemical data assimilation. 117 

The analysis and forecast runs are performed at a horizontal resolution of 0.2 degrees. The setup for 118 

calibrations runs (June and December 2011) is identical except that a coarser horizontal resolution of 0.5° is 119 

chosen in order to reduce the computational burden. The model timestep is 15 minutes for both setups. 120 

2.2 Observations 121 

This study uses the hourly observations of NO2 and O3 at background stations available in the Airbase 122 

database (http://acm.eionet.europa.eu/databases/airbase/) maintained by the European Environmental 123 

Agency. Separate subsets are employed for assimilation and evaluation.  124 

http://acm.eionet.europa.eu/databases/airbase/


Two sets of stations are withheld for evaluation. The first set, referred here as the MACC set, has been used 125 

in the regional air quality assessments within the MACC and MACC-II projects (Rouïl, 2013, also Curier et al., 126 

2012).  The second set consists of the stations reported as EMEP stations in the database. The MACC 127 

validation stations include about a third of the available background stations for each species, and are 128 

chosen with the requirement to cover the same area as the assimilation stations.  The EMEP network is 129 

sparser and has no particular relation to the assimilation stations. It can be noted that the EMEP stations 130 

included in Airbase do not comprise the full EMEP monitoring network. 131 

The in-situ data are used for assimilation and evaluation under the assumption that they represent the 132 

pollutant levels in spatial scales resolved by the model. We expect this assumption to be violated especially 133 

at many urban and suburban stations due to local variations in emission fluxes. For this reason, only rural 134 

stations are used for evaluation of the 2012 reanalysis. The NO2 assimilation set also excludes  both urban 135 

and suburban stations. For ozone, the data from suburban stations are assimilated, however, the 136 

observation errors are assessed separately for suburban and rural stations, as outlined in Section 3. The 137 

station sets are presented on a map in Figure 1. 138 

The statistical indicators used for model evaluation are correlation, mean bias and root mean squared error 139 

(RMSE). Since air quality models are frequently used to evaluate daily maximum concentrations, the 140 

indicators are evaluated separately for the daily maximum values.  141 

2.3 The 3D-Var assimilation 142 

In the 3D-Var method, the analysis 
a

x  minimises the cost function 143 

(1)        
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where 
b

x  is the background state, y is the vector of observations, and is the possibly nonlinear 145 

observation operator. The uncertainties of the background state
b

x  and the observations y are described 146 

by the background and observation error covariance matrices B  and R , respectively. In this study, the 147 

control variable x consists of the three-dimensional airborne concentration for either NO2 or ozone. The 148 

m1qn3 minimization code (Gilbert and Lemaréchal, 1989) is used for solving the optimisation problem (1).  149 

For the surface measurements, the operator is linear and consists of horizontal interpolation only, since 150 

the surface concentrations are considered to be represented by the lowest model level. Following the 151 

hourly observation frequency, the analysis is performed every hour followed by a one-hour forecast. The 152 

forecast provides the background field for the subsequent analysis. 153 



In the current study, only single chemical component is assimilated in each run. Since O3 is not a prognostic 154 

variable in the DMAT scheme, it cannot be assimilated into the NO2 simulation. Assimilating NO2 155 

observations into the CB4 simulation would be technically feasible; however, simultaneous assimilation of 156 

NO2 and O3 would require care due to the strong chemical coupling between the species. The background 157 

and observation error covariance matrices would also need to be estimated jointly. 158 

3  Background and observation error covariance matrices 159 

The numerical formulation of the BECM in the current work follows the assumptions made by Vira and 160 

Sofiev (2012).  We assume that the background error correlation is homogeneous in space, and its 161 

horizontal component is described by a Gaussian function of distance between the grid points. 162 

Furthermore, we assume that the background error standard deviation σb is independent of location. This 163 

allows writing the BECM as 
2

,
b

B C where C is the correlation matrix and 
b

 is the background error 164 

standard deviation. 165 

For estimation of the parameters for the covariance matrices B  and R , we combined the NMC method, 166 

which is used for determining the correlation matrix C , and the approach of Desroziers et al. (2005), which 167 

is used for diagnosing the observation and background error standard deviations. 168 

In the NMC method, the difference between two forecasts valid at a given time is taken as a proxy of the 169 

forecast error. In this work, the proxy dataset is extracted from 24 and 48 hour regional air quality forecasts 170 

for year 2010. The forecasts are generated with the SILAM model in a configuration similar to the one used 171 

in this study. Since no chemical data assimilation is used in the forecasts, the differences are due to 172 

changes in forecast meteorology and boundary conditions only. The lead times are chosen to allow 173 

sufficient spread to develop between the forecasts. The forecast data are segregated by hour resulting in 174 

separate sets for hours 00, 06, 12 and 18 UTC, and the correlations are interpolated for all other times of 175 

day. 176 

The horizontal and vertical components of the correlation matrix C  are estimated separately. The 177 

horizontal correlation is determined by the length scale L, which is obtained by fitting a Gaussian 178 

correlation function to the dataset. First, the sample correlation matrix C  of the forecast differences is 179 

calculated. Then, the Gaussian correlation function is fitted to the empirical correlations 
i j

C  by minimizing 180 
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where the fitted correlation function is 
2 2 2

( ) ex p ( (| | | | ) / )
ij i j i j

L x x y y L    C  and x  and y  are the 182 

Cartesian coordinates for each grid point. To reduce the effect of spurious long-distance correlations due to 183 

the limited sample size, the fitting is restricted to grid points 
i

r  closer than d=1000 km to each other. The 184 

distances, shown in Table 1, are computed for the lowest model layer. 185 

The vertical correlation function is obtained directly as the sample correlation across all vertical columns for 186 
each time of day. As an example, the correlation matrix obtained for NO2 at 12 UTC is shown in  187 
Figure 2. 188 

Since the NMC dataset includes only meteorological perturbations, it is expected to underestimate the 189 

total uncertainty of the CTM simulations. Hence, the standard deviations are not diagnosed from the NMC 190 

dataset, but instead, and approach based on a posteriori diagnostics is taken. The approach, devised by 191 

(Desroziers et al., 2005), is based on a set of identities which relate the BECM and OECM to expressions 192 

which can be estimated statistically from a set of analysis and corresponding background fields. 193 

First, the standard deviation ( )i

o b s
 of the i th observation component is equal to 194 

(3) 
2
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where E  denotes the expectation, y  is the observation vector and ( )
a a

y x  and ( )
bb

y x are 196 

evaluated from the analysis and background fields, respectively.  197 

The background error covariance matrix cannot be uniquely expressed in observation space. However, 198 

assuming that each observation only depends (linearly) on a single model grid cell (ie. horizontal 199 

interpolation is neglected), then 200 

(4) 
2
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The identities (3) and (4) hold for an ideally defined analysis system, provided that the background and 202 

observation errors are normally distributed and assuming the observation operator is not strongly 203 

nonlinear.  204 

Furthermore, Equations (3) and (4) can be used to tune the parameters 
o b s

  and 
b

  by means of fixed 205 

point iteration. First, a set of analyses is produced using initial parameter values. Then, the left-hand sides 206 

of (3) and (4) are evaluated as averages over the analyses, resulting in new parameter values. The 207 

procedure is then repeated using the updated 
b

  and 
o b s

  to produce a new set of analyses. In this work, 208 



we stopped the iteration when the RMSE at validation stations was no longer improving.  We chose this 209 

criterion to avoid overfitting the parameters to the calibration data. 210 

In this work, the observation error covariance matrix R is assumed diagonal. The initial values for 
o b s

  and211 

b
  were set to 11.2 and 20.6 µg m-3 for O3, and 4.0 and 8.0 µg m-3 for NO2. The values correspond to 212 

typical mean-squared errors for a free-running model, which are attributed to the model and observation 213 

error variances in the ratio of 80/20, respectively. The standard deviations, together with the correlation 214 

matrices obtained with the NMC procedure, are then employed in the iterations to calculate a set of hourly 215 

analyses for the two calibration periods spanning June and December 2011.  216 

The choice of calibration periods representing both winter and summer conditions is motivated by the 217 

strong seasonal variations in both O3 and NO2. Both 
o b s

  and
b

  are segregated by hour, while for O3 
o b s

  218 

is also evaluated separately for suburban stations.  For the reanalysis of year 2012, the standard deviations, 219 

obtained separately for June and December, are interpolated linearly for all other months. 220 

Finally, the overall consistency can be evaluated by checking the identity (Ménard et al., 2000) 221 

(5) 
2

( ) ,E N   222 

where 2
2 ( )J 

a
x is twice the value of cost function (1) at the minimum, and N  is dimension of the 223 

observation vector y . The identity (5) tests the overall consistency of the analysis and is affected by both 224 

B  and R . 225 

4 Results and discussion 226 

The SILAM model was run for year 2012 with and without assimilation. Since the 3D-Var analyses require 227 

no additional model integrations in form of iterations or ensemble simulations, the hourly analyses increase 228 

the simulation runtime by only 10-15%.  229 

The effect of assimilation to the yearly-mean concentrations on the lowest model level is shown in Figure 3. 230 

On average, the ozone concentrations are increased by the assimilation especially around the 231 

Mediterranean Sea, which indicates corresponding low bias in the free model run. The main changes in 232 

NO2 levels are confined to somewhat more limited areas; in particular areas near major mountain ranges 233 

(Alps and Pyrenees) show enhanced NO2 levels in the analysis run. 234 

4.1 Background and observation error covariance matrices 235 



Refining the background and observation standard deviations iteratively both improves the consistency of 236 

the assimilation setup as measured by the 
2

  indicator (Eq. (5)), and improves the model-measurement 237 

comparison on the validation stations over the calibration period. However, after five iterations (for both 238 

June and December), the changes in 
2

  become slow and the validation scores no longer improve. Hence, 239 

the values for 
o b s

  and 
b

  in fifth iterations were taken as the final values for 2012 reanalysis. The changes 240 

in 
2

  and model-measurement RMSE are summarized in Table 2.  241 

The diagnosed observation and background error standard deviations for O3 and NO2 are shown in Figure 242 

4. For June, the standard deviations for ozone range between 11 and 21 µg/m-3 for rural stations. For 243 

December, the diurnal variation is flatter, but the absolute values are generally not reduced, in contrast to 244 

the overall seasonality of O3. 245 

Especially for summertime night conditions, the values are higher than the values adopted in most of the 246 

earlier studies (Chai et al., 2007; Curier et al., 2012; Jaumouillé et al., 2012). However, the errors are 247 

comparable to the observation errors diagnosed using the CHIMERE model by Gaubert et al. (2014). The 248 

main error component is likely to be due to lack of representativeness: using the AIRNOW observation 249 

network, Chai et al. (2007) found standard deviations between 5 and 13 ppb for observations inside a grid 250 

cell with 60 km resolution. The maximum values occurred during night time.  251 

The diagnosed observation and background error parameters are subject to uncertainty, since they are not 252 

uniquely determined (Schwinger and Elbern, 2010). Also, the parameters depend on the assumptions made 253 

regarding the correlation function.  Nevertheless, the relative magnitude of observation errors during night 254 

is interesting for interpreting the model-to-measurement comparisons.  255 

The diagnosed background errors for ozone are between 5 and 9 µg/m-3 depending on month and time of 256 

day. For June, the diagnosed errors are largest between 9-10 and 21-22 UTC, which coincides with 257 

transitions between stable and convective boundary layers in summertime conditions. For December, only 258 

minor diurnal variation is observed. 259 

The observation error standard deviation for NO2 varies between 2.8 and 5.2 µg/m-3 for rural stations. 260 

Suburban or urban stations were not assimilated for NO2.  Contrary to ozone, the diurnal variation of 261 

background and observation errors both positively correlate with the diurnal variation of the pollutant.  262 

The BECM and OECM were adjusted to optimize self-consistency for two months in 2011. To assess the 263 

robustness of the obtained formulations, the 
2

  indicator was computed also for all analysis steps for the 264 

2012 reanalysis simulation.  265 



As seen in Error! Reference source not found., the analyses using the adjusted BECM and OECM generally 266 

satisfy the consistency relation better throughout the year, when compared to the first-guess values. The 267 

yearly-mean values for 
2

  are 1.05 and 0.97 for ozone and NO2, respectively. 268 

Overall, the assimilation system is based on rather simplistic assumptions regarding the background and 269 

observation error statistics. In addition to computational efficiency, this approach benefits from having few 270 

tuning parameters, and the remaining parameters (
o b s

 , 
b

 and L ) can be estimated using an automated 271 

procedure. As shown in the following section, the refined background and observation error definitions 272 

provide a clear improvement on analysis scores at the control stations, despite the rather limited training 273 

datasets. 274 

4.2 Evaluation against independent observations 275 

Tables 3 and 4 present the analysis skill scores for runs with both first guess and final BECM and OECM, and 276 

for the free-running model with no assimilation. 277 

In terms of correlation and RMSE, both analysis and free model runs show better performance for 278 

predicting the daily maximum than hourly values. This applies to both O3 and NO2, although the difference 279 

is more marked for ozone. The opposite holds for bias, which tends to be higher when calculated for daily 280 

maxima. 281 

The comparison reveals a number of contrasts between the “MACC” and “EMEP” validation stations. First, 282 

the free-running model shows better performance for NO2 on the EMEP stations, while for ozone, the 283 

performance is better on the MACC stations. On the other hand, the data assimilation has stronger impact 284 

on the scores for the MACC validation stations. This is especially visible the case for NO2, a result which is 285 

consistent with the shorter lifetime of NO2 compared to O3.  286 

The differences largely originate from the different representativeness and coverage of the MACC and 287 

EMEP station sets. As seen in Figure 1, the EMEP network covers the computational domain more evenly 288 

than the MACC validation stations, which are concentrated in Central Europe. Since the coverage of 289 

assimilation and MACC validation stations is similar, the average impact of assimilation is stronger on the 290 

MACC than EMEP stations. 291 

For the free-running simulations, the better performance for O3 at the MACC stations is consistent with the 292 

geographical variations in the model skill: the densest coverage of the MACC validation stations coincides 293 

with the parts of Europe where many regional air quality models perform best for ozone (eg. Vautard et al., 294 

2009). The scores for NO2 also vary by region, however, due to the shorter chemical lifetime, the forecasts 295 

of NO2 are more sensitive to unresolved variations in local emissions. This probably explains the better 296 



scores for NO2 on the EMEP stations, since the EMEP network is specifically aimed at monitoring the 297 

background levels of pollutants. 298 

For ozone, the assimilation had a variable effect on the model bias. While the correlation and RMSE were 299 

always improved by assimilation, the analyses have slightly larger negative mean bias (-4.6 vs -4.0 µg m3 on 300 

MACC stations) than the free model. This is confirmed by the average diurnal profile shown in Figure 6. 301 

Diurnal variation of model bias (µg m-3). The first guess assimilation setup is shown in red and the final 302 

setup in blue. The reference run with no assimilation is drawn in green. The values are shown for the rural 303 

MACC validation stations and averaged over each day of year 2012 and over the stations.. However, the 304 

diurnal variation of analysis errors is flatter, and the strongest bias no longer coincides with the afternoon 305 

hours, when the highest O3 concentrations are typically observed.  306 

For NO2, the analyses have only slight negative bias (-0.38 µg/m3) on the MACC stations, which turns 307 

positive (about 1 µg/m3) for the more remote EMEP sites. As seen in Table 4, the difference between the 308 

station sets is similar to that of the free-running model. Given the differences between the MACC and 309 

EMEP station sets, this suggests that the model overestimates the lifetime of NO2, which in turn results in 310 

the positive bias in the analyses. The long lifetime of NO2 in the SILAM DMAT chemistry scheme was also 311 

noticed by Huijnen et al. (2010). 312 

The analysis scheme assumes an unbiased model, and hence, the negative bias present in the free-running 313 

simulations is reduced but not removed in the analysis fields.  The assimilation setup including tuned OECM 314 

and BECM produces more biased analyses compared to the first-guess setup, as seen in Figure 6. Diurnal 315 

variation of model bias (µg m-3). The first guess assimilation setup is shown in red and the final setup in 316 

blue. The reference run with no assimilation is drawn in green. The values are shown for the rural MACC 317 

validation stations and averaged over each day of year 2012 and over the stations.. This is a consequence of 318 

the differences between the diagnosed and first-guess background and observation error standard 319 

deviations. Contrary to the tuned setup, the first-guess attributes most of the model-observation 320 

discrepancy to the background error, which results in stronger increments towards the observed values. 321 

Consequently, the analysis bias is smaller. However, the tuned assimilation setup has consistently better 322 

RMSE and correlation than the first guess assimilation setup.  323 

Since the analysis bias is mainly a consequence of a bias in the forecast model, the bias should be 324 

addressed primarily by improving the model. As shown by Dee (2005), model biases can in principle be 325 

addressed also by the assimilation system. However, a possible bias correction scheme should be 326 

implemented with care, since also observational biases could arise due to representativeness errors. 327 



In addition to computing the regular statistical indicators for daily maxima, we evaluated the hit rates (the 328 

number of correctly predicted exceedances divided by the number of observed exceedances) for the 180 329 

µg/m3 threshold for O3, with and without assimilation. Assimilation turns out to improve also the hit rate, 330 

albeit only slightly: from 0.25 to 0.26 on average for rural MACC validation stations, and from 0.13 to 0.15 331 

for EMEP stations. If the averaging is restricted to the stations with more than 10 exceedances during 2012, 332 

the values change from 0.32 to 0.36 for MACC and from 0.21 to 0.43 for the EMEP stations. Obviously, the 333 

hit rates are sensitive to the low bias in the daily maxima. 334 

For NO2, a specific source of observational errors is due to the molybdenum converters used in the 335 

chemiluminescence technique, which is the most common measurement technique for monitoring NO2. As 336 

discussed by Dunlea et al. (2007) and Steinbacher et al. (2007), this technique is subject to positive 337 

interference by the NOz species such as PAN, HNO3 and HONO.  338 

The interference can lead to overestimation of NO2 by up to factor of two,  however, the error varies by 339 

location and time, and may depend on features of the instrument (Steinbacher et al., 2007). We estimated 340 

the magnitude of this effect from the free-running CB4 simulation. On most continental EMEP sites, the 341 

contribution of the NOz species to the total NOz + NO2 was about 10-20% of the simulated yearly mean. 342 

However, for a few sites the contribution could reach 50%.  343 

The O3 and NO2 observations were assimilated into separate model runs. Assimilation of O3 had only a 344 

minor influence on NO2 in the CB4 simulation; however, the mean bias was reduced by about 5% on 345 

average for the MACC validation stations. Because the DMAT simulation does not include ozone as a tracer, 346 

the impact of NO2 assimilation on ozone fields was not evaluated in this study. 347 

4.3 Forecast experiments 348 

In order to quantify the usefulness of data assimilation forecast applications, a set of simulations without 349 

data assimilation were generated using the analysis fields at 00 UTC as initial conditions. The forecast 350 

experiment covered time between 16 July and 5 August, 2012.  351 

The effect of chemical data assimilation on forecast performance was assessed as a function of the forecast 352 

lead time. Figures 7 and 8 present the correlation and bias for the O3 and NO2 forecasts, respectively, and 353 

compare them to the corresponding indicators for the analyses and the control run. 354 

For ozone, the forecast improvements due to data assimilation were largely limited to the first 24 hours of 355 

forecast. Also, the forecast initialized at 00:00 UTC from the analysis shows a larger negative bias for the 356 

daytime than the free model run. This is a result of the corresponding night time positive bias of the free 357 

model run. The bias is effectively removed in the 00 analysis; however, the subsequent forecast is unable to 358 



recover the level observed during daytime. The correlation coefficient during daytime is nevertheless 359 

improved slightly (from 0.75 to 0.78) by initializing from the analysis. While the forecast shows somewhat 360 

reduced positive bias for hours between 18 and 30 (ie. the following night), the subsequent daytime scores 361 

are already almost unchanged by assimilation. The results in Figure 7 are computed for the MACC station 362 

network; similar impact is observed at the EMEP stations. 363 

Due to the shorter chemical lifetime, the effect of initial condition on forecasts of NO2 can be expected to 364 

fall away more quickly than for ozone. This has been confirmed in the previous works based on assimilation 365 

of data from the OMI instrument. Under summer conditions, Wang et al. (2011) found assimilation to 366 

provide no improvement in RMSE with regard to surface observations, while Silver et al. (2013) reported 367 

the NO2 concentration to relax to its background values within 3-4 hours.  368 

In the forecast experiments performed within this study, the effect of assimilation on NO2 forecast scores 369 

was limited to the first 6 forecast hours, which coincides with the night in most of the domain. Hence, at 370 

least under the photochemically active summertime conditions, the analyses are only marginally useful for 371 

improving forecasts of NO2. 372 

The forecast for short-lived pollutants like NO2 is poorly constrained by the initial condition, because the 373 

boundary layer concentrations become driven mainly by local emissions, chemical transformations and 374 

deposition. This limits effectiveness of any assimilation scheme based updating only the initial condition. A 375 

possible way to extend the forecast impact is to include more persistent parameters, such as emission 376 

rates, into the state vector. This has been demonstrated by Elbern et al. (2007) for forecasting an ozone 377 

episode.  In general, such an approach requires that the obtained a posteriori emission rates can be 378 

extrapolated to the forecast window, and that the assimilation scheme is able to correctly attribute the 379 

observed discrepancies to the uncertain parameters. 380 

5 Conclusions 381 

An assimilation system coupled to the SILAM chemistry transport model has been described along with its 382 

application in reanalysis of ozone and NO2 concentrations for year 2012. Furthermore, the impact of using 383 

the O3 and NO2 analyses to initialize forecasts has been assessed for an ozone episode occurring in July 384 

2012. 385 

The assimilation consistently improves the model-measurement comparison for stations not included in the 386 

assimilation. For daily maximum values, the correlation coefficient is improved over the free running model 387 

from 0.8 to 0.9 for O3 and from 0.53 to 0.63 for NO2 on rural validation stations. The respective biases are 388 



also decreased, however, a bias of -7.4 µg m-3 remains in the O3 analyses due to a negative bias in the free-389 

running model. 390 

During a three-week forecast experiment, initializing the forecasts from the analysis fields provided an 391 

improvement in ozone forecast skill for a maximum of 24 hours. For NO2, the improvement was limited to 392 

a window of 6 hours. The findings for NO2 are similar to the results published in previous studies (Silver et 393 

al., 2013; Wang et al., 2011). 394 

The diagnosed observation error standard deviations for ozone have a strong diurnal variation, and reach 395 

up to about 21 µg m-3 during night. These values are higher than usually assumed in chemical data 396 

assimilation, but agree well with the results obtained by Gaubert et al. (2014) with similar diagnostics. 397 

The 3D-Var based assimilation has a low computational overhead. This makes it especially suitable for 398 

reanalyses in yearly or longer time scales, as well as for high-resolution forecasting under operational time 399 

constraints. Future work will include more accurate characterization of station representativeness as well 400 

as further investigation of model biases for O3. 401 
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 558 

Table 1. Correlation length scales L (km) diagnosed from the NMC dataset. 559 

 UTC hour 

Species 00 06 12 18 

O3 45.5 51.0 57.6 59.5 

NO2 35.8 39.0 41.1 42.3 
 560 

Table 2. The 
2

/ N  consistency indicator and RMSE on rural MACC validation stations during the first and fifth iteration for 561 
tuning the observation and background error standard deviations. 562 

   O3 NO2 

   
2

/ N  RMSE 
2

/ N  RMSE 

June First guess 0.86 20.94 0.39 6.14 

 5th iteration 1.05 18.93 1.16 5.80 

December First guess 0.74 17.39 1.20 9.91 

 5th iteration 1.05 16.89 1.14 9.54 
 563 

Table 3. Comparison of performance indicators for ozone in the 2012 reanalysis. The scores are given for station sets “MACC” 564 
and “EMEP” as defined in Section 2.2. For the analysis runs, scores are shown for the different background error covariance 565 
matrices discussed in Section 3. 566 

  Hourly Daily maximum 

    Corr Bias RMSE Corr Bias RMSE 

MACC No assimilation 0.67 -4.00 24.91 0.80 -11.39 22.09 

 Assimilation, first guess B 0.77 -4.62 21.35 0.86 -2.71 15.51 

 Assimilation, final B 0.8 -4.64 19.2 0.9 -7.4 14.52 

EMEP No assimilation 0.58 -6.32 24.06 0.71 -12.11 22.00 

 Assimilation, first guess B 0.66 -5.79 21.83 0.77 -5.32 17.96 

 Assimilation, final B 0.68 -6.00 20.22 0.8 -9.57 17.15 
 567 

Table 4. Comparison of performance indicators for NO2 in the 2012 reanalysis. The station sets MACC and EMEP and assimilation 568 
options are as in Table 3. 569 

 570 

  Hourly Daily maximum 

    Corr Bias RMSE Corr Bias RMSE 

MACC No assimilation 0.50 -1.18 9.01 0.53 -3.41 13.58 

 Assimilation, first guess B 0.58 -0.25 8.6 0.61 -0.96 12.78 

 Assimilation, final B 0.6 -0.38 8.04 0.63 -2.35 12.01 

EMEP No assimilation 0.52 0.47 6.19 0.55 -0.02 9.17 

 Assimilation, first guess B 0.55 1.17 6.45 0.59 1.75 9.63 

 Assimilation, final B 0.57 0.99 5.92 0.6 0.74 8.66 
 571 

 572 



 573 

 574 

  

Figure 1. The stations networks used for assimilation and validation for O3 (left) and NO2 (right). The assimilation stations for O3 575 
include rural and suburban stations, for NO2 only rural stations. For validation, only rural stations are shown. The red and blue 576 
colours refer to the MACC validation and EMEP stations subsets. 577 

 578 

 579 
Figure 2. Vertical correlation function for NO2 at 12UTC. 580 



  

  

Figure 3. Yearly mean concentration (µg m
-3

, left-hand panels) on lowest model layer and difference (assimilated – not 581 
assimilated, right-hand panels) due to assimilation of O3 (top panels) and NO2 (bottom panels). 582 
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Figure 4. Diagnosed background (dashed) and observation error (solid lines) standard deviations (µg m
-3

) on rural stations for O3 585 
(left) and NO2 (right). Red lines correspond to the calibration made for June 2011, blue lines correspond to calibration for 586 
December 2011. 587 

  

Figure 5. The 
2

/
o b s

N consistency indicator for hourly analyses of O3 (left) and NO2 (right). The values in blue and green are 588 

shown for the first-guess and final assimilation setups, respectively. Note the different scales for O3 and NO2. 589 
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 591 

Figure 6. Diurnal variation of model bias (µg m
-3

). The first guess assimilation setup is shown in red and the final setup in blue. 592 
The reference run with no assimilation is drawn in green. The values are shown for the rural MACC validation stations and 593 
averaged over each day of year 2012 and over the stations. 594 
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 596 

  

Figure 7. The model bias (µg m
-3

) and correlation for O3 at the MACC validation stations as a function of forecast length (blue 597 
lines). The corresponding indicators the analyses (black) and control run (green) are shown averaged by time of day and 598 
replicated over the forecast window.  599 
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Figure 8. As Figure 7, but for NO2. 601 


