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Abstract 13 

GIS-based deterministic models may be used for landslide susceptibility mapping over large 14 

areas. However, such efforts require specific strategies to (i) keep computing time at an 15 

acceptable level, and (ii) parameterize the geotechnical data. We test and optimize the 16 

performance of the GIS-based, 3D slope stability model r.slope.stability in terms of 17 

computing time and model results. The model was developed as a C- and Python-based raster 18 

module of the open source software GRASS GIS and considers the 3D geometry of the 19 

sliding surface. It calculates the factor of safety (FoS) and the probability of slope failure (Pf) 20 

for a number of randomly selected potential slip surfaces, ellipsoidal or truncated in shape. 21 

Model input consists of a DEM, ranges of geotechnical parameter values derived from 22 

laboratory tests, and a range of possible soil depths estimated in the field. Probability density 23 

functions are exploited to assign Pf to each ellipsoid. The model calculates for each pixel 24 

multiple values of FoS and Pf corresponding to different sliding surfaces. The minimum value 25 

of FoS and the maximum value of Pf for each pixel give an estimate of the landslide 26 

susceptibility in the study area. Optionally, r.slope.stability is able to split the study area into a 27 
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defined number of tiles, allowing parallel processing of the model on the given area. Focusing 1 

on shallow landslides, we show how multi-core processing allows to reduce computing times 2 

by a factor larger than 20 in the study area. We further demonstrate how the number of 3 

random slip surfaces and the sampling of parameters influence the average value of Pf and the 4 

capacity of r.slope.stability to predict the observed patterns of shallow landslides in the 5 

89.5 km² Collazzone area in Umbria, central Italy. 6 

 7 

1 Introduction 8 

1.1 Physically-based landslide susceptibility modelling 9 

Landslide susceptibility is the spatial probability of landslide occurrence, based on local 10 

terrain conditions (Brabb, 1984; Guzzetti et al., 1999). The susceptibility to landslides can be 11 

determined using statistical and physically-based models (Guzzetti et al., 1999; Van Westen, 12 

2000; Guzzetti, 2006; Van Westen et al., 2006). Most commonly, modelling of the spatial 13 

probability of shallow landslides for small catchments relies upon the use of physically-based 14 

(“deterministic”) models (Van Westen et al., 2006). These models build on the limit 15 

equilibrium concept, resulting in a factor of safety FoS (Carson and Kirkby, 1972; Crozier, 16 

1986; Duncan and Wright, 2005) of the failure surface. FoS is given by the dimensionless 17 

ratio between the resisting (stabilizing) forces and the driving (destabilizing) forces. 18 

In combination with a raster GIS, FoS calculations most commonly build on the assumption 19 

of a planar slope of infinite length, with the potential failure surface parallel to the 20 

topographic surface (infinite slope stability model; Van Westen and Terlien, 1996; Burton and 21 

Bathurst, 1998; Xie et al., 2004a; Baum et al., 2008; Godt et al., 2008; Mergili et al., 2014; 22 

Raia et al., 2014). However, the infinite slope stability model is well suited only for shallow 23 

slope stability in frictional materials, and is less appropriate for cohesive materials 24 

(Mergili et al., 2014). It is suitable only for sufficiently large length to depth ratios of 25 

landslide release areas (Griffiths et al., 2011b; Milledge et al., 2012; Tiwari et al., 2014).  26 

To evaluate the stability/instability conditions of slopes susceptible to deep-seated landslides, 27 

the zone above a known, inferred, or hypothetical failure surface is divided into vertical slices 28 

of equal or different sizes. The resisting (stabilizing) forces R and the driving (destabilizing) 29 
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forces T are computed for each slice, and summed up linearly to obtain a single value of FoS 1 

for the entire slope. First applied to 2D cross sections (Duncan and Wright, 2005), this type of 2 

model was extended to 3D topographies and failure surfaces (e.g., Hovland, 1977; Hungr, 3 

1987; Hungr et al., 1989). More details are given in Mergili et al. (2014). Few attempts were 4 

made to develop sliding surface models applicable at the regional scale, coupled to GIS 5 

(Reid et al., 2000; Xie et al., 2003, 2004b, 2004c, 2006; Marchesini et al., 2009; Jia et al., 6 

2012). A recent study of Mergili et al. (2014) indicates that, also for shallow landslides, more 7 

complex slip surface models might perform slightly better in reproducing the observed 8 

landslide areas than the infinite slope stability model. 9 

The broad-scale GIS implementation of sliding surface models faces two major challenges: (i) 10 

the spatial distribution of the geotechnical and geometric parameters is uncertain; and (ii) a 11 

very large number of possible slip surfaces has to be tested using a reasonably fine pixel 12 

spacing, requiring strategies to keep computational times at an acceptable level. 13 

Geotechnical uncertainty is due to inherent spatial and temporal variability of terrain materials 14 

(Hicks and Spencer, 2010; Suchomel and Mašin, 2010; Griffiths et al., 2011a) but also due to 15 

limitations of laboratory analysis (Di Matteo et al, 2013). It can affect also the geometric 16 

uncertainty i.e., the depth and shape of the failure surface. Predefining the failure surface in a 17 

deterministic way most likely leads to an overestimation of FoS or to an underestimation of 18 

the slope failure probability (Griffiths et al., 2011a).  19 

Various probability density functions (PDFs) have been used to describe the uncertainty of 20 

the geotechnical and geometric parameters. Most frequently, log-normal and normal 21 

distributions are assumed but, in some cases, also uniform or exponential functions have been 22 

used (e.g., Raia et al., 2013;  Husein Malkawi et al., 2000; Griffiths et al., 2011a; Wang, 23 

2012; Gorsevski et al., 2006; Gui et al., 2000; El-Ramly et al., 2005; Petrovic, 2008). 24 

A considerable amount of literature has been published on the uncertainty of geotechnical 25 

parameters and slip surface geometry. Recently, Johari et al. (2013) introduced 5 classes of 26 

probabilistic methods that have been used for the analysis of the stability of slopes. He 27 

defined these classes as (i) random sampling (Monte Carlo simulation), (ii) analytic methods, 28 

(iii) approximate methods, (iv) response surface method and (v) stochastic finite element 29 

method (see Johari et al. 2013 and references therein for detailed descriptions of each 30 
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method). Even though a number of researchers have tried to demonstrate that the methods 1 

pertaining to the last 4 classes can perform reasonably well and in a faster and more efficient 2 

way, there is broad agreement that the Monte Carlo approach remains the best method (e.g., 3 

Low, 2007; Husein Malkawi et al., 2000; Wong, 1985, Ishii and Suzuki, 1987; Tan et al., 4 

2013). 5 

Existing examples and practices of exploiting parallel computing in GRASS GIS show 6 

relevant progress in the topic and are worth being considered for a vast number of 7 

applications (Sorokine, 2007; Liu et al., 2009; Alvioli et al., 2013). Such parallel codes are 8 

implemented with a variety of techniques and ideas. Given the design of the present work (C 9 

code wrapped into a GRASS GIS module written in python, see Sect. 2.2) they may act on 10 

three different levels of the overall implementation, namely (i) at the global GIS level, (ii) at 11 

the script level and (iii) at the level of the main code. 12 

At the global GIS level, a few examples of integration of GRASS GIS and other GIS software 13 

tools into Grid, cloud or similar distributed computing environments are known (e.g., 14 

Huang et al., 2011; Aji et al., 2013; Agarwal et al., 2011; Wang et al., 2013). Nevertheless, 15 

the mentioned examples suffer from the problem that they are not of sufficient widespread use 16 

and the underlying implementation is not always reproducible since the corresponding 17 

middleware is not disclosed to the community. In other cases, pursuing such a strategy would 18 

require a higher level expertise on the end user side, preventing potentially interested 19 

researchers from using the code. 20 

On the other hand, GRASS GIS allows the use of script, a list of calls to the numerous 21 

software modules (written in bash or python) to be executed sequentially. Scripting can be 22 

exploited for simple and effective parallelization by properly adopting a strategy which is 23 

usually dictated by the particular problem one is trying to solve (see e.g., GRASS Wiki – 24 

Parallel GRASS jobs).      25 

In the case of parallelization at the main code level, one can in principle choose to work 26 

within message passing interface or OpenMP schemes, known to be extremely effective when 27 

applicable. As a matter of fact, no or very few working examples of such GRASS GIS parallel 28 

modules exist, leaving room for unpredictable inconveniences both at the stage of developing 29 

the code and at run time. 30 
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In the present work, we propose an implementation of a 3D sliding surface model where the 1 

study area is partitioned into overlapping tiles, processed in parallel on a multi-core computer. 2 

For our experiment, we use the model r.slope.stability, a further development of r.rotstab 3 

(Mergili et al., 2014), to demonstrate strategies to optimize model performance in terms of 4 

computing time and of the quality of the model results. r.slope.stability was implemented as a 5 

raster module of the open source software package GRASS GIS (Neteler and Mitasova, 2007; 6 

GRASS Development Team, 2014). GRASS GIS is well suitable for the task due to its open 7 

structure, modular design, and the compatibility with various programming languages. 8 

Further, GRASS GIS is frequently used as the basis for GIS-based models related to mass 9 

movements (Mergili et al., 2012a, b, 2014; Gruber and Mergili, 2013). Our parallel 10 

implementation is performed at the Python level, whereas the core of the model is written in 11 

C. The model code and a user manual can be obtained from the model’s web site 12 

http://www.slopestability.org. 13 

In the following sections, we first introduce the 3D (strictly speaking, 2.5D, as the vertical 14 

dimension is represented by attributes, not by coordinates) slope stability model 15 

r.slope.stability (Sect. 2). We then present the study area and the data used in the experiment 16 

(Sect. 3), and we define the framework for testing the performance of the software in terms of 17 

quality of the model results and computing time (Sect. 4). Next, we present (Sect. 5) and 18 

discuss (Sect. 6) the results before concluding with the key messages of the work (Sect. 7). 19 

2 The r.slope.stability model 20 

2.1 Modelling approach 21 

The r.slope.stability model evaluates the slope stability conditions for a large number of 22 

randomly selected ellipsoidal or truncated slip surfaces (Fig. 1). The ellipsoidal slip surfaces 23 

are defined by the geographic coordinates of the centre, the length of the three half axes ae, be 24 

and ce, the aspect α, the inclination β, and the offset of the ellipsoid centre above the terrain zb. 25 

The ae half axis follows the steepest slope, and ce is aligned perpendicular to the terrain 26 

surface. ae, be and ce are derived from landslide length L, landslide width W, maximum depth 27 

of the bottom of the ellipsoid D, β and zb (see Fig. 1b). Simple pseudo-random numbers, 28 

generated separately for each parameter of each ellipsoid, are used to define the centre 29 

coordinates as well as the values of L, W, D and zb, constrained by user-defined minima and 30 
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maxima for each parameter. Testing a sufficiently large number of ellipsoids ensures a proper 1 

repartition of the ellipsoids over the study area, and the consideration of a large variety of 2 

possible ellipsoid dimensions. The tested slip surfaces correspond well to ideal ellipsoids only 3 

for reasonably small pixels in relation to the ellipsoid size (Mergili et al., 2014). When using 4 

larger pixels, the shapes of the tested slip surfaces represent systems of discrete plane surfaces 5 

strongly depending on the discretization of the pixels. For the modelling of more realistic 6 

shallow failure surfaces, r.slope.stability can use truncated ellipsoids to consider the bottom of 7 

soil, shallow weak layers, or shallow discontinuities bounded by hard bedrock as possible 8 

failure surfaces. As a consequence, more than one slip surface may be associated to each 9 

ellipsoid (Mergili et al., 2014). 10 

To compute FoS, r.slope.stability adopts a modified version of the 3D sliding surface model 11 

of Hovland (1977), revised and extended by Xie et al. (2003, 2004b, 2004c, 2006): 12 
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In Eq. 2, the upper term corresponds to the resisting forces R, and the lower term corresponds 14 

to the driving forces T (see Eq. 1). R and T are summed over all columns C of the slip surface. 15 

c’ (N m-2) is the effective cohesion, A (m²) is the 3D area of the slip surface of the considered 16 

pixel, G' (N) is the weight of the moist soil, βc is the inclination of the slip surface at the 17 

considered column, φ’ is the effective internal friction angle , and βm is the apparent dip of the 18 

slip surface at the considered column in the direction of α. Ns and Ts (N) are the contributions 19 

of the seepage force to the normal force and the shear force. No inter-column forces or 20 

external forces, such as seismic loading, are considered by the model. The geotechnical, 21 

hydraulic, and geometric principles of the FoS calculation are discussed in detail by 22 

Mergili et al. (2014). 23 

Upon completion of the slope stability calculation for all the slip surfaces, each pixel in the 24 

modelling domain is intersected by various slip surfaces, and each slip surface is associated 25 

with a value of FoS. For each pixel, the lowest value of FoS of all the intersecting slip 26 

surfaces is taken as the representative FoS. 27 

Compared to the r.rotstab model (Mergili et al., 2014), r.slope.stability introduces the 28 

following innovations: 29 
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(1) An improved data management strategy to meet the standards of GRASS GIS, including 1 

built-in functions for model validation and graphic presentation. 2 

(2) The ability to fully exploit multi-core computers. 3 

(3) The ability to consider complex systems of geological layers, relevant for the modelling 4 

of deep-seated landslides. 5 

(4) The ability to compute the slope failure probability Pf in addition to FoS, based on the 6 

statistical distribution of c’, φ’ and, for truncated ellipsoids, the truncated depth d. Four 7 

types of PDFs can be used: rectangular, normal, log-normal or exponential (see Sect. 4).  8 

Points (1) and (2) are explained in Sect. 2.2, and point (3) is not exploited in this work. The 9 

rationale of point (4) relies on the high natural variability of the geotechnical and geometric 10 

parameters, resulting in an uncertain definition of the horizontal and vertical distributions of 11 

c’ and φ’ (see Sect. 3). A map of FoS building on data from a single site, or a limited number 12 

of sites, may fail to account for the details of the landscape. To overcome this limitation, we 13 

adopt an approach to compute the slope failure probability Pf. This approach allows 14 

considering the full range of measured values of c’ and φ’. The statistical properties of the 15 

parameters are assumed constant in space (see Sect. 6). A range of values of the truncated 16 

depth d can be considered, which is particularly useful for modelling shallow landslides in 17 

soils of uncertain depth. This approach is implemented in the following three steps: 18 

(1) Computing the arithmetic mean μ, standard deviation σ, minima and maxima of c’, φ’ 19 

and d. The number of statistic samples n of parameter combinations to be considered is 20 

defined by the user. 21 

(2) c’, φ’ and d are varied as a function of the defined minima, maxima and intervals in 22 

order to exploit the full range of possible parameter values. The variation of d builds on 23 

truncating the ellipsoid at various depths. FoS is computed for each combination using 24 

Eq. 2, building the ratio of the sums of the shear resistances and the shear forces over all 25 

columns of the ellipsoid (see Fig. 1). 26 

(3) The slope failure probability Pf for the ellipsoid is computed as a function of the fraction 27 

of parameter combinations where FoS < 1, related to all the tested parameter 28 

combinations: 29 
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where fi = 1 for FoSi < 1, fi = 0 for FoSi ≥ 1, and wi is the weight assigned to the 2 

parameter combination i (see below). The sum of wi over all parameter combinations n is 3 

1. 4 

At the end, the largest value of Pf out of all intersecting slip surfaces is taken as the value 5 

representative for each pixel. 6 

The sample of parameters to be tested has to represent the probability of occurrence of the 7 

parameter combination. In order to explore the influence of choosing different sampling 8 

strategies on the model results, we test three contrasting strategies. Fig. 2 illustrates the 9 

strategies, using a sample size of n = 100 for two normally distributed, arbitrary parameters. 10 

(a) Random sampling of parameter combinations: 100 parameter combinations are randomly 11 

sampled, where the probability of a parameter combination to be sampled directly relates to 12 

the product of the probability densities of the parameter values. (b) Random sampling of 13 

parameters. Here, 10 values of each parameter are randomly sampled, where the probability 14 

of a parameter value to be sampled directly relates to its probability density. All possible pairs 15 

of sampled parameter values are then considered, resulting in 100 tests. (c) Equal density 16 

sampling. Ten values of each parameter are sampled, equally distributed along the cumulative 17 

density function associated to each parameter (see Fig. 2d). This ensures that the distribution 18 

of samples reflects the PDF. All possible pairs of sampled parameter values are then 19 

considered, resulting in a total number of 100 tests. 20 

(a) and (b) represent the two possible ways to use a Monte Carlo approach – the most 21 

established strategy – whilst (c) represents a deterministic approach. As the sample is fixed in 22 

the deterministic approach, it has to be determined only once at the beginning of the entire 23 

computation. wi (see Eq. 3) represents the product of the cumulative density intervals 24 

associated to the values of the combined parameters (see Fig. 2d). This means that the edge 25 

samples are down-weighted as they only represent half of the area under the PDF, compared 26 

to the other samples. For the Monte Carlo approaches, the sample is determined separately for 27 

each ellipsoid tested, and wi = 1 / n. 28 

In the present work, this approach is applied to three (c’, φ’, d) instead of two (c’, φ’) 29 
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parameters. 1 

2.2 Computational implementation 2 

r.slope.stability is a raster module of the open source software package GRASS GIS 6.4 3 

(Neteler and Mitasova, 2007; GRASS Development Team, 2014). The software exploits the 4 

Python programming language for data management, pre-processing and post-processing 5 

tasks. The slope stability model itself (see Sect. 2.1) is implemented as a C code (sub-module 6 

r.slope.stability.main). r.slope.stability also includes a built-in validation and presentation 7 

module. Output maps and plots are produced using R, a free software environment for 8 

statistical computing and graphics (R Core Team, 2014). The logical framework of 9 

r.slope.stability is illustrated in Fig. 3. 10 

The numerical implementation presented in this work extends the applicability of the slope 11 

stability model to large study areas. This requires a very large number of ellipsoids to be 12 

tested. Assuming a test site with an area of As = 100 km², average ellipsoids of length 13 

Lavg = 100 m and width Wavg = 80 m, and an average number of ellipsoids per pixel (the 14 

“density” of ellipsoids) de = 1000, the total number of ellipsoids ne to be tested sums up to 15 

roughly 16 million, 16 

( ) a va v g

s
ee WL

A
dn

⋅⋅
≈

4π .         (4) 17 

The pixel spacing used for the slope stability model has to be small enough to capture the 18 

geometry of the assumed slope failure, which may fall into a very broad range of sizes (see 19 

e.g., Alvioli et al., 2014, and references therein). Given a study area of 100 km² and a pixel 20 

size of 5 m, four million pixels need to be processed. The potentially large number of pixels 21 

in combination with the large number of ellipsoids, and the complex processing of each 22 

ellipsoid, pose challenges in terms of (i) computer memory and (ii) computing time. We 23 

combine two strategies to overcome these computational challenges: 24 

(1) In the C programming environment, raster datasets are commonly held in memory as 25 

arrays. This allows a fast and efficient access to each pixel. If the datasets become too 26 

large, or if too many large arrays are held in memory at the same time, the available 27 

memory may be exceeded, causing the model execution to fail. We use the GRASS GIS 28 

Segment Library (GRASS Development Team, 2014) to avoid this problem. The library 29 
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enables storage and use of very large raster datasets independently from the available 1 

computer memory, however at the expense of computing time. r.slope.stability.main 2 

uses the GRASS Segment Library for data input, preparation, and output. For ellipsoid-3 

specific computations, where a lot of data covering a smaller number of pixels has to be 4 

accessed frequently, it uses arrays by default. In this study, we apply a segment size of 5 

16 × 16 pixels to all computations, maintaining 16 segments in memory. As the most 6 

time-consuming operations of r.slope.stability make only limited use of the GRASS 7 

Segment Library, preliminary studies have shown that, within a certain range, the 8 

computing time displays a weak dependence on changes in those settings. 9 

(2) To reduce the computing time when modelling the slope stability of large areas, 10 

r.slope.stability provides the option to divide the study area into a user-defined number 11 

of tiles processed in parallel, if the code is run on an ordinary multi-processor or multi-12 

core machine (see Fig. 3). In this case, r.slope.stability.main is run separately for each 13 

tile. The final result is obtained by collecting and combining the results for the single 14 

tiles. To ensure a full coverage of the study area, an overlap between the tiles of at least 15 

the maximum ellipsoid dimension is required. Each tile is sent to a free computing core 16 

as soon as one is available, and until all the tiles are processed. This procedure is 17 

implemented in the way that the r.slope.stability.py module produces a batch file for 18 

each tile. The batch file calls the sub-module r.slope.stability.multicore, which is then 19 

used to launch r.slope.stability.main with the tile-specific parameters (see Fig. 3); the 20 

actual parallel processing is performed in the Python part of the module, exploiting the 21 

“Threading” Python library (a higher-level threading interface) and the “Queue” Python 22 

module (a class for managing the “producer-consumer” problem able to block execution 23 

until all the items in the queue have been processed). 24 

We note that neither the use of the GRASS Segment Library nor multi-core processing affect 25 

the model results in terms of FoS or Pf. 26 

For our experiments we use a 48 cores (AMD Opteron, frequency of 2.2 GHz and cache of 27 

512 KB) computer with 140 GB of RAM and running a 12.04 LTS Ubuntu GNU/Linux OS 28 

with the 3.5.0-26-generic kernel image. 29 
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3 Study area and data 1 

We test the r.slope.stability code in the Collazzone area, Umbria, central Italy (Fig. 4). 2 

Covering an area of 89.5 km², this hilly area ranges from 145 m asl along the Tiber River 3 

flood plain, to 634 m asl at Monte di Grutti. Various types of continental sediments, Pliocene 4 

to Pleistocene in age, cover the area. Landslides are frequent and abundant in the Collazzone 5 

area, and a detailed landslide inventory (Fig. 4) is available along with geologic and 6 

morphologic information and maps (Guzzetti et al., 2006a,b, 2009; Ardizzone et al., 2007; 7 

Galli et al., 2008; Rossi et al., 2010; Fiorucci et al., 2011). Intense or prolonged rainfall 8 

periods are the primary natural triggers of landslides in the area (Ardizzone et al., 2013), 9 

followed by rapid snow melt (Cardinali et al., 2000). Recent landslides are most frequent in 10 

cultivated areas, indicating a relationship with agricultural practices. 11 

In the present work we focus on shallow landslides, considering an inventory of 2,381 12 

landslides (Fig. 4) for model evaluation (see Sect. 5). The 5th and 95th percentiles of landslide 13 

length L, width W, and of the L/W ratio for selected shallow landslides are used for 14 

constraining the randomization of possible slip ellipsoids (Table 1; see Sect. 4). As most 15 

landslides in the area are not very mobile, we use the entire landslide areas instead of the 16 

scarps only. 17 

Most commonly, the sliding surface of shallow landslides coincides with the lower boundary 18 

of the soil which, in cultivated areas, we define as the layer disturbed by agricultural 19 

practices. Statistics of soil depth ds in the continental sediments of the Collazzone area were 20 

obtained from a set of 90 measurements, considering the lower boundary of the Cv horizon, 21 

where present. Analysis of the measurements resulted in an arithmetic mean of the soil depth 22 

μ = 0.60 m, with a standard deviation σ = 0.27 m. The minimum soil depth measured in the 23 

area was zero, and the maximum soil depth was 1.22 m. 24 

Figure 4 illustrates that landslides are rare where hard bedrock crops out (hatched areas), and 25 

abundant in the continental sediments (all other areas). In the present work, we consider all 26 

areas with hard bedrock outcrops as unconditionally stable, and concentrate to the areas where 27 

continental sediments crop out. The geotechnical characteristics of the continental sediments 28 

in the study area were estimated using direct shear tests on 13 samples taken from a variety of 29 

lithological conditions (Table 2, see Fig. 4). The variation of geotechnical parameters within 30 
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each class is considerable, partly exceeding the variation between the classes. For this reason, 1 

we decide not to consider separate sets of geotechnical parameters for the different 2 

lithological classes present in the study area. Instead, we explore the statistics of the 3 

parameters for the entire area with continental sediments. The same approach is used for the 4 

parameterization of the soil depth. 5 

In addition to the landslide inventory, soil depths, and the geotechnical data, we use a 5 m × 6 

5 m digital elevation model (DEM) derived by the automatic interpolation of 10 m and 5 m 7 

contour lines, obtained from 1:10,000 scale topographic base maps. 8 

4 Model parameterization 9 

In this work, we consider only shallow slope stability, truncating the ellipsoids at the depth of 10 

the soil. We set the dry specific weight of the soil γd = 15.8 kN/m³ (see Table 2), and the 11 

saturated water content Θs = 40 vol.-%. Within a reasonable range of values, both parameters 12 

are not decisive for the outcome of the slope stability computation. Instead, FoS and Pf are 13 

most sensitive to the effective cohesion c’, the effective angle of internal friction φ’, the depth 14 

of the potential failure surface d and the water status of the soil. We use the following 15 

parameterization for computing Pf (see Eq. 3): 16 

(1) We calculate the arithmetic mean of c’ from field data reported in Table 2. Then, we 17 

assume an exponential PDF to model the variability of c’ (El-Ramly et al., 2005; 18 

Petrovic, 2008). 19 

(2) For φ’, we assume a log-normal PDF (El-Ramly et al., 2005) which parameters (mean 20 

and standard deviation) are derived from field data (see Table 2). 21 

(3) As commonly observed for shallow landslides in the Collazzone area, the maximum slip 22 

surface depth – at which all ellipsoids are truncated – is set to the soil depth. A log-23 

normal PDF is used to model the variability of truncated depth. 24 

(4) We further assume the hydraulically most unfavourable case of fully saturated soil with 25 

slope-parallel seepage. 26 

A separate map of FoS is computed, considering the most probable values (modes) of c’, φ’ 27 

and truncated depth d, deriving those from their respective PDF: c’ = 0 kN/m²; φ’ = 27.3°; 28 
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d = 0.46 m. 1 

Table 2 lists a range of c’ = 0–24.5 kN/m² and φ’ = 18.1–42.4 degree. These values are used 2 

to constrain the variation of the parameters during r.slope.stability runs. For c’ and φ', this 3 

range is justified by the rule-of-thumb values given by Prinz and Strauss (2011) for the 4 

possible range of geotechnical parameters for various soil types: for the continental sediments 5 

in the Collazzone area the relevant ranges would be c’ = 0–25 kN/m² and φ’ = 15–45 degree. 6 

For the soil depth d, the maximum of 1.22 m corresponds reasonably well to the 7 

approximately 1.3 m maximum depth of disturbance by agricultural practices observed in the 8 

Collazzone area (Mergili et al., 2014). Table 3 summarizes the parameters’ minima, maxima, 9 

and assumed statistical distributions used for the computation of Pf. The geotechnical 10 

parameterization is kept constant for all the tests. 11 

Table 4 lists the parameters tested, and the settings applied in our numerical experiments. The 12 

ellipsoid size is constrained according to Table 1. The maximum depth of the bottom of the 13 

ellipsoid is constrained with D = 2.5 m–10 m. Considering all the combinations of the 14 

parameter values listed in Table 4 would result in a very large number of model runs, with 15 

excessive computing times. We therefore divide the task into two parts: 16 

(1) Multi-core processing: influence of multi-core processing on the computing time of 17 

r.slope.stability for the entire Collazzone area (Fig. 4). A few combinations of the 18 

number of tiles t, and the number of processors p given in Table 4 are tested for de = 100 19 

and 2500, and dx = dy = 5 m. 20 

(2) Factor of safety and slope failure probability: influence of de and – in the case of Pf – 21 

sample size n (number of tested values of c’, φ’ and d) and sampling strategy (see Fig. 2) 22 

– on the model results (average value of Pf and correspondence with observed shallow 23 

landslides). Part of this test is performed for a subset of the Collazzone area (see Fig. 4). 24 

All possible values of de and n given in Table 4 are considered. 25 

5 Results 26 

5.1 Test 1: Multi-core processing 27 

The gain in computing time due to parallel processing is most easily summarized by the 28 

speedup Sp: 29 
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where p is the number of processes, T0 is the execution time of the sequential algorithm, Tp is 2 

the execution time of the parallel algorithm with p processes, fs is the sequential fraction, 3 

summarizing the overhead, or irreducible serial part, of the code, and fp is the parallel fraction 4 

(fs + fp = 1). Sp = p or fs = 1 – fp = 0 would indicate a linear (or ideal) speedup. In such a case, 5 

the efficiency Ep 6 

p
p Tp

TE
⋅

= 0

           (6) 7 

would be 1. fs > 0 and Ep < 1 in the case of r.slope.stability due to (i) shared use of the RAM 8 

by multiple cores; (ii) non-optimized sequential use of cores; (iii) operations such as creating 9 

tiles and combining the results from each single tile. Further, the total area to be processed 10 

increases with t due to the overlap between the tiles. 11 

We now show the patterns of fs, Sp and Ep when using r.slope.stability to compute FoS for the 12 

entire Collazzone area at a pixel size of 5 m x 5 m, constraining the ellipsoid size according to 13 

Table 1. Fig. 5 clearly illustrates that the values of fs, Sp and Ep depend on t, p and de. Fig. 5a–14 

c illustrate fs, Sp and Ep for de = 100. The graphs clearly reflect high values of fs for high 15 

values of t. Consequently, speedup and efficiency are highest with relatively low values of t 16 

(42). fs is much lower with de = 2,500, resulting in optimum values of Sp and Ep using a large 17 

number of tiles (see Fig. 5d–f). These observations are easily explained by the fact that 18 

speedup and efficiency are turned down with large values of t by the high cost of combining 19 

the results from the different tiles into one set of raster maps for the entire study area. The 20 

relative impact of this effect – and therefore also fs – decreases with increasing values of de. 21 

With de = 2,500, the optimum speedup and efficiency are observed with 182 tiles. Sp does not 22 

follow a linear increase with p, reflected in decreasing values of Ep with p (see Fig. 5 c, and 23 

f). This phenomenon is most likely explained by the shared use of the RAM by multiple 24 

cores. 25 

There is, of course, no gain in terms of speedup at p > t (not shown in Fig. 5). However, for 26 

the lower values of t, speedup becomes constant with increasing p already at p < t. This 27 

observation reflects a non-optimized sequential use of cores. Particularly with low values of p 28 
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or t, and varying numbers of null cells among the tiles, it likely happens that one core is 1 

assigned much more work load than another. This type of effects, illustrated by the irregular 2 

patterns of Ep at lower values of t, is smoothed out at high values of t, where load balance is 3 

roughly done automatically. This phenomenon also results in increasing values of Sp for t > p. 4 

For de = 2,500, the absolute values of Tp reduce from 110,000 seconds for t = 1 and p = 1 to 5 

4,700 seconds with t = 182 and p = 42. However, the effects of considering other study areas, 6 

different pixel sizes or different ellipsoid dimensions on Tp have to be noted. In principle, we 7 

expect a near-linear dependency of Tp on the number of pixels to be processed. However, 8 

increasing the pixel size results in an under-proportional gain of Tp. Areas of null cells due to 9 

the irregular shape of the study area cause computations on ellipsoids or entire tiles to break 10 

in an early stage of processing. This leads to a relative increase of operations not depending 11 

on the number of pixels. 12 

We further expect that the computing time does not depend on the dimensions of the 13 

ellipsoids: a given value of de means that all pixels of the study area have to be considered for 14 

approx. de times (see Eq. 4). If larger ellipsoid dimensions are chosen, fewer ellipsoids need 15 

to be processed. However, larger ellipsoids have a higher chance to be cancelled as they touch 16 

areas with null cells rather than smaller ellipsoids. As a consequence, Tp decreases with larger 17 

ellipsoids. In the specific setting considered here, doubling the constraints of L and W given in 18 

Table 3, resulting in a four-fold size of an average ellipsoid, decreases the computing time by 19 

11% whilst executing the model with halved values of L and W, leading to a quarter of the 20 

original average ellipsoid size, increases the computing time by 21%. 21 

5.2 Factor of safety and slope failure probability 22 

Next, we compute FoS for shallow landslides in the study area with values of de = 100, 500, 23 

2500, and 12,500. We evaluate the modelling results against observed shallow landslide areas 24 

(see Fig. 4). Larger values of de result in a more conservative prediction in terms of FoS – if 25 

more ellipsoids are tested, the chance is higher for each pixel that at least one slip surface is 26 

associated with FoS < 1 (Fig. 6). All tests result in a rather successful than unsuccessful 27 

prediction, even though the false prediction rates are significant. There is no optimum value 28 

for de, per se. Strictly speaking, de ~ ∞ would be needed – as the rate of positive predictions 29 

may increase also at very high values of de, there will always be a trade-off between the 30 
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computing time and the quality of the results. However, we note that, in this example, the 1 

overall quality of the prediction does not increase with larger values of de (i.e., the polygon 2 

does not significantly shift towards a successful prediction), indicating that most areas with 3 

FoS < 1 were detected at earlier stages of the computation, and the additional areas with 4 

FoS < 1, detected at later stages of the computation, consist equally in true positive and false 5 

positive predictions. For the purpose of the present study, we consider de = 2,500 a 6 

sufficiently reasonable approximation. 7 

We compute slope failure probability for a subset of the Collazzone area (see Fig. 4) with five 8 

different sample sizes, applying each of the sampling strategies (a), (b) and (c) introduced in 9 

Fig. 2. c’, φ’ and d are sampled. We assume that the accuracy of the results increases with 10 

increasing values of de and n. However, so does the computing time. Therefore, we attempt to 11 

identify those values where the results converge – i.e., the ideal values in terms of accuracy 12 

and time efficiency. We take the average value of Pf over the study area as reference. Fig. 7a 13 

illustrates how the average value of Pf increases with increasing de. It further indicates the 14 

sample size n needed for convergence i.e., the value of n where the average Pf remains 15 

constant when n is further increased. Equal density sampling (c) performs best whilst random 16 

sampling of parameters (b) is not a valid alternative: with a very high number of tested 17 

ellipsoids, it is likely that at least one of the random samples is biased towards low values of 18 

c’ and φ’. Therefore, on the logarithmic scale used in Fig. 7a, average Pf steadily increases 19 

with increasing de. This effect is less pronounced for larger values of n, but it could only be 20 

diminished by testing excessively large samples i.e., at the cost of a very long computing 21 

time. Sampling strategy (a), with randomly sampled parameter combinations, is less 22 

susceptible to these effects as the samples are better distributed within their range (see Fig. 2). 23 

Still, with the assumptions tested, the curves converge at a higher average of Pf and flatten out 24 

more slowly than the curves for equal density sampling. Further, strategy (a) is highly 25 

inefficient. With similar values of de and n, the computing time is roughly 20–25 times longer 26 

than for strategy (c). The reason for this phenomenon is that the number of truncated depths to 27 

be tested is n with strategy (a) and the cubic root of n with the other strategies. Hence, with 28 

(a), the geometry of a much larger number of slip surfaces has to be built than for (b) and (c), 29 

which is costly in terms of computing time, given the current implementation of 30 

r.slope.stability. 31 



 

 

17 

Independently of the sampling strategy, the average slope failure probability decreases with 1 

the number of samples. For the strategies (a) and (b), this is a result of the lower tendency of 2 

outliers with larger sample sizes, which is more pronounced with (b) than with (a). With 3 

sampling strategy (c), it is a result of the fact that an exponential PDF is assumed for c’. With 4 

lower sample sizes, the relative weight of the minimum value c’ = 0 kN/m² is higher than with 5 

higher values of n, resulting in higher values of Pf. 6 

Among all the tests shown, we expect (c) equal density sampling with n = 15³ to perform best 7 

in terms of accuracy. All results shown in Fig. 7b and Fig. 8 therefore build on sampling 8 

strategy (c). With de = 12,500, n = 15³ yields an average Pf = 0.094. n = 12³ and de = 12,500 9 

yields an average Pf = 0.095. In a certain range, reducing n and de affects moderately the 10 

model results, but improves significantly the computational efficiency. Setting n = 9³ and 11 

de = 12,500 gives an average Pf = 0.097, saving 75% of the computing time, and setting n = 9³ 12 

and de = 2,500 gives an average Pf = 0.090, saving 95% of the computing time. Given the 13 

level of uncertainty in the geotechnical parameterization, reducing the values of n and de can 14 

be a strategy for the computation of very large areas, keeping the computing time within 15 

reasonable limits. Even though we do not recommend using values of n < 9³ and de < 2,500, 16 

Fig. 7b shows that, within a certain range, changes of n and de do not affect significantly the 17 

capability of the model to reproduce the patterns of observed landslide / non-landslide areas in 18 

terms of the area under the ROC curve AROC. This indicates that changes of the results for 19 

larger values of n and de affect equally areas with low and high values of Pf. 20 

Figure 8a illustrates the modelled distribution of FoS in the study area, and Fig. 8b portrays 21 

the spatial patterns of Pf. Table 5 summarizes the evaluation outcomes and computation times 22 

for FoS and Pf for all the parameter combinations considered in the Figs. 6 and 7b. 23 

6 Discussion 24 

Exploiting multi-processor computing environments enables the execution of complex slope 25 

stability models for reasonably large areas within an acceptable amount of time. This strategy 26 

allows testing large numbers of slip surfaces and looping over many combinations of 27 

geotechnical parameterizations. With equal density sampling of the parameters, a sample size 28 

of n ~ 15³ is sufficient to provide convergence of the probability of failure, Pf, results. These 29 

findings are valid for shallow landslides where three parameters (c’, φ’ and d) are sampled. 30 
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With the reduction of computing time, the remaining key challenge for broad-scale slope 1 

stability modelling consists in the parameterization of the input data. The geotechnical 2 

parameterization used is considered reasonable for testing model performance. However, it 3 

calls for improvements with regard to more reliable landslide susceptibility and hazard maps. 4 

Earlier studies in the Collazzone areas used statistical models to estimate landslide 5 

susceptibility. The analysis of the statistical model validation performances shows higher 6 

values of AROC (0.71–0.75, depending on the method, Rossi et al., 2010), whilst the 7 

susceptibility index introduced by Mergili et al. (2014) yields comparable values (0.68–0.70). 8 

Even though these results are not fully comparable due to different inventories and reference 9 

units used, they might indicate that the geotechnical parameters have to be better understood 10 

in order to make physically-based models superior to statistical ones. 11 

In the present work, we assume constant statistical properties (μ, σ, minimum, maximum) of 12 

the geotechnical parameters c’ and φ’ and of the soil depth d over the relevant part of the 13 

study area. Even though, in this specific case, we can well justify this generalization, it may 14 

be too simplistic in other cases. The ability to better constrain the geotechnical parameters 15 

would possibly also allow to reduce the size of the statistical sample and therefore the 16 

computing time. 17 

We further assume independent statistical properties of c’ and φ’. However, this is a rough 18 

simplification as these parameters – representing the offset and inclination of the linear 19 

regression in the Mohr-Coulomb Diagram – are often negatively correlated. A future 20 

challenge will consist in finding an appropriate way to build PDFs considering the 21 

interdependency of the two parameters. 22 

A further limitation consists in the assumption of fully saturated soil with slope-parallel 23 

seepage. The computed values of Pf are therefore only valid for this worst-case-assumption in 24 

terms of slope hydraulics. Partial saturation is more difficult to treat from a geotechnical point 25 

of view and shall be the subject of future studies. 26 

Finally, the PDFs that were used in the study may be improved. Whilst the density functions 27 

for d and φ’ are reasonably well supported by the empirical observations, the exponential PDF 28 

used for c’ was derived for soils with a high content of sand and silt (El-Ramly et al., 2005; 29 

Petrovic, 2008). For clay, a log-normal function seems to better describe the observations. A 30 
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joint, two-variable PDF depending on both c’ and φ’ may by hypothesized. Such a function is 1 

expected to yield significantly less conservative results. Given a sufficiently large dataset, we 2 

suggest to use the PDF for φ’ and couple the function for c’ to the tested value of φ’ (see 3 

Sect. 2). An appropriate geotechnical parameterization requires a detailed knowledge of the 4 

area under investigation. As an example, if deep-seated slope stability is considered, this 5 

understanding should include the strike and dip directions of bedding surfaces (Santangelo 6 

et al., 2014). 7 

7 Conclusions 8 

We have described and tested r.slope.stability, a multi-core numerical GRASS GIS 9 

implementation of a 3D slope stability model for large areas, highlighting (i) the gain in 10 

computing time, and the consequent applicability to large areas, and (ii) the possibility of 11 

modelling the spatial probability of slope failures, based on the natural variability of 12 

geotechnical characteristics of the soils. Using commonly available multi-core hardware, the 13 

use of parallel processing may reduce running times by a factor larger than 20. Our parallel 14 

implementation is transparent to the r.slope.stability user in GRASS GIS, since it is based on 15 

the automatic partitioning of the study area in tiles, processed in parallel. The modelling 16 

results are presented for the entire area, and validated against observed landslides. 17 

We conclude that parallel processing enables the application of complex slope stability 18 

models for large areas in a reasonable amount of time. A remaining challenge for this type of 19 

task is the geotechnical parameterization of the area under investigation. In the present paper, 20 

we have demonstrated a simple approach to compute slope failure probabilities by using 21 

PDFs of c’, φ’, and d. This approach is considered sufficient for the purpose of the present 22 

work. The model results reasonably correspond to the distribution of observed shallow 23 

landslides in the Collazzone area. However, we have identified a considerable potential for 24 

improvement with regard to (i) regionalization of the parameters, (ii) consideration of the 25 

interrelation of c’ and φ’ and (iii) optimization of the PDFs used. 26 
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Table 1. 5th and 95th percentiles of length L, width W, and the L/W ratio for selected shallow 1 

landslides mapped in the Collazzone area. L is measured in the direction of the steepest slope. 2 

Percentile L (m) W (m) L/W 

5th 16 15 0.38 

95th 129 125 2.85 
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Table 2. Geotechnical key parameters derived for 13 samples from the Collazzone study area 1 

(see Fig. 4 for location of the sites). γd = dry specific weight (kN/m³), c' = effective cohesion 2 

(kN/m²), φ' = effective angle of internal friction (degree). Arithmetic mean μ and standard 3 

deviation σ are listed. *For the exponential distribution applied to cohesion, the standard 4 

deviation is set to the mean instead of using the value given in the table. 5 

ID γd c' φ ' USDA class 

1 17.5 0.0 40.1 no data 

2 15.3 0.0 33.6 no data 

3 14.7 0.0 31.8 sand 

4 15.8 24.5 25.9 sandy loam 

5 16.8 2.8 30.1 loam 

6 no data 4.5 35.1 loamy sand 

7 17.6 0.0 35.4 no data 

8 16.2 11.0 21.3 silty clay 

9 15.8 5.7 26.5 silty clay 

10 15.9 13.1 42.4 silty clay 

11 15.6 6.7 27.6 clay loam 

12 14.3 8.3 18.1 no data 

13 14.6 13.2 20.5 silty clay 

μ 15.8 6.9 29.9  

σ 1.0 7.2* 7.5  
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Table 3. Constraints and assumed statistical distribution of geotechnical parameters and soil 1 

depth for the generation of a slope failure probability Pf map. c' = effective cohesion (kN/m²), 2 

φ' = effective angle of internal friction (degree), d = soil depth (m).  3 

 c' φ ' d 

Minimum 0.0 18.1 0.10 

Maximum 24.5 42.4 1.22 

Assumed distribution Exponential Log-normal Log-normal 
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Table 4. Parameters tested for their influence on model performance. Subscripts x and y refer 1 

to the x and y directions. 2 

Parameter Description Tested values 

Pixel size dx = dy (m) Length of one side of one pixel, 

all pixels have square shapes 

5, 10, 20, 40 

“Density of ellipsoids” de Average number of tested 

ellipsoids touching each pixel 

100, 500, 2,500, 12,500 

Ellipsoid size Constraints for the randomization 

of ellipsoid dimensions 

See text for details 

Sample size n (number of 

tested values of c’, φ’ and d) 

Number of samples used for 

computing Pf 

3³ (27), 6³ (216), 9³ 

(729), 12³ (1728), 15³ 

(3375) 

Sampling strategy Strategy for parameter sampling 

for Pf 

Fig. 2a, b, c 

Number of tiles t Number of tiles the study area is 

divided into (tx x t,y) 

1, 2 (1 × 2), 6 (2 × 3), 

12 (3 × 4), 20 (4 × 5), 

30 (5 × 6), 42 (6 × 7), 56 

(7 × 8), 72 (8 × 9), 90 

(9 × 10), 110 (10 × 11), 

132 (11 × 12), 156 

(12 × 13), 182, 

(13 × 14), 210 (14 × 15), 

240 (15 × 16) 

Number of processors p Number of processors to be used 

for the computation 

1, 2 – 42 in steps of 2 

 3 
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Table 5. Characterization of model results and computing times. Prediction rates: TP = true 1 

positive, TN = true negative, FP = false positive, FN = false negative.  2 

Description TP TN FP FN Tp (s) 

FoS, de = 100 4.1% 63.9% 27.5% 4.5% 1,300 

FoS, de = 500 4.5% 60.7% 30.7% 4.1% 1,900 

FoS, de = 2,500 4.8% 58.6% 32.9% 3.8% 4,900 

FoS, de = 12,500 5.0% 57.1% 34.4% 3.6% 20,000 

Description AROC Pf ≥ 0.1 Pf ≥ 0.2 Pf ≥ 0.3 Tp (s) 

Pf, n = 3³, de = 500 0.684 19.1% 6.2% 2.2% 2,600 

Pf, n = 3³, de = 2,500 0.682 19.8% 6.9% 2.8% 8,800 

Pf, n = 9³, de = 500 0.695 8.9% 3.7% 1.2% 13,700 

Pf, n = 9³, de = 2,500 0.694 9.5% 4.3% 1.7% 63,700 

3 
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 1 

Figure 1. Typical ellipsoid used as slip surface in r.slope.stability. (a) Ground plot. (b) 2 

Longitudinal section. (c) Forces acting at each column. The factor of safety is computed for 3 

the ellipsoid bottom and (as shown in the figure) for the combination of the ellipsoid bottom 4 

and each intersecting layer bottom. The geotechnical, hydraulic and geometric details are 5 

outlined by Mergili et al. (2014). 6 
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 1 

Figure 2. Sampling of parameters for computing slope failure probability. We test the 2 

sampling strategies (a), (b), and (c). For clarity, sampling of two normally distributed 3 

arbitrary parameters is shown. In reality, we sample three parameters (c’, φ’ and truncated 4 

depth) according to different types of statistical distributions (see Sect. 4 for details). (d) 5 

illustrates how the cumulative density function is employed for equal density sampling. 6 
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 1 

Figure 3. Logical framework of r.slope.stability. Plain text denotes steps directly implemented 2 

in the module r.slope.stability, and text in boxes denotes sub-modules. Italic letters indicate 3 

the programming environment used for the modules. 4 
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 1 

Figure 4. Collazzone study area, Umbria, central Italy. IDs of sample points correspond to IDs 2 

listed in Table 2. 3 
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 1 

Figure 5. The serial fraction of code, fs, speedup, Sp, and efficiency, Ep, plotted against the 2 

number of processes p for different values of the number of tiles t and average number of 3 

ellipsoids per pixel, de. See text for further explanations. 4 
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 1 

Figure 6. Influence of de on the performance of r.slope.stability in terms of prediction rates, 2 

building on FoS. Pixels representing observed shallow landslide areas (observed positives, 3 

OP) with a modelled value of FoS < 1 represent true positive predictions (TP). OP pixels with 4 

FoS ≥ 1 represent false negative predictions (FN). Pixels not representing observed shallow 5 

landslide areas (observed negatives, ON) with a modelled value of FoS < 1 represent false 6 

positive predictions (FP). Finally, ON pixels with FoS ≥ 1 represent true negative predictions 7 

(TN). 8 
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 1 

Figure 7. Slope failure probability computed with r.slope.stability. (a) Evolution of Pf for a 2 

subset of the Collazzone study area (see Fig. 4) with increasing value of de. The outcomes of 3 

the sampling strategies (a), (b) and (c) introduced in Fig. 2 are compared. (b) ROC plot 4 

relating Pf obtained with equal density sampling (strategy c) to the observed shallow landslide 5 

areas in the entire Collazzone study area for different values of n and de. 6 
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 1 

Figure 8. Spatial patterns of shallow slope stability in the Collazzone study area, computed 2 

with r.slope.stability applying equal density sampling (strategy c). (a) FoS for de = 2,500. (b) 3 

Pf for de = 2,500 and n = 9³. 4 
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