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Abstract

Global gridded maps (a.k.a. Level 3 products) of Earth system properties observed
by satellites are central to understanding the spatiotemporal variability of these prop-
erties. They also typically serve either as inputs into biogeochemical models, or as
independent data for evaluating such models. Spatial binning is a common method5

for generating contiguous maps, but this approach results in a loss of information, es-
pecially when the measurement noise is low relative to the degree of spatiotemporal
variability. Such “binned” fields typically also lack a quantitative measure of uncertainty.

Geostatistical mapping has previously been shown to make higher spatiotemporal
resolution maps possible, and also provides a measure of the uncertainty associated10

with the gridded products. This study proposes a flexible moving window block kriging
method that can be used as a tool for creating high spatiotemporal resolution maps
from satellite data. It relies only on the assumption that the observed physical quan-
tity exhibits spatial correlation that can be inferred from the observations. The method
has several innovations relative to previously applied methods: (1) it provides flexi-15

bility in the spatial resolution of the contiguous maps (2) it is applicable for physical
quantities with varying spatiotemporal coverage (i.e., density of measurements) by uti-
lizing a more general and versatile data sampling approach, and (3) it provides rigor-
ous assessments of the uncertainty associated with the gridded products. The method
is demonstrated by creating Level 3 products from observations of column-integrated20

carbon dioxide (XCO2) from the GOSAT satellite, and solar induced fluorescence (SIF)
from the GOME-2 instrument.

1 Introduction

Satellite measurements of an Earth surface and atmospheric quantities have enor-
mous benefits for Earth system science due to their global coverage and near real-25

time availability. They provide key constraints for developing models representing our
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understanding of the functioning of the Earth system. However, due to orbit geometries
and geophysical limitations, a uniform or contiguous global coverage of these obser-
vations in space and/or time is not possible. This necessitates creation of contiguous
maps for obtaining measurements at unsampled times and locations for understanding
overall patterns, driving biogeochemical or physical models, and/or validating model5

predictions. Due to their widespread utility, global gridded maps are often part of the
standard suite of satellite data products, and are often termed “Level 3” data (e.g.
NASA, 2014).

In the case of column-integrated carbon dioxide (XCO2) and solar induced fluores-
cence (SIF) observations, the two illustrative applications that will be used in this work,10

gridded products have been used, for example, to evaluate the representation of wa-
ter stress in models of photosynthesis (Lee et al., 2013), to assess the performance
of a terrestrial biosphere model in representing global CO2 distributions (Hammerling
et al., 2012b), and to constrain a model to assess the relative roles of variations in
atmospheric transport and carbon exchange in explaining atmospheric CO2 variability15

over the Amazon (Parazoo et al., 2013). The generation of Level 3 products is also
often part of the standard processing sequence of observations (e.g. GOSAT Project,
2014; CO2 DAAD, 2014).

Presently, “binning” is the most widespread method for creating such contiguous
maps of satellite data. Such binning typically involves computing the mean of the ob-20

servations that fall within a grid-cell (aka “bin”) of an appropriate geographic size and
time window (for applications of binning in the context of satellite retrievals of atmo-
spheric concentration of carbon dioxide see; Kulawik et al., 2010; Crevoisier et al.,
2009). However this simplicity comes with some limitations such as: (1) the mean is
computed from a different number of measurements across grid-cells, (2) the inabil-25

ity to take into account any redundancy among nearby observations in computing the
mean (3) the inability to characterize or quantify the estimation uncertainty at the grid
scale, and (4) the lack of gap filling properties for grid-cells that may contain no obser-
vations for a given time window.

5383

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/5381/2014/gmdd-7-5381-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/5381/2014/gmdd-7-5381-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 5381–5405, 2014

Mapping of satellite
Earth observations

using moving
window block kriging

J. M. Tadić et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

The methodological deficiencies of binning can be overcome by using kriging, a geo-
statistical interpolation approach that takes into account the spatial and/or temporal
correlation in the observations. Kriging is a best linear unbiased estimator, with the
various implementations of ordinary kriging relying on the assumption of intrinsic sta-
tionarity. More typically, a covariance function is used to represent spatial correlation,5

and second-order stationarity is assumed, i.e. that the mean is constant and the co-
variance is only a function of the distance between observations (for kriging see; Chiles
and Delfiner, 2012). Because the mean and covariance of Earth system observations
vary substantially, the kriging tools need to be modified to reflect this nonstationarity.
One such method is moving window kriging, in which kriging is performed locally and10

the covariance parameters are determined locally within pre-specified spatial and/or
temporal subdomains (e.g. Haas, 1990). The ability of the moving window kriging to re-
flect local uncertainty has been emphasized to be the most important advantage over
kriging methods relying on the global covariance models (e.g. Harris et al., 2010; Wal-
ter et al., 2001; Van Tooren and Haas, 1993). Due to this advantage, the moving win-15

dow kriging has been previously used for creating contiguous maps of satellite remote
sensing observations of column-averaged CO2 (XCO2) (e.g. Hammerling et al., 2012a,
b).

This work proposes a further development of the moving window kriging method
for application with satellite observations of Earth system properties. Whereas Ham-20

merling et al. (2012a, b) used ordinary kriging as the basis for obtaining estimates at
the spatial support (i.e. resolution or spatial footprint size) of observations, we pro-
pose a moving window block kriging method that can yield estimates at any resolution
equal to or greater than that of the observations (for discussion on change of sup-
port in the context of remote sensing see; Atkinson and Curran, 1995; Collins and25

Woodcock, 1999; Braverman, 2011). The main advantages of the proposed tools are
that they make it possible to: (1) select the spatial support/resolution of the mapped
quantities, (2) handle large volumes of data by developing subsampling technique that
can make moving window block kriging computationally feasible for large number of
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satellite measurements, and (3) provide rigorous assessments of the uncertainty as-
sociated with the contiguous maps.

2 Methods

The proposed approach builds on the work of Hammerling et al. (2012a, b), with the
goal of increasing the applicability and the flexibility of the nonstationary local kriging5

approach presented therein. The main innovations are twofold. The first is to allow
flexibility in the spatial support of the estimates (i.e. the spatial resolution at which the
mapping is conducted). The second is to provide a general approach for subsampling
available observations in a manner that (i) captures the local correlation structure in
the vicinity of each estimation grid cell and (ii) makes the statistical mapping approach10

computationally feasible in the case of applications with a very large number of obser-
vations.

The mapping proceeds in three steps for each grid cell and each estimation time on
a regular grid, in order to create a contiguous map of the satellite observations. These
steps are outlined in the subsections below, and include subsampling of the observa-15

tions, characterization of the local spatial covariance structure, and interpolation at the
desired spatial resolution. In Sect. 3, the new mapping approach is applied to two pro-
totypical examples of satellite observations, namely observations of column-integrated
concentration of atmospheric CO2 concentrations (XCO2) and observations of surface
solar induced fluorescence (SIF), measured by the GOSAT satellite, and by the GOME20

instrument, respectively.

2.1 Subsampling of observations

The goal of the subsampling strategy is to preferentially sample observations in the
vicinity of a given estimation grid cell, such that both the characterization of the lo-
cal spatial covariance structure, and the ultimate mapped estimate and its associated25
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uncertainty, are representative of local variability. This is accomplished by selecting the
total number of observations to be used, N, where N is selected to be large enough
to yield a representative sample, but small enough to make mapping computationally
feasible on a given computational platform. For the applications presented in Sect. 3,
N = 500 and N = 1000 for the XCO2 and SIF mapping, respectively.5

N observations are selected for each estimation grid cell by assigning a relative se-
lection probability to each observation based on that observation’s separation distance
from the centroid of the grid cell. This selection probability could be application-specific,
but for the applications presented here we selected:

Ps ∝ 1/h2 (1)10

where Ps is the relative probability of a given observation being selected, and h is the
great circle distance between the location xi of an observation and the centroid xj of
the estimation gridcell:

h(xi ,xj ) = rcos−1(sinϕi sinϕj + cosϕi cosϕj cos(λi − λj )) (2)15

where r is the radius of the Earth and ϕi and λi are the latitude and longitude of location
xi .

The form of Ps in Eq. (1) ensures that a comparable number of observations is se-
lected within any equal-area concentric band around an estimation grid cell, thereby20

also ensuring that observations that are at close distances to one another are preferen-
tially close to the estimation location. This is a desirable feature because observations
that are close to one another define the shape of the variogram at short separation
distances (Sect. 2.2), and the variogram should reflect variability in the vicinity of the
estimation grid cell. Different forms of Ps could also be used, for example if more/fewer25

observations along a given direction were desirable in order to better represent ex-
pected correlations along a given direction.

In previous work (Alkhaled et al., 2008; Hammerling et al., 2012a, b), a fixed
application-specific window size was instead defined within which all available obser-
vations were used, together with a user-defined fraction of observations outside of the30
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window. The window size was based in part on expected scales of variability in the
satellite observations. The updated approach presented here reduces the number of
user-selected parameters, and explicitly provides a mechanism for ensuring the com-
putational feasibility of mapping in the case of very large datasets, such as the SIF
example examined here.5

2.2 Characterization of spatial covariance

The characterization of the local covariance structure of the observations around each
estimation grid cell, based on the subsampled observations, proceeds as described in
Hammerling et al. (2012a, Sect. 2.1), except that (1) all possible pairs of observations
are included in the formulation of the raw variogram, and the nugget-effect variance,10

representative of the retrieval/measurement errors, is not spatially uniform. The reader
is referred to that earlier publication for additional details.

Briefly, for each estimation grid cell, a raw variogram is calculated based on the
subsampled observations:

γ (h) =
1
2

[y (xi )− y(xj )]
2

(3)15

where γ is the raw variogram value for a given pair of observations y(xi ) and y (xj ), and
h is the great circle distance between the locations (xi and xj ) of these observations,
as defined in Eq. (2).

A parametric function, the theoretical variogram, is fitted to the raw variogram using20

non-linear least squares. For the prototypical applications presented here, an expo-
nential variogram function with a nugget effect was used, because it yields a valid
covariance function on a sphere (Huang et al., 2011), provided a good match to the
known physical characteristics of the observations, and fit the observed variability well:

γ (h) =

{
0, for h = 0

σ2(1−exp
(
−h

l

)
+σ2

nug, for h > 0
(4)25
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where σ2 and l are the variance and correlation length of the quantity being mapped,
and σ2

nug is the nugget variance, typically representative of measurement and retrieval
errors in the case of satellite observations. The nugget component can be either pre-
scribed (as in the XCO2 example in Sect. 3) or estimated (as in the SIF example in
Sect. 3), depending on the availability of information about measurement and retrieval5

errors.
The variogram parameters can be used to define a corresponding local spatial co-

variance structure for the mapped quantity (XCO2 or SIF, in the prototypical examples
presented here). For the variogram function in Eq. (4) this becomes:

q (h) = σ2 exp
(
−h
l

)
(5)10

The nugget effect is correspondingly used to define the covariance structure of the
measurement and retrieval errors:

R (h) =

{
σ2

nug, for h = 0

0, for h > 0
(6)

15

2.3 Mapping using moving window block kriging

Ordinary kriging, a minimum variance linear unbiased mapping method for spatial data,
was used in Hammerling et al. (2012a, b) to create contiguous maps of XCO2. In this
approach, the spatial support (i.e. footprint) of the estimates corresponds to that of the
observations. Although the mapping can be performed at any spatial interval (e.g. once20

per 1◦ ×1◦ grid cell), the estimates remain representative of the variability at the scale
of the observations.

Here, we instead using block kriging (e.g. Webster, 2000), an approach that yields
estimates that represent an average within a specified area. This makes it possible to
disassociate the native footprint of the observations from the resolution of the mapped25
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product, thereby making it possible to create contiguous maps at any desired spa-
tial resolution equivalent to or greater than the size of the observation footprints. As
with moving window ordinary kriging, block kriging provides an optimal estimate of the
quantity being mapped (XCO2 and SIF, in the prototypical examples presented here)
for each estimation location, based on the subsampled observations (Sect. 2.1) and5

the local covariance structure (Sect. 2.2), together with a rigorous assessment of the
uncertainty associated with the estimate.

The linear system of equations that is solved to obtain the N weights λ assigned to
the subsampled observations for a given estimation grid cell is:[

Q+R 1
1T 0

][
λ

−ν

]
=
[

qA
1

]
(7)10

where Q is a N×N covariance matrix among the N observations with individual entries
as defined in Eq. (5), R is an N ×N diagonal measurement and retrieval error covari-
ance matrix among the N observations as defined in Eq. (6), 1 is an N×1 unity vector,
T denotes the vector transpose operation, and qA is an N ×1 vector of the spatial co-15

variances between the estimation grid cell and the N observation locations, defined
as:

qA,i =
1
n

n∑
j=1

q
(
hi ,j

)
(8)

where qA,i is the covariance between the grid cell and observation i , and q
(
hi ,j

)
is20

defined as in Eq. (5) based on the distance hi ,j between observation i and n regularly-
spaced locations within the grid cell. In general, the larger the n the better the repre-
sentation of the area (i.e. grid cell) to observation covariance. For practical purposes,
in the applications presented here, n is defined based on the relative footprint of the
observations compared to that of the estimation grid cells.25

The system in Eq. (7) is solved for λ and the Lagrange multiplier ν. These parameters
are then used to define the estimate (ẑ) and estimation uncertainty variance (σ2

ẑ ) for
5389
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the grid cell as:

ẑ = λTy (9)

σ2
ẑ
= σAA − λTqA + ν (10)

where y is the N ×1 vector of subsampled observations, and σAA is the variance of5

the mapped quantity (XCO2 or SIF, in the prototypical examples presented here) at the
resolution of the estimation grid cell, defined as:

σAA =
1

n2

n∑
j=1

n∑
k=1

q
(
hj ,k

)
(11)

where q
(
hj ,k

)
is defined as in Eq. (5) based on the distance hj ,k between any combi-10

nation of the n regularly spaced locations within the grid cell defined previously.

3 Example applications

The mapping approach described in Sect. 2 is demonstrated using two prototypical
examples of satellite observations: (1) observations of column-integrated concentra-
tions of atmospheric CO2 (XCO2) from the GOSAT satellite, and (2) observations of15

surface solar induced fluorescence (SIF) from the GOME-2 instrument. These appli-
cations differ in the spatial footprint (i.e. support) of the observations (nadir footprint of
about 10.5 km diameter at sea level (Kuze et al., 2009), and 40km×80km (Joiner et al.,
2013), respectively), the volume of available data (approximately 2×103 and 2×105

observations per week, respectively), the time scales of variability, and the degree of20

spatial variability and nonstationary in the observed quantity.

3.1 Global land XCO2 fields observed by GOSAT

The Japanese Greenhouse Gasses Observing SATellite (GOSAT) (e.g., Kuze et al.,
2009) was launched in 2009 and is the first satellite dedicated to global greenhouse gas
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monitoring, including CO2 and CH4. GOSAT flies in a polar, sun-synchronous orbit with
a 3 day repeat cycle and an approximately 13:00 LT overpass time. GOSAT XCO2 data
are being used to examine a number of questions in carbon cycle science, including
comparing observed and modeled XCO2 fields (Hammerling et al., 2012b), quantifying
sources and sinks of CO2 (e.g., Deng et al., 2014; Basu et al., 2013, 2014; Chevallier5

et al., 2014; Takagi et al., 2014), detecting perturbations in the carbon cycle (Guerlet
et al., 2013) and interpreting seasonal changes in the carbon balance (Parazoo et al.,
2013).

Measurements of XCO2 (a.k.a. “Level 2” data) are derived using a number of retrieval
algorithms, among them NASA’s Atmospheric CO2 Observations from Space (ACOS)10

algorithm (e.g., O’Dell et al., 2012; Crisp et al., 2012). Filtered and bias-corrected data
from the most up to date version of this algorithm (ACOS v3.4 release 3) are used
here to demonstrate the mapping approach presented in Sect. 2. Approximately 900
successful retrievals are available per three-day repeat cycle, with the majority of ob-
servations being over land. These data have substantial retrieval uncertainties (e.g.,15

O’Dell et al., 2012) and include large gaps (e.g., Fig. 1). These features prevent the ap-
plication of simple spatial and temporal binning techniques for generating XCO2 maps
at spatiotemporal scales that are directly useful for addressing existing uncertainties in
carbon cycle science.

The approach described in Sect. 2 is used to create continuous maps, a.k.a. Level20

3 data, based on XCO2 observations obtained over two repeat cycles, namely 2–7 Au-
gust 2009 (Fig. 1). A six-day period is used to balance the competing goals of including
as many observations as possible, while avoiding time periods over which the XCO2
field itself would change substantially (see discussion in Hammerling et al., 2012a).
Maps of XCO2 and associated uncertainties are created at native (Fig. 2a and b) and25

1◦ ×1◦ (Fig. 2c and d) resolutions, in order to examine and demonstrate the impact
of resolution on mapping uncertainty. Targeting different resolutions is made possi-
ble by the use of the moving window block kriging approach presented here. N = 500
subsampled observations are used per estimation location. These maps can also be
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compared to those presented for an equivalent period in Hammerling (2012b, Auxiliary
Figs. 2 and 3), with methodological differences as described in Sect. 2, and repre-
sentative of the estimated XCO2 at the native resolution of sounding footprints (nadir
footprint ∼ 10.5 km diameter) with estimates at 1◦ ×1.25◦ intervals.

Results show that, because of the information content of the sparse observations,5

the estimated fields (Fig. 2a and c) are similar at native and 1◦ ×1◦, but that estimat-
ing directly at the coarser 1◦ ×1◦ resolution yields lower uncertainties as observations
become more informative for spatially-averaged quantities (Fig. 3). The largest reduc-
tion in uncertainty occurs in the high northern latitudes, an area identified in a previous
study as one of the most weakly constrained regions (Hammerling et al., 2012b).10

3.2 Global land solar-induced fluorescence fields observed by GOME-2

A series of recent studies has demonstrated the potential use of satellite observations
of solar-induced fluorescence (SIF) for understanding and quantifying photosynthetic
CO2 uptake at large scales, using data from the GOSAT satellite (e.g., Joiner et al.,
2011, 2012; Frankenberg et al., 2011, 2012; Guanter et al., 2012; Lee et al., 2013),15

the SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHar-
tographY) instrument on board ENVISAT (e.g., Joiner et al., 2012), the GOME-2 (The
Global Ozone Monitoring Experiment-2) instrument on board METOP-A (e.g., Joiner
et al., 2013), and the Orbiting Carbon Observatory (OCO-2) (e.g., Frankenberg et al.,
2014). Satellite measurements of fluorescence can be used with land surface models20

to improve the representation of GPP and to understand GPP response to environ-
mental stress (e.g., Lee et al., 2013). Among available datasets, GOME-2 provides the
highest spatial and temporal density of data.

Until now, studies of SIF have relied on spatially and temporally binned average
observations at monthly or coarser timescales and 1◦ or coarser spatial scales (e.g.,25

Fig. 4). The coarse spatial and temporal scales were used to overcome, through the
use of simple averaging, spatial gaps in observations and the relatively high uncertain-
ties associated with individual retrievals. One of the limitations of such an approach
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is that it inherently discards information about SIF variability at fine spatial and tem-
poral scales, which is important for understanding the impact of transient effects such
as changes in phenology and water availability (Lee et al., 2013), and developing bio-
spheric models that can represent these effects correctly. A second limitation is the
lack of a direct and robust quantification of the uncertainty associated with the mapped5

products, complicating uncertainty analysis in subsequent applications using the data.
As a second demonstration of the mapping approach proposed here, we therefore

use SIF GOME-2 V.14 data (Joiner et al., 2013) with the approach described in Sect. 2
to create contiguous maps of SIF at a single spatial resolution (1◦ ×1◦), but at multiple
temporal resolutions. The examination of shorter time periods was selected in order10

to more directly respond to scientific opportunities in the use of SIF data, and to com-
plement the spatial-resolution-focused demonstration of Sect. 3.1. Maps of SIF and
associated uncertainties are created at one, six, and 31 day temporal resolutions in Au-
gust 2009 (Fig. 5), where August 2009 was chosen for convenience to correspond with
the XCO2 application presented in Sect. 3.1. N = 1000 subsampled observations are15

used per estimation location. The monthly map can also be compared to the monthly
binned map presented in Fig. 4.

Results show that the proposed approach can leverage nearby observations to cre-
ate realistic contiguous maps even at one-day resolution (Fig. 5a and b), although,
as expected, uncertainties are reduced (Fig. 5d) at coarse temporal resolutions, just20

as was seen for coarser spatial resolutions in the XCO2 application. In fact, the re-
gions with little or no SIF data for the one-day application are clearly visible as high-
uncertainty bands in Fig. 5b, and a user could explicitly decide whether such uncer-
tainties are acceptable, or too high for a given scientific application. When maps are
intended to be used to drive and/or validate biogeochemical models, therefore, having25

the ability to choose a desirable balance between temporal resolution and mapping
uncertainty presents a considerable advantage.

Ideally, the temporal resolution at which maps are obtained is as fine as possible
so as to capture the dynamics of the observed physical quantity, in this case SIF. The
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choice of optimal temporal resolution thus, in general, defines a trade-off between hav-
ing sufficient observations for adequate spatial coverage, while minimizing the impact
of temporal variability in the quantity being examined (Hammerling et al., 2012a). From
Fig. 6 it is apparent that the presented approach makes it possible to obtain maps at
temporal resolutions much higher than the monthly (or coarser) resolution of current5

binned products. As expected, the more abundant observations available at 6 day tem-
poral resolution (Fig. 6d) lead to decreased estimation uncertainty compared to 1 day
resolution (Fig. 6b). However, at monthly temporal resolutions (Fig. 6e and f) the tem-
poral variability in SIF over a 31 day period increases the discrepancy among (spatially)
nearby observations, leading to increased uncertainties at coarse time scales. This ef-10

fect is apparent in comparing Fig. 6d and f, as uncertainty increases over, for example,
eastern South America. A similar trade-off was also noted in selecting mapping time-
scales for XCO2 (Hammerling et al., 2012a), and further speaks to the advantage of
being able to select a mapping timescale based on scientific need and uncertainty
tolerance, as is possible with the approach presented here.15

4 Conclusions

In this study we propose a flexible moving window block kriging method that can be
used as a tool for creating high spatiotemporal resolution maps from satellite data. The
method can be applied in a standalone mode, or as a part of broader satellite data pro-
cessing package. The resulting maps can also be incorporated into biogeochemical20

and physical models of the Earth system. The approach relies only on the assump-
tion that the observed physical quantity exhibits spatial correlation that can be inferred
from the observations. The method has several advantages over previously applied
methods: (1) it allows for the creation of contiguous maps at varying spatio-temporal
resolution, (2) it can be applied for creating contiguous maps for physical quantities25

with varying spatio-temporal coverage (aka density of measurements), (3) it provides
assessments of the uncertainty of interpolated values. The approach emphasizes the
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use of local covariance structures in predictions by an arbitrary selection of the sam-
pling function, limiting the radius around estimation locations and adjusting the number
of sampled points to a fraction of available measurements. The approach also limits
the number of partially-subjective ancillary parameters required, making it applicable
across a variety of applications.5

The method was demonstrated by creating Level 3 products from two datasets with
considerably different spatio-temporal properties. While the GOSAT XCO2 observa-
tions were relatively sparse, the GOME-2 SIF data had a much higher spatio-temporal
density. In the case of GOSAT XCO2, the effects of making predictions at different spa-
tial supports (i.e. resolutions) were analyzed, showing that a decrease in the resolution10

slightly affects estimates (“smoothing” effect) and more significantly estimation uncer-
tainties (reduced uncertainties at coarser resolution). In the case of GOME-2 SIF, the
focus was kept on the effect of different aggregation time periods by creating maps at
higher temporal resolutions. This example demonstrated the importance of being able
to select a mapping timescale based on scientific need and uncertainty tolerance as15

optimal temporal resolution results from a trade-off between having sufficient observa-
tions for adequate spatial coverage, while minimizing the impact of temporal variability
in the quantity being examined. In this it was shown that even daily Level 3 maps could
be successfully created by the proposed method. The results clearly indicate that con-
tiguous maps can be created at different spatial resolutions for time periods shorter20

than achievable by binning/averaging, and that the developed method represents a vi-
able alternative to currently existing interpolation methods for various satellite data.
The resulting maps can be used to support the development of improved models of the
Earth system, both by serving as driver data and validation data for such models.
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 216 

Figure 1. ACOS v3.4 release 3 XCO2 Level 2 data (“Observations”) for August 2-7, 2009. 217 

The approach described in Section 2 is used to create continuous maps, a.k.a. Level 3 data, based on 218 

XCO2 observations obtained over two repeat cycles, namely August 2-7, 2009 (Figure 1). A six-day 219 

period is used to balance the competing goals of including as many observations as possible, while 220 

avoiding time periods over which the XCO2 field itself would change substantially (see discussion in 221 

Hammerling et al. 2012a).  Maps of XCO2 and associated uncertainties are created at native (Figure 2a,b) 222 

and 1° × 1° (Figure 2c,d) resolutions, in order to examine and demonstrate the impact of resolution on 223 

mapping uncertainty.  Targeting different resolutions is made possible by the use of the moving window 224 

block kriging approach presented here. N=500 subsampled observations are used per estimation location.  225 

These maps can also be compared to those presented for an equivalent period in Hammerling (2012b, 226 

Auxiliary Figures 2 and 3), with methodological differences as described in Section 2, and representative 227 

of the estimated XCO2 at the native resolution of sounding footprints (nadir footprint ~10.5 km diameter) 228 

with estimates at 1° × 1.25° intervals. 229 

Results show that, because of the information content of the sparse observations, the estimated fields 230 

(Figure 2 a,c) are similar at native and 1° × 1°, but that estimating directly at the coarser 1° × 1° 231 

resolution yields lower uncertainties as observations become more informative for spatially-averaged 232 

quantities (Figure 3).  The largest reduction in uncertainty occurs in the high Northern latitudes, an area 233 

identified in a previous study as one of the most weakly constrained regions (Hammerling et al., 2012b).  234 

 235 

 236 

Figure 2. XCO2 Level 3 maps (a,c) and associated uncertainties (b,d) based on ACOS 3.4 release-3 237 

retrievals (“Estimates”) for August 2-7, 2009 at (a,b) native resolution and (c,d) 1° × 1° resolution, 238 

obtained using the proposed mapping approach. 239 

Figure 1. ACOS v3.4 release 3 XCO2 Level 2 data (“Observations”) for 2–7 August 2009.
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Figure 2. XCO2 Level 3 maps (a,c) and associated uncertainties (b,d) based on ACOS 3.4 release-3 237 

retrievals (“Estimates”) for August 2-7, 2009 at (a,b) native resolution and (c,d) 1° × 1° resolution, 238 

obtained using the proposed mapping approach. 239 

Figure 2. XCO2 Level 3 maps (a, c) and associated uncertainties (b, d) based on ACOS 3.4
release-3 retrievals (“Estimates”) for 2–7 August 2009 at (a, b) native resolution and (c, d)
1◦ ×1◦ resolution, obtained using the proposed mapping approach.
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 240 

 241 

Figure 3. Reduction in estimation uncertainties between the native estimation resolution and the 1
o
x1

o
 242 

estimation resolution for XCO2 Level 3 maps based on ACOS 3.4 release-3 retrievals for August 2-7, 243 

2009.  244 

 245 

3.2 Global land solar-induced fluorescence fields observed by GOME-2 246 

A series of recent studies has demonstrated the potential use of satellite observations of solar-induced 247 

fluorescence (SIF) for understanding and quantifying photosynthetic CO2 uptake at large scales, using 248 

data from the GOSAT satellite (e.g., Joiner et al., 2011; Frankenberg et al., 2011; Guanter et al., 2012, 249 

Joiner et al., 2012; Lee et al., 2013; Frankenberg et al., 2012), the SCIAMACHY (SCanning Imaging 250 

Absorption spectroMeter for Atmospheric CHartographY) instrument on board ENVISAT (e.g., Joiner et 251 

al., 2012), the GOME-2 (The Global Ozone Monitoring Experiment–2) instrument on board METOP-A 252 

(e.g., Joiner et al., 2013), and the Orbiting Carbon Observatory (OCO-2) (e.g., Frankenberg et al., 2014). 253 

Satellite measurements of fluorescence can be used with land surface models to improve the 254 

representation of GPP and to understand GPP response to environmental stress (e.g., Lee et al., 2013). 255 

Among available datasets, GOME-2 provides the highest spatial and temporal density of data. 256 

Until now, studies of SIF have relied on spatially and temporally binned average observations at monthly 257 

or coarser timescales and 1
o
 or coarser spatial scales (e.g., Figure 4). The coarse spatial and temporal 258 

scales were used to overcome, through the use of simple averaging, spatial gaps in observations and the 259 

relatively high uncertainties associated with individual retrievals. One of the limitations of such an 260 

approach is that it inherently discards information about SIF variability at fine spatial and temporal scales, 261 

which is important for understanding the impact of transient effects such as changes in phenology and 262 

water availability (Lee et al., 2013), and developing biospheric models that can represent these effects 263 

correctly. A second limitation is the lack of a direct and robust quantification of the uncertainty associated 264 

with the mapped products, complicating uncertainty analysis in subsequent applications using the data. 265 

As a second demonstration of the mapping approach proposed here, we therefore use SIF GOME-2 V.14 266 

data (Joiner et al., 2013) with the approach described in Section 2 to create contiguous maps of SIF at a 267 

single spatial resolution (1
o
 × 1

o
), but at multiple temporal resolutions.  The examination of shorter time 268 

periods was selected in order to more directly respond to scientific opportunities in the use of SIF data, 269 

and to complement the spatial-resolution-focused demonstration of Section 3.1. Maps of SIF and 270 

associated uncertainties are created at one, six, and 31 day temporal resolutions in August, 2009 (Figure 271 

5), where August 2009 was chosen for convenience to correspond with the XCO2 application presented in 272 

Section 3.1. N=1000 subsampled observations are used per estimation location. The monthly map can 273 

also be compared to the monthly binned map presented in Figure 4. 274 

Results show that the proposed approach can leverage nearby observations to create realistic contiguous 275 

maps even at one-day resolution (Figure 5a,b), although, as expected, uncertainties are reduced (Figure 276 

5d) at coarse temporal resolutions, just as was seen for coarser spatial resolutions in the XCO2 277 

application.  In fact, the regions with little or no SIF data for the one-day application are clearly visible as 278 

Figure 3. Reduction in estimation uncertainties between the native estimation resolution and
the 1◦×1◦ estimation resolution for XCO2 Level 3 maps based on ACOS 3.4 release-3 retrievals
for 2–7 August 2009.
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 8 

high-uncertainty bands in Figure 5b, and a user could explicitly decide whether such uncertainties are 279 

acceptable, or too high for a given scientific application. When maps are intended to be used to drive 280 

and/or validate biogeochemical models, therefore, having the ability to choose a desirable balance 281 

between temporal resolution and mapping uncertainty presents a considerable advantage.   282 

Ideally, the temporal resolution at which maps are obtained is as fine as possible so as to capture the 283 

dynamics of the observed physical quantity, in this case SIF. The choice of optimal temporal resolution 284 

thus, in general, defines a trade-off between having sufficient observations for adequate spatial coverage, 285 

while minimizing the impact of temporal variability in the quantity being examined (Hammerling et al., 286 

2012a). From Figure 6 it is apparent that the presented approach makes it possible to obtain maps at 287 

temporal resolutions much higher than the monthly (or coarser) resolution of current binned products. As 288 

expected, the more abundant observations available at 6-day temporal resolution (Figure 6d) lead to 289 

decreased estimation uncertainty compared to 1-day resolution (Figure 6b). However, at monthly 290 

temporal resolutions (Figure 6e,f) the temporal variability in SIF over a 31-day period increases the 291 

discrepancy among (spatially) nearby observations, leading to increased uncertainties at coarse time 292 

scales.  This effect is apparent in comparing Figures 6d and 6f, as uncertainty increases over, for example, 293 

eastern South America.  A similar trade-off was also noted in selecting mapping time-scales for XCO2 294 

(Hammerling et al. 2012a), and further speaks to the advantage of being able to select a mapping 295 

timescale based on scientific need and uncertainty tolerance, as is possible with the approach presented 296 

here. 297 

 298 

 299 

Figure 4. Monthly-averaged binned map of GOME-2 SIF data for August 1-31, 2009 (mW/m
2
/sr/nm). 300 

 301 

 302 

 303 

Figure 4. Monthly-averaged binned map of GOME-2 SIF data for 1–31 August 2009
(mW m2 sr−1 nm−1).
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Figure 5. Maps of global SIF (mW m2 sr−1 nm−1) (a, c, e) and associated estimation uncertain-
ties expressed as standard deviations (b, d, f), for 1 August 2009 (a, b), 2–7 August 2009 (c, d)
and 1–31 August 2009 (e, f) obtained using GOME-2 observations and the presented mapping
approach at 1◦ ×1◦ spatial resolution.
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