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Abstract. Global gridded maps (a.k.a. Level 3 products) of Earth system properties observed by satellites 7 
are central to understanding the spatiotemporal variability of these properties.  They also typically serve 8 
either as inputs into biogeochemical models, or as independent data for evaluating such models. Spatial 9 
binning is a common method for generating contiguous maps, but this approach results in a loss of 10 
information, especially when the measurement noise is low relative to the degree of spatiotemporal 11 
variability. Such “binned” fields typically also lack a quantitative measure of uncertainty.  12 

Geostatistical mapping has previously been shown to make higher spatiotemporal resolution maps 13 
possible, and also provides a measure uncertainty associated with the gridded products. This study 14 
proposes a flexible moving window block kriging method that can be used as a tool for creating high 15 
spatiotemporal resolution maps from satellite data. It relies only on the assumption that the observed 16 
physical quantity exhibits spatial correlation that can be inferred from the observations. The method has 17 
several innovations relative to previously applied methods: 1) it provides flexibility in the spatial 18 
resolution of the contiguous maps 2) it is applicable for physical quantities with varying spatiotemporal 19 
coverage (i.e., density of measurements) by utilizing a more general and versatile data sampling approach, 20 
and 3) it provides rigorous assessments of the uncertainty associated with the gridded products. The 21 
method is demonstrated by creating Level 3 products from observations of column-integrated carbon 22 
dioxide (XCO2) from the GOSAT satellite, and solar induced fluorescence (SIF) from the GOME-2 23 
instrument.   24 

1. Introduction 25 

Satellite measurements of a Earth surface and atmospheric quantities have enormous benefits for Earth 26 
system science due to their global coverage and near real-time availability.  They provide key constraints 27 
for developing models representing our understanding of the functioning of the Earth system.  However, 28 
due to orbit geometries and geophysical limitations, a uniform or contiguous global coverage of these 29 
observations in space and/or time is not possible. This necessitates creation of contiguous maps for 30 
obtaining measurements at unsampled times and locations for understanding overall patterns, driving 31 
biogeochemical or physical models, and/or validating model predictions.  Due to their widespread utility, 32 
global gridded maps are often part of the standard suite of satellite data products, and are often termed 33 
“Level 3” data (e.g. NASA, 2014).  34 

In the case of column-integrated carbon dioxide (XCO2) and solar induced fluorescence (SIF) 35 
observations, the two illustrative applications that will be used in this work, gridded products have been 36 
used, for example, to evaluate the representation of water stress in models of photosynthesis (Lee et al. 37 
2013), to assess the performance of a terrestrial biosphere model in representing global CO2 distributions 38 
(Hammerling et al. 2012b), and to constrain a model to assess the relative roles of variations in 39 
atmospheric transport and carbon exchange in explaining atmospheric CO2 variability over the Amazon 40 
(Parazoo et al. 2013).  The generation of Level 3 products is also often part of the standard processing 41 
sequence of observations (e.g. GOSAT Project, 2014; CO2 DAAD, 2014).  42 

Presently, “binning” is the most widespread method for creating such contiguous maps of satellite data. 43 
Such binning typically involves computing the mean of the observations that fall within a grid-cell (aka 44 
“bin”) of an appropriate geographic size and time window (for applications of binning in the context of 45 
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satellite retrievals of atmospheric concentration of carbon dioxide see; Kulawik et al., 2010; Crevoisier et 46 
al., 2009). However this simplicity comes with some limitations such as: (1) the mean is computed from a 47 
different number of measurements across grid-cells, (2) the inability to take into account any redundancy 48 
among nearby observations in computing the mean, and (3) the lack of gap filling properties for grid-cells 49 
that may contain no observations for a given time window.  50 

The methodological deficiencies of binning can be overcome by using kriging, a geostatistical 51 
interpolation approach that takes into account the spatial and/or temporal correlation in the observations. 52 
Kriging is a best linear unbiased estimator, with the various implementations of ordinary kriging relying 53 
on the assumption of intrinsic stationarity.  More typically, a covariance function is used to represent 54 
spatial correlation, and second-order stationarity is assumed, i.e. that the mean is constant and the 55 
covariance is only a function of the distance between observations (for kriging see; Chiles and Delfiner, 56 
2012). Because the mean and covariance of Earth system observations vary substantially, the kriging tools 57 
need to be modified to reflect this nonstationarity. One such method is moving window kriging, in which 58 
kriging is performed locally and the covariance parameters are determined locally within pre-specified 59 
spatial and/or temporal subdomains (e.g. Haas 1990). The ability of the moving window kriging to reflect 60 
local uncertainty has been emphasized to be the most important advantage over kriging methods relying 61 
on the global covariance models (e.g. Harris et al., 2010; Walter et al., 2001; Van Tooren and Haas, 62 
1993). Due to this advantage, the moving window kriging has been previously used for creating 63 
contiguous maps of satellite remote sensing observations of column-averaged CO2 (XCO2) (e.g. 64 
Hammerling et al. 2012a and 2012b).  65 

This work proposes a further development of the moving window kriging method for application with 66 
satellite observations of Earth system properties. Whereas Hammerling et al. (2012a,b) used ordinary 67 
kriging as the basis for obtaining estimates at the spatial support (i.e. resolution or spatial footprint size) 68 
of observations, we propose a moving window block kriging method that can yield estimates at any 69 
resolution equal to or greater than that of the observations (for discussion on change of support in the 70 
context of remote sensing see; Atkinson and Curran, 1995, Collins and Woodcock, 1999; Braverman 71 
2011). The main advantages of the proposed tools are that they make it possible to: (1) select the spatial 72 
support/resolution of the mapped quantities, (2) handle large volumes of data by developing subsampling 73 
technique that can make moving window block kriging computationally feasible for large number of 74 
satellite measurements, and (3) provide rigorous assessments of the uncertainty associated with the 75 
contiguous maps. 76 

2. Methods 77 

The proposed approach builds on the work of Hammerling et al. (2012a,b), with the goal of increasing the 78 
applicability and the flexibility of the nonstationary local kriging approach presented therein.  The main 79 
innovations are twofold.  The first is to allow flexibility in the spatial support of the estimates (i.e. the 80 
spatial resolution at which the mapping is conducted).  The second is to provide a general approach for 81 
subsampling available observations in a manner that (i) captures the local correlation structure in the 82 
vicinity of each estimation grid cell and (ii) makes the statistical mapping approach computationally 83 
feasible in the case of applications with a very large number of observations. 84 

The mapping proceeds in three steps for each grid cell and each estimation time on a regular grid, in order 85 
to create a contiguous map of the satellite observations. These steps are outlined in the subsections below, 86 
and include subsampling of the observations, characterization of the local spatial covariance structure, 87 
and interpolation at the desired spatial resolution. In Section 3, the new mapping approach is applied to 88 
two prototypical examples of satellite observations, namely observations of column-integrated 89 
concentration of atmospheric CO2 concentrations (XCO2) and observations of surface solar induced 90 
fluorescence (SIF), measured by the GOSAT satellite, and by the GOME instrument, respectively.  91 
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2.1 Subsampling of observations 92 

The goal of the subsampling strategy is to preferentially sample observations in the vicinity of a given 93 
estimation grid cell, such that both the characterization of the local spatial covariance structure, and the 94 
ultimate mapped estimate and its associated uncertainty, are representative of local variability.  This is 95 
accomplished by selecting the total number of observations to be used, N, where N is selected to be large 96 
enough to yield a representative sample, but small enough to make mapping computationally feasible on a 97 
given computational platform.  For the applications presented in Section 3, N=500 and N=1000 for the 98 
XCO2 and SIF mapping, respectively.   99 

N observations are selected for each estimation grid cell by assigning a relative selection probability to 100 
each observation based on that observation’s separation distance from the centroid of the grid cell.  This 101 
selection probability could be application-specific, but for the applications presented here we selected:  102 

𝑃! ∝ 1/ℎ!      (1) 103 

where 𝑃! is the relative probability of a given observation being selected, and ℎ is the great circle distance 104 
between the location xi of an observation and the centroid xj of the estimation gridcell: 105 

ℎ 𝑥! , 𝑥! = 𝑟𝑐𝑜𝑠!!(sin𝜑! sin𝜑! + cos𝜑! cos𝜑! cos(𝜆! − 𝜆!))   (2) 106 

where 𝑟 is the radius of the Earth and φi and λi are the latitude and longitude of location xi.   107 

The form of Ps in eqn. 1 ensures that a comparable number of observations is selected within any equal-108 
area concentric band around an estimation grid cell, thereby also ensuring that observations that are at 109 
close distances to one another are preferentially close to the estimation location. This is a desirable feature 110 
because observations that are close to one another define the shape of the variogram at short separation 111 
distances (Section 2.2), and the variogram should reflect variability in the vicinity of the estimation grid 112 
cell.  Different forms of Ps could also be used, for example if more / fewer observations along a given 113 
direction were desirable in order to better represent expected correlations along a given direction. 114 

In previous work (Alkhaled et al. 2008; Hammerling et al. 2012a,b), a fixed application-specific window 115 
size was instead defined within which all available observations were used, together with a user-defined 116 
fraction of observations outside of the window. The window size was based in part on expected scales of 117 
variability in the satellite observations.  The updated approach presented here reduces the number of user-118 
selected parameters, and explicitly provides a mechanism for ensuring the computational feasibility of 119 
mapping in the case of very large datasets, such as the SIF example examined here. 120 

2.2 Characterization of Spatial Covariance  121 

The characterization of the local covariance structure of the observations around each estimation grid cell, 122 
based on the subsampled observations, proceeds as described in Hammerling et al. (2012a, Section 2.1), 123 
except that (1) all possible pairs of observations are included in the formulation of the raw variogram, and 124 
the nugget-effect variance, representative of the retrieval / measurement errors, is not spatially uniform.  125 
The reader is referred to that earlier publication for additional details. 126 

Briefly, for each estimation grid cell, a raw variogram is calculated based on the subsampled 127 
observations:  128 

𝛾 ℎ = !
!
[𝑦 𝑥! − 𝑦(𝑥!)]!        (3) 129 

where 𝛾 is the raw variogram value for a given pair of observations y(xi) and y(xj), and  ℎ is the great circle 130 
distance between the locations (𝑥! and 𝑥!) of these observations, as defined in eqn. 2.  131 

A parametric function, the theoretical variogram, is fitted to the raw variogram using non-linear least 132 
squares.  For the prototypical applications presented here, an exponential variogram function with a 133 
nugget effect was used, because it yields a valid covariance function on a sphere (Huang et al., 2011), 134 
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provided a good match to the known physical characteristics of the observations, and fit the observed 135 
variability well:  136 

𝛾 ℎ =
0, 𝑓𝑜𝑟  ℎ = 0

𝜎!(1 − exp − !
!
+ 𝜎!"#! , 𝑓𝑜𝑟  ℎ > 0     (4) 137 

where σ2 and 𝑙 are the variance and correlation length of the quantity being mapped, and σ2
nug is the 138 

nugget variance, typically representative of measurement and retrieval errors in the case of satellite 139 
observations.  The nugget component can be either prescribed (as in the XCO2 example in Section 3) or 140 
estimated (as in the SIF example in Section 3), depending on the availability of information about 141 
measurement and retrieval errors. 142 

The variogram parameters can be used to define a corresponding local spatial covariance structure for the 143 
mapped quantity (XCO2 or SIF, in the prototypical examples presented here).  For the variogram function 144 
in eqn. 4 this becomes:  145 

𝑞 ℎ = 𝜎!exp   − !
!

         (5) 146 

The nugget effect is correspondingly used to define the covariance structure of the measurement and 147 
retrieval errors:  148 

𝑅 ℎ = 𝜎!"#! , 𝑓𝑜𝑟  ℎ = 0
0, 𝑓𝑜𝑟  ℎ > 0

         (6) 149 

2.3 Mapping using moving window block kriging 150 

Ordinary kriging, a minimum variance linear unbiased mapping method for spatial data, was used in 151 
Hammerling et al. (2012a,b) to create contiguous maps of XCO2.  In this approach, the spatial support 152 
(i.e. footprint) of the estimates corresponds to that of the observations.  Although the mapping can be 153 
performed at any spatial interval (e.g. once per 1o×1o grid cell), the estimates remain representative of the 154 
variability at the scale of the observations.   155 

Here, we instead using block kriging (e.g. Webster, 2000), an approach that yields estimates that represent 156 
an average within a specified area.  This makes it possible to disassociate the native footprint of the 157 
observations from the resolution of the mapped product, thereby making it possible to create contiguous 158 
maps at any desired spatial resolution equivalent to or greater than the size of the observation footprints.  159 
As with moving window ordinary kriging, block kriging provides an optimal estimate of the quantity 160 
being mapped (XCO2 and SIF, in the prototypical examples presented here) for each estimation location, 161 
based on the subsampled observations (Section 2.1) and the local covariance structure (Section 2.2), 162 
together with a rigorous assessment of the uncertainty associated with the estimate. 163 

The linear system of equations that is solved to obtain the N weights λ assigned to the subsampled 164 
observations for a given estimation grid cell is:  165 

𝐐 + 𝐑 𝟏
𝟏! 0

𝛌
−𝜈 = 𝐪𝐀

1      (7) 166 

where Q is a N×N covariance matrix among the N observations with individual entries as defined in eqn. 167 
5, R is an N×N diagonal measurement and retrieval error covariance matrix among the N observations as 168 
defined in eqn. 6, 1 is an N×1 unity vector, T denotes the vector transpose operation, and qA is an N×1 169 
vector of the spatial covariances between the estimation grid cell and the N observation locations, defined 170 
as: 171 

𝑞!,! =
!
!

𝑞 ℎ!,!!
!!!      (8) 172 
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where 𝑞!,! is the covariance between the grid cell and observation i, and 𝑞 ℎ!,!  is defined as in eqn. 5 173 
based on the distance ℎ!,! between observation i and n regularly-spaced locations within the grid cell.  In 174 
general, the larger the n the better the representation of the area (i.e. grid cell) to observation covariance.  175 
For practical purposes, in the applications presented here, n is defined based on the relative footprint of 176 
the observations compared to that of the estimation grid cells.  177 

The system in eqn. 7 is solved for λ and the Lagrange multiplier 𝜈. These parameters are then used to 178 
define the estimate (ẑ) and estimation uncertainty variance (σ2

ẑ) for the grid cell as:  179 

ẑ= λTy       (9) 180 

σ2
ẑ = σAA - λT qA + ν      (10) 181 

where y is the N×1 vector of subsampled observations, and σAA is the variance of the mapped quantity 182 
(XCO2 or SIF, in the prototypical examples presented here) at the resolution of the estimation grid cell, 183 
defined as:  184 

𝜎!! =
!
!!

𝑞 ℎ!,!!
!!!

!
!!!      (11) 185 

where 𝑞 ℎ!,!  is defined as in eqn. 5 based on the distance ℎ!,! between any combination of the n 186 
regularly spaced locations within the grid cell defined previously. 187 

3. Example applications 188 

The mapping approach described in Section 2 is demonstrated using two prototypical examples of 189 
satellite observations: 1) observations of column-integrated concentrations of atmospheric CO2 (XCO2) 190 
from the GOSAT satellite, and 2) observations of surface solar induced fluorescence (SIF) from the 191 
GOME-2 instrument. These applications differ in the spatial footprint (i.e. support) of the observations 192 
(nadir footprint of about 10.5 km diameter at sea level (Kuze et al., 2009), and 40 km × 80 km (Joiner et 193 
al, 2013), respectively), the volume of available data (approximately 2×103 and 2×105 observations per 194 
week, respectively), the time scales of variability, and the degree of spatial variability and nonstationary 195 
in the observed quantity. 196 

3.1 Global land XCO2 fields observed by GOSAT 197 

The Japanese Greenhouse Gasses Observing SATellite (GOSAT) (e.g., Kuze et al., 2009) was launched 198 
in 2009 and is the first satellite dedicated to global greenhouse gas monitoring, including CO2 and CH4.  199 
GOSAT flies in a polar, sun-synchronous orbit with a 3-day repeat cycle and an approximately 13:00 200 
local time overpass time.  GOSAT XCO2 data are being used to examine a number of questions in carbon 201 
cycle science, including comparing observed and modeled XCO2 fields (Hammerling et al., 2012b), 202 
quantifying sources and sinks of CO2 (e.g., Deng et al., 2014; Basu et al., 2013, 2014; Chevallier et al., 203 
2014; Takagi et al., 2014), detecting perturbations in the carbon cycle (Guerlet et al., 2013) and 204 
interpreting seasonal changes in the carbon balance (Parazoo et al., 2013). 205 

Measurements of XCO2 (a.k.a. “Level 2” data) are derived using a number of retrieval algorithms, among 206 
them NASA’s Atmospheric CO2 Observations from Space (ACOS) algorithm (e.g., O’Dell et al., 2012; 207 
Crisp et al., 2012).  Filtered and bias-corrected data from the most up to date version of this algorithm 208 
(ACOS v3.4 release 3) are used here to demonstrate the mapping approach presented in Section 2.  209 
Approximately 900 successful retrievals are available per three-day repeat cycle, with the majority of 210 
observations being over land. These data have substantial retrieval uncertainties (e.g., O’Dell et al., 2012) 211 
and include large gaps (e.g., Figure 1). These features prevent the application of simple spatial and 212 
temporal binning techniques for generating XCO2 maps at spatiotemporal scales that are directly useful 213 
for addressing existing uncertainties in carbon cycle science. 214 

 215 
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 216 
Figure 1. ACOS v3.4 release 3 XCO2 Level 2 data (“Observations”) for August 2-7, 2009. 217 

The approach described in Section 2 is used to create continuous maps, a.k.a. Level 3 data, based on 218 
XCO2 observations obtained over two repeat cycles, namely August 2-7, 2009 (Figure 1). A six-day 219 
period is used to balance the competing goals of including as many observations as possible, while 220 
avoiding time periods over which the XCO2 field itself would change substantially (see discussion in 221 
Hammerling et al. 2012a).  Maps of XCO2 and associated uncertainties are created at native (Figure 2a,b) 222 
and 1° × 1° (Figure 2c,d) resolutions, in order to examine and demonstrate the impact of resolution on 223 
mapping uncertainty.  Targeting different resolutions is made possible by the use of the moving window 224 
block kriging approach presented here. N=500 subsampled observations are used per estimation location.  225 
These maps can also be compared to those presented for an equivalent period in Hammerling (2012b, 226 
Auxiliary Figures 2 and 3), with methodological differences as described in Section 2, and representative 227 
of the estimated XCO2 at the native resolution of sounding footprints (nadir footprint ~10.5 km diameter) 228 
with estimates at 1° × 1.25° intervals. 229 

Results show that, because of the information content of the sparse observations, the estimated fields 230 
(Figure 2 a,c) are similar at native and 1° × 1°, but that estimating directly at the coarser 1° × 1° 231 
resolution yields lower uncertainties as observations become more informative for spatially-averaged 232 
quantities (Figure 3).  233 

 234 

 235 
Figure 2. XCO2 Level 3 maps (a,c) and associated uncertainties (b,d) based on ACOS 3.4 release-3 236 
retrievals (“Estimates”) for August 2-7, 2009 at (a,b) native resolution and (c,d) 1° × 1° resolution, 237 
obtained using the proposed mapping approach. 238 

 239 
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 240 
Figure 3. Reduction in estimation uncertainties between the native estimation resolution and the 1ox1o 241 
estimation resolution for XCO2 Level 3 maps based on ACOS 3.4 release-3 retrievals for August 2-7, 242 
2009.  243 

 244 

3.2 Global land solar-induced fluorescence fields observed by GOME-2 245 

A series of recent studies has demonstrated the potential use of satellite observations of solar-induced 246 
fluorescence (SIF) for understanding and quantifying photosynthetic CO2 uptake at large scales, using 247 
data from the GOSAT satellite (e.g., Joiner et al., 2011; Frankenberg et al., 2011; Guanter et al., 2012, 248 
Joiner et al., 2012; Lee et al., 2013; Frankenberg et al., 2012), the SCIAMACHY (SCanning Imaging 249 
Absorption spectroMeter for Atmospheric CHartographY) instrument on board ENVISAT (e.g., Joiner et 250 
al., 2012), the GOME-2 (The Global Ozone Monitoring Experiment–2) instrument on board METOP-A 251 
(e.g., Joiner et al., 2013), and the Orbiting Carbon Observatory (OCO-2) (e.g., Frankenberg et al., 2014). 252 
Satellite measurements of fluorescence can be used with land surface models to improve the 253 
representation of GPP and to understand GPP response to environmental stress (e.g., Lee et al., 2013). 254 
Among available datasets, GOME-2 provides the highest spatial and temporal density of data. 255 

Until now, studies of SIF have relied on spatially and temporally binned average observations at monthly 256 
or coarser timescales and 1o or coarser spatial scales (e.g., Figure 4). The coarse spatial and temporal 257 
scales were used to overcome, through the use of simple averaging, spatial gaps in observations and the 258 
relatively high uncertainties associated with individual retrievals. One of the limitations of such an 259 
approach is that it inherently discards information about SIF variability at fine spatial and temporal scales, 260 
which is important for understanding the impact of transient effects such as changes in phenology and 261 
water availability (Lee et al., 2013), and developing biospheric models that can represent these effects 262 
correctly. A second limitation is the lack of a direct and robust quantification of the uncertainty associated 263 
with the mapped products, complicating uncertainty analysis in subsequent applications using the data. 264 

As a second demonstration of the mapping approach proposed here, we therefore use SIF GOME-2 V.14 265 
data (Joiner et al., 2013) with the approach described in Section 2 to create contiguous maps of SIF at a 266 
single spatial resolution (1o × 1o), but at multiple temporal resolutions.  The examination of shorter time 267 
periods was selected in order to more directly respond to scientific opportunities in the use of SIF data, 268 
and to complement the spatial-resolution-focused demonstration of Section 3.1. Maps of SIF and 269 
associated uncertainties are created at one, six, and 31 day temporal resolutions in August, 2009 (Figure 270 
5), where August 2009 was chosen for convenience to correspond with the XCO2 application presented in 271 
Section 3.1. N=1000 subsampled observations are used per estimation location. The monthly map can 272 
also be compared to the monthly binned map presented in Figure 4. 273 

Results show that the proposed approach can leverage nearby observations to create realistic contiguous 274 
maps even at one-day resolution (Figure 5a,b), although, as expected, uncertainties are reduced (Figure 275 
5d) at coarse temporal resolutions, just as was seen for coarser spatial resolutions in the XCO2 276 
application.  In fact, the regions with little or no SIF data for the one-day application are clearly visible as 277 
high-uncertainty bands in Figure 5b, and a user could explicitly decide whether such uncertainties are 278 
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acceptable, or too high for a given scientific application. When maps are intended to be used to drive 279 
and/or validate biogeochemical models, therefore, having the ability to choose a desirable balance 280 
between temporal resolution and mapping uncertainty presents a considerable advantage.   281 

Ideally, the temporal resolution at which maps are obtained is as fine as possible so as to capture the 282 
dynamics of the observed physical quantity, in this case SIF. The choice of optimal temporal resolution 283 
thus, in general, defines a trade-off between having sufficient observations for adequate spatial coverage, 284 
while minimizing the impact of temporal variability in the quantity being examined (Hammerling et al., 285 
2012a). From Figure 6 it is apparent that the presented approach makes it possible to obtain maps at 286 
temporal resolutions much higher than the monthly (or coarser) resolution of current binned products. As 287 
expected, the more abundant observations available at 6-day temporal resolution (Figure 6d) lead to 288 
decreased estimation uncertainty compared to 1-day resolution (Figure 6b). However, at monthly 289 
temporal resolutions (Figure 6e,f) the temporal variability in SIF over a 31-day period increases the 290 
discrepancy among (spatially) nearby observations, leading to increased uncertainties at coarse time 291 
scales.  This effect is apparent in comparing Figures 6d and 6f, as uncertainty increases over, for example, 292 
eastern South America.  A similar trade-off was also noted in selecting mapping time-scales for XCO2 293 
(Hammerling et al. 2012a), and further speaks to the advantage of being able to select a mapping 294 
timescale based on scientific need and uncertainty tolerance, as is possible with the approach presented 295 
here. 296 

 297 

 298 
Figure 4. Monthly-averaged binned map of GOME-2 SIF data for August 1-31, 2009 (mW/m2/sr/nm). 299 

 300 

 301 

 302 
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 303 
Figure 5. Maps of global SIF (mW/m2/sr/nm) (a,c,e) and associated estimation uncertainties expressed as 304 
standard deviations (b,d,f), for August 1, 2009 (a,b), August 2-7, 2009 (c,d) and August 1-31, 2009 (e,f) 305 
obtained using GOME-2 observations and the presented mapping approach at 1° × 1° spatial resolution. 306 

 307 

4. Method evaluation 308 

Leave-one-out cross-validation is used to evaluate the performance of the proposed method.  In doing so, 309 
the goal is for the predicted values to be as directly comparable as possible to the observation being held 310 
back.  With that goal in mind, the cross-validation analysis is performed for maps generated at 1-day 311 
temporal resolution, and at the native spatial resolution of the sounding footprints.   312 

We apply this strategy for both SIF and XCO2 test cases.  For SIF, for each day in August 1-7, 2009, 10% 313 
of available GOME-2 SIF data were randomly selected for use in leave-one-out cross-validation and their 314 
coordinates extracted.  For XCO2, all GOSAT XCO2 observations for each day in August 2-7, 2009, were 315 
used in leave-one-out cross validation.  All three mapping steps (see Sections 2.1-2.3) are repeated ab 316 
initio during cross-validation. The performance of the mapping method is tested in terms of the accuracy 317 
of the best estimates (the difference between estimates and withheld observations), and the accuracy of 318 
the uncertainty bounds (the degree to which the reported uncertainties capture the difference between 319 
estimates and withheld observations) and bias (the mean difference between estimates and withheld 320 
observations). 321 

The accuracy of the maps at daily temporal resolution and native spatial resolution is evaluated using the 322 
mean absolute difference (MAD) and the root mean squared difference (RMSD) between the mapped 323 
estimates and observations held back in leave-one-out cross-validation (Table 1).  Although an absolute 324 
target value for these accuracy metrics is not available, it is interesting to note that the MAD and RMSD 325 
are comparable to the reported measurement uncertainty in both satellite datasets (0.77 ppm for GOSAT 326 
XCO2, 0.55 mW/m2/sr/nm for GOME-2 SIF). We also compare the GOSAT XCO2 values to those 327 
obtained from by applying the method developed in Hammerling et al. (2012a), which yielded a MAD of 328 
0.86 ppm and a RMSD of 1.20 ppm, demonstrating comparable performance, but with the additional 329 
benefits provided by the new method as described in Section 2. 330 

 331 

  332 
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Table 1. Cross-validation results of GOSAT XCO2 and GOME-2 SIF datasets, including mean absolute 333 
difference, root mean squared difference, percent of observations lying outside of one, two, and three 334 
standard deviations (σẑ) of the mapping uncertainty, and mean difference.  335 

  GOSAT XCO2 GOME-2 SIF 

Es
tim

at
es

 Mean absolute difference 0.85 ppm 0.47 mW/m2/sr/nm 

Root mean squared difference 1.15 ppm 0.61 mW/m2/sr/nm 

U
nc

er
ta

in
tie

s 

% observations falling outside 1σẑ uncertainty 10.06% 11.23% 

% observations falling outside 2σẑ uncertainty 0.96% 0.60% 

% observations falling outside 3σẑ uncertainty 0.18% 0.03% 

B
ia

s 

Mean difference -0.007 ppm 0.002 mW/m2/sr/nm 

Estimation uncertainties reflect the locations and number of observations surrounding the estimation 336 
location, the degree of spatial variability in the mapped field in the vicinity of the estimation location, and 337 
the spatiotemporal support of the estimates. The accuracy of the uncertainties obtained from the mapping 338 
method is evaluated by quantifying the reliability with which the uncertainty bounds associated with the 339 
estimates capture the values of the withheld observations. Specifically, we calculate the percentage of 340 
estimation locations where the withheld observations fall outside of the one, two, and three estimation 341 
standard deviation (σẑ) uncertainty bounds.  For independent, normally-distributed data, these percentages 342 
should be approximately 32%, 5% and 0.3%, respectively. Although these assumptions do not hold here, 343 
these values still provide a general indication of expected performance. 344 

For both applications, the percentage of observations falling outside of the uncertainty bounds is lower 345 
than would be expected for normally-distributed data (Table 1), showing good mapping accuracy. These 346 
percentages are very similar when the analysis is repeated using the method developed by Hammerling et 347 
al. (2012a).  The lower percentages are due to the fact that observations are not normally distributed.   348 

Finally, the bias of the developed method is quantified using the mean difference between estimates and 349 
the withheld observations in the leave-one-out cross-validation. Theoretically, mean difference should 350 
approach zero as the number of cross-validation points increases if the method provides perfectly 351 
unbiased estimates. The mean difference for both applications (Table 1) was several orders of magnitude 352 
lower than the observed spatial gradients in the mapped quantities (e.g., Figure 1, Figure 4), and was not 353 
statistically significant (p>>0.05: p=0.86 for GOSAT XCO2; p=0.63 for GOME-2 SIF).  The approach 354 
therefore yields unbiased estimates. 355 

 356 

5. Conclusions 357 

In this study we propose a flexible moving window block kriging method that can be used as a tool for 358 
creating high spatiotemporal resolution maps from satellite data. The method can be applied in a 359 
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standalone mode, or as a part of broader satellite data processing package. The resulting maps can also be 360 
incorporated into biogeochemical and physical models of the Earth system. The approach relies only on 361 
the assumption that the observed physical quantity exhibits spatial correlation that can be inferred from 362 
the observations. The method has several advantages over previously applied methods: 1) it allows for the 363 
creation of contiguous maps at varying spatio-temporal resolution, 2) it can be applied for creating 364 
contiguous maps for physical quantities with varying spatio-temporal coverage (aka density of 365 
measurements), 3) it provides assessments of the uncertainty of interpolated values. The approach 366 
emphasizes the use of local covariance structures in predictions by an arbitrary selection of the sampling 367 
function, limiting the radius around estimation locations and adjusting the number of sampled points to a 368 
fraction of available measurements. The approach also limits the number of partially-subjective ancillary 369 
parameters required, making it applicable across a variety of applications.    370 

The method was demonstrated by creating Level 3 products from two datasets with considerably different 371 
spatio-temporal properties. While the GOSAT XCO2 observations were relatively sparse, the GOME-2 372 
SIF data had a much higher spatio-temporal density. In the case of GOSAT XCO2, the effects of making 373 
predictions at different spatial supports (i.e. resolutions) were analyzed, showing that a decrease in the 374 
resolution slightly affects estimates (‘smoothing’ effect) and more significantly estimation uncertainties 375 
(reduced uncertainties at coarser resolution). In the case of GOME-2 SIF, the focus was kept on the effect 376 
of different aggregation time periods by creating maps at higher temporal resolutions. This example 377 
demonstrated the importance of being able to select a mapping timescale based on scientific need and 378 
uncertainty tolerance as optimal temporal resolution results from a trade-off between having sufficient 379 
observations for adequate spatial coverage, while minimizing the impact of temporal variability in the 380 
quantity being examined. In this it was shown that even daily Level 3 maps could be successfully created 381 
by the proposed method. For both datasets, the method was shown to yield precise, accurate, and unbiased 382 
estimates. The results clearly indicate that contiguous maps can be created at different spatial resolutions 383 
for time periods shorter than achievable by binning/averaging.   384 

The resulting maps can be used to support the development of improved models of the Earth system, both 385 
by serving as driver data and validation data for such models. 386 
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