
1 Re: Interactive Comment by Colin Cotter

Comment: p1543 “This reduced communication requirement implies better overall scalabil-
ity on large-scale parallel systems.” I worry about remarks like this because once they appear
in the literature they tend to get cited out of context. Since a scaling factor is applied to the
number of communications, the scaling itself wont be a↵ected, but the limit to strong scaling
might be. However, DG will hit the wall in strong scaling almost as soon as CG does.

Response: Agreed. Statements such as these have been circulated in the literature for quite
some time, but I’m not sure there is any observable e↵ect until one gets to the scale of one
element per processor.

Modification: This sentence has been removed.

Comment: p1543 “I dont think that Thuburn (2008) actually says anywhere that the non-
conservative form is better for conserving potential enstrophy and angular momentum. Po-
tential enstrophy can be exactly conserved if one specifically uses the vector invariant form
of the equations together with a careful treatment of the discretisation, but I dont think this
would necessarily be a generic property of non-conservative formulations. Angular momen-
tum can only be exactly preserved if the grid has rotational symmetries.

Response: The phrasing of this sentence is understandably confusing: I mean to say that
Thuburn (2008) describes angular momentum and potential enstrophy as quantities which
are relevant for atmospheric motions. This form of the equations is meant to be contrasted
with the conservative form, which evolves the momentum hud. In conservative form / flux-
form it is unclear how these secondary quantities can be conserved (without choosing them
as prognostic variables explicitly).

Modification: Angular momentum and potential enstrophy are particularly relevant to
atmospheric motions (Thuburn, 2008) and can be easily conserved under a non-conservative
formulation of the shallow-water equations (Taylor and Fournier, 2010). Conservation of
these quantities is more di�cult when they are diagnosed from the flux-form prognostic
variables. The non-conservative formulation also has the advantage of leading to a more accu-
rate treatment of wave-like motion when formulated appropriately (Thuburn and Woollings,
2005).

Comment: p5148: please provide more clues as to why this discretisation produces identical
results to nodal spectral element for CG spaces i.e. with direct sti↵ness summation.

Response: Added.

Modification: An appendix has been added with the proof of this result.

Comment: p5150: ”A stabilization operator is necessary for finite element methods to
avoid dispersive errors associated with spectral ringing.” Again, Im worried about this being
cited out of context. In the compatible finite element setting we have produced finite element

1



discretisations that are stabilised purely by the stable vorticity advection operator, with no
need for an explicit stabilization operator. We dont need any viscosity or hyperviscosity. It
is also the case that DG methods are stabilised purely from the upwinding. Please have a go
at narrowing down the language here.

Response: Agreed.

Modification: Manuscript has been modified to read “Stabilization is typically needed
for co-located (or unstaggered) finite element methods, whether implicitly in the form of
upwinding or explicitly in the form of a di↵usive operator, to avoid high-frequency dispersive
errors associated with spectral ringing.”

Comment: p5151: The viscosity operator here feels a bit like you are mixing your drinks
in that the non-di↵usive part doesnt rely on any test functions, but the viscosity part does.
I think this just needs a bit more careful explanation to explain how you are obtaining the
operator by dividing by the (diagonal) mass matrix. Is this viscosity operator actually a stable
discretisation of the Laplacian i.e. does it have spurious eigenvalues? The flux reconstruction
people normally have to resort to LDG/CDG-style operators for this.

Response: I agree that it’s a bit strange to have a non-di↵usive operator formulated in
di↵erential form and a di↵usive operator formulated in variational form. Unfortunately, al-
though using discrete derivatives is a very intuitive way to write the first derivatives in a
finite element method (equivalence of the di↵erential and variational form has been demon-
strated above), it is not immediately clear how this formulation can be extended for second
derivatives. In particular, consider a second-order spectral element method: the second
derivative of any linear test function � is zero within an element – but under the variational
formulation the second derivative is actually correctly computed. This result extends di-
rectly to higher-order methods: A Laplacian-type di↵usive operator based on the di↵erential
formulation yields spurious eigenvalues (wave modes which are not properly damped). These
spurious eigenvalues do not seem to appear for a Laplacian formulated using the variational
approach (this is definitely true for SE, but admittedly I have not analyzed the DG Laplacian
operator described here). Note that the spurious eigenvalues do not appear under the LDG
formulation since only first derivatives are used.

It seems, in this case at least, that the mixed drink actually tastes somewhat decent: The
di↵erential formulation is used for first derivatives, where it can be used to discretize the
non-conservative equations, and the variational formulation is used for the di↵usive terms
where it appears best suited.

Modification: No modification.

Comment: Please provide a bit more detail on how you obtained the timestep sizes for your
numerical calculations, I think this is important as it is the main assessment we can make
of computational cost here. It would also be good if you could make some remarks about the
relative computational time for one timestep between CG and DG for the same polynomial
degree (I know this is tricky since implementation details vary). Its also good to remind the
reader how CG and DG DOFs scale with number of elements as a function of polynomial
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degree (unless I missed this somewhere?).

Response: For all test cases, time step sizes were chosen to be as large as possible without
observing instability over the simulation period. For steady state geostrophically balanced
flow (section 6.1), dt = 2300s, dt = 900s and dt = 500s were found to be unstable for
continuous, g2 discontinuous and g1 discontinuous elements, respectively (ne = 4). For zonal
flow over an isolated mountain, dt = 520s, dt=260s and dt=130s were found to be unstable
for continuous, g2 discontinuous and g1 discontinuous elements, respectively (ne=16). For
barotropic instability, dt=160s, dt=80s and dt=55s were found to be unstable for continuous,
g2 discontinuous and g1 discontinuous elements, respectively (ne=32).

The discontinuous code was not as thoroughly optimized as the continuous code, although
based on formulation alone it is clear that the discontinuous code should be more computa-
tionally intensive. Overall the discontinuous code was observed to be about 30% slower than
the continuous code for the same simulation duration and time step size on a low processor
count.

Overall: Although I don’t want to make an explicit judgement, it seems that the discontin-
uous formulation isn’t worth it.

Modification: A section on “implementation considerations” has been added to the text.
It reads:

On the cubed-sphere grid, the discontinuous method has 6n2
en

2
p degrees of freedom compared

to 8+8(ne(np�1)�1)+6(ne(np�1)�1)2 for the continuous method. In the limit as ne ! 1
this yields a ratio of (np � 1)2/n2

p degrees of freedom for the continuous formulation versus
the discontinuous formulation. Note that in practice, the continuous formulation typically
stores redundant degrees of freedom in order to reduce computational expense associated
with indexing and so memory requirements are typically identical.

The primary computational di↵erence between the continuous and discontinuous formula-
tions is due to the evaluation of the penalty terms (18)-(19). Note that although the robust
di↵erentiation operation (15) does require additional computation for discontinuous meth-
ods, the cost of evaluating the discontinuous terms in this expression is roughly equivalent
to the computational cost of the direct sti↵ness summation operation needed for continu-
ous elements. Nonetheless, from numerical experiments the discontinuous method has an
approximately 30% overhead compared with a continuous method (when run with the same
time step size).

Further, the following sentences were added to the Results section:

For the steady-state geostrophically balanced flow test, “Increasing the time step by 100 s
led to an unstable simulation.”

For the zonal flow over an isolated mountain test, “Increasing the time step by 20 s led to
an unstable simulation.”
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For the barotropic instability test, “Increasing the time step by 10 s led to an unstable
simulation.”

2 Re: Interactive Comment by Anonymous Referee

Comment: Although the high-order models give many impressive results in the smooth
cases, an e↵ective limiter is necessary for any high-order model to correctly simulate the
discontinuities even for atmospheric flows. The artificial viscosity was introduced in this
study and may improves the results near the discontinuities to some extent. Is there any
further plan to develop other better methods to deal with the discontinuities?

Response: There is significant interest in pursuing the problem of limiting finite element
calculations for tracer transport (see for instance Guba (2014)), but the interest is far less for
dynamics calculations. High resolution calculations with the spectral element dynamical core
in CESM (which runs at np = 4) have shown that topography needs to be greatly smoothed
to reduce noise in the vicinity of sharp elevation changes. This e↵ect clearly reflects the issue
you have pointed out, although it is not clear what kind of e↵ect monotonization would have
on the simulated climate.

Reference: Guba, Oksana, Mark Taylor, and Amik St-Cyr. “Optimization-based limiters for
the spectral element method.” Journal of Computational Physics 267 (2014): 176-195.

Modification: No modification.

Comment: I would like to see the numerical results of the Rossby-Haurwitz wave (Williamsons
test case 6). To my knowledge, this test is sensitive to the numerical viscosity. Please check
this test using di↵erent schemes with and without the artificial viscosity.

Response: Added.

Modification: The Rossby-Haurwitz test has been added to the results section.

Comment: FR method is a general framework for the arbitrary high-order schemes. Why
do you chose np=4? Have you ever tried the higher order schemes?

Response: A thorough investigation of di↵erent values of np would greatly extend the
length of the manuscript, so I settled on one value of np, chosen in accordance with the
current value of np for the Community Atmosphere Model spectral element dynamical core
and Ullrich (2013). This medium-order choice has the advantage of greatly improving on
the treatment of waves over lower-order methods, but does not su↵er from the increased
computational expense of much higher-order methods.

Reference: Ullrich, P.A. (2013) “Understanding the treatment of waves in atmospheric mod-
els, Part I: The shortest resolved waves of the 1D linearized shallow water equations.” Quart.
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J. Roy. Meteor. Soc., Volume 140, Issue 682, pp. 14261440, DOI: 10.1002/qj.2226.

Modification: The following paragraph has been added to the Results section:

All simulations are performed with np = 4. A thorough investigation of di↵erent values of
np would greatly extend the length of the manuscript, so np was chosen in accordance with
the Community Atmosphere Model spectral element dynamical core. As argued by Ullrich
(2013), this choice is also “optimal” when considering the accurate treatment of linear waves.

Comment: Please check the balanced setup of barotropic instability test. In Chen et al.,
JCP, 2014, the evolution patterns of l1 errors are di↵erent on three di↵erent grids (see their
Fig.23). On cubed-sphere grid, at the beginning of the simulation the l1 error becomes much
larger compared with other two grids and will not decrease on the refined grids. Will you find
the similar issues using your models?

Response: I find that in this model setup there is convergence with resolution of all three
error norms (at fourth-order), but this convergence does not occur until at least ne = 40.
Presumably there are fine-scale features in the barotropic instability test which are not re-
solved on the grid scale until this resolution is reached. Similar results have been observed in
an analogous fourth-order cubed-sphere finite-volume code that is described in an upcoming
manuscript in CAMCoS.

Modification: No modification.

3 Other Modifications

Some of the text has been clarified and compacted to address excessive wordiness and two
small typos have been corrected. No modifications have been made to change the scientific
results.
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Abstract

This paper presents a novel nodal finite element method for either continuous and discontinuous
elements, as applied to the 2D shallow-water equations on the cubed-sphere. The cornerstone
of this method is the construction of a robust derivative operator which

:::
that

:
can be applied to

compute discrete derivatives even over a discontinuous function space. A key advantage of the5

robust derivative is that it can be applied to partial differential equations in either conservative or
non-conservative form. However, it is also shown that discontinuous penalization is required to
recover the correct order of accuracy for discontinuous elements. Two versions with discontin-
uous elements are examined, using either the g1 and g2 flux correction function for distribution
of boundary fluxes and penalty across nodal points. Scalar and vector hyperviscosity opera-10

tors valid for both continuous and discontinuous elements are also derived for stabilization and
removal of grid-scale noise. This method is validated using three

::::
four

:
standard shallow-water

test cases, including geostrophically balanced flow, a mountain-induced Rossby wave train
:
,
:::
the

:::::::::::::::
Rossby-Haurwitz

:::::
wave

:
and a barotropic instability. The results show that although the discon-

tinuous basis requires a smaller time step size than that required for continuous elements, the15

method exhibits better stability and accuracy properties in the absence of hyperviscosity.

1 Introduction

Modeling of the 2D shallow-water equations is an important first step in understanding the
behavior of a numerical discretization for atmospheric models. The 2D shallow-water equations
capture many of the important properties of the equations of motion for the atmosphere, and so20

are an important first step in the development of a global atmospheric modelingsystem
:::::::::
modeling.

In particular, the dynamical character of the global shallow-water equations is governed by
features common with atmospheric motions including

:::::::::::
nonlinearity,

:
barotropic Rossby waves

and inertia-gravity waves, without the added complexity of a vertical dimension.
A comprehensive literature already exists on the development of numerical methods for the25

global shallow-water equations spanning the past several decades. Examples include the spec-
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tral transform method (Jakob-Chien et al., 1995), semi-Lagrangian methods (Ritchie, 1988;
Bates et al., 1990; Tolstykh, 2002; Zerroukat et al., 2009; Tolstykh and Shashkin, 2012; Qad-
douri et al., 2012), finite-difference methods (Heikes and Randall, 1995; Ronchi et al., 1996),
Godunov-type finite-volume methods (Rossmanith, 2006; Ullrich et al., 2010), staggered finite-
volume methods (Lin and Rood, 1997; Ringler et al., 2008; Ringler et al., 2011), multi-moment5

finite-volume methods (Chen and Xiao, 2008; Li et al., 2008; Chen et al., 2013), and finite-
element methods (Taylor et al., 1997; Côté and Staniforth, 1990; Thomas and Loft, 2005; Gi-
raldo et al., 2002; Nair et al., 2005; Läuter et al., 2008; Comblen et al., 2009; Bao et al., 2013).

This paper introduces a novel unified formulation for discretizing either conservative or
non-conservative formulations of

::::::
discrete

::::::::::
derivative

::::::::
operator

::::
that

::
is
::::::::

applied
::
to

:
the shallow-10

water equations on a manifold using continuous and discontinuous finite elements. This work
is motivated by the flux correction methods of Huynh (2007) and Vincent et al. (2011), is an
alternative to formulations with discontinuous elements that rely on the conservative form of
the

:::::::::
discretize

:::
the

::::::::::::
conservative

:
equations of motion with explicit momentum fluxes (Giraldo

et al., 2002; Nair et al., 2005), and generalizes both spectral element and discontinuous Galerkin15

discretizations
:::::::
methods. This approach is also quadrature-free, requiring no integral computa-

tion. Further, this paper
::::
This

::::::
paper

:::::::
further introduces a general variational discretization of

the scalar and vector Laplacian operator which is valid for either choice of
:::::::::
continuous

:::
or

::::::::::::
discontinuous

:
elements and only requires one communication per application of the Lapla-

cian. The discretization presented in this paper reduces to a traditional discontinuous Galerkin20

scheme if applied to the conservative form of the shallow-water equations.
There are several reasons why discontinuous

:::::::::::::
Discontinuous elements are potentially more

desirable than continuous elements
::
for

:::::::
several

:::::::
reasons: First, discontinuous elements only re-

quire parallel communication along coordinate axes, whereas continuous elements also require
parallel communication along diagonals, a doubling of the total number of communications in25

2D. This reduced communication requirement implies better overall scalability on large-scale
parallel systems. Second, discontinuous elements provide a natural mechanism to enforce sta-
bilization via discontinuous penalization (or Riemann solvers, for equations in conservation
form). Third, discontinuous elements can be used in conjunction with upwind methods, which
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are generally better for tracer transport and associated problems. However, discontinuous el-
ements also have a number of disadvantages, including higher storage requirements (for the
same order of accuracy), a maximum time step size which is typically smaller than that im-
posed for continuous elements (?)

::::::::::::::
(Ullrich, 2013) , and added computational expense for many

hyperbolic operations. Nonetheless, it is a worthwhile to explore the differences between these5

two formulations for a real global modeling system.
The outline of this paper is as follows. Section 2 presents the shallow-water equations on a

manifold. The cubed-sphere grid, which will be used for simulations on the sphere, is described
in section 3. The discretization

:::::::::::::
discretizations

:
of the dynamics and hyperviscosity are then

presented in sections 4 and 5 respectively. Results from three
:::
four

:
standard shallow-water test10

cases are shown
::::
given

:
in section 6 and conclusions given

::::::
follow

:
in section 7.

2 The shallow-water equations on a manifold

The 2D shallow-water equations in on a Riemannian manifold with coordinate indices xs
=

{↵,�} can be written as

@u↵

@t
+usrsu

↵
+ g↵s

@

@xs
(gcH)+ f(k⇥u)

↵
= 0, (1)15

@u�

@t
+usrsu

�
+ g�s

@

@xs
(gcH)+ f(k⇥u)

�
= 0, (2)

@H

@t
+rs(hus

) = 0. (3)

The prognostic variables are free surface height H and vector velocity u= u↵
g↵+u�

g� ,
where g↵ = @x/@↵ and g� = @x/@� are the natural basis vectors on the manifold. Two other20

important quantities are the
:::
The

:
fluid height h and height of the bottom topography z , which

are related to the free surface height via H = h+ z. Here grs denotes the contravariant metric
with covariant inverse grs, J =

p
detgrs is the metric Jacobian, gc is gravity, f is the Coriolis

parameter, and k is the vertical basis vector of unit length. Einstein summation notation (im-
4
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plied summation) is used for repeated indices. These equations further make use of the covariant
derivative rs, which expands as

usrsu
d
= u↵@ud

@↵
+u� @ud

@�
+�

d
sru

sur, (4)

rs(hus
) =

1

J

@

@↵
(Jhu↵

)+

1

J

@

@�
(Jhu�

), (5)
5

where �

d
sr denotes

::::::
denote

:
the Christoffel symbols of the second kind associated with the coor-

dinate transform (again with summation over repeated indices s and r implied).
Observe that (

::::
The

:::::
mass

::::::::
equation

:::
(3)

::::
has

:::::
been

:::::
kept

::
in

::::::::::::
conservative

:::::
form

:::
to

:::::::
enforce

:::::
strict

::::
mass

:::::::::::::
conservation.

:::
On

:::
the

:::::
other

:::::
hand,

::
(1)-(2) are given in a non-conservative form; this formu-

lation is selected over the conservative formulation
:::::::::
flux-form

:::::::::
equations (where hu↵ and hu� are10

prognostic variables)since it can more readily conserve quantities more relevant to atmospheric
motion, such as angular

:
.
::::::::
Angular momentum and potential enstrophy (Thuburn, 2008) , and

(depending on the discretization) can lead
:::
are

:::::::::::
particularly

::::::::
relevant

:::
to

:::::::::::
atmospheric

::::::::
motions

::::::::::::::::::
(Thuburn, 2008) and

::::
can

::
be

::::::
easily

:::::::::
conserved

:::::
under

::
a

:::::::::::::::
non-conservative

:::::::::::
formulation

::
of

:::
the

:::::::::::::
shallow-water

::::::::
equations

::::::::::::::::::::::::::
(Taylor and Fournier, 2010) .

:::::::::::::
Conservation

::
of

:::::
these

:::::::::
quantities

::
is

:::::
more

::::::::
difficult

:::::
when15

::::
they

:::
are

::::::::::
diagnosed

::::
from

::::
the

:::::::::
flux-form

::::::::::
prognostic

:::::::::
variables.

::::
The

:::::::::::::::
non-conservative

:::::::::::
formulation

::::
also

:::
has

:::
the

:::::::::
advantage

::
of

:::::::
leading

:
to a more accurate treatment of wave-like motions (Thuburn and Woollings, 2005) .

The mass equation (3) has been kept in conservative form to enforce strict mass conservation.
::::::
motion

:::::
when

:::::::::::
formulated

::::::::::::
appropriately

:::::::::::::::::::::::::::::
(Thuburn and Woollings, 2005) .

:

3 The cubed-sphere grid20

The equations (1)-(3) are now applied to a particular choice of coordinate system. The cubed-
sphere grid (Sadourny, 1972; Ronchi et al., 1996) consists of a cube with six Cartesian patches
arranged along each face, which is then inflated onto a tangent spherical shell, as shown in
Fig. 1. The cubed-sphere is a quasi-uniform spherical grid, that is, it is in the class of grids
that provide an approximately uniform tiling of the sphere (see Staniforth and Thuburn (2012),25
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for example, for a review of different options for global grids). On the equiangular cubed-
sphere grid, coordinates are given as (↵,�,p), with central angles ↵,� 2 [�⇡

4 , ⇡4 ] and panel
index p 2 {1,2,3,4,5,6}. By convention, we choose panels 1–4 to be along the equator and
panels 5 and 6 to be centered on the northern and southern pole, respectively. With uniform grid
spacing, each panel consists of a square array of ne⇥ne elements.5

The contravariant 2D metric on the equiangular cubed-sphere of radius a is given by

grs =
�2

a2(1+ tan

2↵)(1+ tan

2�)

0

@
1+ tan

2� tan↵tan�

tan↵tan� 1+ tan

2↵

1

A , (6)

where � =
p
1+ tan

2↵+tan

2�. The Jacobian on the manifold, denoted by J , is then

J =

p
det(grs) =

a2(1+ tan

2↵)(1+ tan

2�)

�3
, (7)

and induces the infinitesimal area element dA = J d↵d�. The Christoffel symbols of the second10

kind are given by

�

↵
ij =

0

BB@

2tan↵tan

2�

�2
�tan� (1+ tan

2�)

�2

�tan� (1+ tan

2�)

�2
0

1

CCA , (8)

�

�
ij =

0

BB@
0

�tan↵ (1+ tan

2↵)

�2

�tan↵ (1+ tan

2↵)

�2
2tan

2↵tan�

�2

1

CCA . (9)

Spherical coordinates (�,�) for longitude � 2 [0,2⇡] and latitude � 2 [�⇡/2,⇡/2] will also15

be used for plotting and specification of tests. Coordinate transforms between spherical and
equiangular coordinates can be found in Ullrich and Jablonowski (2012) Appendix A.
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4 Nodal Finite Element Discretization

4.1 The Nodal Basis

A nodal finite element method is employed (Taylor et al., 1997; Giraldo et al., 2002; Hesthaven
and Warburton, 2007). The 1D reference element is defined as the interval x 2 [�1,1] along with
a set of test functions ˆ�(i)(x). The test functions are defined such that test function ˆ�(i)(x) is the5

unique polynomial of degree np that is 1 at the ith Gauss-Lobatto-Legendre (GLL) node (i 2
(0, . . . ,np� 1)) and 0 at all other GLL nodes. Each basis polynomial then has a corresponding
weight, defined by

wi =

1Z

�1

ˆ�(i)(x)dx. (10)

The 2D element Z = [↵1,↵2]⇥ [�1,�2] (with boundary @Z) has accompanying 1D basis10

functions

˜�(i)(↵) = ˆ�(i)

✓
2(↵�↵1)

�↵
� 1

◆
, ˜�(j)(�) = ˆ�(j)

✓
2(� ��1)

��
� 1

◆
, (11)

where �↵ = ↵2�↵1 and �� = �2��1. The accompanying 2D tensor-product basis is then
defined by15

�(i,j)(↵,�) = ˜�(i)(↵)˜�(j)(�). (12)

Figure 2 provides a depiction of GLL nodes within a single element. For vector quantities (such
as velocity u), test functions are instead vector fields. Uniqueness of the variational system is
retained if exactly two degrees of freedom are allowed at each nodal location for the vector
test function �. As we shall see, the most natural choice is test functions �(↵)

(i,j) and �(�)
(i,j) with20

covariant components

�(↵)
(i,j)↵ = �(i,j), �(↵)

(i,j)� = 0, �(�)
(i,j)↵ = 0, �(�)

(i,j)� = �(i,j). (13)

7
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4.2 Robust Differentiation

A robust differentiation operator is now constructed for both continuous and discontinuous finite
elements. Let f : (↵,�)! R be defined and continuous on Z [ @Z with basis �(i,j),

f(↵,�) =

np�1X

p=0

np�1X

q=0

f(p,q)�(p,q)(↵,�), (14)
5

with
::
for

:
coefficients f(p,q) 2 R. Further, let ˜f : (↵,�)! R be defined and continuous on @Z .

Here ˜f represents the evaluation of f in neighboring elements. Note that for a continuous finite
element method, f and ˜f must satisfy ˜f(↵,�) = f(↵,�) on @Z , whereas no such restriction
is imposed for discontinuous finite elements. Following Huynh (2007), robust differentiation in
the ↵ direction is defined at GLL nodes via10

D↵f(↵i,�j) =

np�1X

p=0

f(p,j)
@ ˜�(p)

@↵
(↵i)+

dgR
d↵

(↵i)(f (np�1,j)�f(np�1,j))+
dgL
d↵

(↵i)(f (0,j)�f(0,j)),

(15)

where the overline denotes the co-located average of f and ˜f ,

f (np�1,j) =
f(↵np�1,�j)+

˜f(↵np�1,�j)

2

, f (0,j) =
f(↵0,�j)+

˜f(↵0,�j)

2

. (16)

:::
An

:::::::::
analogous

:::::::::
definition

::::::
holds

::
in

:::
the

::
�
:::::::::
direction.

:
Here gL and gR are the local flux correction15

functions, which
:::
are

::::::
chosen

:::
to satisfy

gL(↵0) = 1, gL(↵np�1) = 0, gR(↵0) = 0, gR(↵np�1) = 1, (17)

and otherwise are chosen to approximate zero throughout [↵0,↵np�1]. A number of
:::::::
Several op-

tions for gL and gR exist
:::
will

::::
lead

:::
to

:
a
::::::
stable

::::::::::::
discretization, including g1 (Radau polynomials),20

8
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which will lead to the discontinuous Galerkin method, and g2, which will lead to the mass-
lumped discontinuous Galerkin method (Huynh, 2007). Hereafter discontinuous elements with
the g1 flux correction function will be referred to as “discontinuous g1 elements,” whereas ele-
ments using of the g2 flux correction function will be referred to as “discontinuous g2 elements.”
An analogous procedure is used to construct a derivative operator in the � direction. Observe5

that for continuous finite elements, the rightmost
:::
two

:
terms in (15) are exactly zero.

With the definition of a robust discrete derivative (15), discretization of the shallow-water
system (1)-(3) is straightforward. Note that for continuous finite elements, this discretization is
identical to the approach of Taylor et al. (1997) when applied in conjunction with Direct Stiff-

ness Summation (that is, projection into the space of continuous functions)
::::
(see

:::::::::
Appendix

:::
A). If10

the conservative form of the shallow-water equations were employed, this discretization would
be

:
is

:
the same as Giraldo et al. (2002) when mass lumping is not employed (discontinuous g1)

and Nair et al. (2005) if mass lumping is applied (discontinuous g2). To the best of the author’s
knowledge, no previous work has used both discontinuous elements and a non-conservative
form of the shallow-water system.15

4.3 Discontinuous Penalization

At element boundaries, the use of one-sided derivatives will cause the discontinuity between
neighboring elements to exhibit an error with magnitude O(�xnp�1

), an effective loss of one
order of accuracy from the expected convergence rate. To reduce errors associated with the
discontinuity, a penalization term is added in each coordinate direction. In the ↵ direction this20

9
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term reads

@H

@t
(↵i,�j) = . . .+

@gR
@↵

(↵i)
|�(↵np�1,�j)|

2

h
˜H(↵np�1,�j)�H(↵np�1,�j)

i J(↵np�1,�j)

J(↵i,�j)

+

@gL
@↵

(↵i)
|�(↵0,�j)|

2

h
H(↵0,�j)� ˜H(↵0,�j)

i J(↵0,�j)

J(↵i,�j)
, (18)

@ud

@t
(↵i,�j) = . . .+

@gR
@↵

(↵i)
|�(↵np�1,�j)|

2

h
ũd

(↵np�1,�j)�ud
(↵np�1,�j)

i

+

@gL
@↵

(↵i)
|�(↵0,�j)|

2

h
ud

(↵0,�j)� ũd
(↵0,�j)

i
. (19)5

where �(↵,�) = |u↵|+
p

gh/a represents the maximum local wave speed in the ↵ direction. An
analogous term is added in the � direction. Note that with this choice of penalization the evolu-
tion equation for h

::
H

:
is identical to the evolution equation that would arise from a traditional

conservative discontinuous Galerkin method with local Lax-Friedrichs flux. Since the penal-10

ization term is equivalent to upwinding, it is weakly diffusive and so allows the discontinuous
scheme to maintain stability even in the absence of explicit viscosity.

4.4
:::::::::::::::
Implementation

::::::::::::::
considerations

:::
On

:::
the

::::::::::::
cubed-sphere

::::
grid,

::::
the

::::::::::::
discontinuous

:::::::
method

::::
has

::::::
6n2

en
2
p :::::::

degrees
::
of

::::::::
freedom

:::::::::
compared

::
to

:::::::::::::::::::::::::::::::::::::::
8+8(ne(np� 1)� 1)+ 6(ne(np� 1)� 1)

2
:::
for

:::
the

::::::::::
continuous

::::::::
method.

::
In

:::
the

:::::
limit

::
as

::::::::
ne !115

:::
this

::::::
yields

:
a
:::::
ratio

::
of

::::::::::::
(np� 1)

2/n2
p::::::::

degrees
::
of

::::::::
freedom

:::
for

:::
the

::::::::::
continuous

:::::::::::
formulation

::::::
versus

:::
the

::::::::::::
discontinuous

::::::::::::
formulation.

:::::
Note

::::
that

::
in

:::::::::
practice,

:::
the

:::::::::::
continuous

:::::::::::
formulation

::::::::
typically

::::::
stores

:::::::::
redundant

:::::::
degrees

::
of

::::::::
freedom

::
in

:::::
order

::
to

::::::
reduce

:::::::::::::
computational

::::::::
expense

:::::::::
associated

::::
with

::::::::
indexing

:::
and

:::
so

::::::::
memory

:::::::::::
requirements

::::
are

::::::::
typically

:::::::::
identical.

::::
The

:::::::
primary

:::::::::::::
computational

:::::::::
difference

::::::::
between

:::
the

::::::::::
continuous

::::
and

::::::::::::
discontinuous

::::::::::::
formulations20

:
is
::::
due

::
to

:::
the

::::::::::
evaluation

::
of

:::
the

:::::::
penalty

:::::
terms

:::::::::
(18)-(19).

:::::
Note

::::
that

::::::::
although

:::
the

::::::
robust

::::::::::::
differentiation

::::::::
operation

:::::
(15)

:::::
does

:::::::
require

::::::::::
additional

::::::::::::
computation

:::
for

:::::::::::::
discontinuous

:::::::::
methods,

::::
the

::::
cost

:::
of

:::::::::
evaluating

:::
the

:::::::::::::
discontinuous

:::::
terms

::
in

::::
this

::::::::::
expression

::
is

:::::::
roughly

::::::::::
equivalent

::
to

:::
the

:::::::::::::
computational

10
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::::
cost

::
of

:::
the

::::::
direct

::::::::
stiffness

::::::::::
summation

:::::::::
operation

:::::::
needed

:::
for

::::::::::
continuous

:::::::::
elements.

::::::::::::
Nonetheless,

::::
from

::::::::::
numerical

:::::::::::
experiments

::::
the

:::::::::::::
discontinuous

:::::::
method

::::
has

:::
an

:::::::::::::
approximately

:::::
30%

:::::::::
overhead

:::::::::
compared

::::
with

::
a

::::::::::
continuous

:::::::
method

::::::
(when

:::
run

:::::
with

:::
the

:::::
same

:::::
time

::::
step

:::::
size).

5 Viscosity and Hyperviscosity

A stabilization operator is necessary for
:::::::::::
Stabilization

:::
is

::::::::
typically

:::::::
needed

::::
for

::::::::::
co-located

:::
(or5

:::::::::::
unstaggered)

:
finite element methodsto avoid

:
,
:::::::
whether

:::::::::
implicitly

:::
in

:::
the

:::::
form

:::
of

::::::::::
upwinding

::
or

::::::::
explicitly

:::
in

:::
the

:::::
form

:::
of

:
a
:::::::::

diffusive
::::::::
operator,

:::
to

:::::
avoid

::::::::::::::
high-frequency

:
dispersive errors asso-

ciated with spectral ringing. In general, it is preferred that this operator is consistent with the
underlying geometry of the Riemannian manifold, which precludes, for example, the Boyd-
Vandeven filter (Boyd, 1996). There has been considerable success with the use of hyperviscos-10

ity in the spectral element method (Dennis et al., 2011), which maintains geometric consistency
by mimicking the natural fourth-order hyperviscosity operator. Previously, it has not been clear
how to extend this operator to a discontinuous function space. However, the robust derivative
(15) provides a direct mechanism by which the hyperviscosity operator can be constructed. The
viscosity operator for both the continuous and discontinuous function space will be discussed15

here.
Note that any viscosity operator will lead to a loss of energy conservation of the underlying

numerical method. This loss is exhibited in two obvious ways: First, for geostrophically bal-
anced flows the error will tend to grow over time. Second, energy conservation is lost leading
to a decay in the total energy content of the system over time.20

5.1 Scalar Viscosity

For stabilization of the method, diffusion is added in the form of either viscosity or hypervis-
cosity, which corresponds to multiple applications of the viscosity operator. A scalar viscosity
operator is constructed to satisfy

H(⌫) ⇡ ⌫r2 , (20)25

11
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where r2
=r ·r is the usual scalar Laplacian. The operator is defined implicitly via a varia-

tional construction. If f =H(⌫) then, multiplying (20) by a test function and applying inte-
gration by parts, one obtains
ZZ

f�(i,j)dA = ⌫

2

4
I

@Z

�(i,j)r · dS�
ZZ

Z

r�(i,j) ·r dA

3

5 , (21)5

where dS is the infinitesimal line element along the boundary of Z and dA is the infinitesimal
area element. The two terms on the right-hand side of this expression correspond to the viscos-
ity flux through element boundaries and the Laplacian within the element. Under a continuous
element formulation, only the rightmost term is retained and fluxes are instead accounted for10

via Direct Stiffness Summation (DSS)
:::::
direct

::::::::
stiffness

:::::::::::
summation. Under a discontinuous for-

mulation, both terms are retained and discretized. The discrete equation satisfied by f(i,j) that
follows from (21) is written as

f(i,j) = fB
(i,j)+ fA

(i,j), (22)

where fB
(i,j) denotes the discretization of the boundary integral and fA

(i,j) denotes the discretiza-15

tion of the area integral. After a lengthy derivation (see Appendix
:
B), these discretizations read

fA
(i,j) =� ⌫

wiJ(↵i,�j)

np�1X

m=0

@ ˜�(i)

@↵
r↵ Jwm|↵=↵m,�=�j

� ⌫

wjJ(↵i,�j)

np�1X

n=0

@ ˜�(j)

@�
r� Jwn

���
↵=↵i,�=�n

, (23)

and

fB
(i,j) = ⌫

2

66664

�i,np�1

wi�↵
r↵ 

| {z }
Right

+

�j,np�1

wj��
r� 

| {z }
Top

� �i,0
wi�↵

r↵ 
| {z }

Left

� �j,0
wj��

r� 

| {z }
Bottom

3

77775
, (24)

12
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where �i,j is the Krönecker delta. Here the contravariant derivative of  has been used, defined
via

rp = gpqrq = gp↵
@ 

@↵
+ gp�

@ 

@�
. (25)5

Note that the contravariant derivatives rp are multivalued along this edge, and so must be
adjusted using the robust derivative operator (15).

5.2 Vector Viscosity

Vector viscosity is used for damping of the velocity field, and takes the form

H(⌫d,⌫v)u⇡ ⌫dr(r ·u)� ⌫vr⇥ (r⇥u). (26)10

Observe that if ⌫ = ⌫d = ⌫v then this expression is exactly the standard vector Laplacian oper-
ator r2

u, with coefficient ⌫. By writing the vector Laplacian as (26), the combined operator
separates into two distinct operators that effect divergence damping (with coefficient ⌫d) and
vorticity damping (with coefficient ⌫v). This result can be quickly verified by taking the diver-
gence and curl of (26),15

r ·H(⌫d,⌫v)u= ⌫dr2
(r ·u), (27)

r⇥H(⌫d,⌫v)u=�⌫vr⇥ (r⇥ (r⇥u)) = ⌫vr2
(r⇥u) (28)

For simplicity of calculation, we treat divergence damping and vorticity damping separately.
For divergence damping, the operator is constructed by taking the inner product of f =H(⌫d,⌫v)u20

with the vector test function �, integrating over Z and applying integration by parts,

⌫d

ZZ

Z

� · fdA = ⌫d

ZZ

Z

� ·r(r ·u),

= ⌫d

2

4
I

@Z

(r ·u)� · dS�
ZZ

Z

(r ·�)(r ·u)dV

3

5 . (29)

13
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For vorticity damping an analogous procedure leads to

⌫v

ZZ

Z

� · fdA =�⌫v

ZZ

Z

� ·r⇥ (r⇥u)dV,

=�⌫v

2

4
I

@Z

(r⇥u)⇥� · dS+

ZZ

Z

(r⇥�) · (r⇥u)dV

3

5 (30)5

Note that for shallow-water flows, only the radial component of the vorticity is relevant for
this calculation. The discrete value of f↵

(i,j) and f�
(i,j) that arises from this calculation then has

contributions from the area integral via fA,d
(i,j) and boundary integral via fB,d

(i,j),

f↵
(i,j) = fB,↵

(i,j)+ fA,↵
(i,j), f�

(i,j) = fB,�
(i,j)+ fA,�

(i,j). (31)10

Following another lengthy derivation (see Appendix
::
B) the area integral term appears as

fA,↵
(i,j) =� ⌫d

J(↵i,�j)wi

np�1X

m=0

Jg↵↵
d˜�(i)

d↵
(r ·u)wm

�����
↵=↵m,�=�j

� ⌫d
J(↵i,�j)wj

np�1X

n=0

Jg�↵
d˜�(j)

d�
(r ·u)wn

�����
↵=↵i,�=�n

+

⌫v
J(↵i,�j)wj

np�1X

n=0

d˜�(j)

d�
(r⇥u)rwn

�����
↵=↵i,�=�n

, (32)

14
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and

fA,�
(i,j) =� ⌫d

J(↵i,�j)wi

np�1X

m=0

Jg↵�
d˜�(i)

d↵
(r ·u)wm

�����
↵=↵m,�=�j

� ⌫d
J(↵i,�j)wj

np�1X

n=0

Jg��
d˜�(j)

d�
(r ·u)wn

�����
↵=↵i,�=�n

5

� ⌫v
J(↵i,�j)wi

np�1X

m=0

d˜�(i)

d↵
(r⇥u)rwm

�����
↵=↵m,�=�j

, (33)

whereas the boundary integral term is

fB,↵
(i,j) = ⌫d

2

66664

�i,np�1g
↵↵

(r ·u)
wi�↵| {z }
Right

+

�j,np�1g
↵�

(r ·u)
wj��

| {z }
Top

� �i,0g
↵↵

(r ·u)
wi�↵| {z }
Left

� �j,0g
↵�

(r ·u)
wj��

| {z }
Bottom

3

77775

↵=↵i,�=�j

+ ⌫v

2

66664
�

�j,np�1(r⇥u)r

Jwj��
| {z }

Top

+

�j,0(r⇥u)r

Jwj��
| {z }

Bottom

3

77775

↵=↵i,�=�j

. (34)
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Applying an analogous procedure for test function �(�)
(i,j),

fB,�
(i,j) = ⌫d

2

66664

�i,np�1g
�↵

(r ·u)
wi�↵| {z }
Right

+

�j,np�1g
��
(r ·u)

wj��
| {z }

Top

� �i,0g
�↵

(r ·u)
wi�↵| {z }
Left

� �j,0g
��
(r ·u)

wj��
| {z }

Bottom

3

77775

↵=↵i,�=�j

+ ⌫v

2

6664
�i,np�1(r⇥u)r

Jwi�↵| {z }
Right

� �i,0(r⇥u)r

Jwi�↵| {z }
Left

3

7775

↵=↵i,�=�j

. (35)5

The divergence and curl, which are needed for evaluation of the Laplacian, are computed via

r ·u=rpu
p
=r↵u↵

+r�u� (36)

(r⇥u)r = ✏rpqg
psrsu

q
= J

h
g↵↵r↵u�

+ g↵�r�u� � g�↵r↵u↵� g��r�u↵
i
, (37)

10

where

r↵u↵
=

@u↵

@↵
+�

↵
↵↵u↵

+�

↵
↵�u� , r↵u�

=

@u�

@↵
+�

�
↵↵u↵

+�

�
↵�u� , (38)

r�u↵
=

@u↵

@�
+�

↵
�↵u↵

+�

↵
��u� , r�u�

=

@u�

@�
+�

�
�↵u↵

+�

�
��u� . (39)

All partial derivatives are evaluated using the robust derivative operator (15).15

5.3 Hyperviscosity

For stabilization of a high-order discretization, hyperviscosity is preferred since it retains the
order of accuracy of the underlying scheme. In practice, hyperviscosity is implemented by re-
peated application of the viscosity operator. For instance, for fourth-order hyperviscosity, the

16
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r4 operator is approximated as follows

@u

@t
=H(⌫d,⌫v)H(1,1)u,

@h

@t
=H(⌫)H(1)h. (40)

5

5.4 Computational Considerations

Calculation of hyperviscosity in the form presented here requires one parallel exchange per ap-
plication of the Laplacian operator. For continuous elements, this communication is manifested
through the application of DSS, which averages away any discontinuity that has been generated
along element edges. For discontinuous elements, scalar viscosity requires pointwise updates10

along element edges computed from (24), whereas vector viscosity requires both one-sided val-
ues of u, (r ·u) and (r⇥u)r, which are in turn used for computing nodal values of (r ·u) and
(r⇥u)r needed for (32)-(35). This constitutes a doubling of the overall bandwidth requirement
relative to continuous elements.

6 Results15

In this section selected results are provided to evaluate the relative performance of the method
:::::::
methods

:
described in this paper. Three

::::
Four

:
test cases are evaluated: From the Williamson

et al. (1992) test case suite, steady-state geostrophically balanced flowand ,
:
zonal flow over an

isolated mountain
:::
and

:::
the

::::::::::::::::
Rossby-Haurwitz

:::::
wave

:
will be analyzed, in addition to the barotropic

instability test of Galewsky et al. (2004). For all test cases, time integration is handled via the20

strong-stability preserving three-stage third-order Runge-Kutta method (Gottlieb et al., 2001).
Note that some improvement in the maximum time step size for discontinuous elements can be
obtained from the use of the five-stage third-order Runge-Kutta method (Ruuth, 2006), which
has a stability region that covers a larger portion of the negative real plane. The time step �t
for each test is chosen to be close to the stability limit in each case (observed empirically).25

The value of �t has negligible effect on the results (not shown), suggesting that spatial errors
dominate in each case. Further, note that mass conservation is maintained to machine truncation
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for all simulations (not shown). From the shallow-water equations, the values of gc and f for
the Earth are used,

gc = 9.80616 m s�2, f = 2⌦sin� ⌦= 7.29212⇥ 10

�5 s�1. (41)5

:::
All

:::::::::::
simulations

:::
are

::::::::::
performed

:::::
with

:::::::
np = 4.

::
A

:::::::::
thorough

::::::::::::
investigation

::
of

::::::::
different

:::::::
values

::
of

::
np::::::

would
:::::::
greatly

::::::
extend

:::
the

::::::
length

:::
of

:::
the

:::::::::::
manuscript,

::
so

:::
np::::

was
:::::::
chosen

::
in

::::::::::
accordance

:::::
with

:::
the

::::::::::
Community

::::::::::::
Atmosphere

::::::
Model

:::::::
spectral

::::::::
element

:::::::::
dynamical

:::::
core.

:::
As

::::::
argued

:::
by

::::::::::::::
Ullrich (2013) ,

:::
this

::::::
choice

::
is
:::::
also

:::::::::
“optimal”

:::::
when

:::::::::::
considering

:::
the

::::::::
accurate

:::::::::
treatment

::
of

::::::
linear

::::::
waves.

:
10

When required, the standard L2 error measure is calculated via

L2(h) =

s
I [(h�hT )

2
]

I
⇥
h2
T

⇤ , (42)

where hT is the height field at the initial time (which is the analytical solution for steady-state
test cases) and I denotes an approximation to the global integral, given by

I[x] =
X

all elements k

2

4
np�1X

m=0

np�1X

n=0

xk(↵m,�n)Jk(↵m,�n)wmwn�↵��

3

5 , (43)15

where the subscript k denotes the values of x and J within the kth element.
When applied, hyperviscosity uses a single coefficient for both scalar and vector hypervis-

cosity,

⌫ = ⌫d = ⌫v = (1.0⇥ 10

15m4 / s)
⇣ne

30

⌘3.2
. (44)

This choice of scaling for the hyperviscosity coefficient is based on Takahashi et al. (2006).20

6.1 Steady-State Geostrophically Balanced Flow

Test case 2 of Williamson et al. (1992) simulates
::::::::
describes a zonally symmetric geostrophically

balanced flow. This test utilizes an unstable equilibrium solution to the shallow-water equa-
tions which is expected to be exactly maintained over time. However, it is generally true that

18
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only methods that satisfy the curl-grad annihilator property r⇥r� = 0 maintain some sort of
discrete equilibrium. Nonetheless, since an analytical solution is known (identical to the initial
conditions), this test is effective at measuring the convergence rate of a numerical method. Fur-5

ther, the error fields from this test provide some indication of what effect the grid has on the
errors of the underlying method. The analytical height field for this test is given by

h = h0�
1

gc

✓
⌦u0a+

u2
0

2

◆
sin

2�, (45)

with background height h0 and velocity amplitude u0 chosen to be

h0 =
2.94⇥ 10

4 m2 s�2

gc
, and u0 =

⇡a

6

day�1. (46)10

This height field also serves as the reference solution. The non-divergent velocity field is speci-
fied in latitude-longitude (�,�) coordinates as

u� = u0 cos�, u� = 0. (47)

Figure 3 shows L2 errors in the height field after a 5 day integration of the model at ne = 415

resolution with np = 4. Simulations were completed for continuous elements (a) with hyper-
viscosity and (d) without hyperviscosity, discontinuous elements (b,e) with mass lumping (the
g2 flux correction function), (c,f) without mass lumping (the g1 flux correction function), (b,c)
with discontinuous penalization, and (e,f) without discontinuous penalization. The time step is
�t = 2200 s for simulations (a,d), �t = 800 s for simulations (b,c,e), and �t = 400 s for sim-20

ulation (f). Increasing the magnitude of the time step by 100 s led to simulation instability in
each case. Since the addition of hyperviscosity leads to loss of energy conservation there is a
slow decay of the geostrophically balanced flow towards a uniform height state, hence leading
to a nearly zonally symmetric decay in the height field towards the poles. For all configurations
(both continuous and discontinuous elements) visually identical results are observed when hy-25

perviscosity is added, and so these results are not shown. All simulations exhibit a characteris-
tic wavenumber-4 mode triggered by the underlying cubed-sphere, although the specific error
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pattern differs throughout. Simulation (d) is exactly mimetic and leads to exact maintenance
of geostrophic balance. Simulations (b) and (c) are quasi-mimetic, only losing energy conser-
vation due to the discontinuous penalty term, and so exhibit very slow error growth with time.5

Simulations (e) and (f), which correspond to discontinuous elements without penalization, show
greatly enhanced error norms and substantial imprinting from the ne = 4 pattern.

To understand the growth of error norms associated with each configuration, additional sim-
ulations with ne = 16 have been performed and L2 error norms plotted as a function of time in
Fig. 4. All simulations show an expected near-identical growth of errors with time when hyper-10

viscosity is active. With hyperviscosity disabled the results from each simulation disentangle:
Continuous elements are oscillatory but show stable error norms, discontinuous elements with
penalization show smaller error norms than continuous elements but a very slow growth with
time due to the upwinding effect of the discontinuous penalization, and discontinuous elements
without penalization show rapid growth in errors (and eventual

::::
even

:
instability without mass15

lumping).
To verify that the model exhibits the correct convergence rate, Fig. 5 shows the global error

norms associated with simulations with ne 2 {4,8,16,32,64} over a 5 day integration period.
At ne = 4, the time step is �t = 2200 s for continuous elements, �t = 800 s for g2 discon-
tinuous elements and g1 discontinuous elements with penalization, and �t = 400 s for g1 dis-20

continuous elements without penalization.
:::::::::
Increasing

:::
the

:::::
time

::::
step

:::
by

:::::
100 s

:::
led

:::
to

::
an

::::::::
unstable

::::::::::
simulation.

:
The time step is scaled inversely with increasing resolution. Missing simulations

correspond to model instability and divergence prior to simulation completion. The use of hy-
perviscosity reduces the convergence rate to O(�x3.2

), as expected from the choice of hyper-
viscosity coefficient (44). With hyperviscosity disabled, model simulations converge at O(�x4

)25

for continuous elements and discontinuous elements with penalty, and O(�x3
) for discontin-

uous elements without penalty. The loss of one order of accuracy is due to one-sided differen-
tiation at co-located nodes along element edges, leading to enhancement of the discontinuity.
Similar results (not shown) are observed when changing np – that is, continuous elements and
discontinuous elements with penalty converge at O(�xnp

), whereas unpenalized discontinuous
elements converge at O(�xnp�1

).
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6.2 Zonal flow over an isolated mountain

Test case 5 in Williamson et al. (1992) considers zonal flow with underlying topography. The
wind and height fields are defined as in section 6.1, except with h0 = 5960 m and u0 = 20 m s�1.5

A conical mountain is used for the topographic forcing, given by

z = z0(1� r/R), (48)

with z0 = 2000 m, R = ⇡/9 and r2 =min

⇥
R2,(���c)

2
+(���c)

2
⇤
. The center of the moun-

tain is at �c = 3⇡/2 and �c = ⇡/6.
Simulation results for this test case were computed at ne = 16 and np = 4 after 15 days of10

integration both with and without hyperviscosity. For discontinuous elements penalization is al-
ways used. The time step used for these runs was �t = 480 s for continuous elements, �t = 240

s for g2 discontinuous elements and �t = 120 s for g1 discontinuous elements.
:::::::::
Increasing

:::
the

::::
time

::::
step

:::
by

:::
20

:
s
:::
led

:::
to

::
an

::::::::
unstable

:::::::::::
simulation. These results are visually indistinguishable, so

are instead compared against the continuous element run (with HV) in Fig. 6, where the height15

field h and height field difference h�hc is plotted (where hc is the height field given in (a)).
Simulations (b) and (c), corresponding to discontinuous elements with and without mass lump-
ing, are very similar in structure and exhibit smooth differences from the continuous model.
With no hyperviscosity applied, continuous elements (d) show significant noise which is not
present for discontinuous elements (e,f). These simulations match closely with results from the20

literature (Nair et al., 2005; Ullrich et al., 2010)
To understand conservation of invariants over time, total energy E and potential enstrophy ⇠

are computed over the duration of the simulation. Since these quantities are invariant under the
shallow-water equations, it would be expected that a perfect simulation would conserve these
quantities exactly. They are defined via25

E =

1
2hv ·v+

1
2Ggc

:
(H2� z2), and ⇠ =

(⇣ + f)2

2h
. (49)

A time series of energy and potential enstrophy are plotted in Fig. 7. With hyperviscosity (a,b)
all simulations exhibit nearly identical conservation properties, suggesting that both the contin-
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uous and discontinuous hyperviscosity operators (which are responsible for the loss of energy
and potential enstrophy conservation) act in a nearly identical manner over the course of the sim-
ulation. Without hyperviscosity (c,d) change in energy and potential enstrophy is much smaller.5

Continuous elements show initiation of instability at approximately day 6, likely due to high-
wavenumber oscillations in the height field caused by nonlinear aliasing. On the other hand,
discontinuous elements instead show a slow decay of energy and potential enstrophy driven by
the weak diffusivity of the discontinuous penalization.

6.3
::::::::::::::::
Rossby-Haurwitz

::::::
Wave10

::::
Test

::::
case

::
6
:::
in

:::::::::::::::::::::::::::::
Williamson et al. (1992) consists

:::
of

::
a

::::::::::::::::::::
westward-propagating

::::::::::::::::
Rossby-Haurwitz

:::::
wave

::::
that

:::::::
exactly

::::::
solves

:::
the

::::::::::
barotropic

::::::::
vorticity

:::::::::
equation,

:::
but

:::::
only

:::::::::::::
approximately

:::::::
solves

:::
the

::::::::
nonlinear

::::::::
shallow

:::::
water

::::::::::
equations.

::::
This

::::
test

::
is
:::::::::::
particularly

::::::::::
interesting

:::::
since

::
it
::
is
:::::::
known

::
to

:::
be

::::::::
sensitive

::
to

:::
the

::::::
choice

:::
of

:::::::::
horizontal

:::::::::
viscosity.

:::::::
Results

:::
for

::::
the

::::::::::::::::
Rossby-Haurwitz

:::::
wave

::::
are

:::::
given

:::
in

::::
Fig.

::
8
::::
and

::
9
:::
for

::::::::
ne = 16

::::
and

:::::::
np = 415

:::::::::
horizontal

:::::::::
resolution

::::
after

:::
14

:::::
days

::
of

::::::::::
integration.

::::
The

::::
time

::::
step

:::::
used

:::
for

:::::
these

::::
runs

::::
was

:::::::::
�t = 480

:
s
:::
for

:::::::::::
continuous

:::::::::
elements,

:::::::::
�t = 200

::
s

:::
for

:::
g2 :::::::::::::

discontinuous
::::::::
elements

::::
and

:::::::::
�t = 120

::
s
:::
for

:::
g1

::::::::::::
discontinuous

:::::::::
elements.

::::::::::
Increasing

::::
the

:::::
time

::::
step

:::
by

:::
20

::
s
:::
led

:::
to

:::
an

::::::::
unstable

:::::::::::
simulation.

:::
As

::::::::
expected,

:::::
there

::::
are

:::::::::
significant

::::::::::
differences

:::
in

:::
the

::::::
height

:::::
field

::::::
which

:::
are

:::::::
induced

:::
by

:::
the

::::::::
addition

::
of

:::
the

:::::::::::::
hyperviscosity

:::::::::
(although

:::::
both

:::::::::::
simulations

::::::
appear

::::::::::
reasonable

:::::
given

:::
the

:::::::
coarse

:::::::::
horizontal20

::::::::::
resolution).

:::::::
Except

:::
for

::::
this

::::::::::
difference,

:::
the

::::::
results

:::
are

:::::::::::
nonetheless

::::::::::
analogous

::
to

:::::
zonal

:::::
flow

::::
over

::
an

::::::::
isolated

:::::::::
mountain:

:::
SE

::
is
::::::::
unstable

::::::::
without

:::
the

::::::::
addition

::
of

::::::::::::::
hyperviscosity,

::::::::
whereas

::::
DG

::::
with

:::::::::::
penalization

::
is

::::::::
effective

::
at

::::::::::
stabilizing

:::
the

:::::::
method

:::
for

::::
both

::::::::
lumped

:::
and

:::::::::::
non-lumped

::::::::
variants.

:

6.4 Barotropic instability

The barotropic instability test case of Galewsky et al. (2004) consists of a zonal jet with compact25

support at a latitude of 45

�, with a latitudinal profile roughly analogous to a much stronger
version of test case 3 of Williamson et al. (1992). A small height perturbation is added atop the
jet which leads to the controlled formation of an instability in the flow. The relative vorticity
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of the flow field at day 6 can then be visually compared against a high-resolution numerically
computed solution Galewsky et al. (2004); St-Cyr et al. (2008).

Simulation results for this test case were computed at ne = 32 and np = 4 after 12 days of5

integration with hyperviscosity enabled. The time step used for these runs was �t = 150 s for
continuous elements, �t = 75 s for g2 discontinuous elements and �t = 50 s for g1 discontin-
uous elements.

:::::::::
Increasing

:::
the

:::::
time

::::
step

:::
by

::::
10 s

:::
led

:::
to

::
an

::::::::
unstable

:::::::::::
simulation. Simulations are

again compared against the continuous element run (with HV) in Fig. 10, where the relative
vorticity field ⇣ and relative vorticity field difference ⇣ � ⇣c is plotted (where ⇣c is the height10

field given in (a)). Due to the presence of sharp frontal activity in this test case and the strong
resolution dependence of this problem (Ullrich et al., 2010), differences in ⇣ are of the same
magnitude as the original field. In particular, the simulations without hyperviscosity (d,e,f) all
show enhancement near wave fronts which is not apparent in the simulations with hypervis-
cosity (b,c). Although most differences can be found near sharp fronts, there is also a clear15

enhancement in the differences near 120E associated with a trailing instability. For continuous
elements without hyperviscosity (c), there is also apparent grid-scale noise which is missing
from the other simulations, suggesting that this method is under-diffused.

Normalized total energy and potential enstrophy are plotted for the barotropic instability in
Fig. 11 for a 12 day integration with ne = 16 and np = 4. With hyperviscosity (a,b) there are20

small but visible differences in the results associated with changes in the type of elements.
Without hyperviscosity (c,d) the simulation with continuous elements exhibit instability around
day 6, leading to rapid growth of energy and potential enstrophy. On the other hand, with dis-
continuous elements there is a steady loss of energy and potential enstrophy over time due to
diffusivity from discontinuous penalization. Prior to wave breaking (which occurs around day25

4), energy and potential enstrophy loss are significant reduced compared to the simulations
with hyperviscosity. After wave breaking, energy and potential enstrophy loss are of the same
order of magnitude for simulations with and without hyperviscosity, associated with the fact
that diffusivity is enhanced near the barotropic fronts where discontinuities are large.
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7 Conclusions

Following Huynh (2007), a novel nodal finite element method for continuous and discontinuous
elements has been constructed using a robust derivative operator and discontinuous penaliza-5

tion. The resulting methodology can be used for straightforward discretization of partial dif-
ferential equations in either conservative or non-conservative form. A hyperviscosity operator
valid for both continuous and discontinuous elements was also presented that would provide a
mechanism for numerical stabilization and the removal of grid-scale noise. Two versions with
discontinuous elements were studied, using either the g1 and g2 flux correction function for10

distribution of boundary fluxes and penalty across nodal points. The resulting method was then
applied to the 2D shallow-water equations in cubed-sphere geometry and tested on a suite of
test problems.

From the Williamson et al. (1992) test case suite, steady-state geostrophically balanced flowand
:
, zonal flow over an isolated mountain

:::
and

:::
the

::::::::::::::::
Rossby-Haurwitz

::::::
wave were examined, in ad-15

dition to the barotropic instability test of Galewsky et al. (2004). The method was shown to
be stable and accurate for both continuous and discontinuous elements, with fourth-order con-
vergence being verified for cubic basis functions. Discontinuous penalization was shown to be
necessary for stability and for maintaining the correct order of accuracy of the discontinuous
method. Overall the discontinuous elements required a smaller time step than for continuous el-20

ements, although all methods led to similar error norms when hyperviscosity was active. When
hyperviscosity was deactivated, the discontinuous method exhibited better error norms than the
continuous approach and discontinuous penalization was shown to be sufficient for stability
of the method even for complex flows. Nonetheless, differences between all three approaches
appeared minor, and all methods performed well for this suite of tests.25

The non-conservative discontinuous element formulation has been shown to be a potential
candidate for future atmospheric modeling. It has the advantage of requiring fewer parallel
communications than continuous methods, and exhibits stability even when hyperviscosity is
not used for explicit stabilization. However, with the reduced time step size it remains unclear
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whether the discontinuous formulation would be computationally competitive with continuous
element methods.

The method discussed in this paper has been implemented in the Tempest atmospheric model,5

available from https://github.com/paullric/tempestmodel.

Acknowledgements. The author would like to acknowledge Mark Taylor, Oksana Guba, David Hall,
Hans Johansen and Jorge Guerra for many fruitful conversations and for their assistance in refining this
manuscript.
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Appendix A

:::::::::::
Equivalence

:::
of

:::::::::::
differential

::::
and

:::::::::::
variational

::::::
forms

::
In

::::
this

:::::::::
appendix

:::::::::::
equivalence

:::
of

:::
the

:::::::::::
variational

:::::::::::
formulation

:::
of

:::
the

::::::::
spectral

::::::::
element

:::::::
method5

:::
and

::::
the

::::::::::
differential

:::::::::::
formulation

::::::
using

::::
the

::::::
robust

:::::::::
derivative

:::
is

:::::::::::::
demonstrated.

::::
For

::::::::::
continuous

::::::::
elements,

::::::
f = f

::::
and

::::
(15)

:::::::
reduces

:::
to

D↵f(↵i,�j) =

np�1X

p=0

f(p,j)
@ ˜�(p)

@↵
(↵i),

::::::::::::::::::::::::::::::::

(A1)

:::::
which

::
is
:::::::
simply

:::
the

:::::::::
derivative

:::
of

:::
the

::::::::::
continuous

::::::::
analogue

:::
to

:::
the

:::::
nodal

::::::
values

::::::
along

:::::::
� = �j .:

:::
For

::::::::::
simplicity

:::::::
consider

::
a
::::::
single

:::::::::::
quadrilateral

::::::::
spectral

:::::::
element

:::::
with

:::
test

:::::::::
functions

:::
�ij:::::::

located10

::
at

:::::
nodal

::::::
points

:::::::
(↵i,�j),:::::::::::::::::::::

(i, j) 2 [0, . . . ,np� 1]

2.
::::
The

::::::
result

:
is
::::::
shown

:::
for

:::
an

::::::::
arbitrary

:::
2D

::::::::::::
conservation

::::
law,

@ 

@t
+r ·F= 0.

::::::::::::::

(A2)

:::::
Using

:::
the

::::::::::
derivative

:::::::
operator

:::::
(A1)

::::
this

::::::::
equation

:::::
reads

:

@ ij

@t
+

1

Jij
D↵(JF↵

)+

1

Jij
D�(JF �

) = 0,

::::::::::::::::::::::::::::::::::::::

(A3)15

:::::::
whereas

::::::
under

:::
the

::::::::::
variational

:::::::::::
formulation

::::
(A2)

::
is
:::::::::::
formulated

::
as

Z
@ 

@t
�ijdA+

Z
�ijr ·FdA = 0.

::::::::::::::::::::::::::::::

(A4)
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:::::
Then

:::::
using

::::::::::
integration

:::
by

:::::
parts,

X

m,n

✓Z
�ij�mndA

◆
@ mn

@t
+B �

Z
r�ij ·FdA = 0,

::::::::::::::::::::::::::::::::::::::::::::::::

(A5)

:::::
where

:::
B

::
is
::::

the
:::::::::::
contribution

::::
due

:::
to

:::
the

:::::::::
boundary

:::::::
which

::::::::::
disappears

::::::
under

:::::
DSS.

:::::::::::
Introducing5

::::::::::
coordinates

::::::
(↵,�)

::::
with

::::::::::
integration

:::
on

:::::
GLL

::::::
nodes,

:

Z
fdA =

np�1X

s=0

np�1X

t=0

fstJstwswt�↵��,

::::::::::::::::::::::::::::::::::

(A6)

:::
and

:::
so

:::
the

::::
first

::::
term

:::
of

::::
(A5)

::::::
reads

X

m,n

✓Z
�ij�mndA

◆
@ mn

@t
::::::::::::::::::::::::

=

X

m,n

(�i,m�j,nJijwiwj�↵��)
@ mn

@t
::::::::::::::::::::::::::::::::::

= Jijwiwj�↵��
@ ij

@t
.

:::::::::::::::::::::

(A7)10

:::
For

:::
the

::::
last

:::::
term,

:::::::
observe

::::
that

:::
on

:
a
:::::::::
manifold

r�ij ·F= gpqF
p

✓
gqr

@�

@xr

◆
= F↵ @�

@↵
+F � @�

@�
,

:::::::::::::::::::::::::::::::::::::::::::

(A8)

:::
and

:::
so

Z
r�ij ·FdA =

np�1X

s=0

np�1X

t=0


F↵@�ij

@↵
+F � @�ij

@�

�

↵=↵s,�=�t

Jstwswt�↵��.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(A9)

27



D
i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|

::::
But,

::
by

::::::::::::
construction,

:

@�ij
@↵

=

@ ˜�(i)

@↵
˜�(j),

::::::::::::::::

(A10)

:::
and

::::::::::::::
˜�(j)(�t) = �jt. ::::

This
:::::
leads

::
to

:
5

Z
r�ij ·FdA =

2

4
np�1X

s=0

F↵
sj

@ ˜�(i)

@↵
(↵s)Jsjwswj +

np�1X

t=0

F �
it

@ ˜�(j)

@�
(�t)Jitwiwt

3

5
�↵��.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(A11)

:::::
Then

::
in

:::::::::::
conjunction

::::
with

:::::
(A7)

:::
this

::::
can

:::
be

::::::
written

:::
as

@ ij

@t
� 1

Jij

np�1X

s=0

JsjF
↵
sj

@ ˜�(i)

@↵
(↵s)

ws

wi
� 1

Jij

np�1X

t=0

JitF
�
it

@ ˜�(j)

@�
(�t)

wt

wj
= 0.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(A12)

:::::::::::
Equivalence

::
of

::::
this

:::::::
equation

:::::
with

::::
(A3)

:::::::
follows

:::
for

::
a

::::::::::
formulation

:::
on

:::::
GLL

:::::
nodes

:::::::::::::::::::::::::
(Boyd, 2001, Appendix F) ,

:::::
since

:::::
these

::::
basis

:::::::::
functions

::::::
satisfy

::::
the

::::::::
property10

@ ˜�(i)

@↵
(↵s)ws =�

@ ˜�(s)

@↵
(↵i)wi.

:::::::::::::::::::::::::::

(A13)

Appendix B

Derivation of the Viscosity Operator

In this appendix the derivation of the discrete viscosity operator is provided for scalar and vector
hyperviscosity on a Riemannian manifold.
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B1 Scalar Viscosity

From the natural quadrature rule that arises from the nodal finite element formulation, the left-
hand-side of (21) is discretized as5

ZZ
f�(i,j)dA =

ZZ
f ˜�(i)(↵)˜�(j)(�)dA = f(i,j)wiwjJ�↵��, (B1)

and so, pointwise, the H operator is applied via

f(i,j) =
⌫

wiwj�↵��J(↵i,�j)

2

4
I

@Z

�(i,j)r · dS�
ZZ

Z

r�(i,j) ·r dA

3

5 . (B2)

10

The area integral term in (B2) is then computed:
ZZ

r�(i,j) ·r dA =

ZZ
rp�rp dA =

ZZ
@�(i,j)

@↵
r↵ +

@�(i,j)

@�
r� dA,

=�↵��

np�1X

m=0

np�1X

n=0

˜�(j)
@ ˜�(i)

@↵
r↵ Jwmwn|↵=↵m,�=�n

+�↵��

np�1X

m=0

np�1X

n=0

˜�(i)
@ ˜�(j)

@�
r� Jwmwn

���
↵=↵m,�=�n

(B3)

=�↵��wj

np�1X

m=0

@ ˜�(i)

@↵
r↵ Jwm|↵=↵m,�=�j

15

+�↵��wi

np�1X

n=0

@ ˜�(j)

@�
r� Jwn

���
↵=↵i,�=�n

29



D
i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|

From (B2), (23) then follows. The boundary integral term in (21) takes the form
I

@Z

�(i,j)r · dS=

Z

@ZR

�(i,j)r · dS+

Z

@ZT

�(i,j)r · dS+

Z

@ZL

�(i,j)r · dS+

Z

@ZB

�(i,j)r · dS,

(B4)5

where R, T , L and B denote the right, top, left and bottom edges, respectively. The quantity
dS=Nd` denotes the normal vector to the edge with magnitude equal to the infinitesimal
length element. Only the covariant components of the face normals need to be known, at each
edge given by

NR
p =

✓
1p
g↵↵

,0

◆
, NT

p =

 
0,

1p
g��

!
, NL

p =

✓
� 1p

g↵↵
,0

◆
, NB

p =

 
0,� 1p

g��

!
,

(B5)

10

The infinitesimal length element along each edge is given by the covariant metric,

d`R =

p
g��d�, d`T =

p
g↵↵d↵, d`L =

p
g��d�, d`B =

p
g↵↵d↵. (B6)

Then along the right edge, using the nodal discretization of the boundary integral,15

Z

@ZR

�(i,j)r · dS= �i,np�1

np�1X

n=0

˜�(j)(�)r↵ NR
↵ wn

p
g����

���
↵=↵np�1,�=�n

= �i,np�1wj�� Jr↵ |↵=↵np�1,�=�j
, (B7)

where we have used g�� = J2g↵↵. Repeating for all edges and using (B2) then yields (24).
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B2 Vector Viscosity

The area integral that appears on the left-hand-side of (29) and (30) takes the form
ZZ

Z

f ·�(↵)
(i,j)dA =

ZZ

Z

f↵
˜�(i)(↵)˜�(j)(�)dA = f↵

(i,j)wiwjJ�↵��, (B8)5

ZZ

Z

f ·�(�)
(i,j)dA =

ZZ

Z

f�
˜�(i)(↵)˜�(j)(�)dA = f�

(i,j)wiwjJ�↵��. (B9)

B2.1 Discretization of the area integral

In nodal form, the divergence expands as

(r ·�(↵)
(i,j)) =

1

J

@

@↵

�
Jg↵↵�(i,j)↵

�
+

1

J

@

@�

⇣
Jg�↵�(i,j)↵

⌘
(B10)10

=

˜�(j)(�)

J

@

@↵

⇣
Jg↵↵ ˜�(i)(↵)

⌘
+

˜�(i)(↵)

J

@

@�

⇣
Jg�↵ ˜�(j)(�)

⌘
, (B11)
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and so
ZZ

Z

(r ·�(i,j))(r ·u)dA

=�↵��

np�1X

m=0

np�1X

n=0

"
˜�(j)(�n)

J

@

@↵

⇣
Jg↵↵ ˜�(i)(↵)

⌘
5

+

˜�(i)(↵m)

J

@

@�

⇣
Jg�↵ ˜�(j)(�)

⌘#
(r ·u)Jwmwn

=�↵��wj

np�1X

m=0

Jg↵↵
d˜�(i)

d↵
(r ·u)wm

�����
↵=↵m,�=�j

+�↵��wi

np�1X

n=0

Jg�↵
d˜�(j)

d�
(r ·u)wn

�����
↵=↵i,�=�n

(B12)

Further, the radial component of the vorticity expands as10

(r⇥�(i,j))
r
=� 1

J

@�(i,j)↵

@�
=�

˜�(i)

J

d˜�(j)

d�
(B13)

and so
ZZ

Z

(r⇥�(i,j))
r
(r⇥u)rdA

=�↵��

np�1X

m=0

np�1X

n=0

"
�

˜�(i)(↵m)

J

d˜�(j)

d�

#
(r⇥u)rJwmwn

�����
↵=↵m,�=�n

15

=��↵��wi

np�1X

n=0

d˜�(j)

d�
(r⇥u)rwn

�����
↵=↵i,�=�n

(B14)
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Combining (B8), (B12) and (B14) then gives (32). An analogous procedure for � leads to (33).

B2.2 Discretization of the boundary integral

Using (B5)-(B6) and p
g�� = J

p
g↵↵, the contour integral in (29) along the right edge becomes5

Z

@ZR

(r ·u)�(↵)
(i,j) · dS= �i,np�1 (r ·u)g↵↵Jwj��|↵=↵np�1,�=�j

, (B15)

and along the top edge, also using p
g↵↵ = J

p
g�� ,

Z

@ZT

(r ·u)�(↵)
(i,j) · dS= �j,np�1 (r ·u)g↵�Jwi�↵

���
↵=↵i,�=�np�1

(B16)

10

Repeating for all edges and using (B8), the complete boundary integral for divergence damping
then leads to the divergence damping contribution to (34). An analogous procedure for test
function �(�)

(i,j) leads to (35).
For vorticity damping, along the right edge (30) reads

Z

@ZR

(r⇥u)⇥� · dS= �i,np�1 ✏�r↵(r⇥u)r�(i,j)↵N�wj
p

g����
���
↵=↵np�1,�=�j

= 0.15

and along the top edge,
Z

@ZT

(r⇥u)⇥� · dS= �j,np�1 ✏�r↵(r⇥u)r�(i,j)↵N�wi
p

g↵↵�↵
���
↵=↵i,�=�np�1

,

= �j,np�1(r⇥u)rwi�↵.
20

Repeating for all edges and using (B8) then leads to the vorticity damping constribution to (34).
An analogous procedure for test function �(�)

(i,j) leads to (35).
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Läuter, M., Giraldo, F. X., Handorf, D., and Dethloff, K.: A discontinuous Galerkin method for the

shallow water equations in spherical triangular coordinates, J. Comput. Phys., 227, 10 226–10 242,
doi:10.1016/j.jcp.2008.08.019, 2008.

Li, X., Chen, D., Peng, X., Takahashi, K., and Xiao, F.: A multimoment finite-volume shallow-15

water model on the Yin Yang overset spherical grid, Mon. Weather Rev., 136, 3066,
doi:10.1175/2007MWR2206.1, 2008.

Lin, S.-J. and Rood, R. B.: An explicit flux-form semi-Lagrangian shallow water model on the sphere,
Quart. J. Royal Meteor. Soc., 123, 2477–2498, doi:10.1002/qj.49712354416, 1997.

Nair, R. D., Thomas, S. J., and Loft, R. D.: A discontinuous Galerkin global shallow water model, Mon.20

Weather Rev., 133, 876–888, doi:10.1175/MWR2903.1, 2005.
Qaddouri, A., Pudykiewicz, J., Tanguay, M., Girard, C., and Côté, J.: Experiments with different dis-
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Fig. 1. A 3D view of the cubed-sphere grid shown here with ne = 16. Cubed sphere faces are individually
shaded.
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Fig. 2. A depiction of the nodal grid for a reference element on GLL nodes for np = 4. Boundary nodes,
which are connected to neighboring elements, are shaded.
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Fig. 3. L2 errors in Williamson et al. (1992) Test Case 2, steady-state geostrophically balanced flow,
for ne = 4 and np = 4 after a 5 day integration period. Contour spacing for plot (a) is 1 meter. Contour
spacing for all other plots is 0.5 meter. The zero line is enhanced. Long dashed lines show the cubed-
sphere grid.
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Fig. 4. L2 error time series for geostrophically balanced flow on the cubed-sphere for ne = 16 and np = 4

over a 5 day integration period for all continuous and discontinuous schemes.
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Fig. 5. L2 errors for geostrophically balanced flow on the cubed-sphere at various resolutions with np = 4

over a 5 day integration period. In (a) errors due to hyperviscosity dominate and so all simulations have
approximately equal error leading to coincident lines. In (b) unstable simulations have been removed.
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Fig. 6. Height field with ne = 16 and np = 4 at day 15 for zonal flow over an isolated mountain with
(a) continuous elements and hyperviscosity (reference solution). Height difference plot from reference
solution with ne = 16 at day 15 for (b) discontinuous g2 elements with hyperviscosity, (c) discontinuous
g1 elements with hyperviscosity, (d) continuous elements without hyperviscosity, (e) discontinuous g2
elements without hyperviscosity and (f) discontinuous g1 elements without hyperviscosity. The time
step used for these runs was (a,d) �t = 480 s, (b,e) �t = 240 s and (c,f) �t = 120 s. Discontinuous
penalization was used for both discontinuous schemes. Contour spacing is 1 m in all difference plots
with the zero line removed. Long dashed lines show the cubed-sphere grid.
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Fig. 7. Normalized total energy and potential enstrophy change for the zonal flow over an isolated moun-
tain test with ne = 16 and np = 4 over a 15 day simulation. In (a) all simulations show roughly equivalent
energy and enstrophy loss and so all lines are coincident. In (c) and (d) the simulation with continuous
elements is beginning to experience instability, leading to total energy and enstrophy growth after ap-
proximately 6 days simulation time.
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Fig. 8.
:::::
Height

::::
field

::::
with

:::::::
ne = 16

:::
and

::::::
np = 4

::
at

:::
day

:::
14

::
for

:::
the

:::::::::::::::
Rossby-Haurwitz

::::
wave

::::
with

:::
(a)

:::::::::
continuous

:::::::
elements

::::
and

::::::::::::
hyperviscosity

:::::::::
(reference

::::::::
solution).

::::::
Height

:::::::::
difference

::::
plot

:::::
from

::::::::
reference

:::::::
solution

::::
with

:::::::
ne = 16

:
at
::::

day
::
14

:::
for

:::
(b)

::::::::::::
discontinuous

::
g2::::::::

elements
::::
with

:::::::::::::
hyperviscosity,

::
(c)

::::::::::::
discontinuous

::
g1::::::::

elements
::::
with

::::::::::::
hyperviscosity,

::::
(d)

:::::::::
continuous

::::::::
elements

:::::::
without

:::::::::::::
hyperviscosity,

:::
(e)

::::::::::::
discontinuous

:::
g2::::::::

elements
::::::
without

::::::::::::
hyperviscosity

::::
and

:::
(f)

::::::::::::
discontinuous

::
g1::::::::

elements
:::::::
without

:::::::::::::
hyperviscosity.

:::
The

:::::
time

::::
step

::::
used

::
for

:::::
these

::::
runs

::::
was

::::
(a,d)

::::::::
�t = 480

::
s,
::::
(b,e)

:::::::::
�t = 200

:
s
::::
and

:::
(c,f)

:::::::::
�t = 120

::
s.

::::::::::::
Discontinuous

::::::::::
penalization

:::
was

::::
used

:::
for

::::
both

::::::::::::
discontinuous

::::::::
schemes.

:::::::
Contour

::::::
spacing

::
is
::
1

::
m

::
in

::::
plots

:::
(b)

::::
and

:::
(c)

:::
and

::
20

:::
m

::
in

::::
plots

:::
(d),

:::
(e)

:::
and

:::
(f).

:::::
Long

::::::
dashed

::::
lines

:::::
show

:::
the

:::::::::::
cubed-sphere

::::
grid.

45



D
i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|

Fig. 9.
:::::::::
Normalized

::::
total

::::::
energy

::::
and

:::::::
potential

:::::::::
enstrophy

::::::
change

:::
for

:::
the

::::::::::::::
Rossby-Haurwitz

:::::
wave

:::
test

::::
with

:::::::
ne = 16

:::
and

::::::
np = 4

:::::
over

:
a
:::
15

:::
day

::::::::::
simulation.

::
In

:::
(a)

::::
and

:::
(b)

::
all

::::::::::
simulations

:::::
show

:::::::
roughly

:::::::::
equivalent

:::::
energy

::::
and

::::::::
enstrophy

::::
loss

:::
and

:::
so

::
all

:::::
lines

:::
are

:::::::::
coincident.

::
In

:::
(c)

::::
and

:::
(d)

:::
the

:::::::::
simulation

::::
with

:::::::::
continuous

:::::::
elements

::
is
:::::::::

beginning
:::

to
:::::::::
experience

:::::::::
instability,

:::::::
leading

:::
to

::::
total

::::::
energy

::::
and

:::::::::
enstrophy

:::::::
growth

::::
after

::::::::::::
approximately

:
6
::::
days

:::::::::
simulation

:::::
time.
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Fig. 10. Relative vorticity field with ne = 32 and np = 4 at day 6 for the barotropic instability test with
(a) continuous elements and hyperviscosity (reference solution). Relative vorticity difference plot from
reference solution with ne = 16 at day 6 for (b) discontinuous g2 elements with hyperviscosity, (c) dis-
continuous g1 elements with hyperviscosity, (d) continuous elements without hyperviscosity, (e) discon-
tinuous g2 elements without hyperviscosity and (f) discontinuous g1 elements without hyperviscosity.
The time step used for these runs was (a,d) �t = 150 s, (b,e) �t = 75 s and (c,f) �t = 50 s. Discontinu-
ous penalization was used for both discontinuous schemes. Contour spacing in all plots is 2⇥ 10

�5 s�1

with the zero line removed. Long dashed lines show the cubed-sphere grid.
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Fig. 11. Normalized total energy and enstrophy change for the barotropic instability test with ne =

16 and np = 4 over a 12 day simulation. In (c) and (d) the continuous element simulation fails after
approximately 6 days, leading to unbounded growth in energy and enstrophy. The time step used for
these runs was (a,d) �t = 300 s, (b,e) �t = 150 s and (c,f) �t = 75 s. Discontinuous penalization was
used for both discontinuous schemes.
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