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Abstract

This paper presents a novel nodal finite element method for either continuous and discontinuous
elements, as applied to the 2D shallow-water equations on the cubed-sphere. The cornerstone
of this method is the construction of a robust derivative operator that can be applied to compute
discrete derivatives even over a discontinuous function space. A key advantage of the robust5

derivative is that it can be applied to partial differential equations in either conservative or
non-conservative form. However, it is also shown that discontinuous penalization is required to
recover the correct order of accuracy for discontinuous elements. Two versions with discontin-
uous elements are examined, using either the g1 and g2 flux correction function for distribution
of boundary fluxes and penalty across nodal points. Scalar and vector hyperviscosity operators10

valid for both continuous and discontinuous elements are also derived for stabilization and re-
moval of grid-scale noise. This method is validated using four standard shallow-water test cases,
including geostrophically balanced flow, a mountain-induced Rossby wave train, the Rossby-
Haurwitz wave and a barotropic instability. The results show that although the discontinuous
basis requires a smaller time step size than that required for continuous elements, the method15

exhibits better stability and accuracy properties in the absence of hyperviscosity.

1 Introduction

Modeling of the 2D shallow-water equations is an important step in understanding the behavior
of a numerical discretization for atmospheric modeling. In particular, the dynamical character of
the global shallow-water equations is governed by features common with atmospheric motions20

including nonlinearity, barotropic Rossby waves and inertia-gravity waves, without the added
complexity of a vertical dimension.

A comprehensive literature already exists on the development of numerical methods for the
global shallow-water equations spanning the past several decades. Examples include the spec-
tral transform method (Jakob-Chien et al., 1995), semi-Lagrangian methods (Ritchie, 1988;25

Bates et al., 1990; Tolstykh, 2002; Zerroukat et al., 2009; Tolstykh and Shashkin, 2012; Qad-
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douri et al., 2012), finite-difference methods (Heikes and Randall, 1995; Ronchi et al., 1996),
Godunov-type finite-volume methods (Rossmanith, 2006; Ullrich et al., 2010), staggered finite-
volume methods (Lin and Rood, 1997; Ringler et al., 2008; Ringler et al., 2011), multi-moment
finite-volume methods (Chen and Xiao, 2008; Li et al., 2008; Chen et al., 2013), and finite-
element methods (Taylor et al., 1997; Côté and Staniforth, 1990; Thomas and Loft, 2005; Gi-5

raldo et al., 2002; Nair et al., 2005; Läuter et al., 2008; Comblen et al., 2009; Bao et al., 2013).
This paper introduces a novel discrete derivative operator that is applied to the shallow-water

equations on a manifold using continuous and discontinuous finite elements. This work is moti-
vated by the flux correction methods of Huynh (2007) and Vincent et al. (2011), is an alternative
to formulations with discontinuous elements that discretize the conservative equations of mo-10

tion with explicit momentum fluxes (Giraldo et al., 2002; Nair et al., 2005), and generalizes both
spectral element and discontinuous Galerkin methods. This approach is also quadrature-free, re-
quiring no integral computation. This paper further introduces a general variational discretiza-
tion of the scalar and vector Laplacian operator which is valid for continuous or discontinuous
elements and only requires one communication per application of the Laplacian.15

Discontinuous elements are potentially more desirable than continuous elements for several
reasons: First, discontinuous elements only require parallel communication along coordinate
axes, whereas continuous elements also require parallel communication along diagonals, a dou-
bling of the total number of communications in 2D. Second, discontinuous elements provide a
natural mechanism to enforce stabilization via discontinuous penalization (or Riemann solvers,20

for equations in conservation form). Third, discontinuous elements can be used in conjunction
with upwind methods, which are generally better for tracer transport and associated problems.
However, discontinuous elements also have a number of disadvantages, including higher stor-
age requirements (for the same order of accuracy), a maximum time step size which is typically
smaller than that imposed for continuous elements (Ullrich, 2013), and added computational25

expense for many hyperbolic operations.
The outline of this paper is as follows. Section 2 presents the shallow-water equations on

a manifold. The cubed-sphere grid, which will be used for simulations on the sphere, is de-
scribed in section 3. The discretizations of the dynamics and hyperviscosity are then presented
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in sections 4 and 5 respectively. Results from four standard shallow-water test cases are given
in section 6 and conclusions follow in section 7.

2 The shallow-water equations on a manifold

The 2D shallow-water equations in on a Riemannian manifold with coordinate indices xs =
{α,β} can be written as5

∂uα

∂t
+us∇suα + gαs

∂

∂xs
(gcH) + f(k×u)α = 0, (1)

∂uβ

∂t
+us∇suβ + gβs

∂

∂xs
(gcH) + f(k×u)β = 0, (2)

∂H

∂t
+∇s(hus) = 0. (3)

The prognostic variables are free surface heightH and vector velocity u = uαgα+uβgβ , where10

gα = ∂x/∂α and gβ = ∂x/∂β are the natural basis vectors on the manifold. The fluid height
h and height of the bottom topography z are related to the free surface height via H = h+ z.
Here grs denotes the contravariant metric with covariant inverse grs, J =

√
detgrs is the metric

Jacobian, gc is gravity, f is the Coriolis parameter, and k is the vertical basis vector of unit
length. Einstein summation notation (implied summation) is used for repeated indices. These15

equations further make use of the covariant derivative∇s, which expands as

us∇sud = uα
∂ud

∂α
+uβ

∂ud

∂β
+ Γdsru

sur, (4)

∇s(hus) =
1

J

∂

∂α
(Jhuα) +

1

J

∂

∂β
(Jhuβ), (5)

where Γdsr denote the Christoffel symbols of the second kind associated with the coordinate20

transform (again with summation over repeated indices s and r implied).
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The mass equation (3) has been kept in conservative form to enforce strict mass conservation.
On the other hand, (1)-(2) are given in a non-conservative form; this formulation is selected over
the flux-form equations (where huα and huβ are prognostic variables). Angular momentum
and potential enstrophy are particularly relevant to atmospheric motions (Thuburn, 2008) and
can be easily conserved under a non-conservative formulation of the shallow-water equations5

(Taylor and Fournier, 2010). Conservation of these quantities is more difficult when they are
diagnosed from the flux-form prognostic variables. The non-conservative formulation also has
the advantage of leading to a more accurate treatment of wave-like motion when formulated
appropriately (Thuburn and Woollings, 2005).

3 The cubed-sphere grid10

The equations (1)-(3) are now applied to a particular choice of coordinate system. The cubed-
sphere grid (Sadourny, 1972; Ronchi et al., 1996) consists of a cube with six Cartesian patches
arranged along each face, which is then inflated onto a tangent spherical shell, as shown in
Fig. 1. The cubed-sphere is a quasi-uniform spherical grid, that is, it is in the class of grids
that provide an approximately uniform tiling of the sphere (see Staniforth and Thuburn (2012),15

for example, for a review of different options for global grids). On the equiangular cubed-
sphere grid, coordinates are given as (α,β,p), with central angles α,β ∈ [−π

4 ,
π
4 ] and panel

index p ∈ {1,2,3,4,5,6}. By convention, we choose panels 1–4 to be along the equator and
panels 5 and 6 to be centered on the northern and southern pole, respectively. With uniform grid
spacing, each panel consists of a square array of ne×ne elements.20

The contravariant 2D metric on the equiangular cubed-sphere of radius a is given by

grs =
δ2

a2(1 + tan2α)(1 + tan2β)

 1 + tan2β tanαtanβ

tanαtanβ 1 + tan2α

 , (6)

5
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where δ =
√

1 + tan2α+ tan2β. The Jacobian on the manifold, denoted by J , is then

J =
√

det(grs) =
a2(1 + tan2α)(1 + tan2β)

δ3
, (7)

and induces the infinitesimal area element dA= J dαdβ. The Christoffel symbols of the second
kind are given by

Γαij =


2tanαtan2β

δ2
−tanβ (1 + tan2β)

δ2

−tanβ (1 + tan2β)

δ2
0

 , (8)5

Γβij =

 0
−tanα (1 + tan2α)

δ2

−tanα (1 + tan2α)

δ2
2tan2αtanβ

δ2

 . (9)

Spherical coordinates (λ,φ) for longitude λ ∈ [0,2π] and latitude φ ∈ [−π/2,π/2] will also
be used for plotting and specification of tests. Coordinate transforms between spherical and
equiangular coordinates can be found in Ullrich and Jablonowski (2012) Appendix A.10

4 Nodal Finite Element Discretization

4.1 The Nodal Basis

A nodal finite element method is employed (Taylor et al., 1997; Giraldo et al., 2002; Hesthaven
and Warburton, 2007). The 1D reference element is defined as the interval x ∈ [−1,1] along with
a set of test functions φ̂(i)(x). The test functions are defined such that test function φ̂(i)(x) is the15

unique polynomial of degree np that is 1 at the ith Gauss-Lobatto-Legendre (GLL) node (i ∈
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(0, . . . ,np− 1)) and 0 at all other GLL nodes. Each basis polynomial then has a corresponding
weight, defined by

wi =

1∫
−1

φ̂(i)(x)dx. (10)

The 2D element Z = [α1,α2]× [β1,β2] (with boundary ∂Z) has accompanying 1D basis
functions5

φ̃(i)(α) = φ̂(i)

(
2(α−α1)

∆α
− 1

)
, φ̃(j)(β) = φ̂(j)

(
2(β−β1)

∆β
− 1

)
, (11)

where ∆α= α2−α1 and ∆β = β2−β1. The accompanying 2D tensor-product basis is then
defined by

φ(i,j)(α,β) = φ̃(i)(α)φ̃(j)(β). (12)10

Figure 2 provides a depiction of GLL nodes within a single element. For vector quantities (such
as velocity u), test functions are instead vector fields. Uniqueness of the variational system is
retained if exactly two degrees of freedom are allowed at each nodal location for the vector
test function φ. As we shall see, the most natural choice is test functions φ(α)

(i,j) and φ
(β)
(i,j) with

covariant components15

φ
(α)
(i,j)α = φ(i,j), φ

(α)
(i,j)β = 0, φ

(β)
(i,j)α = 0, φ

(β)
(i,j)β = φ(i,j). (13)

4.2 Robust Differentiation

A robust differentiation operator is now constructed for both continuous and discontinuous finite
elements. Let f : (α,β)→ R be defined and continuous on Z ∪ ∂Z with basis φ(i,j),20

f(α,β) =

np−1∑
p=0

np−1∑
q=0

f(p,q)φ(p,q)(α,β), (14)

7
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for coefficients f(p,q) ∈ R. Further, let f̃ : (α,β)→ R be defined and continuous on ∂Z . Here
f̃ represents the evaluation of f in neighboring elements. Note that for a continuous finite
element method, f and f̃ must satisfy f̃(α,β) = f(α,β) on ∂Z , whereas no such restriction
is imposed for discontinuous finite elements. Following Huynh (2007), robust differentiation in
the α direction is defined at GLL nodes via5

Dαf(αi,βj) =

np−1∑
p=0

f(p,j)
∂φ̃(p)

∂α
(αi)+

dgR
dα

(αi)(f (np−1,j)−f(np−1,j))+
dgL
dα

(αi)(f (0,j)−f(0,j)),

(15)

where the overline denotes the co-located average of f and f̃ ,

f (np−1,j) =
f(αnp−1,βj) + f̃(αnp−1,βj)

2
, f (0,j) =

f(α0,βj) + f̃(α0,βj)

2
. (16)

An analogous definition holds in the β direction. Here gL and gR are the local flux correction10

functions, which are chosen to satisfy

gL(α0) = 1, gL(αnp−1) = 0, gR(α0) = 0, gR(αnp−1) = 1, (17)

and otherwise are chosen to approximate zero throughout [α0,αnp−1]. Several options for gL
and gR will lead to a stable discretization, including g1 (Radau polynomials), which will lead to15

the discontinuous Galerkin method, and g2, which will lead to the mass-lumped discontinuous
Galerkin method (Huynh, 2007). Hereafter discontinuous elements with the g1 flux correction
function will be referred to as “discontinuous g1 elements,” whereas elements using of the g2
flux correction function will be referred to as “discontinuous g2 elements.” Observe that for
continuous finite elements, the rightmost two terms in (15) are exactly zero.20

With the definition of a robust discrete derivative (15), discretization of the shallow-water
system (1)-(3) is straightforward. Note that for continuous finite elements, this discretization
is identical to the approach of Taylor et al. (1997) when applied in conjunction with Direct

8
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Stiffness Summation (that is, projection into the space of continuous functions) (see Appendix
A). If the conservative form of the shallow-water equations were employed, this discretization
is the same as Giraldo et al. (2002) when mass lumping is not employed (discontinuous g1)
and Nair et al. (2005) if mass lumping is applied (discontinuous g2). To the best of the author’s
knowledge, no previous work has used both discontinuous elements and a non-conservative5

form of the shallow-water system.

4.3 Discontinuous Penalization

At element boundaries, the use of one-sided derivatives will cause the discontinuity between
neighboring elements to exhibit an error with magnitude O(∆xnp−1), an effective loss of one
order of accuracy from the expected convergence rate. To reduce errors associated with the10

discontinuity, a penalization term is added in each coordinate direction. In the α direction this
term reads

∂H

∂t
(αi,βj) = . . .+

∂gR
∂α

(αi)
|λ(αnp−1,βj)|

2

[
H̃(αnp−1,βj)−H(αnp−1,βj)

] J(αnp−1,βj)

J(αi,βj)

+
∂gL
∂α

(αi)
|λ(α0,βj)|

2

[
H(α0,βj)− H̃(α0,βj)

] J(α0,βj)

J(αi,βj)
, (18)

∂ud

∂t
(αi,βj) = . . .+

∂gR
∂α

(αi)
|λ(αnp−1,βj)|

2

[
ũd(αnp−1,βj)−ud(αnp−1,βj)

]
15

+
∂gL
∂α

(αi)
|λ(α0,βj)|

2

[
ud(α0,βj)− ũd(α0,βj)

]
. (19)

where λ(α,β) = |uα|+
√
gh/a represents the maximum local wave speed in the α direction. An

analogous term is added in the β direction. Note that with this choice of penalization the evo-
lution equation for H is identical to the evolution equation that would arise from a traditional20

conservative discontinuous Galerkin method with local Lax-Friedrichs flux. Since the penal-
ization term is equivalent to upwinding, it is weakly diffusive and so allows the discontinuous
scheme to maintain stability even in the absence of explicit viscosity.

9
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4.4 Implementation considerations

On the cubed-sphere grid, the discontinuous method has 6n2en
2
p degrees of freedom compared

to 8+8(ne(np−1)−1)+6(ne(np−1)−1)2 for the continuous method. In the limit as ne→∞
this yields a ratio of (np−1)2/n2p degrees of freedom for the continuous formulation versus the
discontinuous formulation. Note that in practice, the continuous formulation typically stores re-5

dundant degrees of freedom in order to reduce computational expense associated with indexing
and so memory requirements are typically identical.

The primary computational difference between the continuous and discontinuous formula-
tions is due to the evaluation of the penalty terms (18)-(19). Note that although the robust
differentiation operation (15) does require additional computation for discontinuous methods,10

the cost of evaluating the discontinuous terms in this expression is roughly equivalent to the
computational cost of the direct stiffness summation operation needed for continuous elements.
Nonetheless, from numerical experiments the discontinuous method has an approximately 30%
overhead compared with a continuous method (when run with the same time step size).

5 Viscosity and Hyperviscosity15

Stabilization is typically needed for co-located (or unstaggered) finite element methods, whether
implicitly in the form of upwinding or explicitly in the form of a diffusive operator, to avoid
high-frequency dispersive errors associated with spectral ringing. In general, it is preferred that
this operator is consistent with the underlying geometry of the Riemannian manifold, which
precludes, for example, the Boyd-Vandeven filter (Boyd, 1996). There has been considerable20

success with the use of hyperviscosity in the spectral element method (Dennis et al., 2011),
which maintains geometric consistency by mimicking the natural fourth-order hyperviscosity
operator. Previously, it has not been clear how to extend this operator to a discontinuous func-
tion space. However, the robust derivative (15) provides a direct mechanism by which the hy-
perviscosity operator can be constructed. The viscosity operator for both the continuous and25

discontinuous function space will be discussed here.

10
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Note that any viscosity operator will lead to a loss of energy conservation of the underlying
numerical method. This loss is exhibited in two obvious ways: First, for geostrophically bal-
anced flows the error will tend to grow over time. Second, energy conservation is lost leading
to a decay in the total energy content of the system over time.

5.1 Scalar Viscosity5

For stabilization of the method, diffusion is added in the form of either viscosity or hypervis-
cosity, which corresponds to multiple applications of the viscosity operator. A scalar viscosity
operator is constructed to satisfy

H(ν)ψ ≈ ν∇2ψ, (20)
10

where ∇2 =∇ ·∇ is the usual scalar Laplacian. The operator is defined implicitly via a varia-
tional construction. If f =H(ν)ψ then, multiplying (20) by a test function and applying inte-
gration by parts, one obtains

∫∫
fφ(i,j)dA= ν

∮
∂Z

φ(i,j)∇ψ · dS−
∫∫
Z

∇φ(i,j) · ∇ψdA

 , (21)

15

where dS is the infinitesimal line element along the boundary of Z and dA is the infinitesimal
area element. The two terms on the right-hand side of this expression correspond to the viscosity
flux through element boundaries and the Laplacian within the element. Under a continuous
element formulation, only the rightmost term is retained and fluxes are instead accounted for
via direct stiffness summation. Under a discontinuous formulation, both terms are retained and20

discretized. The discrete equation satisfied by f(i,j) that follows from (21) is written as

f(i,j) = fB(i,j) + fA(i,j), (22)

11
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where fB(i,j) denotes the discretization of the boundary integral and fA(i,j) denotes the discretiza-
tion of the area integral. After a lengthy derivation (see Appendix B), these discretizations read

fA(i,j) =− ν

wiJ(αi,βj)

np−1∑
m=0

∂φ̃(i)

∂α
∇αψJwm|α=αm,β=βj

− ν

wjJ(αi,βj)

np−1∑
n=0

∂φ̃(j)

∂β
∇βψJwn

∣∣∣
α=αi,β=βn

, (23)
5

and

fB(i,j) = ν

δi,np−1

wi∆α
∇αψ︸ ︷︷ ︸

Right

+
δj,np−1

wj∆β
∇βψ︸ ︷︷ ︸

Top

− δi,0
wi∆α

∇αψ︸ ︷︷ ︸
Left

− δj,0
wj∆β

∇βψ︸ ︷︷ ︸
Bottom

 , (24)

where δi,j is the Krönecker delta. Here the contravariant derivative of ψ has been used, defined
via

∇pψ = gpq∇qψ = gpα
∂ψ

∂α
+ gpβ

∂ψ

∂β
. (25)10

Note that the contravariant derivatives ∇pψ are multivalued along this edge, and so must be
adjusted using the robust derivative operator (15).

5.2 Vector Viscosity

Vector viscosity is used for damping of the velocity field, and takes the form

H(νd,νv)u≈ νd∇(∇ ·u)− νv∇× (∇×u). (26)15

12
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Observe that if ν = νd = νv then this expression is exactly the standard vector Laplacian oper-
ator ∇2u, with coefficient ν. By writing the vector Laplacian as (26), the combined operator
separates into two distinct operators that effect divergence damping (with coefficient νd) and
vorticity damping (with coefficient νv). This result can be quickly verified by taking the diver-
gence and curl of (26),5

∇ ·H(νd,νv)u = νd∇2(∇ ·u), (27)

∇×H(νd,νv)u =−νv∇× (∇× (∇×u)) = νv∇2(∇×u) (28)

For simplicity of calculation, we treat divergence damping and vorticity damping separately.
For divergence damping, the operator is constructed by taking the inner product of f =H(νd,νv)u10

with the vector test function φ, integrating over Z and applying integration by parts,

νd

∫∫
Z

φ · fdA= νd

∫∫
Z

φ · ∇(∇ ·u),

= νd

∮
∂Z

(∇ ·u)φ · dS−
∫∫
Z

(∇ ·φ)(∇ ·u)dV

 . (29)

For vorticity damping an analogous procedure leads to15

νv

∫∫
Z

φ · fdA=−νv
∫∫
Z

φ · ∇× (∇×u)dV,

=−νv

∮
∂Z

(∇×u)×φ · dS+

∫∫
Z

(∇×φ) · (∇×u)dV

 (30)

Note that for shallow-water flows, only the radial component of the vorticity is relevant for
this calculation. The discrete value of fα(i,j) and fβ(i,j) that arises from this calculation then has20

13
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contributions from the area integral via fA,d(i,j) and boundary integral via fB,d(i,j),

fα(i,j) = fB,α(i,j) + fA,α(i,j), fβ(i,j) = fB,β(i,j) + fA,β(i,j). (31)

Following another lengthy derivation (see Appendix B) the area integral term appears as

fA,α(i,j) =− νd
J(αi,βj)wi

np−1∑
m=0

Jgαα
dφ̃(i)

dα
(∇ ·u)wm

∣∣∣∣∣
α=αm,β=βj

5

− νd
J(αi,βj)wj

np−1∑
n=0

Jgβα
dφ̃(j)

dβ
(∇ ·u)wn

∣∣∣∣∣
α=αi,β=βn

+
νv

J(αi,βj)wj

np−1∑
n=0

dφ̃(j)

dβ
(∇×u)rwn

∣∣∣∣∣
α=αi,β=βn

, (32)

and

fA,β(i,j) =− νd
J(αi,βj)wi

np−1∑
m=0

Jgαβ
dφ̃(i)

dα
(∇ ·u)wm

∣∣∣∣∣
α=αm,β=βj

10

− νd
J(αi,βj)wj

np−1∑
n=0

Jgββ
dφ̃(j)

dβ
(∇ ·u)wn

∣∣∣∣∣
α=αi,β=βn

− νv
J(αi,βj)wi

np−1∑
m=0

dφ̃(i)

dα
(∇×u)rwm

∣∣∣∣∣
α=αm,β=βj

, (33)

14
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whereas the boundary integral term is

fB,α(i,j) = νd

δi,np−1g
αα(∇ ·u)

wi∆α︸ ︷︷ ︸
Right

+
δj,np−1g

αβ(∇ ·u)

wj∆β︸ ︷︷ ︸
Top

− δi,0g
αα(∇ ·u)

wi∆α︸ ︷︷ ︸
Left

− δj,0g
αβ(∇ ·u)

wj∆β︸ ︷︷ ︸
Bottom


α=αi,β=βj

+ νv

−δj,np−1(∇×u)r

Jwj∆β︸ ︷︷ ︸
Top

+
δj,0(∇×u)r
Jwj∆β︸ ︷︷ ︸
Bottom


α=αi,β=βj

. (34)

Applying an analogous procedure for test function φ
(β)
(i,j),5

fB,β(i,j) = νd

δi,np−1g
βα(∇ ·u)

wi∆α︸ ︷︷ ︸
Right

+
δj,np−1g

ββ(∇ ·u)

wj∆β︸ ︷︷ ︸
Top

− δi,0g
βα(∇ ·u)

wi∆α︸ ︷︷ ︸
Left

− δj,0g
ββ(∇ ·u)

wj∆β︸ ︷︷ ︸
Bottom


α=αi,β=βj

+ νv

δi,np−1(∇×u)r

Jwi∆α︸ ︷︷ ︸
Right

− δi,0(∇×u)r
Jwi∆α︸ ︷︷ ︸

Left


α=αi,β=βj

. (35)

The divergence and curl, which are needed for evaluation of the Laplacian, are computed via

∇ ·u =∇pup =∇αuα +∇βuβ (36)10

(∇×u)r = εrpqg
ps∇suq = J

[
gαα∇αuβ + gαβ∇βuβ − gβα∇αuα− gββ∇βuα

]
, (37)
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where

∇αuα =
∂uα

∂α
+ Γαααu

α + Γααβu
β, ∇αuβ =

∂uβ

∂α
+ Γβααu

α + Γβαβu
β, (38)

∇βuα =
∂uα

∂β
+ Γαβαu

α + Γαββu
β, ∇βuβ =

∂uβ

∂β
+ Γββαu

α + Γβββu
β. (39)

All partial derivatives are evaluated using the robust derivative operator (15).5

5.3 Hyperviscosity

For stabilization of a high-order discretization, hyperviscosity is preferred since it retains the
order of accuracy of the underlying scheme. In practice, hyperviscosity is implemented by re-
peated application of the viscosity operator. For instance, for fourth-order hyperviscosity, the
∇4 operator is approximated as follows10

∂u

∂t
=H(νd,νv)H(1,1)u,

∂h

∂t
=H(ν)H(1)h. (40)

5.4 Computational Considerations

Calculation of hyperviscosity in the form presented here requires one parallel exchange per ap-
plication of the Laplacian operator. For continuous elements, this communication is manifested15

through the application of DSS, which averages away any discontinuity that has been generated
along element edges. For discontinuous elements, scalar viscosity requires pointwise updates
along element edges computed from (24), whereas vector viscosity requires both one-sided val-
ues of u, (∇·u) and (∇×u)r, which are in turn used for computing nodal values of (∇·u) and
(∇×u)r needed for (32)-(35). This constitutes a doubling of the overall bandwidth requirement20

relative to continuous elements.
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6 Results

In this section selected results are provided to evaluate the relative performance of the methods
described in this paper. Four test cases are evaluated: From the Williamson et al. (1992) test
case suite, steady-state geostrophically balanced flow, zonal flow over an isolated mountain
and the Rossby-Haurwitz wave will be analyzed, in addition to the barotropic instability test5

of Galewsky et al. (2004). For all test cases, time integration is handled via the strong-stability
preserving three-stage third-order Runge-Kutta method (Gottlieb et al., 2001). Note that some
improvement in the maximum time step size for discontinuous elements can be obtained from
the use of the five-stage third-order Runge-Kutta method (Ruuth, 2006), which has a stability
region that covers a larger portion of the negative real plane. The time step ∆t for each test is10

chosen to be close to the stability limit in each case (observed empirically). The value of ∆t has
negligible effect on the results (not shown), suggesting that spatial errors dominate in each case.
Further, note that mass conservation is maintained to machine truncation for all simulations (not
shown). From the shallow-water equations, the values of gc and f for the Earth are used,

gc = 9.80616 m s−2, f = 2Ωsinφ Ω = 7.29212× 10−5 s−1. (41)15

All simulations are performed with np = 4. A thorough investigation of different values of
np would greatly extend the length of the manuscript, so np was chosen in accordance with the
Community Atmosphere Model spectral element dynamical core. As argued by Ullrich (2013),
this choice is also “optimal” when considering the accurate treatment of linear waves.20

When required, the standard L2 error measure is calculated via

L2(h) =

√
I [(h−hT )2]

I
[
h2T
] , (42)

where hT is the height field at the initial time (which is the analytical solution for steady-state
test cases) and I denotes an approximation to the global integral, given by

I[x] =
∑

all elements k

np−1∑
m=0

np−1∑
n=0

xk(αm,βn)Jk(αm,βn)wmwn∆α∆β

 , (43)25
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where the subscript k denotes the values of x and J within the kth element.
When applied, hyperviscosity uses a single coefficient for both scalar and vector hypervis-

cosity,

ν = νd = νv = (1.0× 1015m4 / s)
(ne

30

)3.2
. (44)

This choice of scaling for the hyperviscosity coefficient is based on Takahashi et al. (2006).5

6.1 Steady-State Geostrophically Balanced Flow

Test case 2 of Williamson et al. (1992) describes a zonally symmetric geostrophically balanced
flow. This test utilizes an unstable equilibrium solution to the shallow-water equations which
is expected to be exactly maintained over time. However, it is generally true that only methods
that satisfy the curl-grad annihilator property ∇×∇φ= 0 maintain some sort of discrete equi-10

librium. Nonetheless, since an analytical solution is known (identical to the initial conditions),
this test is effective at measuring the convergence rate of a numerical method. Further, the error
fields from this test provide some indication of what effect the grid has on the errors of the
underlying method. The analytical height field for this test is given by

h= h0−
1

gc

(
Ωu0a+

u20
2

)
sin2φ, (45)15

with background height h0 and velocity amplitude u0 chosen to be

h0 =
2.94× 104 m2 s−2

gc
, and u0 =

πa

6
day−1. (46)

This height field also serves as the reference solution. The non-divergent velocity field is speci-
fied in latitude-longitude (φ,λ) coordinates as

uλ = u0 cosφ, uφ = 0. (47)20
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Figure 3 shows L2 errors in the height field after a 5 day integration of the model at ne = 4
resolution with np = 4. Simulations were completed for continuous elements (a) with hyper-
viscosity and (d) without hyperviscosity, discontinuous elements (b,e) with mass lumping (the
g2 flux correction function), (c,f) without mass lumping (the g1 flux correction function), (b,c)
with discontinuous penalization, and (e,f) without discontinuous penalization. The time step is5

∆t= 2200 s for simulations (a,d), ∆t= 800 s for simulations (b,c,e), and ∆t= 400 s for sim-
ulation (f). Increasing the magnitude of the time step by 100 s led to simulation instability in
each case. Since the addition of hyperviscosity leads to loss of energy conservation there is a
slow decay of the geostrophically balanced flow towards a uniform height state, hence leading
to a nearly zonally symmetric decay in the height field towards the poles. For all configurations10

(both continuous and discontinuous elements) visually identical results are observed when hy-
perviscosity is added, and so these results are not shown. All simulations exhibit a characteris-
tic wavenumber-4 mode triggered by the underlying cubed-sphere, although the specific error
pattern differs throughout. Simulation (d) is exactly mimetic and leads to exact maintenance
of geostrophic balance. Simulations (b) and (c) are quasi-mimetic, only losing energy conser-15

vation due to the discontinuous penalty term, and so exhibit very slow error growth with time.
Simulations (e) and (f), which correspond to discontinuous elements without penalization, show
greatly enhanced error norms and substantial imprinting from the ne = 4 pattern.

To understand the growth of error norms associated with each configuration, additional sim-
ulations with ne = 16 have been performed and L2 error norms plotted as a function of time in20

Fig. 4. All simulations show an expected near-identical growth of errors with time when hyper-
viscosity is active. With hyperviscosity disabled the results from each simulation disentangle:
Continuous elements are oscillatory but show stable error norms, discontinuous elements with
penalization show smaller error norms than continuous elements but a very slow growth with
time due to the upwinding effect of the discontinuous penalization, and discontinuous elements25

without penalization show rapid growth in errors (and even instability without mass lumping).
To verify that the model exhibits the correct convergence rate, Fig. 5 shows the global error

norms associated with simulations with ne ∈ {4,8,16,32,64} over a 5 day integration period.
At ne = 4, the time step is ∆t= 2200 s for continuous elements, ∆t= 800 s for g2 discon-
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tinuous elements and g1 discontinuous elements with penalization, and ∆t= 400 s for g1 dis-
continuous elements without penalization. Increasing the time step by 100 s led to an unstable
simulation. The time step is scaled inversely with increasing resolution. Missing simulations
correspond to model instability and divergence prior to simulation completion. The use of hy-
perviscosity reduces the convergence rate to O(∆x3.2), as expected from the choice of hyper-5

viscosity coefficient (44). With hyperviscosity disabled, model simulations converge atO(∆x4)
for continuous elements and discontinuous elements with penalty, and O(∆x3) for discontin-
uous elements without penalty. The loss of one order of accuracy is due to one-sided differen-
tiation at co-located nodes along element edges, leading to enhancement of the discontinuity.
Similar results (not shown) are observed when changing np – that is, continuous elements and10

discontinuous elements with penalty converge atO(∆xnp), whereas unpenalized discontinuous
elements converge at O(∆xnp−1).

6.2 Zonal flow over an isolated mountain

Test case 5 in Williamson et al. (1992) considers zonal flow with underlying topography. The
wind and height fields are defined as in section 6.1, except with h0 = 5960 m and u0 = 20 m s−1.15

A conical mountain is used for the topographic forcing, given by

z = z0(1− r/R), (48)

with z0 = 2000 m,R= π/9 and r2 = min
[
R2,(λ−λc)2 + (φ−φc)2

]
. The center of the moun-

tain is at λc = 3π/2 and φc = π/6.
Simulation results for this test case were computed at ne = 16 and np = 4 after 15 days of20

integration both with and without hyperviscosity. For discontinuous elements penalization is al-
ways used. The time step used for these runs was ∆t= 480 s for continuous elements, ∆t= 240
s for g2 discontinuous elements and ∆t= 120 s for g1 discontinuous elements. Increasing the
time step by 20 s led to an unstable simulation. These results are visually indistinguishable, so
are instead compared against the continuous element run (with HV) in Fig. 6, where the height25

field h and height field difference h−hc is plotted (where hc is the height field given in (a)).
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Simulations (b) and (c), corresponding to discontinuous elements with and without mass lump-
ing, are very similar in structure and exhibit smooth differences from the continuous model.
With no hyperviscosity applied, continuous elements (d) show significant noise which is not
present for discontinuous elements (e,f). These simulations match closely with results from the
literature (Nair et al., 2005; Ullrich et al., 2010)5

To understand conservation of invariants over time, total energy E and potential enstrophy ξ
are computed over the duration of the simulation. Since these quantities are invariant under the
shallow-water equations, it would be expected that a perfect simulation would conserve these
quantities exactly. They are defined via

E = 1
2hv ·v+ 1

2gc(H
2− z2), and ξ =

(ζ + f)2

2h
. (49)10

A time series of energy and potential enstrophy are plotted in Fig. 7. With hyperviscosity (a,b)
all simulations exhibit nearly identical conservation properties, suggesting that both the contin-
uous and discontinuous hyperviscosity operators (which are responsible for the loss of energy
and potential enstrophy conservation) act in a nearly identical manner over the course of the sim-
ulation. Without hyperviscosity (c,d) change in energy and potential enstrophy is much smaller.15

Continuous elements show initiation of instability at approximately day 6, likely due to high-
wavenumber oscillations in the height field caused by nonlinear aliasing. On the other hand,
discontinuous elements instead show a slow decay of energy and potential enstrophy driven by
the weak diffusivity of the discontinuous penalization.

6.3 Rossby-Haurwitz Wave20

Test case 6 in Williamson et al. (1992) consists of a westward-propagating Rossby-Haurwitz
wave that exactly solves the barotropic vorticity equation, but only approximately solves the
nonlinear shallow water equations. This test is particularly interesting since it is known to be
sensitive to the choice of horizontal viscosity.

Results for the Rossby-Haurwitz wave are given in Fig. 8 and 9 for ne = 16 and np = 425

horizontal resolution after 14 days of integration. The time step used for these runs was ∆t=
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480 s for continuous elements, ∆t= 200 s for g2 discontinuous elements and ∆t= 120 s for
g1 discontinuous elements. Increasing the time step by 20 s led to an unstable simulation. As
expected, there are significant differences in the height field which are induced by the addition
of the hyperviscosity (although both simulations appear reasonable given the coarse horizontal
resolution). Except for this difference, the results are nonetheless analogous to zonal flow over5

an isolated mountain: SE is unstable without the addition of hyperviscosity, whereas DG with
penalization is effective at stabilizing the method for both lumped and non-lumped variants.

6.4 Barotropic instability

The barotropic instability test case of Galewsky et al. (2004) consists of a zonal jet with compact
support at a latitude of 45◦, with a latitudinal profile roughly analogous to a much stronger10

version of test case 3 of Williamson et al. (1992). A small height perturbation is added atop the
jet which leads to the controlled formation of an instability in the flow. The relative vorticity
of the flow field at day 6 can then be visually compared against a high-resolution numerically
computed solution Galewsky et al. (2004); St-Cyr et al. (2008).

Simulation results for this test case were computed at ne = 32 and np = 4 after 12 days of15

integration with hyperviscosity enabled. The time step used for these runs was ∆t= 150 s for
continuous elements, ∆t= 75 s for g2 discontinuous elements and ∆t= 50 s for g1 discontin-
uous elements. Increasing the time step by 10 s led to an unstable simulation. Simulations are
again compared against the continuous element run (with HV) in Fig. 10, where the relative
vorticity field ζ and relative vorticity field difference ζ − ζc is plotted (where ζc is the height20

field given in (a)). Due to the presence of sharp frontal activity in this test case and the strong
resolution dependence of this problem (Ullrich et al., 2010), differences in ζ are of the same
magnitude as the original field. In particular, the simulations without hyperviscosity (d,e,f) all
show enhancement near wave fronts which is not apparent in the simulations with hypervis-
cosity (b,c). Although most differences can be found near sharp fronts, there is also a clear25

enhancement in the differences near 120E associated with a trailing instability. For continuous
elements without hyperviscosity (c), there is also apparent grid-scale noise which is missing
from the other simulations, suggesting that this method is under-diffused.
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Normalized total energy and potential enstrophy are plotted for the barotropic instability in
Fig. 11 for a 12 day integration with ne = 16 and np = 4. With hyperviscosity (a,b) there are
small but visible differences in the results associated with changes in the type of elements.
Without hyperviscosity (c,d) the simulation with continuous elements exhibit instability around
day 6, leading to rapid growth of energy and potential enstrophy. On the other hand, with dis-5

continuous elements there is a steady loss of energy and potential enstrophy over time due to
diffusivity from discontinuous penalization. Prior to wave breaking (which occurs around day
4), energy and potential enstrophy loss are significant reduced compared to the simulations
with hyperviscosity. After wave breaking, energy and potential enstrophy loss are of the same
order of magnitude for simulations with and without hyperviscosity, associated with the fact10

that diffusivity is enhanced near the barotropic fronts where discontinuities are large.

7 Conclusions

Following Huynh (2007), a novel nodal finite element method for continuous and discontinuous
elements has been constructed using a robust derivative operator and discontinuous penaliza-
tion. The resulting methodology can be used for straightforward discretization of partial dif-15

ferential equations in either conservative or non-conservative form. A hyperviscosity operator
valid for both continuous and discontinuous elements was also presented that would provide a
mechanism for numerical stabilization and the removal of grid-scale noise. Two versions with
discontinuous elements were studied, using either the g1 and g2 flux correction function for
distribution of boundary fluxes and penalty across nodal points. The resulting method was then20

applied to the 2D shallow-water equations in cubed-sphere geometry and tested on a suite of
test problems.

From the Williamson et al. (1992) test case suite, steady-state geostrophically balanced flow,
zonal flow over an isolated mountain and the Rossby-Haurwitz wave were examined, in ad-
dition to the barotropic instability test of Galewsky et al. (2004). The method was shown to25

be stable and accurate for both continuous and discontinuous elements, with fourth-order con-
vergence being verified for cubic basis functions. Discontinuous penalization was shown to be
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necessary for stability and for maintaining the correct order of accuracy of the discontinuous
method. Overall the discontinuous elements required a smaller time step than for continuous el-
ements, although all methods led to similar error norms when hyperviscosity was active. When
hyperviscosity was deactivated, the discontinuous method exhibited better error norms than the
continuous approach and discontinuous penalization was shown to be sufficient for stability5

of the method even for complex flows. Nonetheless, differences between all three approaches
appeared minor, and all methods performed well for this suite of tests.

The non-conservative discontinuous element formulation has been shown to be a potential
candidate for future atmospheric modeling. It has the advantage of requiring fewer parallel
communications than continuous methods, and exhibits stability even when hyperviscosity is10

not used for explicit stabilization. However, with the reduced time step size it remains unclear
whether the discontinuous formulation would be computationally competitive with continuous
element methods.

The method discussed in this paper has been implemented in the Tempest atmospheric model,
available from https://github.com/paullric/tempestmodel.15

Acknowledgements. The author would like to acknowledge Mark Taylor, Oksana Guba, David Hall,
Hans Johansen and Jorge Guerra for many fruitful conversations and for their assistance in refining this
manuscript.
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Appendix A

Equivalence of differential and variational forms

In this appendix equivalence of the variational formulation of the spectral element method and
the differential formulation using the robust derivative is demonstrated. For continuous ele-
ments, f = f and (15) reduces to5

Dαf(αi,βj) =

np−1∑
p=0

f(p,j)
∂φ̃(p)

∂α
(αi), (A1)

which is simply the derivative of the continuous analogue to the nodal values along β = βj .
For simplicity consider a single quadrilateral spectral element with test functions φij located

at nodal points (αi,βj), (i, j) ∈ [0, . . . ,np−1]2. The result is shown for an arbitrary 2D conser-
vation law,10

∂ψ

∂t
+∇ ·F = 0. (A2)

Using the derivative operator (A1) this equation reads

∂ψij
∂t

+
1

Jij
Dα(JFα) +

1

Jij
Dβ(JF β) = 0, (A3)

whereas under the variational formulation (A2) is formulated as∫
∂ψ

∂t
φijdA+

∫
φij∇ ·FdA= 0. (A4)15

Then using integration by parts,∑
m,n

(∫
φijφmndA

)
∂ψmn
∂t

+B−
∫
∇φij ·FdA= 0, (A5)
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where B is the contribution due to the boundary which disappears under DSS. Introducing
coordinates (α,β) with integration on GLL nodes,∫
fdA=

np−1∑
s=0

np−1∑
t=0

fstJstwswt∆α∆β, (A6)

and so the first term of (A5) reads∑
m,n

(∫
φijφmndA

)
∂ψmn
∂t

=
∑
m,n

(δi,mδj,nJijwiwj∆α∆β)
∂ψmn
∂t

5

= Jijwiwj∆α∆β
∂ψij
∂t

. (A7)

For the last term, observe that on a manifold

∇φij ·F = gpqF
p

(
gqr

∂φ

∂xr

)
= Fα

∂φ

∂α
+F β

∂φ

∂β
, (A8)

and so10 ∫
∇φij ·FdA=

np−1∑
s=0

np−1∑
t=0

[
Fα

∂φij
∂α

+F β
∂φij
∂β

]
α=αs,β=βt

Jstwswt∆α∆β. (A9)

But, by construction,

∂φij
∂α

=
∂φ̃(i)

∂α
φ̃(j), (A10)

and φ̃(j)(βt) = δjt. This leads to

∫
∇φij ·FdA=

np−1∑
s=0

Fαsj
∂φ̃(i)

∂α
(αs)Jsjwswj +

np−1∑
t=0

F βit
∂φ̃(j)

∂β
(βt)Jitwiwt

∆α∆β. (A11)15
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Then in conjunction with (A7) this can be written as

∂ψij
∂t
− 1

Jij

np−1∑
s=0

JsjF
α
sj

∂φ̃(i)

∂α
(αs)

ws
wi
− 1

Jij

np−1∑
t=0

JitF
β
it

∂φ̃(j)

∂β
(βt)

wt
wj

= 0. (A12)

Equivalence of this equation with (A3) follows for a formulation on GLL nodes (Boyd, 2001,
Appendix F), since these basis functions satisfy the property

∂φ̃(i)

∂α
(αs)ws =−

∂φ̃(s)

∂α
(αi)wi. (A13)5

Appendix B

Derivation of the Viscosity Operator

In this appendix the derivation of the discrete viscosity operator is provided for scalar and vector
hyperviscosity on a Riemannian manifold.

B1 Scalar Viscosity10

From the natural quadrature rule that arises from the nodal finite element formulation, the left-
hand-side of (21) is discretized as∫∫

fφ(i,j)dA=

∫∫
fφ̃(i)(α)φ̃(j)(β)dA= f(i,j)wiwjJ∆α∆β, (B1)

and so, pointwise, theH operator is applied via15

f(i,j) =
ν

wiwj∆α∆βJ(αi,βj)

∮
∂Z

φ(i,j)∇ψ · dS−
∫∫
Z

∇φ(i,j) · ∇ψdA

 . (B2)
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The area integral term in (B2) is then computed:∫∫
∇φ(i,j) · ∇ψdA=

∫∫
∇pφ∇pψdA=

∫∫
∂φ(i,j)

∂α
∇αψ+

∂φ(i,j)

∂β
∇βψdA,

= ∆α∆β

np−1∑
m=0

np−1∑
n=0

φ̃(j)
∂φ̃(i)

∂α
∇αψJwmwn|α=αm,β=βn

+ ∆α∆β

np−1∑
m=0

np−1∑
n=0

φ̃(i)
∂φ̃(j)

∂β
∇βψJwmwn

∣∣∣
α=αm,β=βn

(B3)

= ∆α∆βwj

np−1∑
m=0

∂φ̃(i)

∂α
∇αψJwm|α=αm,β=βj

5

+ ∆α∆βwi

np−1∑
n=0

∂φ̃(j)

∂β
∇βψJwn

∣∣∣
α=αi,β=βn

From (B2), (23) then follows. The boundary integral term in (21) takes the form∮
∂Z

φ(i,j)∇ψ · dS =

∫
∂ZR

φ(i,j)∇ψ · dS+

∫
∂ZT

φ(i,j)∇ψ · dS+

∫
∂ZL

φ(i,j)∇ψ · dS+

∫
∂ZB

φ(i,j)∇ψ · dS,

(B4)10

where R, T , L and B denote the right, top, left and bottom edges, respectively. The quantity
dS = Nd` denotes the normal vector to the edge with magnitude equal to the infinitesimal
length element. Only the covariant components of the face normals need to be known, at each
edge given by

NR
p =

(
1√
gαα

,0

)
, NT

p =

(
0,

1√
gββ

)
, NL

p =

(
− 1√

gαα
,0

)
, NB

p =

(
0,− 1√

gββ

)
,

(B5)

15
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The infinitesimal length element along each edge is given by the covariant metric,

d`R =
√
gββdβ, d`T =

√
gααdα, d`L =

√
gββdβ, d`B =

√
gααdα. (B6)

Then along the right edge, using the nodal discretization of the boundary integral,∫
∂ZR

φ(i,j)∇ψ · dS = δi,np−1

np−1∑
n=0

φ̃(j)(β)∇αψNR
α wn
√
gββ∆β

∣∣∣
α=αnp−1,β=βn

5

= δi,np−1wj∆β J∇αψ|α=αnp−1,β=βj
, (B7)

where we have used gββ = J2gαα. Repeating for all edges and using (B2) then yields (24).

B2 Vector Viscosity

The area integral that appears on the left-hand-side of (29) and (30) takes the form10 ∫∫
Z

f ·φ(α)
(i,j)dA=

∫∫
Z

fαφ̃(i)(α)φ̃(j)(β)dA= fα(i,j)wiwjJ∆α∆β, (B8)

∫∫
Z

f ·φ(β)
(i,j)dA=

∫∫
Z

fβφ̃(i)(α)φ̃(j)(β)dA= fβ(i,j)wiwjJ∆α∆β. (B9)

B2.1 Discretization of the area integral

In nodal form, the divergence expands as15

(∇ ·φ(α)
(i,j)) =

1

J

∂

∂α

(
Jgααφ(i,j)α

)
+

1

J

∂

∂β

(
Jgβαφ(i,j)α

)
(B10)

=
φ̃(j)(β)

J

∂

∂α

(
Jgααφ̃(i)(α)

)
+
φ̃(i)(α)

J

∂

∂β

(
Jgβαφ̃(j)(β)

)
, (B11)
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and so∫∫
Z

(∇ ·φ(i,j))(∇ ·u)dA

= ∆α∆β

np−1∑
m=0

np−1∑
n=0

[
φ̃(j)(βn)

J

∂

∂α

(
Jgααφ̃(i)(α)

)
+
φ̃(i)(αm)

J

∂

∂β

(
Jgβαφ̃(j)(β)

)]
(∇ ·u)Jwmwn

= ∆α∆βwj

np−1∑
m=0

Jgαα
dφ̃(i)

dα
(∇ ·u)wm

∣∣∣∣∣
α=αm,β=βj

5

+ ∆α∆βwi

np−1∑
n=0

Jgβα
dφ̃(j)

dβ
(∇ ·u)wn

∣∣∣∣∣
α=αi,β=βn

(B12)

Further, the radial component of the vorticity expands as

(∇×φ(i,j))
r =− 1

J

∂φ(i,j)α

∂β
=−

φ̃(i)

J

dφ̃(j)

dβ
(B13)

10

and so∫∫
Z

(∇×φ(i,j))
r(∇×u)rdA

= ∆α∆β

np−1∑
m=0

np−1∑
n=0

[
−
φ̃(i)(αm)

J

dφ̃(j)

dβ

]
(∇×u)rJwmwn

∣∣∣∣∣
α=αm,β=βn

=−∆α∆βwi

np−1∑
n=0

dφ̃(j)

dβ
(∇×u)rwn

∣∣∣∣∣
α=αi,β=βn

(B14)
15
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Combining (B8), (B12) and (B14) then gives (32). An analogous procedure for β leads to (33).

B2.2 Discretization of the boundary integral

Using (B5)-(B6) and√gββ = J
√
gαα, the contour integral in (29) along the right edge becomes∫

∂ZR

(∇ ·u)φ
(α)
(i,j) · dS = δi,np−1 (∇ ·u)gααJwj∆β|α=αnp−1,β=βj

, (B15)

5

and along the top edge, also using
√
gαα = J

√
gββ ,∫

∂ZT

(∇ ·u)φ
(α)
(i,j) · dS = δj,np−1 (∇ ·u)gαβJwi∆α

∣∣∣
α=αi,β=βnp−1

(B16)

Repeating for all edges and using (B8), the complete boundary integral for divergence damping
then leads to the divergence damping contribution to (34). An analogous procedure for test10

function φ
(β)
(i,j) leads to (35).

For vorticity damping, along the right edge (30) reads∫
∂ZR

(∇×u)×φ · dS = δi,np−1 ε
βrα(∇×u)rφ(i,j)αNβwj

√
gββ∆β

∣∣∣
α=αnp−1,β=βj

= 0.

and along the top edge,15 ∫
∂ZT

(∇×u)×φ · dS = δj,np−1 ε
βrα(∇×u)rφ(i,j)αNβwi

√
gαα∆α

∣∣∣
α=αi,β=βnp−1

,

= δj,np−1(∇×u)rwi∆α.

Repeating for all edges and using (B8) then leads to the vorticity damping constribution to (34).
An analogous procedure for test function φ

(β)
(i,j) leads to (35).20
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Fig. 1. A 3D view of the cubed-sphere grid shown here with ne = 16. Cubed sphere faces are individually
shaded.
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Fig. 2. A depiction of the nodal grid for a reference element on GLL nodes for np = 4. Boundary nodes,
which are connected to neighboring elements, are shaded.
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Fig. 3. L2 errors in Williamson et al. (1992) Test Case 2, steady-state geostrophically balanced flow,
for ne = 4 and np = 4 after a 5 day integration period. Contour spacing for plot (a) is 1 meter. Contour
spacing for all other plots is 0.5 meter. The zero line is enhanced. Long dashed lines show the cubed-
sphere grid.
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Fig. 4.L2 error time series for geostrophically balanced flow on the cubed-sphere for ne = 16 and np = 4
over a 5 day integration period for all continuous and discontinuous schemes.

39



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Fig. 5.L2 errors for geostrophically balanced flow on the cubed-sphere at various resolutions with np = 4
over a 5 day integration period. In (a) errors due to hyperviscosity dominate and so all simulations have
approximately equal error leading to coincident lines. In (b) unstable simulations have been removed.
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Fig. 6. Height field with ne = 16 and np = 4 at day 15 for zonal flow over an isolated mountain with
(a) continuous elements and hyperviscosity (reference solution). Height difference plot from reference
solution with ne = 16 at day 15 for (b) discontinuous g2 elements with hyperviscosity, (c) discontinuous
g1 elements with hyperviscosity, (d) continuous elements without hyperviscosity, (e) discontinuous g2
elements without hyperviscosity and (f) discontinuous g1 elements without hyperviscosity. The time
step used for these runs was (a,d) ∆t= 480 s, (b,e) ∆t= 240 s and (c,f) ∆t= 120 s. Discontinuous
penalization was used for both discontinuous schemes. Contour spacing is 1 m in all difference plots
with the zero line removed. Long dashed lines show the cubed-sphere grid.
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Fig. 7. Normalized total energy and potential enstrophy change for the zonal flow over an isolated moun-
tain test with ne = 16 and np = 4 over a 15 day simulation. In (a) all simulations show roughly equivalent
energy and enstrophy loss and so all lines are coincident. In (c) and (d) the simulation with continuous
elements is beginning to experience instability, leading to total energy and enstrophy growth after ap-
proximately 6 days simulation time.
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Fig. 8. Height field with ne = 16 and np = 4 at day 14 for the Rossby-Haurwitz wave with (a) continu-
ous elements and hyperviscosity (reference solution). Height difference plot from reference solution with
ne = 16 at day 14 for (b) discontinuous g2 elements with hyperviscosity, (c) discontinuous g1 elements
with hyperviscosity, (d) continuous elements without hyperviscosity, (e) discontinuous g2 elements with-
out hyperviscosity and (f) discontinuous g1 elements without hyperviscosity. The time step used for these
runs was (a,d) ∆t= 480 s, (b,e) ∆t= 200 s and (c,f) ∆t= 120 s. Discontinuous penalization was used
for both discontinuous schemes. Contour spacing is 1 m in plots (b) and (c) and 20 m in plots (d), (e) and
(f). Long dashed lines show the cubed-sphere grid.
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Fig. 9. Normalized total energy and potential enstrophy change for the Rossby-Haurwitz wave test with
ne = 16 and np = 4 over a 15 day simulation. In (a) and (b) all simulations show roughly equivalent
energy and enstrophy loss and so all lines are coincident. In (c) and (d) the simulation with continu-
ous elements is beginning to experience instability, leading to total energy and enstrophy growth after
approximately 6 days simulation time.
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Fig. 10. Relative vorticity field with ne = 32 and np = 4 at day 6 for the barotropic instability test with
(a) continuous elements and hyperviscosity (reference solution). Relative vorticity difference plot from
reference solution with ne = 16 at day 6 for (b) discontinuous g2 elements with hyperviscosity, (c) dis-
continuous g1 elements with hyperviscosity, (d) continuous elements without hyperviscosity, (e) discon-
tinuous g2 elements without hyperviscosity and (f) discontinuous g1 elements without hyperviscosity.
The time step used for these runs was (a,d) ∆t= 150 s, (b,e) ∆t= 75 s and (c,f) ∆t= 50 s. Discontinu-
ous penalization was used for both discontinuous schemes. Contour spacing in all plots is 2× 10−5 s−1

with the zero line removed. Long dashed lines show the cubed-sphere grid.
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Fig. 11. Normalized total energy and enstrophy change for the barotropic instability test with ne =
16 and np = 4 over a 12 day simulation. In (c) and (d) the continuous element simulation fails after
approximately 6 days, leading to unbounded growth in energy and enstrophy. The time step used for
these runs was (a,d) ∆t= 300 s, (b,e) ∆t= 150 s and (c,f) ∆t= 75 s. Discontinuous penalization was
used for both discontinuous schemes.
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