
The efforts of co-authors in addressing the reviewers’ comments are appreciated. 

There are however a couple of concerns that are not appropriately answered in my 

opinion. 

Response: We appreciate the editor’s comments which help us further improve the 

quality of our manuscript. We address the editor’s comments below. The original 

comments are in black and our responses are in blue. 

 

Both referees where concerned by the number of scenarios required to train the ERSM 

and there remain a couple of unsolved issues. Please provide a more detailed 

explanation for the reason why the number of required scenarios would be of a power 

of four of the number of variables in the present case. With 10 to 15 variables, that 

would be a maximum ensemble size of tens of thousands, not hundreds as stated in 

the manuscript (P4 L13). While reducing that size to 600 is a very welcomed 

improvement, it remains a substantial number and it cannot yet be claimed that the 

proposed technique is “highly economical”. To address this point, and while none of 

the reviewer requested a more detailed quantification of the convergence rate, the 

authors may consider including a figure illustrating the evolution of the mean 

normalized error when increasing the number of simulations. 

Response: We appreciate the editor’s valuable comments. The number of model 

scenarios required to build the conventional RSM is determined to ensure that they are 

sufficient to accurately construct the relationship between the response variable and 

control variables. Specifically, we gradually increase the scenario number and build 

the response surface repeatedly until the prediction performance is good enough 

(mean normalized error < 1%; correlation coefficient > 0.99). Using this method, we 

determined the number of scenarios required to build the conventional RSM for 2-10 

control variables (shown as the dots in Figure R1). Then we fitted the dots using 

polynomials of 2nd – 5th order (shown as the lines in Figure R1). The results indicate 

that the equations of 2nd or 3rd order are not able to capture the rapid increase of the 

scenario number with the increase of variable number. In contrast, the 4th or 5th order 

equations fit well. Therefore, we conclude that the number of model scenarios 

required to build the conventional RSM depends on the variable number via an 

equation of fourth or higher order. We have added the explanations accordingly in the 

Supporting Information (from Page 1, Line 25 to Page 2, Line 11) and given a brief 

instruction in the main text (Page 4, Line 10-13) which refers the readers to these 



explanations. 

 

 
Figure R1. Number of scenarios required to build the conventional RSM based on 

numerical experiments (the dots) and the fits to polynomials of 2nd – 5th order (the 

lines). 

 

We agree with the editor that with 10 to 15 variables, the required scenario number 

would be a maximum ensemble size of tens of thousands, not hundreds of thousands 

as stated in the original manuscript. Therefore, we modified that sentence as follows: 

The required scenario number would be tens of thousands for over 15 variables and 

even hundreds of thousands for over 25 variables, which is computationally 

impossible for most three-dimensional CTMs. (Page 4 Line 13-16 in the revised 

manuscript) 

 

We also agree with the editor that 600 scenarios remain a substantial number and it 

cannot yet be claimed as “highly economical”. Therefore, we revised the original 

description as follows: 

The Response Surface Modeling (RSM) technique (denoted by “conventional RSM” 

technique in the following text to distinguish from the ERSM technique developed in 

this study), has been developed by using advanced statistical techniques to 

characterize the relationship between model outputs and inputs. (from Page 3 Line 32 
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to Page 4, Line 3 in the revised manuscript) 

 

We have discussed “convergence rate” of the conventional RSM technique in our 

previous paper (Xing et al., 2011). For example, Figure R2, adapted from Figure 7 of 

Xing et al. (2011), shows the evolution of mean normalized error and correlation 

coefficient with the increase of scenario number for 2, 4, and 6 control variables. It 

can be seen that the normalized mean error first decreases and then gradually remains 

stable, with the increase of scenario number. In contrast, the correlation coefficient 

first increases and then gradually becomes stable. We used a criterion that mean 

normalized error < 1% and correlation coefficient > 0.99, and thus determined the 

required scenario number to construct the conventional RSM. In order to determine 

the required scenario number for the ERSM technique, we first determine the scenario 

number to construct the conventional RSM for a single region, and then repeat this 

procedure for each region (see details in Page 6, Line 13-31 in the revised manuscript). 

Therefore, Figure R2 is also applicable to determine the scenario number for the 

ERSM technique. In the revised manuscript, we have explained the evolution of 

prediction performance briefly in the methodology section, and the revised text is 

shown as follows: 

The emission control scenarios required to construct ERSM include: (1) the base case; 

(2) N scenarios generated by applying the LHS method for the control variables in 

each single region; and (3) M scenarios generated by applying the LHS method for 

the total emissions of gaseous precursors (NOX and NH3 for this case) in all regions. 

The scenario numbers N and M are determined to ensure that they are sufficient to 

accurately construct the relationship between the response variable and randomly 

changing control variables using conventional RSM technique. Specifically, we 

gradually increase the scenario number and build the conventional RSM repeatedly 

until the prediction performance is good enough based on the results of out of sample 

validation (Xing et al., 2011; Wang et al., 2011). The mean normalized error and 

correlation coefficients are selected as indices of prediction performance. In our 

previous paper (Xing et al., 2011), we showed that the normalized mean error first 

decreases and then gradually remains stable, with the increase of scenario number. In 

contrast, the correlation coefficient first increases and then gradually becomes stable. 

We used a criterion that mean normalized error < 1% and correlation coefficient > 

0.99, and determined that 30 and 50 scenarios were required to construct the 



conventional RSM for 2 and 3 variables, respectively. Therefore, for the simplified 

case, N=50, and M=30. The required scenario number for the simplified case is 

therefore 1 (the base case) + 50 (scenarios for each single region) * 3 (number of 

regions) + 30 (scenarios for the total precursor emissions in all regions) = 181. (Page 

6, Line 13-31 in the revised manuscript) 

 

Variable number = 2 

 

Variable number = 4 

 

Variable number = 6 

 
Figure R2. Evolution of the prediction performance with the increase of scenario 

number based on computational experiments. The figure is adapted from Figure 7 of 

Xing et al. (2011). 

 

Reference: 

Wang, S. X., Xing, J., Jang, C. R., Zhu, Y., Fu, J. S., and Hao, J. M.: Impact 

assessment of ammonia emissions on inorganic aerosols in east China using response 

surface modeling technique, Environ. Sci. Technol., 45, 9293-9300, DOI 
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10.1021/Es2022347, 2011. 

Xing, J., Wang, S. X., Jang, C., Zhu, Y., and Hao, J. M.: Nonlinear response of ozone 

to precursor emission changes in China: a modeling study using response surface 

methodology, Atmos. Chem. Phys., 11, 5027-5044, DOI 10.5194/acp-11-5027-2011, 

2011. 

 

A short summary of the reason why « Xing (2011) indicated that the nonlinearity in 

atmospheric responses could not be captured in metropolitan regions unless fourth or 

higher order equations were used » (P3, L29-31) should also be included since that 

reference is in the grey literature, and in Chinese.  

Response: We thank the editor for this comment. Xing (2011) tried to construct the 

relationship between O3 concentration and the emissions of NOX and NMVOC using 

polynomial equations. The general relationship is expressed by Eq. (R1) and Eq. (R2). 

Conc_Ozone=f(Emis_NOx, Emis_NMVOC)        (R1) 

f(x,y)=∑ ∑ an,m·xnymn
m=0

N
n=0             (R2) 

where Conc_Ozone, Emis_NOx, and Emis_NMVOC are the O3 concentration, NOX 

emissions, and VOC emissions in a metropolitan region, respectively. 

Xing (2011) performed 30 CMAQ simulations and fitted the simulated results using 

polynomials of 2nd – 5th order. The relationship was also constructed using 

conventional RSM technique, which had been thoroughly evaluated and was used to 

represent actual CMAQ simulation results. Using the fitted equations, Xing (2011) 

predicted the O3 concentrations in response to the continuous changes of NOX and 

NMVOC emissions from zero to 200%, as shown in Figure R3. It can be seen that the 

equations of 2nd and 3rd order fail to reproduce the shape of the isopleths, while the 4th 

and 5th order equations behave fairly well. Therefore, Xing (2011) concluded that 

response of O3 concentration to NOX and NMVOC emissions could not be captured 

unless fourth or higher order equations are used. Considering that the isopleths of 

PM2.5 in response to precursor emissions could have quite similar shapes to those of 

O3 (which is also confirmed by Figure 4 of the revised manuscript), Xing (2011) 

believes this conclusion could be extrapolated to PM2.5. We have added explanations 

above accordingly in the Supporting Information (from Page 2, Line 16 to Page 3, 

Line 17) and given a brief instruction in the main text (Page 3, Line 29-32) which 

refers the readers to these explanations. 



(a) Conventional RSM (b) 2nd order 

   

(c) 3rd order (d) 4th order (e) 5th order 

   
Figure R3. Comparison of the 2-D isopleths of O3 concentrations in response to the 

changes of NOX and NMVOC emissions predicted by the conventional RSM 

technique as well as polynomial equations of 2nd – 5th order. 

 

Reference: 

Xing, J.: Study on the nonlinear responses of air quality to primary pollutant 
emissions, Doctor thesis, School of Environment, Tsinghua University, Beijing, 
China, 138 pp., 2011 (in Chinese). 

 

Both reviewers requested more details on the rationale and implication of neglecting 

interactions of transported and returning precursors, this hypothesis is indeed now 

better stated in the revised manuscript (P8L9-10 and P9L11-12). However, the 

possible implication of such a hypothesis is not given in the revised manuscript. Can 

you think of a possible quantification that would support neglecting this process? 

Response: We appreciate the editor’s valuable comments very much. We estimated the 

contribution of the neglected processes for the case study over the Yangtze River 

Delta region (see Section 2.2 for details of the case study), which proved the 

rationality of both assumptions mentioned in the editor’s comments. 

We review the 1st assumption briefly as follows. (Page 8, Line 9-15 in the revised 

manuscript) 

Assumption 1: 

We introduce a straightforward assumption that the changes of PM2.5 concentration 
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owing to changes of precursor concentrations in the same region (described by Eq. (1)) 

are solely attributable to changes of local chemical formation. Strictly speaking, the 

changes of precursor concentration in Region A might affect the precursor 

concentrations/PM2.5 concentrations in other regions, which might in turn affect the 

PM2.5 concentrations in Region A; but this “indirect” pathway is neglected in this 

study. 

In order to demonstrate the rationality of this assumption, we try to estimate the 

contribution of the “indirect” pathway to the total changes of PM2.5 concentrations. 

The estimation is done in four stages. Note that the values of emissions/concentrations 

in the following paragraphs are all averages of January and August, 2010. 

Firstly, we assume that the concentrations of NOX, SO2, and NH3 in Shanghai are all 

reduced by 50%. Based on Eq. (2) and Eq. (3), this reduction corresponds to 

reductions of 55%, 62%, and 53% in the emissions of NOX, SO2, and NH3 in 

Shanghai, respectively. 

Secondly, we estimate how much the transported precursors could affect the precursor 

concentrations in another region (we use Jiangsu as example). Using Eq. (5) and Eq. 

(6), we estimate that, as a result of the reductions in Shanghai, the concentrations of 

NOX, SO2, and NH3 in Jiangsu would decrease by about 3.0%, 1.4% and 0.1%, 

respectively. 

Thirdly, we try to quantify how much the precursors transported to Jiangsu could in 

turn affect the PM2.5 concentrations in Shanghai. The decline in precursor 

concentrations in Jiangsu is considered to be equivalent to a certain reduction in 

precursor emissions in Jiangsu. Based on Eq. (2) and Eq. (3), we estimate that the 

equivalent “pseudo” reductions in Jiangsu’s emissions of NOX, SO2, and NH3 are 

3.3%, 1.7%, and 0.1%, respectively. According to Eq. (4), such an emission reduction 

in Jiangsu could in turn decrease the PM2.5 concentration in Shanghai by 0.01 µg m-3. 

Fourthly, we integrate the effects of the precursors transported to all outer regions. 

Similar to Jiangsu, we estimate that the decline in precursor concentrations in 

Zhejiang and Others could in turn reduce the PM2.5 concentration in Shanghai by 0.02 

µg m-3 and 0.01 µg m-3, respectively. Therefore, the total PM2.5 reduction in Shanghai 

through the “indirect” pathway is estimated at about 0.04 µg m-3, accounting for only 

about 1.3% of the total PM2.5 reduction (2.67 µg m-3). 

Following the same procedure, if the precursor concentrations in Jiangsu and Zhejiang 



are reduced by 50%, respectively, we estimate that the “indirect” pathway would 

account for about 1.7% and 1.0% of the total PM2.5 reduction, respectively. These 

results confirm our assumption that the “indirect” pathway is negligible. We have 

described the key conclusion in the main text (Page 8, Line 15-19), and provided a 

detailed explanation in the Supporting Information (Page 4, Line 4-31). The added 

text in the main text is shown as follows: 

For the case study over the YRD region (see details of the case study in Sect. 2.2), we 

estimate that, when the concentrations of NOX, SO2, and NH3 in a specific region 

(Shanghai, Jiangsu, or Zhejiang) are all reduced 50%, the “indirect” pathway could 

only account for less than 2% of the total PM2.5 reduction (see details in the 

Supporting Information). This confirms our assumption that the “indirect” pathway is 

negligible. 

 

We review the 2st assumption briefly as follows. (Page 9, Line 17-23 in the revised 

manuscript) 

Assumption 2: 

Strictly speaking, [PM2.5_Trans]B→A  and [PM2.5_Trans]C→A  could interact with 

each other. In other words, the changes of precursor emissions in Region C might 

affect the formation of secondary PM2.5 in Region B, which further affects the 

transport of secondary PM2.5 from Region B to Region A. Eq. (9) and Eq. (10) implies 

an assumption that [PM2.5_Trans]B→A depends only on the precursor emissions in 

Region B, and is independent of precursor emissions in other regions. That is, the 

interaction between [PM2.5_Trans]B→A and [PM2.5_Trans]C→A is neglected. 

 

In order to demonstrate the rationality of this assumption, we try to prove that the 

precursor emissions in Jiangsu and Others have little effect on 

[PM2.5_Trans]Zhejiang→Shanghai, i.e., the change of PM2.5 concentration in Shanghai 

affected by the changes of precursor emissions in Zhejiang through the transport of 

secondary PM2.5. We designed several pairs of CMAQ simulations, as summarized in 

Table R1. The two cases in the same pair differ in the emissions of gaseous precursor 

in Zhejiang. Different pairs are distinguished by different precursor emissions in 

Jiangsu and Others. Therefore, using the two cases in each pair, we can calculate the 

value of [PM2.5_Trans]Zhejiang→Shanghai under certain emission rates in Jiangsu and 



Others. Then, by comparing all the values [PM2.5_Trans]Zhejiang→Shanghai calculated 

above, we can evaluate the effect of precursor emissions in Jiangsu and Others on 

[PM2.5_Trans]Zhejiang→Shanghai. 

 

Table R1. Description of the CMAQ simulations designed to test the 2nd assumption. 

The simulation period is August, 2010. 

Pair 
NO. 

Case
NO. 

Description of the cases Objective of the cases 

1 1 The CMAQ base case. Calculate 
[PM2.5_Trans]Zhejiang→Shanghai 
when the emissions in the 
other regions except 
Zhejiang stays the base-case 
levels. 

2 The emissions of NOX, SO2, and NH3 in Zhejiang are 
reduced by 50%, while the emissions in other 
regions remain the base-case levels. 

2 3 The emissions of NOX, SO2, and NH3 in Jiangsu are 
reduced by 50%, while the emissions in other 
regions remain the base-case levels. 

Calculate 
[PM2.5_Trans]Zhejiang→Shanghai 
when the emissions of NOX, 
SO2, and NH3 in Jiangsu are 
reduced by 50%. 

4 The emissions of NOX, SO2, and NH3 in Zhejiang 
and Jiangsu are reduced by 50%, while the emissions 
in other regions remain the base-case levels. 

3 5 The emissions of NOX, SO2, and NH3 in Others are 
reduced by 50%, while the emissions in other 
regions remain the base-case levels. 

Calculate 
[PM2.5_Trans]Zhejiang→Shanghai 
when the emissions of NOX, 
SO2, and NH3 in Others are 
reduced by 50%. 

6 The emissions of NOX, SO2, and NH3 in Zhejiang 
and Others are reduced by 50%, while the emissions 
in other regions remain the base-case levels. 

4 7 The emissions of NOX in Jiangsu and Others are 
reduced by 50%, while the emissions in other 
regions remain the base-case levels. 

Calculate 
[PM2.5_Trans]Zhejiang→Shanghai 
when the emissions of NOX 

in Jiangsu and Others are 
reduced by 50%. 

8 The emissions of NOX, SO2, and NH3 in Zhejiang are 
reduced by 50%, and the emissions of NOX in 
Jiangsu and Others are reduced by 50%, while the 
emissions in other regions remain the base-case 
levels. 

5 9 The emissions of SO2 in Jiangsu and Others are 
reduced by 50%, while the emissions in other 
regions remain the base-case levels. 

Calculate 
[PM2.5_Trans]Zhejiang→Shanghai 
when the emissions of SO2 

in Jiangsu and Others are 
reduced by 50%. 

10 The emissions of NOX, SO2, and NH3 in Zhejiang are 
reduced by 50%, and the emissions of SO2 in Jiangsu 



and Others are reduced by 50%, while the emissions 
in other regions remain the base-case levels. 

6 11 The emissions of NH3 in Jiangsu and Others are 
reduced by 50%, while the emissions in other 
regions remain the base-case levels. 

Calculate 
[PM2.5_Trans]Zhejiang→Shanghai 
when the emissions of NH3 

in Jiangsu and Others are 
reduced by 50%. 

12 The emissions of NOX, SO2, and NH3 in Zhejiang are 
reduced by 50%, and the emissions of NH3 in 
Jiangsu and Others are reduced by 50%, while the 
emissions in other regions remain the base-case 
levels. 

 

Using Case 1-2 and Eq. (7, 8), we estimate that the change of PM2.5 concentration in 

Shanghai affected by the reduction of precursor emissions in Zhejiang through the 

transport of secondary PM2.5, i.e., [PM2.5_Trans]Zhejiang→Shanghai, is -3.92 µg m-3. 

Using Case 3-4 and Eq. (7, 8), it can be estimated that, when the emissions of NOX, 

SO2, and NH3 in Jiangsu are reduced by 50%, [PM2.5_Trans]Zhejiang→Shanghai is -3.91 

µg m-3. Similarly, we could estimate the values of [PM2.5_Trans]Zhejiang→Shanghai in 

various circumstances, as summarized in Table R2. It can be seen that the changes of 

precursor emissions in Jiangsu and Others could only change 

[PM2.5_Trans]Zhejiang→Shanghai by less than 1%. This supports our assumption that 

[PM2.5_Trans]Zhejiang→Shanghai depends only on the precursor emissions in Zhejiang, 

and is independent of precursor emissions in other regions (Jiangsu and Others). We 

have described the key conclusion in the main text (Page 9, Line 23-28), and provided 

a detailed explanation in the Supporting Information (from Page 5, Line 3 to Page 7, 

Line 2). The added text in the main text is shown as follows: 

For the case study over the YRD region, we estimate that, the reduction of precursor 

emissions in Jiangsu and Others by 50% could only change 

[PM2.5_Trans]Zhejiang→Shanghai (i.e., the change of PM2.5 concentration in Shanghai 

affected by the changes of precursor emissions in Zhejiang through the transport of 

secondary PM2.5) by less than 1% (see details in the Supporting Information). This 

confirms the above-mentioned assumption. 

 

Table R2. Values of [PM2.5_Trans]Zhejiang→Shanghai in various circumstances. 

Emissions in the other regions 
except Zhejiang 

Values of 
[PM2.5_Trans]Zhejiang→Shanghai 

Corresponding 
CMAQ simulations 

 



The base-case levels. -3.92 Pair 1 (Case 1-2)  
The emissions of NOX, SO2, and 
NH3 in Jiangsu are reduced by 50%. 

-3.91 Pair 2 (Case 3-4)  

The emissions of NOX, SO2, and 
NH3 in Others are reduced by 50%. 

-3.89 Pair 3 (Case 5-6)  

The emissions of NOX in Jiangsu and 
Others are reduced by 50%. 

-3.91 Pair 4 (Case 7-8)  

The emissions of SO2 in Jiangsu and 
Others are reduced by 50%. 

-3.93 Pair 5 (Case 9-10)  

The emissions of NH3 in Jiangsu and 
Others are reduced by 50%. 

-3.89 Pair 6 (Case 11-12)  
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