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Abstract. 21 

An innovative Extended Response Surface Modeling technique (ERSM v1.0) is developed to 22 

characterize the nonlinear response of fine particles (PM2.5) to large and simultaneous changes 23 

of multiple precursor emissions from multiple regions and sectors. The ERSM technique is 24 

developed starting from the conventional Response Surface Modeling (RSM) technique; it 25 

first quantifies the relationship between PM2.5 concentrations and the emissions of gaseous 26 

precursors from each single region using the conventional RSM technique, and then assesses 27 

the effects of inter-regional transport of PM2.5 and its gaseous precursors on PM2.5 28 

concentrations in the target region. We apply this novel technique with a widely used regional 29 

chemical transport model over the Yangtze River Delta (YRD) region of China, and evaluate 30 



 2 

the response of PM2.5 and its inorganic components to the emissions of 36 1 

pollutant-region-sector combinations. The predicted PM2.5 concentrations agree well with 2 

independent chemical transport model simulations; the correlation coefficients are larger than 3 

0.98 and 0.99, and the mean normalized errors are less than 1% and 2% for January and 4 

August, respectively. It is also demonstrated that the ERSM technique could reproduce fairly 5 

well the response of PM2.5 to continuous changes of precursor emission levels between zero 6 

and 150%. Employing this new technique, we identify the major sources contributing to PM2.5 7 

and its inorganic components in the YRD region. The nonlinearity in the response of PM2.5 to 8 

emission changes is characterized and the underlying chemical processes are illustrated. 9 

 10 

1 Introduction 11 

Fine particles (i.e., particulate matter less than or equal to 2.5 µm (PM2.5)) worsen the 12 

visibility (Zhang et al., 2012), pose serious health risks (Nel, 2005) and affect the Earth’s 13 

climate significantly (Stocker et al., 2013). For developing countries like China and India, the 14 

attainment of stringent ambient PM2.5 standards requires large reductions of both primary 15 

particles and gaseous precursors (Wang and Hao, 2012). Cost-effective control policies need 16 

to consider the impact of emission reductions of multiple pollutants from multiple regions and 17 

sectors, and over a wide range of stringency levels. Therefore, it is strategically important to 18 

assess the response of PM2.5 to its precursor emissions from multiple sources, which is 19 

typically nonlinear owing to complex chemical mechanisms. 20 

Chemical Transport Models (CTMs) are the only viable tools for evaluating the response of 21 

atmospheric concentrations to different control measures (Hakami et al., 2003). The most 22 

widely used technique to evaluate these responses is sensitivity analysis, i.e., the computation 23 

of derivatives of modeled concentrations with respect to emission rates. “Brute force” method 24 

(Russell et al., 1995; Zhang et al., 2009b; Zhao et al., 2013c; Dong et al., 2014), the most 25 

frequently used method for sensitivity analysis, involves one-at-a-time variable perturbation 26 

and repeated solution of the model. It is straightforward but becomes inefficient for 27 

decision-making when cost-effective emission controls need to optimize over various 28 

pollutants from multiple sources. A number of mathematic techniques embedded in CTMs 29 

have been developed to simultaneously calculate the sensitivities of the modeled 30 

concentrations to multiple variables, including the Green Function Method (GFM) and its 31 

variations (Hwang et al., 1978), Automatic DIfferentiation in FORtran (ADIFOR, Carmichael 32 
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et al., 1997), Direct Method (Dickerson et al., 1982), Decoupled Direct Method (DDM, Yang 1 

et al., 1997), and Adjoint Sensitivity Analysis (Sandu et al., 2005; Hakami et al., 2006). These 2 

methods are used for the calculation of first-order sensitivities, and are therefore not 3 

applicable for large emission changes since the nonlinearity in atmospheric responses is not 4 

captured by first-order sensitivities. Improved techniques incorporating second or 5 

higher-order sensitivity analysis, e.g., High-order Decoupled Direct Method (HDDM, Hakami 6 

et al., 2003), and Discrete Second Order Adjoints (Sandu and Zhang, 2008), are capable of 7 

capturing the nonlinearity for a perturbation of the emissions of the base case. But as methods 8 

for local sensitivity analysis, they are theoretically not reliable for predicting the response of 9 

atmospheric concentrations to considerably large (e.g., >50-60%) emission reductions 10 

(Yarwood et al., 2013), which are nevertheless very common in air quality policy-making of 11 

developing countries like China (Zhao et al., 2013b; Wang et al., 2014). Recent studies 12 

(Yarwood et al., 2013; Simon et al., 2013) tried to run HDDM at several emission levels and 13 

use piecewise function to predict the atmospheric concentrations over a large emission range, 14 

but this modified method is only suitable for 2-3 variables. More importantly, this group of 15 

method could hardly predict the response of atmospheric concentrations when multiple (>3) 16 

variables of precursor emissions change simultaneously. 17 

Another group of methods involves building the relationship between the modeled 18 

concentrations and emission rates using statistical techniques. This type of method is 19 

applicable for various CTMs regardless of the chemical mechanisms, is user-friendly for 20 

decision-makers, and is particularly suitable for assessing the atmospheric response to large 21 

emission changes. Milford et al. (1989) and Fu et al. (2006) simulated the ozone 22 

concentrations for a number of non-methane volatile organic compound (NMVOC) and NOX 23 

reduction combinations, and derived a set of “EKMA-like” (EKMA, Empirical Kinetics 24 

Modeling Approach) control isopleths, but this method is only suitable for 2-3 variables. 25 

Some other studies (Heyes et al., 1996; Wang and Milford, 2001; Amann et al., 2007) 26 

empirically established analytic equations for the relationship between atmospheric 27 

concentrations and emission rates, and determined the parameters based on relatively small 28 

numbers of model simulations. However, Xing (2011) indicated that the nonlinearity in 29 

atmospheric responses could not be captured in metropolitan regions unless fourth or higher 30 

order equations were used, which restricted the feasibility and accuracy of analytic equations. 31 

The Response Surface Modeling (RSM) technique (denoted by “conventional RSM” 32 
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technique in the following text to distinguish from the ERSM technique developed in this 1 

study), has been developed by using advanced statistical techniques to characterize the 2 

relationship between model outputs and inputs in a highly economical manner. The number of 3 

scenarios required to build RSM depends on the family of models chosen. Recently, the 4 

conventional RSM technique has been applied to O3 and PM2.5 related studies or 5 

policy-making in the United States (U.S. Environmental Protection Agency, 2006a, b) and 6 

China (Xing et al., 2011; Wang et al., 2011). In those applications, the relationships between 7 

air pollutant concentrations and precursor emissions were established using the Maximum 8 

Likelihood Estimation - Empirical Best Linear Unbiased Predictors (MLE-EBLUPs) 9 

developed by Santner et al. (2003). Using this group of model, the number of model scenarios 10 

required to build the RSM depends on the variable number via an equation of fourth or higher 11 

order, even if the preferable sampling method and model configurations proposed by previous 12 

studies (Santner et al., 2003) are used. Therefore, hundreds of thousands of model scenarios 13 

are required to build the response surface for 10-15 or more variables, which is 14 

computationally impossible for most three-dimensional CTMs. This proves a major limitation 15 

for the conventional RSM technique. When considering the emissions of multiple pollutants 16 

from multiple sectors in multiple regions, assessing the nonlinear response of PM2.5 to 17 

emission changes presents a big challenge. 18 

In response to this challenge, we developed a novel Extended Response Surface Modeling 19 

technique (ERSM v1.0) in this study. Compared with the previous methods reviewed above, 20 

this technique could characterize the nonlinear response of PM2.5 and its chemical 21 

components to large and simultaneous changes of multiple precursor emissions from multiple 22 

regions and sectors with a reasonable number of model scenarios. In particular, compared 23 

with the conventional RSM technique, ERSM is applicable for an increased number of 24 

variables and geographical regions. This technique is applied with the Community Multi-scale 25 

Air Quality (CMAQ) model to evaluate the response of PM2.5 and its inorganic components to 26 

precursor emissions over the Yangtze River Delta (YRD) region, one of the largest 27 

city-clusters in China. The major sources contributing to PM2.5 and its inorganic components 28 

in the YRD are identified and the nonlinearity in the response of PM2.5 to emission changes is 29 

characterized. 30 
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2 Methodology 1 

2.1 Development of the ERSM Technique 2 

The ERSM technique is developed starting from the conventional RSM technique; the latter 3 

characterizes the relationships between a response variable (e.g., PM2.5 concentration) and a 4 

set of control variables (i.e., emissions of particular precursors from particular sources) 5 

following the procedures described in our previous paper (Xing et al., 2011). First, a number 6 

of emission control scenarios are generated with the Latin Hypercube Sample (LHS) method 7 

(Iman et al., 1980), a widely-used sampling method which ensures that the ensemble of 8 

random samples is representative of actual variability. Then the PM2.5 concentration for each 9 

emission scenario is calculated with a regional CTM, and finally the RSM prediction system 10 

is developed using a MPerK (MATLAB Parametric Empirical Kriging) program (Santner et 11 

al., 2003) based on MLE-EBLUPs. The robustness of the conventional RSM technique has 12 

been validated through leave-one-out cross validation, out of sample validation and 2-D 13 

isopleths validation, as documented in our previous papers (Xing et al., 2011; Wang et al., 14 

2011). 15 

The ERSM technique first quantifies the relationship between PM2.5 concentrations and the 16 

emissions of gaseous precursors from each single region with the conventional RSM 17 

technique following the procedures described in the last paragraph, and then assesses the 18 

effects of inter-regional transport of PM2.5 and its gaseous precursors on PM2.5 concentration 19 

in the target region. In order to quantify the interaction among regions, we make a key 20 

assumption that the emissions of gaseous precursors in the source region affect PM2.5 21 

concentrations in the target region through two major processes: (1) the inter-regional 22 

transport of gaseous precursors enhancing the chemical formation of secondary PM2.5 in the 23 

target region; (2) the formation of secondary PM2.5 in the source region followed by transport 24 

to the target region. We quantify the contribution of these two processes to the interactions 25 

between any two regions, and assess the inter-regional influences among multiple regions by 26 

integrating the contributions of each process. Then, a particular approach was implemented to 27 

improve the accuracy of the response surface when the gaseous emissions from multiple 28 

regions experience quite large reductions simultaneously. 29 

Finally, PM2.5 concentrations are linearly dependent on primary PM2.5 emissions, therefore we 30 

predict the changes of PM2.5 concentrations owing to the changes of primary PM2.5 emissions 31 



 6 

by simply interpolating between the base case and a sensitivity scenario where one control 1 

variable of primary PM2.5 is disturbed and the other variables stay constant. 2 

Since the method to develop the relationship between PM2.5 concentrations and primary PM2.5 3 

emissions is straightforward, we will focus on the response of PM2.5 and its chemical species 4 

to the emissions of gaseous precursors in the following texts. To facilitate the explanation, we 5 

assume a simplified but general case which involves three regions, defined as A, B, and C, 6 

and three control variables in each region, i.e., NOX emissions of Sector 1, NOX emissions of 7 

Sector 2, and total NH3 emissions. The response variable is PM2.5 concentration in the urban 8 

area of Region A. Although the technique is illustrated for this simplified case, it is also 9 

applicable for different response variable (e.g., NO3
-, SO4

2-, and NH4
+), and different numbers 10 

of regions/pollutants/sectors. A detailed description of the ERSM technique using the 11 

simplified case is given below, and a flowchart illustrating this technique is shown in Fig. 1. 12 

The emission control scenarios required to build the response surface include: (1) the base 13 

case; (2) N scenarios generated by applying the LHS method for the control variables in each 14 

single region; and (3) M scenarios generated by applying the LHS method for the total 15 

emissions of gaseous precursors (NOX and NH3 for this case) in all regions. The scenario 16 

numbers N and M are determined in order that they are sufficient to accurately construct the 17 

relationship between the response variable and randomly changing control variables. 18 

Specifically, we gradually increase the scenario number and build the response surface 19 

repeatedly until the prediction performance is good enough based on the results of out of 20 

sample validation and 2-D isopleths validation (Xing et al., 2011; Wang et al., 2011). Based 21 

on our previous studies (Xing et al., 2011; Wang et al., 2011), the response surface for 2 and 3 22 

variables could be built with good prediction performance (mean normalized error < 1%; 23 

correlation coefficient > 0.99) using 30 and 50 scenarios, respectively; therefore, for this 24 

simplified case, N=50, and M=30. The required scenario number for the simplified case is 25 

therefore 1 (the base case) + 50 (scenarios for each single region) * 3 (number of regions) + 26 

30 (scenarios for the total precursor emissions in all regions) = 181. 27 

Employing conventional RSM technique, we build the response surface of PM2.5 28 

concentration in Region A to the concentrations of precursors in Region A using the base case 29 

and the 50 scenarios where the variables in Region A change randomly but those in other 30 

regions remain constant: 31 

[PM2.5]A= [PM2.5]A0+RSMA→A
PM2.5([NOx]A, [NH3]A)         (1) 32 
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where [PM2.5]A, [NOx]A, and [NH3]A are the concentrations of PM2.5, NOX and NH3 in 1 

Region A, respectively. [PM2.5]A0 is the PM2.5 concentration in Region A in the base case. 2 

RSM  represents the response surface we build with conventional RSM technique; the 3 

superscript (“PM2.5” in this case) represents the response variable; the letters before and after 4 

the arrow in the subscript (both are “A” in this case) represent the source and receptor regions, 5 

respectively. Further, we develop the relationship between precursor concentrations and the 6 

changes of precursor emissions in Region A with the same 51 scenarios (we use NOX 7 

concentration as example, and it is equivalent for NH3): 8 

[NOx]A→A=RSMA→A
NOx �Emis_NOx_1A, Emis_NOx_2A, Emis_NH3A�     (2) 9 

where Emis_NOx_1A, Emis_NOx_2A, and Emis_NH3A are NOX emissions of Sector 1, NOX 10 

emissions of Sector 2, and total NH3 emissions in Region A, respectively. [NOx]A→A , 11 

representing the changes of NOX concentration in Region A compared with the base case in 12 

response to the emission changes in the same region, is defined as 13 

[NOx]A→A = [NOx]A − [NOx]A0             (3) 14 

where [NOx]A0 is the NOX concentration in Region A in the base case. 15 

Following similar procedures, the response of the concentrations of PM2.5 and its gaseous 16 

precursors in Region A to the changes of precursor emissions in Region B (the same method 17 

applies for Region C) can be developed using the base case and the 50 scenarios where the 18 

variables in Region B change randomly but those in other regions remain constant: 19 

[PM2.5]B→A=RSMB→A
PM2.5�Emis_NOx_1B, Emis_NOx_2B, Emis_NH3B�     (4) 20 

[NOx]B→A=RSMB→A
NOx �Emis_NOx_1B, Emis_NOx_2B, Emis_NH3B�     (5) 21 

[NH3]B→A=RSMB→A
NH3 �Emis_NOx_1B, Emis_NOx_2B, Emis_NH3B�     (6) 22 

where [PM2.5]B→A, [NOx]B→A, and [NH3]B→A are the changes of PM2.5, NOX, and NH3 23 

concentrations in Region A compared with the base case in response to the emission changes 24 

in Region B. Emis_NOx_1B, Emis_NOx_2B, and Emis_NH3B are NOX emissions of Sector 25 

1, NOX emissions of Sector 2, and total NH3 emissions in Region B, respectively. 26 

As described above, the influence of gaseous precursor emissions in Region B on PM2.5 27 

concentration in Region A, as expressed by Eq. (4), can be broken down into two major 28 

processes: (1) the transport of gaseous precursors from Region B to Region A that enhances 29 

the chemical formation of secondary PM2.5 in Region A; (2) the formation of secondary PM2.5 30 

in Region B followed by transport to Region A. In order to quantify the contribution of the 31 
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first process, we firstly use Eq. (5) and Eq. (6) to quantify the effect of the transport of 1 

gaseous precursors from Region B to Region A on the precursor concentrations in Region A. 2 

How much does the change of precursor concentrations in Region A enhance the chemical 3 

formation of secondary PM2.5 in Region A? To answer this question, we introduce a 4 

straightforward assumption that the changes of PM2.5 concentration owing to changes of 5 

precursor concentrations in the same region (described by Eq. (1)) are solely attributable to 6 

changes of local chemical formation. Strictly speaking, the changes of precursor concentration 7 

in Region A might affect the precursor concentrations/PM2.5 concentrations in other regions, 8 

which might in turn affect the PM2.5 concentrations in Region A; but this “indirect” pathway 9 

is thought to be negligible in this study. Based on this assumption, the contribution of the first 10 

process to PM2.5 concentrations in Region A is expressed as 11 

[PM2.5_Chem]B→A=RSMA→A
PM2.5([NOx]A0+[NOx]B→A, [NH3]A0+[NH3]B→A)   (7) 12 

where [PM2.5_Chem]B→A is the change of PM2.5 concentration in Region A affected by the 13 

changes of precursor emissions in Region B through the inter-regional transport of gaseous 14 

precursors (the first process). The contribution of the second process to PM2.5 concentration in 15 

Region A (denoted by [PM2.5_Trans]B→A defined below) is then calculated by extracting the 16 

contribution of the first process (Eq. (7)) from the total (Eq. (4)), as expressed by Eq. (8). 17 

[PM2.5_Trans]B→A=[PM2.5]B→A-[PM2.5_Chem]B→A         (8) 18 

where [PM2.5_Trans]B→A is the change of PM2.5 concentration in Region A affected by the 19 

changes of precursor emissions in Region B through the transport of secondary PM2.5 (the 20 

second process). 21 

We also need to know the relationship between [PM2.5_Trans]B→A  and the precursor 22 

emissions in Region B. Therefore, we quantify this relationship using conventional RSM 23 

technique, as described by Eq. (9). 24 

[PM2.5_Trans]B→A=RSMB→A
PM2.5_Trans�Emis_NOx_1B, Emis_NOx_2B, Emis_NH3B�  (9) 25 

For the emission scenario whose PM2.5 concentration is to be predicted, we presume that its 26 

emissions of gaseous precursors in all the three regions are arbitrary. In this case, the change 27 

of PM2.5 is expressed as an integrated effect of the changes of local precursor emissions, the 28 

inter-regional transport of precursors enhancing local chemical reactions, and the 29 

inter-regional transport of secondary PM2.5: 30 

[PM2.5]A=[PM2.5]A0+RSMA→A
PM2.5([NOx]A0+[NOx]A→A+[NOx]B→A+[NOx]C→A,  31 

[NH3]A0+[NH3]A→A+[NH3]B→A+[NH3]C→A)+[PM2.5_Trans]B→A+[PM2.5_Trans]C→A (10) 32 
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where [PM2.5_Trans]B→A is calculated using Eq. (9), and [PM2.5_Trans]C→A is calculated 1 

using an equivalent equation for which the independent variables are the gaseous emissions in 2 

Region C. It should be noted that [PM2.5_Trans]B→A cannot be calculated using Eq. (8) 3 

because Eq. (8) holds only if the emissions in the regions other than Region B remain at the 4 

base-case levels. 5 

Strictly speaking, [PM2.5_Trans]B→A and [PM2.5_Trans]C→A could interact with each other. 6 

In other words, the changes of precursor emissions in Region C might affect the formation of 7 

secondary PM2.5 in Region B, which further affects the transport of secondary PM2.5 from 8 

Region B to Region A. Eq. (9) and Eq. (10) implies an assumption that [PM2.5_Trans]B→A 9 

depends only on the precursor emissions in Region B, and is independent of precursor 10 

emissions in other regions. That is, the interaction between [PM2.5_Trans]B→A  and 11 

[PM2.5_Trans]C→A is neglected. 12 

It should be noted that Eq. (1), which relates the changes of PM2.5 concentration in Region A 13 

(equivalent to the changes of local chemical formation of PM2.5 as discussed above) to local 14 

precursor concentrations, is established using the base case and the 50 scenarios where the 15 

variables in Region A change randomly but those in other regions remain constant. This 16 

means Eq. (1) is only applicable for the concentration range below (we use NOX as example, 17 

it is equivalent for NH3) 18 

[NOx]A ≥ [NOx]A, min = [NOx]A0 + [NOx]A→A, min = [NOx]A0+RSMA→A
NOx (0, 0, 0)  (11) 19 

where [NOx]A, min is defined as the minimum NOX concentration in Region A when the 20 

emissions from Region A change arbitrarily and those in other regions remain the base-case 21 

levels. 22 

Eq. (10) relies on Eq. (1) but might exceed its available range, i.e., [NOx]A < [NOx]A, min, or 23 

[NH3]A < [NH3]A, min , when the precursor emissions in multiple regions are reduced 24 

considerably at the same time. In this case, we quantify the changes of PM2.5 concentrations 25 

owing to local chemical formation through a different approach. First, the local chemical 26 

formation of PM2.5 can be tracked easily in widely-used three-dimensional CTMs. For 27 

example, a module named “process analysis” has already been implemented in CMAQ, which 28 

outputs the contribution of major physical and chemical processes to air pollutant 29 

concentrations. The chemical formation of PM2.5 in Region A is estimated as 30 

Prod_PMA = AERO_PMA + CLDS_PMA           (12) 31 
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where AERO_PMA and CLDS_PMA are the contribution of aerosol process and in-cloud 1 

process to PM2.5 concentration in Region A, extracted from CMAQ using the module 2 

“process analysis”. When the ERSM technique is applied with other CTMs, the chemical 3 

formation of PM2.5 can be readily extracted in a similar way. In addition, the chemical 4 

formation of PM2.5 in Region A and the resulting PM2.5 concentrations present a linear 5 

relationship, which can be established using the base case and the 50 scenarios where the 6 

variables in Region A change randomly but those in other regions remain constant: 7 

[PM2.5]A=k · Prod_PMA+ b              (13) 8 

where k and b are parameters decided through regression, and the correlation coefficient is 9 

approximately 0.99. Then we develop the relationship between the local chemical formation 10 

of PM2.5 in Region A and local precursor concentrations using the base case and the 30 11 

scenarios where control variables in all regions change together and the variables for the same 12 

pollutant (e.g., Emis_NH3A, Emis_NH3B, and Emis_NH3C) equal each other: 13 

Prod_PM𝐴𝐴 = RSMA→A
Prod_PM([NOx]A, [NH3]A)          (14) 14 

Combining Eq. (13) and Eq. (14), and considering the effect of inter-regional transport of 15 

PM2.5 (calculated using Eq. (9)), we derive 16 

[PM2.5]A= k · RSMA→A
Prod_PM([NOx]A0+[NOx]A→A+[NOx]B→A+[NOx]C→A, 

  [NH3]A0+[NH3]A→A+[NH3]B→A+[NH3]C→A)+ b +[PM2.5_Trans]B→A+[PM2.5_Trans]C→A 17 

 �applicable for [NOx]A<[NOx]A, min, or [NH3]A<[NH3]A, min�     (15) 18 

It should be noted that the “process analysis” module could also be used within the first 19 

approach (Eq. (10)) to distinguish the contributions of chemical formation and physical 20 

transport. However, in the first approach, we could distinguish the chemical and transport 21 

contributions even without this diagnostic module (see Eq. (7) and Eq. (8)). If this module 22 

was used, we would need to develop the relationship between the chemically formed PM2.5 23 

and the PM2.5 concentration, which was an extra step compared with the first approach and 24 

added to the complexity. 25 

To assure the consistency between Eq. (10) and Eq. (15), we introduce “transition intervals” 26 

of ([NOx]A, min, [NOx]A, min + 𝛿𝛿𝑁𝑁𝑁𝑁𝑁𝑁 )  and ([NH3]A, min, [NH3]A, min + 𝛿𝛿𝑁𝑁𝑁𝑁3) , where 27 

𝛿𝛿𝑁𝑁𝑁𝑁𝑁𝑁 = 0.1 * [NOx]A0  and 𝛿𝛿𝑁𝑁𝑁𝑁3 = 0.1 * [NH3]A0 . Eq. (10) is applied for 28 

[NOx]A≥[NOx]A, min + 𝛿𝛿𝑁𝑁𝑁𝑁𝑁𝑁  and [NH3]A≥[NH3]A, min + 𝛿𝛿𝑁𝑁𝑁𝑁3 , and we linearly interpolate 29 

between Eq. (10) and Eq. (15) for the transitional range. Based on the case study in the YRD 30 
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region (see Sect. 2.2), the discrepancy between the two approaches is 1-8% in the transition 1 

interval. 2 

2.2 Case study of the YRD region 3 

The ERSM technique was applied with CMAQ version 4.7.1 over the YRD region of China. 4 

One-way, triple nesting simulation domains are used, as shown in Fig. 2. Domain 1 covers 5 

most of China and part of East Asia with a grid resolution of 36 km×36 km; domain 2 covers 6 

the eastern China with a grid resolution of 12 km×12 km; domain 3 covers the Yangtze River 7 

Delta region with a grid resolution of 4 km×4 km. The Weather Research and Forecasting 8 

Model (WRF, version 3.3) was used to generate the meteorological fields. The physical and 9 

chemical options of CMAQ and WRF, the geographical projection, the vertical resolution, 10 

and the initial and boundary conditions are consistent with our previous papers (Zhao et al., 11 

2013a, c). A high-resolution anthropogenic emission inventory for the YRD region developed 12 

by Fu et al. (2013) was used. The anthropogenic emissions for other regions in East Asia were 13 

from Zhao et al. (2013a, c) and Wang et al., (2014), and emissions for other Asian countries 14 

were taken from the INDEX-B inventory (Zhang et al., 2009a). The biogenic emissions were 15 

calculated by the Model of Emissions of Gases and Aerosols from Nature (MEGAN, 16 

Guenther et al., 2006). The ERSM technique is applicable for various time scales, ranging 17 

from a single day to several years. The simulation period for this case study is January and 18 

August in 2010, representing winter and summer, respectively. One may want to extend the 19 

analysis to a full year. The most rigorous way is to finish the CMAQ simulations for a full 20 

year and build the response surfaces following the same procedure. Alternatively, the 21 

relationship for a full year can be roughly estimated using the average values of January and 22 

August. Another approach is to finish the simulations for an additional month in Spring and 23 

Autumn, respectively, and represent the situation of a full year with the average values of the 24 

four typical months. The simulated meteorological parameters, and concentrations of PM10, 25 

PM2.5, and their chemical components agree fairly well with observation data, as described in 26 

detail in the Supporting Information (Table S1-S2, Fig. S1-S3). 27 

Domain 3 was divided into 4 regions (see Fig. 2), i.e. Shanghai, southern Jiangsu province 28 

(“Jiangsu”), northern Zhejiang province (“Zhejiang”), and other regions (“Others”). We 29 

developed two RSM/ERSM prediction systems (Table 1); the response variables for both of 30 

them are the concentrations of PM2.5, SO4
2-, and NO3

- over the urban areas of major cities (see 31 

Fig. 2) in these four regions. The first prediction system used the conventional RSM 32 
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technique and 101 emission control scenarios generated by the LHS method to map 1 

atmospheric concentrations versus total emissions of NOX, SO2, NH3, NMVOC, and PM2.5 in 2 

Domain 3. For the second prediction system, the emissions of gaseous PM2.5 precursors and 3 

primary PM2.5 in each of the four regions are categorized into 6 and 3 control variables, 4 

respectively (see Table 1), resulting in 36 control variables in total. Note that we did not 5 

consider NMVOC emissions in the second prediction system, because the contribution of 6 

NMVOC to PM2.5 concentrations is small in the current CMAQ model, mainly due to the 7 

significant underestimation of secondary organic aerosol formation (Carlton et al., 2010). We 8 

generated 663 scenarios (see Table 1) to build the response surface, following the method to 9 

create emission scenarios for the ERSM technique (the 5th paragraph of Sect. 2.1). In detail, 10 

the scenarios include (1) 1 CMAQ base case; (2) N=150 scenarios generated by applying LHS 11 

method for the control variables of gaseous precursors in Shanghai, 150 scenarios generated 12 

in the same way for Jiangsu, 150 scenarios for Zhejiang, and 150 scenarios for Others; (3) 13 

M=50 scenarios generated by applying LHS method for the total emissions of NOX, SO2, and 14 

NH3 in all regions; and (4) 12 scenarios where one of the control variables of primary PM2.5 15 

emissions is set to 0.25 for each scenario. Here the number N=150 and M=50 are decided 16 

according to the numerical experiments conducted in our previous studies (Xing et al., 2011; 17 

Wang et al., 2011), which showed that the response surface for 6 and 3 variables could be 18 

built with good prediction performance (mean normalized error < 1%; correlation coefficient > 19 

0.99) using 150 and 50 scenarios, respectively. Finally, we generated 40 independent 20 

scenarios for out-of-sample validation, as described in detail in Sect. 3.1. 21 

3 Results and discussion 22 

3.1 Validation of ERSM performance 23 

The performance of the conventional RSM technique has been well evaluated in our previous 24 

studies (Xing et al., 2011; Wang et al., 2011). In this study we focus on the validation of the 25 

ERSM technique. Using the prediction system built with the ERSM technique, we predicted 26 

the PM2.5 concentrations for 40 “out-of-sample” control scenarios, i.e., scenarios independent 27 

from those used to build the ERSM prediciton system, and compared with the corresponding 28 

CMAQ simulations. These 40 out-of-sample scenarios include 32 cases (case 1-32) where the 29 

control variables of gaseous precursors change but those of primary PM2.5 stay the same as 30 

the base case, 4 cases (case 33-36) the other way around, and 4 cases (case 37-40) where 31 

control variables of gaseous precursors and primary PM2.5 change simultaneously. Most cases 32 
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are generated randomly with the LHS method (case 4-6, 10-12, 16-18, 22-24, 28-40), and 1 

some cases are designed where all control variables are subject to large emission changes 2 

(case 1-3, 7-9, 13-15, 19-21, 25-27). A more detailed description of the out-of-sample control 3 

scenarios is given in Table S3. Two statistical indices, the Normalized Error (NE) and Mean 4 

Normalized Error (MNE) are defined as follows: 5 

NE= �Pi-Si� Si�                  (16) 6 

MNE= 1
Ns
∑ ��Pi-Si� Si� �Ns

i=1                (17) 7 

where Pi  and Si  are the ERSM-predicted and CMAQ-simulated value of the ith 8 

out-of-sample scenario; Ns is the number of out-of-sample scenarios. Figure 3 compares the 9 

ERSM-predicted and CMAQ-simulated PM2.5 concentrations for the out-of-sample scenarios 10 

using scattering plots (the raw data for the scattering plots are given in Table S4-S5). Table 2 11 

shows the statistical results for the comparison. It can be seen that the ERSM predictions and 12 

CMAQ simulations agree well with each other. The correlation coefficients are larger than 13 

0.98 and 0.99, and the MNEs are less than 1% and 2% for January and August, respectively. 14 

The maximum NEs could be as large as 6% and 10% in January and August, respectively, but 15 

the NEs for 95% of all out-of-sample scenarios fall below 3.5%. NEs exceeding 3.5% happen 16 

only for the scenario where all control variables are reduced by 90% (case 25). In addition, 17 

the maximum NEs for case 33-36 are all within 0.2%, indicating a perfect linear relationship 18 

between PM2.5 concentrations and primary PM2.5 emissions. 19 

We further evaluated the performance of the ERSM technique by comparing the 2D-isopleths 20 

of PM2.5 concentrations in response to the simultaneous changes of NOX/SO2/NH3 emissions 21 

in all regions derived from both the conventional RSM and the ERSM technique. Figure 4, S4, 22 

and S5 show the isopleths of PM2.5 concentrations in Shanghai, Jiangsu, and Zhejiang, 23 

respectively. The X- and Y-axis of the figures show the “emission ratio”, defined as the ratios 24 

of the changed emissions to the emissions in the base case. For example, an emission ratio of 25 

1.5 means the emissions of a particular control variable increase by 50% from the base case. 26 

The different colors represent different PM2.5 concentrations. The comparison shows that the 27 

shapes of isopleths derived from both prediction systems agree fairly well with each other, 28 

although the isopleths predicted by the ERSM technique are not as smooth as those predicted 29 

by the conventional RSM technique owing to a much larger variable number. The consistency 30 

between the conventional RSM and ERSM prediction systems indicates that the ERSM 31 

technique could reproduce fairly well the response of PM2.5 to continuous changes of 32 
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precursor emission levels between zero and 150%. Although model simulations definitely 1 

have numerical errors, the success in capturing the atmospheric responses to continuous 2 

emission changes over a full range of control levels ensures that these errors could not 3 

challenge the major conclusions about the effectiveness of air pollution control measures. 4 

3.2 Response of PM2.5 to precursor emissions. 5 

The ERSM prediction system could instantly evaluate the response of PM2.5 and its chemical 6 

components to the independent or simultaneous changes of the precursor emissions from 7 

multiple sectors and regions, over a full range of control levels. Therefore, it improves the 8 

identification of major precursors, regions, and sectors contributing to PM2.5 pollution. This 9 

unique capability distinguishes the ERSM from the previous sensitivity analysis methods. 10 

Following previous sensitivity studies, we define PM2.5 sensitivity as the change ratio of 11 

PM2.5 concentration divided by the reduction ratio of emissions: 12 

Sa
X= ��C*-Ca� C*⁄ � �1-a��                (18) 13 

where Sa
X is the PM2.5 sensitivity to emission source X at its emission ratio a; Ca is the 14 

concentration of PM2.5 when the emission ratio of X is a; and C* is the concentration of 15 

PM2.5 in the base case (when emission ratio of X is 1). Figure 5 shows the PM2.5 sensitivity to 16 

the stepped control of individual air pollutants, and Fig. 6 shows the PM2.5 sensitivity to the 17 

stepped control of individual air pollutants from individual sectors. Figure 5 can be derived 18 

from the prediction systems built with both the conventional RSM and ERSM technique, 19 

except that the latter did not evaluate the effects of the changes of NMVOC emissions. The 20 

results derived from both systems are consistent, and we present those derived from the 21 

conventional technique to include the effects of NMVOC. Figure 6 is derived from the ERSM 22 

technique. 23 

In January, PM2.5 concentrations are sensitive to the primary PM2.5 emissions, followed by 24 

NH3, and relatively insensitive to NOX and SO2. The contribution of primary PM2.5 is 25 

dominated by the emissions from industrial and residential sources. During August, gaseous 26 

precursors make larger contributions to PM2.5 concentrations than primary PM2.5, with similar 27 

contributions from NH3, SO2, and NOX. The NOX emissions from power plants, the industrial 28 

and residential sector, and the transportation sector play similar roles; the SO2 emissions from 29 

the industrial and residential sector have larger effects on PM2.5 than those from power plants 30 

due to larger emissions and lower stack heights. NMVOC emissions have minor effect on 31 

PM2.5 concentrations, mainly due to the significant underestimation of SOA in the current 32 
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version of CMAQ, which is also a common issue for most widely used CTMs (Robinson et al., 1 

2007). 2 

The PM2.5 sensitivities to primary PM2.5 emissions are approximately the same at various 3 

control levels. However, the PM2.5 sensitivity to gaseous precursors increases notably when 4 

more control efforts are taken, mainly attributable to transition between NH3-rich and 5 

NH3-poor conditions. Specifically, a particular pollutant (SO2, NOX, or NH3), when subject to 6 

larger reductions compared with others, will become the limiting factor for inorganic aerosol 7 

chemistry. In January, the response of PM2.5 to NOX emissions is negative for relatively small 8 

reductions (< 40-70%), but becomes positive for large reductions (> 40-70%). This strong 9 

nonlinearity has also been confirmed by the previous studies (Zhao et al., 2013c; Dong et al., 10 

2014). Relatively small reductions of NOX emissions lead to the increase of O3 and HOX 11 

radical due to a NMVOC-limited regime for photochemistry, enhancing the formation of 12 

sulfate (see Fig. 7). In addition, the increase of O3 and HOX radical also accelerates the 13 

nighttime formation of N2O5 and HNO3 through the NO2 + O3 reaction, thereby enhancing the 14 

formation of nitrate aerosol (see Fig. 7). As an integrated effect, the PM2.5 concentrations 15 

increase with relatively small reductions of NOX emissions. Under large reductions of NOX, 16 

PM2.5 concentrations decrease, resulting from the simultaneous decline of NO2, O3 and HOX 17 

radical concentrations (NOX-limited regime for photochemistry). These chemical processes 18 

also explain why the reduction of NOX emissions of a single emission sector has negative 19 

effects on PM2.5 even at large reduction ratio (see Fig. 6). Simultaneous reductions of NOX 20 

emissions from multiple sectors are essential for reducing PM2.5 concentrations. If all 21 

pollutants are controlled simultaneously, the sensitivity of PM2.5 concentrations to emission 22 

reductions also generally becomes larger with more control effort taken, especially in January 23 

(see red dotted line in Fig. 5 and Fig. 6). Note that the effects of reducing individual pollutants 24 

(from individual sectors) and reducing all of them together are different. In most cases the 25 

combined effect is lower than the sum of individual effects, which can be explained by the 26 

overlap effects of reductions in both species involved in the formation of ammonium sulfate 27 

and ammonium nitrate. However, it is sometimes the other way around in January, as shown 28 

in Fig. 6. As mentioned above, in January, the response of PM2.5 to the reduction of NOX 29 

emissions from a single emission sector is negative since the emission reduction is small 30 

compared with the total NOX emissions. Therefore, when the NOX emissions from each sector 31 

are reduced individually (the bars), we sum up the negative effects. In contrast, when all 32 
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pollutants from all sectors are reduced simultaneously (the red dotted line), the NOX emission 1 

reduction at large ratio could have positive effect on PM2.5 reduction. This is why the 2 

combined effect sometimes exceeds the sum of individual effects in January. 3 

Then, we evaluate the contribution of primary PM2.5 and gaseous precursor (SO2, NOX, and 4 

NH3) emissions from different regions to PM2.5 concentrations based on the ERSM technique 5 

(Table 3). The contributions of total primary PM2.5 emissions (39-46% in January, and 43-46% 6 

in August) are dominated by local sources (32-36% in January, and 37-43% in August). Total 7 

gaseous precursor emissions in the domain contribute 25-36% and 48-50% of PM2.5 8 

concentrations in January and August, respectively. The relative importance of gaseous 9 

precursor emissions from the other regions compared with local precursor emissions is 10 

generally higher than that of primary PM2.5; this trend is especially evident in August. In 11 

Shanghai, the gaseous precursor emissions from Jiangsu and Zhejiang even contribute more 12 

to the PM2.5 concentration than local precursor emissions during August. In January, long 13 

range transport has a significant effect on PM2.5 concentrations (25-34% contribution) due to 14 

the northerly monsoon, contrasted by the minor effect in August (7-8% contribution). 15 

3.3 Response of SO4
2- and NO3

- to precursor emissions 16 

We pay special attention to secondary inorganic aerosols (SIA) because SIA contribute 28-55% 17 

of total PM2.5 concentrations based on our simulation. Figure 7 shows the sensitivity of 18 

NO3
-/SO4

2- concentrations to the emissions of individual air pollutants in individual regions; 19 

Fig. S6 shows the sensitivity of NO3
-/SO4

2- concentrations to the emissions of individual air 20 

pollutants from individual sectors. Both figures are derived from the prediction system built 21 

with the ERSM technique. In January, NO3
- concentration is most sensitive to NH3 emissions, 22 

especially local NH3 emissions. The effect of local NOX emissions on NO3
- concentrations 23 

changes from negative to positive when the controls of NOX emissions become more and 24 

more stringent. This pattern is similar to that of PM2.5 described above. The NOX emissions 25 

from the industrial and residential sector and the transportation sector, when controlled 26 

individually, both make negative contribution to the reduction of NO3
- concentrations. In 27 

contrast, the control of NOX emissions from power plants often favors the reduction of NO3
-, 28 

because power plants tend to affect the fine particles over a larger spatial scale due to their 29 

higher release heights, and because the photochemistry typically changes from a 30 

NMVOC-limited regime in surface metropolis areas to a NOX-limited regime in vast rural 31 

areas or the upper air (Xing et al., 2011). In August, NO3
- concentrations are mainly affected 32 
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by local emissions of NH3 and NOX, as well as NOX emissions in upwind regions, and NOX 1 

emissions make a much larger positive contribution to NO3
- concentrations compared with 2 

January. Factors accounting for this difference include a stronger NH3-rich condition for 3 

inorganic aerosol chemistry (Wang et al., 2011), and a weaker NMVOC-limited (in 4 

metropolis areas) or a stronger NOX-limited (in rural areas) photochemical condition in 5 

August. The contributions of NOX emissions from power plants, the industrial and residential 6 

sector, and the transportation sector are similar to each other. 7 

In January, SO4
2- concentrations are dominated by the changes of local SO2 emissions, 8 

followed by local NH3 emissions. NOX emissions have a negative effect on SO4
2- due to both 9 

thermodynamic (competition with SO2 for NH3) and photochemical effect (negatively 10 

correlated with O3 and HOX radical). In August, SO4
2- is most sensitive to local SO2 and NH3 11 

emissions. In Shanghai, where local emissions are relatively small compared with emissions 12 

in other regions, the SO2 and NH3 emissions from upwind regions might contribute more to 13 

SO4
2- concentration than local emissions. In both January and August, the SO2 emissions of 14 

the industrial and residential sector have larger effects on SO4
2- concentrations than those of 15 

power plants, partly due to larger emissions and lower stack heights. 16 

4 Conclusions, implications, and limitations 17 

In this study, we developed a novel Extended Response Surface Modeling technique (ERSM 18 

v1.0). As an advantage over previous models or techniques,  this technique could 19 

characterize the nonlinear response of PM2.5 and its chemical components to large and 20 

simultaneous changes of multiple precursor emissions from multiple regions and sectors with 21 

a reasonable number of model scenarios. The ERSM technique was developed starting from 22 

the conventional RSM technique; it first quantifies the relationship between PM2.5 23 

concentrations and the emissions of gaseous precursors from each single region with the 24 

conventional RSM technique, and then assesses the effects of inter-regional transport of PM2.5 25 

and its gaseous precursors on PM2.5 concentrations in the target region. A particular approach 26 

was implemented to improve the accuracy of the response surface when the emissions from 27 

multiple regions experience quite large reductions simultaneously. 28 

We applied the ERSM technique with CMAQ version 4.7.1 over the YRD region of China, 29 

and mapped the concentrations of PM2.5 and its inorganic componets versus 36 control 30 

variables. Using the ERSM technique, we predicted the PM2.5 concentrations for 40 31 

independent control scenarios, and compared with the corresponding CMAQ simulations. The 32 
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comparison results show that the ERSM predictions and CMAQ simulations agree well with 1 

each other. The correlation coefficients are larger than 0.98 and 0.99, and the mean 2 

normalized errors are less than 1% and 2% for January and August, respectively. We also 3 

compared the 2D-isopleths of PM2.5 concentrations in response to the changes of precursor 4 

emissions derived from both the conventional RSM and the ERSM technique, and 5 

demonstrated that the ERSM technique could reproduce fairly well the response of PM2.5 to 6 

continuous changes of precursor emission levels between zero and 150%. 7 

Employing the ERSM technique, we identified the major sources contributing to PM2.5 and its 8 

inorganic components in the YRD region. For example, in January, PM2.5 concentrations are 9 

sensitive to the primary PM2.5 emissions, followed by NH3, and relatively insensitive to NOX 10 

and SO2. During August, gaseous precursors make larger contributions to PM2.5 11 

concentrations than primary PM2.5, with similar contributions from NH3, SO2, and NOX. We 12 

also characterized the nonlinearity in the response of PM2.5 to emission changes and 13 

illustrated the underlying chemical processes. For example, the sensitivity of PM2.5 to gaseous 14 

precursors increases notably when more control efforts are taken, due to the transition 15 

between NH3-rich and NH3-poor conditions. In January, the response of PM2.5 to NOX 16 

emissions is negative for relatively small reductions, but becomes positive for large 17 

reductions. 18 

The assessment of the response of PM2.5 and its inorganic components to precursor emissions 19 

over the YRD region has important policy implications. First, the control of primary PM2.5 20 

emissions, especially those of the industrial and residential sources, should be enhanced 21 

considering their large contribution to PM2.5 concentrations. Second, NOX emissions need be 22 

reduced substantially in order to mitigate the adverse effect on PM2.5 concentrations at 23 

relatively small reduction ratio. Third, the control of NH3 should be implemented in 24 

heavy-pollution areas in winter due to its significant effect on PM2.5. Fourth, it is essential to 25 

implement region-dependent emission reduction targets based on the above-quantified 26 

interactions among regions. 27 

Except for identification of major emission sources, the ERSM technique has several other 28 

practical applications. First, it allows us to calculate the required emission reductions to attain 29 

a certain environmental target. Specifically, we alter the emission ratios of various control 30 

variables and calculate the “real-time” response of PM2.5 concentrations with ERSM 31 

repeatedly until the standard is attained. Second, ERSM can be applied to design optimal 32 
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control options, which could be determined through cost-effective optimization once ERSM is 1 

coupled with control cost models/functions that links the emission reductions with private 2 

costs. 3 

The ERSM technique still has several limitations. Firstly, the technique currently does not 4 

consider the variability of meteorological conditions. Secondly, although the ERSM technique 5 

represents an essential improvement compared with the conventional RSM technique, it 6 

usually needs over 500 emission scenarios for a medium-size problem. Future studies should 7 

be done to further reduce the number of scenarios required while assuring the accuracy of the 8 

response surfaces. Thirdly, the emission scenarios required to build the response surface 9 

depends strictly on the experimental design (e.g., selection of geographical regions and 10 

control variables). It is not necessary to recompute lots of CTM simulations if we make minor 11 

revision on the experimental design. For example, if one more geographical area is added, we 12 

just need to (1) add a parallel group of emission scenarios where the control variables of the 13 

added geographical area change while those of the other regions remain the base-case levels, 14 

and (2) recompute the emission scenarios where the control variables of all regions change 15 

simultaneously. Another example, if the selected emission sectors in a specific geographical 16 

area are changed, we just need to recompute the group of emission scenarios where the 17 

control variables of this geographical area change while those of the other regions remain the 18 

base-case levels. However, if the experimental design is significantly changed (e.g., change of 19 

selected pollutants, or change of selected emission sectors in all regions), most of the CTM 20 

simulations need to be recomputed. The users need to carefully design the experiment before 21 

performing the CTM simulations. 22 

 23 
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documented in a Manual.doc file. 29 
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Tables and figures 1 

Table 1. Description of the RSM/ERSM prediction systems developed in this study. 2 

method variable 
number 

control variables scenario 
number 

scenario details 

conventional 
RSM 
technique 

5 total emissions of NOX, SO2, NH3, 
NMVOC, and PM2.5 

101 1 CMAQ base case;  
100a scenarios generated by applying 
LHS method for the 5 variables. 

ERSM 
technique 

36 9 variables in each of the 4 
regions, including 6 gaseous 
variables, i.e., 
(1) NOX/Power plants 
(2) NOX/Industrial and residential 
(3) NOX/Transportation 
(4) SO2/Power plants 
(5) SO2/Industrial and Residential 
(6) NH3/All sectors, 
and 3 primary PM2.5 variables, i.e., 
(7) PM2.5/Power plants 
(8) PM2.5/Industrial and residential 
(9) PM2.5/Transportation. 

663 1 CMAQ base case; 
600 scenarios, including 150a 
scenarios generated by applying LHS 
method for the gaseous control 
variables in Shanghai, 150 scenarios 
generated in the same way for 
Jiangsu, 150 scenarios for Zhejiang, 
150 scenarios for Others; 
50a scenarios generated by applying 
LHS method for the total NOX, SO2, 
and NH3 emissions; 
12 scenarios where one primary 
PM2.5 control variable is set to 0.25 
for each scenario. 

a 100, 150 and 50 scenarios are needed for the response surfaces for 5, 6 and 3 variables, respectively (Xing et 3 
al., 2011; Wang et al., 2011). 4 
 5 
Table 2. Comparison of PM2.5 concentrations predicted by the ERSM technique with 6 

out-of-sample CMAQ simulations. 7 

 January August 
 Shanghai Jiangsu Zhejiang Shanghai Jiangsu Zhejiang 
Correlation coefficient 0.989 0.980 0.987 0.995 0.997 0.994 
Mean Normalized Error (MNE) 1.0% 0.7% 0.9% 0.8% 0.5% 1.7% 
Maximum Normalized Error (NE) 4.5% 3.0% 5.2% 10.2% 7.7% 9.6% 
95% percentile of NEs 2.8% 2.7% 3.5% 3.0% 1.6% 3.1% 
MNE (case 33-36) 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 
Maximum NE (case 33-36) 0.1% 0.1% 0.1% 0.1% 0.1% 0.2% 
  8 
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 1 
Table 3. Contribution of primary PM2.5 and gaseous precursor (NOX, SO2, NH3) emissions 2 

from individual regions to PM2.5 concentrations. 3 

 January August 
Shanghai Jiangsu Zhejiang Shanghai Jiangsu Zhejiang 

Emissions of Primary PM2.5 in Shanghai 35.5% 1.1% 1.3% 36.9% 1.0% 0.4% 

Emissions of Primary PM2.5 in Jiangsu 5.6% 35.0% 4.1% 2.2% 37.5% 0.9% 

Emissions of Primary PM2.5 in Zhejiang 1.9% 2.3% 32.2% 4.3% 2.5% 42.8% 

Emissions of Primary PM2.5 in Others 2.9% 2.9% 1.7% 2.0% 1.9% 1.5% 

Emissions of Primary PM2.5 in four regions 46.0% 41.2% 39.4% 45.4% 42.9% 45.7% 

Emissions of NOX, SO2, and NH3 in Shanghai 11.3% 0.2% 1.0% 18.9% 1.8% 2.5% 

Emissions of NOX, SO2, and NH3 in Jiangsu 3.3% 11.7% 3.9% 5.2% 30.1% 4.3% 

Emissions of NOX, SO2, and NH3 in Zhejiang 2.7% 4.3% 20.9% 18.3% 12.6% 36.3% 

Emissions of NOX, SO2, and NH3 in Others 1.7% 2.4% 2.8% 5.7% 4.6% 7.2% 

Emissions of NOX, SO2, and NH3 in four regions 25.2% 24.9% 35.7% 48.3% 50.4% 47.7% 

Emissions of Primary PM2.5 in the outer domain 7.4% 9.1% 6.3% 0.7% 0.8% 1.6% 

Emissions of NOX, SO2, and NH3 in outer domain 20.6% 24.5% 19.1% 6.6% 7.1% 6.1% 

 4 
 5 
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 1 
Figure 1. A flowchart illustrating the ERSM technique using the simplified case described in Sect. 2.1. Different background colors 2 

represent the procedures conducted using different groups of emission scenarios, as indicated on the top/bottom of the colored areas. 3 
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 1 

 2 

Figure 2. Triple nesting domains used in CMAQ simulation (left) and the definition of four 3 

regions in the innermost domain, denoted by different colors (right). The black lines in the left 4 

figure represent provincial boundaries; the thick black lines and the thin grey lines in the right 5 

figure represent the provincial boundaries and city boundaries, respectively. The dark blue 6 

grids in the right figure represent the urban areas of major cities. 7 

 8 

January August 

  
Figure 3. Comparison of PM2.5 concentrations predicted by the ERSM technique with 9 

out-of-sample CMAQ simulations. The dashed line is the one-to-one line indicating perfect 10 

agreement. 11 
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 January August 
 Conventional RSM ERSM Conventional RSM ERSM 

NOX 
vs 
NH3 

    

NOX 
vs 
SO2 

    

SO2 
vs 
NH3 

    
Figure 4. Comparison of the 2-D isopleths of PM2.5 concentrations in Shanghai in response to the simultaneous changes of precursor 1 
emissions in all regions derived from the conventional RSM technique and the ERSM technique. The X- and Y-axis shows the emission 2 
ratio, defined as the ratios of the changed emissions to the emissions in the base case. The different colors represent different PM2.5 3 

concentrations (unit: µg m-3). 4 
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 1 
January August 

 
Figure 5. Sensitivity of PM2.5 concentrations to the stepped control of individual air pollutants. 2 
The X-axis shows the reduction ratio (= 1 – emission ratio). The Y-axis shows PM2.5 3 
sensitivity, which is defined as the change ratio of concentration divided by the reduction 4 
ratio of emissions. The colored bars denote the PM2.5 sensitivities when a particular pollutant 5 
is controlled while the others stay the same as the base case; the red dotted line denotes the 6 
PM2.5 sensitivity when all emission sources are controlled simultaneously. 7 
 8 

January August 

 
Figure 6. Sensitivity of PM2.5 concentrations to the stepped control of individual air pollutants 9 

from individual sectors. The X-axis shows the reduction ratio (= 1 – emission ratio). The 10 

Y-axis shows PM2.5 sensitivity, which is defined as the change ratio of concentration divided 11 

by the reduction ratio of emissions. The colored bars denote the PM2.5 sensitivities when a 12 
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particular emission source is controlled while the others stay the same as the base case; the 1 

red dotted line denotes the PM2.5 sensitivity when all emission sources are controlled 2 

simultaneously. 3 

 4 

 January August 

NO3
- 

 

SO4
2- 

Figure 7. Sensitivity of NO3
- and SO4

2- concentrations to the stepped control of individual air 5 

pollutants in individual regions. The X-axis shows the reduction ratio (= 1 – emission ratio). 6 

The Y-axis shows NO3
-/SO4

2- sensitivity, which is defined as the change ratio of NO3
-/SO4

2- 7 

concentration divided by the reduction ratio of emissions. The colored bars denote the 8 

NO3
-/SO4

2- sensitivities when a particular emission source is controlled while the others stay 9 

the same as the base case; the red dotted line denotes the NO3
-/SO4

2- sensitivity when all 10 

emission sources are controlled simultaneously. 11 
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