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Abstract. Classical Bayesian atmospheric inversions process atmospheric observations and prior

emissions, the two being connected by an observation operator picturing mainly the atmospheric

transport. These inversions rely on prescribed errors in the observations, the prior emissions and

the observation operator. When data pieces are sparse, inversion results are very sensitive to the

prescribed error distributions, which are not accurately known. The classical Bayesian framework5

experiences difficulties in quantifying the impact of mis-specified error distributions on the opti-

mized fluxes. In order to cope with this issue, we rely on recent research results to enhance the

classical Bayesian inversion framework through a marginalization on a large set of plausible errors

that can be prescribed in the system. The marginalization consists in computing inversions for all

possible error distributions weighted by the probability of occurrence of the error distributions. The10

posterior distribution of the fluxes calculated by the marginalization is not explicitly describable. As

a consequence, we carry out a Monte Carlo sampling based on an approximation of the probability

of occurrence of the error distributions. This approximation is deduced from the well-tested method

of the maximum likelihood estimation. Thus, the marginalized inversion relies on an automatic ob-

jectified diagnosis of the error statistics, without any prior knowledge about the matrices. It robustly15

accounts for the uncertainties on the error distributions, contrary to what is classically done with

frozen expert-knowledge error statistics. Some expert knowledge is still used in the method for the

choice of an emission aggregation pattern and of a sampling protocol in order to reduce the compu-

tation cost. The relevance and the robustness of the method is tested on a case study: the inversion of

methane surface fluxes at the meso-scale with virtual observations on a realistic network in Eurasia.20

Observing System Simulation Experiments are carried out with different transport patterns, flux dis-

tributions and total prior amounts of emitted methane. The method proves to consistently reproduce
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the known ’truth’ in most cases, with satisfactory tolerance intervals. Additionally, the method ex-

plicitly provides influence scores and posterior correlation matrices. An in-depth interpretation of the

inversion results is then possible. The more objective quantification of the influence of the observa-25

tions on the fluxes proposed here allows us to evaluate the impact of the observation network on the

characterization of the surface fluxes. The explicit correlations between emission aggregates reveal

the mis-separated regions, hence the typical temporal and spatial scales the inversion can analyse.

These scales are consistent with the chosen aggregation patterns.

1 Introduction30

Characterizing the global biogeochemical cycles of greenhouse gases requires a reliable understand-

ing of the exchanges at the surface-atmosphere interface. The description of these exchanges must

encompass the absolute amounts of gas released to and removed from the atmosphere at the surface

interface, the spatial distribution and the temporal variability of the fluxes, and the determination of

the underlying physical processes of emissions and sinks. Such an integral depiction is still miss-35

ing for most greenhouse gases (Ciais et al., 2013). One of the possible approaches to inquire into

the surface fluxes is the analysis of the atmospheric signal. The drivers of the spatial and temporal

variability of the atmospheric composition are atmospheric transport, chemistry and surface fluxes.

Therefore, monitoring the atmospheric composition and using a representation of the atmospheric

transport and chemistry with Global Circulation Models (GCMs) or Chemistry-Transport Models40

(CTMs) can help in inferring information on the fluxes (Bousquet et al., 2006; Bergamaschi et al.,

2010). This approach, called atmospheric inversion, suffers from two practical issues in its imple-

mentation. First, the atmospheric composition is still laconically documented, though the number

of global monitoring projects with extensive surface observation networks and satellite platforms

has been increasing in the last decades (e.g., Dlugokencky et al., 1994, 2009). Indeed, the satellite45

platforms have a global coverage but the observed atmospheric composition is integrated over the

vertical column, while the surface sites can provide continuous observations but only at fixed point

locations. Second, the atmosphere behaves as an integrator and the air masses are mixed ambivalently

through the transport (Enting et al., 1993). Thus, the inverse problem of tracking back the fluxes from

the variability of the atmospheric composition cannot be solved univocally. The Bayesian formalism50

allows statistical analyses of the atmospheric signal, so that one can identify confidence intervals of

fluxes compatible with the atmospheric composition (Tarantola, 1987).

Bayesian inversions have been extensively used at the global scale, providing insights on the

greenhouse gas budgets (e.g., Gurney et al., 2002; Kirschke et al., 2013; Bergamaschi et al., 2013).

However, non compatible discrepancies in the results appear between the possible configurations of55

atmospheric inversion systems (Peylin et al., 2013). The various configurations include the choice of

the atmospheric transport, its spatial and temporal resolutions, the meteorological driving fields, the
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type and density of the observations, etc. In the Bayesian formalism, some assumptions also have

to be made on the transport model error statistics, on the errors made when comparing a discretized

model to observations (Geels et al., 2007) and on the confidence we have on the prior maps and time60

profiles of emissions (Enting, 2002). All these choices are based on technical considerations and on

the expert perception of the problem to solve. Comparing results based on different choices that are

physically adequate, but subjective, is difficult, especially to track inconsistencies, which enlarge the

range of flux estimates.

In the following, we focus on the development of an enhanced Bayesian method that objectifies65

the assumptions on the statistics of the errors and that takes the unavoidable uncertainties generated

by our lack of knowledge on these error statistics into account. In this approach, the confidence

ranges of the optimized surface fluxes are computed by a Monte Carlo marginalization on all the

possible error statistics, which is more general than the usual Bayesian approach deducing posterior

uncertainties from a single error statistic combination only. The weight function for the marginal-70

ization is inferred from an already-tested maximum likelihood approach (e.g., Dee, 1995; Michalak

et al., 2005), processing the pieces of information carried by the differences between the measure-

ments and the prior simulated concentrations. The potential and consistency of the method is tested

through Observing System Simulation Experiments (OSSEs) on a realistic configuration of atmo-

spheric inversion.75

The case study is the quantification of methane fluxes in the Siberian Lowlands with a network of

surface observation sites that have been operated for a few years by the Japanese National Institute

for Environmental Studies (Sasakawa et al., 2010) and the German Max Planck Institute (Winder-

lich et al., 2010). The characterization of the region is challenging, with co-located massive methane

emissions from anthropogenic activity (oil and gas extraction) and from wetlands in summer. More-80

over, the wetland emissions have a very high temporal variability (due to their sensitivity to the

water table depth and to the temperature; e.g., Macdonald et al., 1998; Hargreaves and Fowler,

1998). Their quantification is then difficult. In order to catch the influence of the sampling bias due

to non-regularly distributed observation sites and non-continuous measurements, we produce virtual

observations from a known ’truth’ at locations where real observations are carried out and at dates85

when the logistical issues do not prevent the acquisition of measurements. We then check the ca-

pability of our method to reproduce consistent flux variability and distribution with seven degraded

inversion configurations (perturbed transport, flat flux distributions, etc.).

In Sect. 2, we describe the theoretical framework of our method of marginalization. The enhance-

ments on the general theoretical framework need a cautious definition of the problem to be imple-90

mentable in term of computational costs and memory limits. In Sect. 3, guidelines for a suitable def-

inition of the problem are developed. The whole structure of the method is summarized in Sect. 4.1.

In Sect. 4, we present the particular set up of the OSSE carried out for proving the robustness of the
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method. The specific Siberian configuration we test our method on is detailed in Sect. 5. The OSSE

are evaluated along defined objective statistical scores in Sect. 6.95

2 Marginalized Bayesian inversion

We first describe the motivations for using a marginalized inversion in Sect. 2.1. In Sect. 2.2, we

describe the marginalization itself and the Monte Carlo approach chosen in order to compute it.

2.1 Context and motivation for the marginalization

2.1.1 Bayesian inversion framework100

The surface-atmosphere fluxes, through transport, cause a variability in the atmospheric mixing ra-

tios of the species we are interested in. The atmospheric inversion relies on the processing of the

atmospheric variability in order to infer the surface-atmosphere fluxes. Since the atmosphere is dif-

fusive and irreversibly mixes air masses from different origins, it is physically impossible to infer

univocal information on the fluxes from the integrated atmospheric signal alone (Tarantola, 1987;105

Enting, 2002). We then pursue a thorough characterization of the pdf of the state of the system x

(e.g., the spatial and temporal distribution of the surface fluxes, but also background concentrations

and baselines in some cases), assuming some prior knowledge on the system and having some ob-

servations of the atmospheric physical variables related to our problem. That is to say, we want to

calculate the pdf p(x|yo−H(xb),xb) for all possible states x; yo is a vector gathering all the avail-110

able observations, xb is the background vector including the prior knowledge on the state of the

system and H is the observation operator converting the information in the state vector to the obser-

vation space. Typically, H embraces the atmospheric transport and the discretization of the physical

problem. In the scope of applications of the atmospheric inversions, the observation vector yo gath-

ers measurements of dry air mole fraction. As for the observation operator, it is computed with a115

model which simulates mixing ratios. As we are interested in trace gases, we will consider that the

dry air mole fractions can be treated as mixing ratios. In all the following, we also consider that H is

linear; hence, H is represented by its Jacobian matrix H and H(xb) = Hxb. This approximation is

valid for all non reactive atmospheric species at scales large enough, so that the treatment of the lo-

cal scale turbulence by the model does not generate numerical non-linearity. When the atmospheric120

chemistry must be taken into account (for instance with methane), either the window of inversion

must be short compared with the typical lifetime in the atmosphere for the linear assumption to be

valid, or the concentration fields of the reactant species (e.g., OH radicals for methane) must be

accurately known.

In general, the characterization of the pdf is built within the Bayesian formalism with the as-125

sumption that all the involved pdfs are normal distributions (Enting et al., 1993). The pdfs are

then explicitly described through their mode and their matrix of covariance. In this case, the pdf
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p(x|yo−Hxb,xb)∝N (xa,Pa) is defined by its mode, xa, the posterior state, and its matrix of

covariance, Pa. In addition to the linear assumption, we also consider that the uncertainties are unbi-

ased. That is to say: p(x−xb)∝N (0,B) and p(yo−Hxt)∝N (0,R) where xt is the true state of130

the system. The uncertainty matrix B (resp. R) encompasses the uncertainties on the background xb

(resp. on the measurements and on the model, including representation errors, i.e. the errors made

when approximating the real world by a numerical gridded model). Under these assumptions, we

can explicitly write the posterior vector and the posterior matrix of covariance:

p(x|yo−Hxb,xb)∝N (xa,Pa) :

 xa = xb +K(yo−Hxb)

Pa = B−KHB
(1)135

with K = BHT(R+HBHT)−1 the Kalman gain matrix.

2.1.2 Ambivalent uncertainty set-up

Atmospheric inversion is straightforward (apart from technical issues in the numerical implementa-

tion of the theory) as long as the uncertainty matrices R and B are defined.

Some of their components can be calculated unambiguously, such as measurement errors in matrix140

R. Other errors are derived, in most cases, following expert knowledge on, e.g., the behaviour of the

atmospheric transport and of the surface fluxes. This expert knowledge is acquired, for example,

through extensive studies on the sensitivity of the transport model to its parametrization and forcing

inputs (e.g., Denning et al., 1999; Ahmadov et al., 2007; Lauvaux et al., 2009; Locatelli et al., 2013),

or by comparing prior fluxes to measured local fluxes (e.g., Chevallier et al., 2006). Some studies145

also rely on pure physical considerations (e.g., Bergamaschi et al., 2005, 2010).

However, the complex and unpredictable structure of the uncertainties is hard to reproduce accu-

rately from the expert knowledge alone and an ill-designed couple of uncertainty matrices (R,B)

can have a dramatic impact on the inversion results (e.g., Berchet et al., 2013; Cressot et al., 2014).

The discrepancies between the possible configurations of inversion can also reveal some biases, η, in150

the models: in that case p(yo−Hxt)∝N (η,R) instead of p(yo−Hxt)∝N (0,R), which would

require a different handling of Eq. 1. For example, the horizontal wind fields can be biased or the

vertical mixing in the planetary boundary layer systematically erroneous. That makes it difficult to

compare simulated concentrations in the boundary layer to measurements (e.g., Peylin et al., 2002;

Dee, 2005; Geels et al., 2007; Williams et al., 2013; Lauvaux and Davis, 2014). Biases can have155

critical impacts on inversion results and must be inquired into independently (e.g., Bocquet, 2011).

Nevertheless, for our study, we decide to neglect the biases in the inversion. We discuss in Sect. 6.3

the potential impacts of biases that are not significant in our specific application. We then focus only

on the mis-specification of the uncertainty matrices R and B.
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2.1.3 Possible uncertainty handling160

In order to address the uncertainty issue in atmospheric inversions, efforts are carried out towards ob-

jectifying the way the error statistics are chosen (e.g., Schwinger and Elbern, 2010; Winiarek et al.,

2012; Berchet et al., 2013). These efforts focus on specific algebraic properties of the uncertainty

matrices (e.g., Desroziers and Ivanov, 2001; Desroziers et al., 2005) or more generally on under-

standing the likelihood of the prior innovation vector, yo−Hxb, as a function of the uncertainty165

matrices (Dee, 1995). Under Gaussian assumptions, the likelihood of the innovation vector can be

written:

p(yo−Hxb|R,B,xb) = e−
1
2
(yo−Hxb)T(R+HBHT)−1(yo−Hxb)√

(2π)d|R+HBHT|
(2)

with d the dimension of the observation space and | · | the determinant operator.

In the likelihood framework, the couple of uncertainty matrices (R,B) that maximizes Eq. 2170

is considered as optimal and will be hereafter referred to as the maximum likelihood. This maxi-

mum likelihood optimally balances the observation and prior state error variances and covariances

according to the prior innovation vector yo−Hxb (Chapnik et al., 2004). A direct algorithm com-

puting the maximum likelihood (applied to atmospheric inversion in, e.g., Winiarek et al., 2012;

Berchet et al., 2013) is then supposed to provide a good approximation of the couple of optimal175

matrices (Rmax,Bmax) which can be used forward in the inversion (Eq. 1). In order to dampen the

computation cost of the maximum likelihood estimation, most studies just maximize the likelihood

on hyperparameters (e.g., correlation lengths), describing the couple of matrices (R,B) in a more

simple way.

Though general, the estimation of the innovation vector maximum likelihood relies on strong180

assumptions, it can suffer from strong numerical errors and it is not necessarily univocal. More ex-

plicitly, as showed by previous works, the pdf of the uncertainty matrices p(R,B) behaves as a χ2

distribution with d degrees of freedom, d being the dimension of the observation space. Thus, the

likelihood is highly dominated by the mode of p(R,B), co-located with the maximum likelihood.

However, the peaked likelihood argument may be too rough in some cases. As the number of ob-185

servations decreases compared to the number of state dimensions, this optimal case becomes less

univocal. In the frameworks where observations are too scarce, the maximum likelihood may lead

to flawed results. To assess the validity of the peak assumption, estimations of the Hessian matrix of

the likelihood at its maximum have been used (e.g., Michalak et al., 2005; Wu et al., 2013). Hes-

sian matrices give the magnitude of the uncertainties on the computation of the uncertainty matrices.190

Nevertheless, to our knowledge, no atmospheric inversion account for the impact of the Hessian

matrix of the likelihood on the inversion results.

In addition, even when the pdf p(R,B) is intensely peaked at its maximum, the inferred inversion

results from Eq. 1 with a direct maximum likelihood algorithm would erroneously under-estimated

uncertainties on the result (see Fig. 1 and, e.g., Berchet et al., 2013). Indeed, at the maximum like-195
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lihood, all the pieces of information in the system are considered perfectly usable by the inversion

which then gives too optimistic posterior uncertainties in this case.

2.2 Marginalization of the inversion

2.2.1 Theoretical formulation

Here, we compute the pdf p(x|yo−Hxb,xb) by a marginalization on the uncertainty matrices to200

comprehensively account for the uncertainties in the characterization of the uncertainties and to

quantify the impact of ill-specified uncertainty matrices. In statistics, marginalizing a probability

density function (pdf ) p(x) consists in rewriting it as a sum of conditional probabilities p(x|z)
weighted by p(z).

Thus, the complete pdf p(x|yo−Hxb,xb) classically described by Eq. 1 is separated into a sum of205

the contribution of each possible couple of covariance matrices (R,B) weighted by the probability

of occurrence of the couple (R,B):

p(x|yo−Hxb,xb)

=

∫
(R,B)

p(x|yo−Hxb,xb,R,B)

× p(R,B|yo−Hxb,xb) d(R,B)

∝

∫
(R,B)

N (x̃a,P̃a)

× p(R,B|yo−Hxb,xb) d(R,B)

(3)

In Eq. 3, (̃.) depicts a dependency to the couple (R,B). The complete pdf p(x|yo−Hxb,xb)

then has the shape of an infinite sum of weighted normal distributions. This infinite sum could be210

described as a multi-variate T-distribution (Bocquet, 2011).

The general expression of Eq. 3 encompasses the classical case with only one couple of matrices

(R,B) which considers p(R,B|yo−Hxb,xb) as a Dirac-like distribution (centered at the maxi-

mum likelihood or at any expert-based couple of uncertainty matrices). More generally, p(R,B|yo−
Hxb,xb) is not so well known as discussed in Sect. 2.1.3 above.215

2.2.2 Monte Carlo sampling

Hereafter, a direct Monte Carlo characterization of Eq. 3 is carried out to deduce p(x|yo−Hxb,xb).

The Monte Carlo ensemble is to be defined along the pdf p(R,B), but the exact distribution

of the error statistics is intricate. In all the following, we then approximate the pdf p(R,B) by a

multi-variate χ2 distribution with d (the number of observations) degrees of freedom, centered at220

the maximum likelihood of the prior innovation vector (following Dee, 1995). The Monte Carlo

marginalization is consequently a direct extension of the maximum likelihood estimation now clas-

sically used in the atmospheric inversion framework.
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The maximum likelihood can be estimated first by a quasi-Newtonian descent method. However,

descent methods have high computation costs and thus require a reduced number of hyperparameters225

(variances, correlation lengths, etc.) to describe the full uncertainty matrices. From here, we decide

to reduce the distribution of the matrices (R,B) to the subspace of the diagonal positive matrices.

Using a subspace of the possible error statistics can dampen the generality of the method. In par-

ticular, error correlations will be excluded with diagonal uncertainty matrices. Correlations can be

used in some frameworks to detect the biases in the system (Berchet et al., 2013). But, more impor-230

tantly, correlations of observation or background errors can indicate redundant pieces of information

in the inversion system. For instance, an inversion computed with no observation correlation tries to

use too much information and is expected to give too optimistic a reduction of uncertainties on the

fluxes. Nevertheless, in Sect. 3, we reduce the observation and state spaces in order to numerically

compute the Monte Carlo marginalization. The reduction of the observation and state spaces indi-235

rectly depicts correlations in the full-resolution system. In this configuration, the correlation issue is

then attenuated and the diagonal assumption is valid.

At the end, for each diagonal term of the uncertainty matrices (R,B), we prescribe a χ2 distri-

bution with d (i.e. the dimension of the observation space) degrees of freedom, rescaled so that its

average equals the associated term in the computed maximum likelihood couple (Rmax,Bmax). That240

is to say, for each diagonal element ri,i of the matrix R (equivalently of the matrix B):

p

(
ri,i

ri,imax
× d
)
∝ χ2(d) (4)

as the mean of the χ2 distribution with d degrees of freedom, χ2(d), is d.

The χ2 distributions are then sampled on a large ensemble – the Monte Carlo approach stabilizes

after a few tens of thousands draws in our case study – to characterize the final output pdf p(x|yo−245

Hxb,xb). Each sample of the ensemble must take into account the spread ofN (x̃a,P̃a) in Eq. 3. To

do so, we describe the pdf p(x|yo−Hxb,xb) not from the ensemble of posterior fluxes
(
x̃a
)
, but

from a perturbed ensemble of (x̃), with each x̃ a random sample of N (x̃a,P̃a).

2.2.3 Processing the Monte Carlo posterior ensemble

In Fig. 1, we draw an example of the distribution of the Monte Carlo posterior vector ensemble along250

one component of the state space. The black curve depicts the posterior distribution inferred from

the maximum likelihood, with under-estimated spread compared to the Monte Carlo distribution.

On the opposite, as illustrated by the green curve, a Normal distribution with the same mode and

the same standard deviation gives a misleading flat shape. As for a Gaussian, we then define the

symmetric tolerance interval, so that 68.27% of the samples are in the range (the hatched portion255

of the histogram in Fig. 1). This interval is equivalent to the Gaussian ±σ interval, with σ the

standard deviation. One shall remind that the computed tolerance interval does not depict a Normal
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distribution. A Normal distribution with the same tolerance interval (the red curve in Fig. 1) is still

misleadingly flat. In all the following, we will write the tolerance interval TI68, [xlow,xhigh].

To summarize (as represented in the block diagram of Fig. 2), the maximum likelihood is first260

estimated using a quasi-Newtonian algorithm, similarly to what has been done in the literature (e.g.,

Winiarek et al., 2012; Berchet et al., 2013). We deduce from this maximum likelihood a plausible

distribution of the uncertainty matrices (R,B). Through a Monte Carlo sampling of uncertainty ma-

trices (R,B) along the deduced distribution, we compute an ensemble of possible posterior vectors

(x̃a
(R,B)). We can then define the tolerance intervals TI68 and a posterior covariance matrix filled265

by the covariances of the ensembles of state components with each other.

Posterior covariance matrices are not always easy to compute in the atmospheric inversion frame-

work. Here, the posterior covariance matrix is computed explicitly and objectively. The explicit

definition of this matrix can give valuable information on the ability of the inversion to separate

co-located emissions and emissions at different periods and locations. This capacity is used for the270

evaluation of the OSSEs in Sect. 4.2 and 6.

3 Informed definition of the problem

The general approach defined in Sect. 2 applies a Monte Carlo method on tens of thousands indi-

vidual inversions after the completion of a maximum likelihood algorithm. This procedure requires

extensive amounts of memory and computation power that can’t be afforded in most real cases. For275

instance, the explicit computation of H with a Chemistry-Transport Model (CTM) closely depends

on the dimension of the state space: every column of the observation operator needs one model sim-

ulation (Bousquet et al., 1999). Additionally, each step of the algorithm to compute the maximum

likelihood of the prior innovation vector and each step of the Monte Carlo method relies on matrix

products, matrix determinants and matrix inverses. At first sight, all these operations are as many280

technical issues in high dimension problems.

As a consequence, the application of the theoretically simple framework developed in Sect. 2 relies

closely on an informed definition of the problem. The dimensions of the observation and state spaces

should be reduced to dampen the numerical obstacles, but one shall keep resolutions physically

relevant for the system we are analysing. By synthesising the recent literature on the subject, we285

show in the following that approximations can be reasonably applied to the full-resolution problem

while not impacting the quality of the marginalized inversion results. Applying the Monte Carlo

marginalized inversion is then technically feasible in a problem defined with a reduced dimension

from the full-dimension problem.
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3.1 Principle for problem reduction290

3.1.1 Motivations and definition

In the observation space, more and more surface observation sites nowadays provide quasi-conti-

nuous measurements (at least a few data points per minute in the data set we use; Sasakawa et al.,

2010; Winderlich et al., 2010). For long windows of inversion at the regional scale (of a few weeks or

months), such a frequency of acquisition generates a number of data points technically impossible to295

assimilate all together in our framework. Concerning the fluxes, one shall aim at a characterization of

the fluxes on very fine pixels and at a high temporal resolution. As the window of inversion lengthens

and the domain widens, the number of flux unknowns grows dramatically.

In the inversion framework, the most straightforward way of minimizing the dimension of a prob-

lem is to reduce the dimensions of the observation and state spaces. Aggregating components of300

the state space and sampling observations are classically used for this purpose. In most studies, the

reduction of the problem is carried out arbitrarily. However, aggregation can generate large errors

(Kaminski et al., 2001; Bocquet et al., 2011), which would mitigate the benefits of the Monte Carlo

marginalized approach compared to more classical ones applied in other atmospheric inversion stud-

ies with no aggregation (e.g., variational inversions; Courtier et al., 1994; Bergamaschi et al., 2005;305

Pison et al., 2009). Here, we propose a more objective way to do so following recent literature.

Using the formalism from Bocquet et al. (2011), we aim at defining a representation ω that encom-

passes the horizontal and temporal resolution of the fluxes, the choice of the regions of aggregation

and the temporal sampling of the observations. The representation ω is defined through two op-

erators Γω and Λω , which projects respectively the full-resolution state and observation space to310

smaller ones. After the state space “projection” with Γω , the inversion applies corrections on regions

of aggregation with fixed emission distributions, instead of on single pixels. The adjoint of this oper-

ator, ΓT
ω , then redistributes total emissions on finer scales with the same fixed emission distribution.

The choice of Γω impacts both the state vector x and the observation operator H. The observation

sampling Λω can consist in averaging or picking one value per time step (chosen accordingly to the315

physical resolution inquired into). For instance, one can decide to average the observations by day

in order to study the synoptic variability of the atmosphere, related to the fluxes at the meso-scale.

The observation sampling applies to both the observation vector yo and the observation operator H.

The observation operator H computes the contribution from single sources to single observations.

The adjoint of the observation sampling, ΛT
ω , will then redistribute an average or a sample for each320

chosen time steps along this time step. The redistribution will follow the raw observed temporal

profile within the processed time step.

10



3.1.2 Mathematical formulation

At first glance, choosing the aggregation pattern and the sampling protocol can be considered as two

independent physical problems. However, as they both influence the dimension of the observation325

operator H, they cannot be fixed separately. More explicitly, we can derive a formula, which links Γω

and Λω . Indeed, our final objective is to compute total posterior fluxes for each aggregated region that

are as close as possible to the posterior fluxes from a full-resolution inversion aggregated afterwards.

That is to say, we want to confine the norm of xa
ω−Γωxa

t with xa
ω the posterior state vector resolved in

the representation ω and xa
t the posterior state vector computed with a full-resolution representation330

of the problem. Algebraic manipulations lead to:

xa
ω −Γωxa

t = ΓωBEω(yo−Hxb) (5)

where:

Eω = PωHTΛT
ωS−1ω Λω −HTS−1, (6a)

S = R+HBHT, (6b)335

Sω = Λω

{
R+H(Aω +PωBPω)H

T}ΛT
ω, (6c)

Pω = (Γω)
TΓω, (6d)

Aω = (I−Pω)xtx
T
t (I−Pω), (6e)

xt = the true state of the system, (6f)

I = the identity matrix. (6g)340

In Eq. 5, R and B are the full-resolution matrices of the error statistics.

For the aggregation errors to be limited, Eω (Eq. 6a) must tend towards 0. Then, S (Eq. 6b) and

Sω (Eq. 6c) must be as close as possible to each other and the impact of Pω (Eq. 6d) and of the

sandwich product with Λω , ΛT
ω(·)Λω , must be as small as possible. ΓT

ω extrapolates the fluxes from

the aggregated regions to a finer resolution following an a priori repartition. The matrix Pω then345

redistributes the fluxes over a region with respect to the prior repartition, but keeping the same total

emissions on the region.

In Sect. 3.2 below, we explain how to reduce these terms. The exact estimation of Eq. 5 is com-

plicated and requires extensive numerical resources (e.g., Wu et al., 2011). In the following, we use

physical considerations towards minimizing Eq. 5. The errors that are intrinsic to the aggregation350

process and that are unavoidable are controlled so that the benefit from the general marginalization

is not wasted. We show in Sect. 6.3 that the physical considerations for choosing the representation

ω in our case do not depreciate the inversion results compared to what would have been obtained

with the exact resolution of Eq. 5.

Considering the computer resources we use, all the principles we define are applied in order to355

limit the size of the observation space (resp. the state space) to a dimension of roughly 2000 (resp.
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1500). For instance, in the meso-scale Eurasian case study described in Sect. 5, these considerations

lead to the aggregation patterns displayed in Fig. 2 and Fig. 6. With this problem dimensions, the

ensemble used in the Monte Carlo sampling consists of 60000 draws.

When the observation and the state space aggregation are chosen, the operator H can be computed360

with the so-called ’response functions’, based on forward simulations of the transport for each state

component (Bousquet et al., 1999).

3.2 Representation choice

3.2.1 Observation space sampling

The sandwich product with Λω , ΛT
ω(·)Λω , aggregates the errors in the observation space and dif-365

fuses them back within each aggregate along a prescribed temporal profile. For example, it can

typically compute the average error per day; then it allocates for each sub-daily dimension an error

proportional to the contribution of the related component of yo to the daily mean. However, a daily

averaging would be dominated by the outliers (e.g, singular spikes or night-time observations when

the emissions remain confined close to the surface due to weak vertical mixing) that are generally370

associated to very high observation errors (due to fine scale mis-representations of the transport and

erroneous night vertical mixing). For this reason, we decide to define Λω as the sampling operator,

which, for each day and observation site, selects the component of the observation vector when the

daily minimum of concentrations within a planetary boundary layer higher than 500 m is observed.

Below this threshold, the vertical mixing by the model is known to be possibly erroneous (e.g.,375

Berchet et al., 2013). The daily resolution is chosen in order to keep a representation of the transport

relevant to the meso-scale expectations on flux characterization. Higher time resolution would not

improve the inversion efficiency due to strong within-day temporal correlations of errors (Berchet

et al., 2013).

3.2.2 Observational constraints380

One can notice that far from the observational constraints, the atmospheric dispersion (depicted

by the sandwich product with H, H(·)HT) makes the potential errors negligible compared to the

errors generated in the areas close to the stations. Indeed, gathering two close hot spots of emissions

thousands of km away from the observation sites is not problematic since the air masses coming

from the two spots will be well mixed. On the opposite, two hot spots that are as distant from each385

other as the first two, but close to an observation site, will generate plume-like air masses with a

very high sensitivity to the errors of mixing and transport in the model. We use an estimation of the

observation network footprints (approximating HT) in order to fix the typical regions constrained

by the network and avoid unfortunate grouping. At this step, approximate footprints are preferred to

the heavy computation of the complete HT and are sufficient for our physical considerations. Within390
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the constrained regions, we use a small spatial resolution for the fluxes and the transport and fine

aggregation patterns; outside of them, we choose a coarse resolution and large aggregation patterns.

These guidelines for using footprints prior to an inversion can be applied more systematically, as

what is done in Thompson and Stohl (2014). An illustration of aggregation patterns in our case

study can be looked at in Fig. 6.395

3.2.3 Flux aggregation

Some terms in Eq. 5 are directly related to the aggregation of the fluxes. The term HAωHT in Eq. 6c

depicts the aggregation errors coming from the uncertain distribution and temporal profile of the

fluxes within each aggregation region, then transported to the observation sites. It must be close to

0. In our application below, this is particularly important for hot spots of emissions the location of400

which is poorly known. The term HPωBPωHTin Eq. 6c must be as close as possible to HBHT.

The factors of divergence between these two terms come from the areas that are not well constrained

by the observations. If, within a region of aggregation, a part is upwind the observation sites, while

the other is not seen, then the aggregation errors will scatter on the unseen part of the region. The

main sources of errors can then be separated into two different types: 1) the resolution/representation405

type, and 2) the constraint type.

The type-1 errors are mainly related to the resolution of the observation operator. The models

consider that the fluxes and the simulated atmospheric mixing ratios are uniform on a sub-grid basis

and neglects sub-grid processes. This discretization contributes to type-1 errors, as ’representation’

errors (Tolk et al., 2008). Additionally, the distribution within each aggregation region is fixed and410

sub-region re-scaling are forbidden. The fine resolution close to the observation network is bound

to confine type-1 errors (e.g., Wu et al., 2011). Additionally, the representation error is critical for

co-located emissions, especially when the typical temporal and spatial scales of these emissions are

different. For instance, grouping hot spots from oil extraction emissions with widespread wetland

emissions that quickly vary in time is hazardous. We then aggregate the emissions along their typical415

time and space scale, hence according to the underlying physical process. An in-depth analysis

of the footprints and the small patterns of aggregation close to the observation sites should limit

the type-2 constraint errors. Area under high observational constraints should not be grouped with

under-constrained areas.

The resolution and aggregation choices can be computed objectively, but at a very high cost420

and only within a framework of prescribed frozen error matrices (Bocquet, 2009; Wu et al., 2011;

Koohkan et al., 2013). For our purpose, we cannot afford such computation costs and rely on heuris-

tic choices: small resolution and aggregation patterns close to the observation sites, aggregation

by type of emission, separation of constrained/under-constrained areas by analysing the footprints.

These non-optimal subjective choices may damp the efficiency of our method and must be carried425
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out cautiously. Nevertheless, in our case, afterwards checking shows that our choices did not have

critical impact on the inversion results in our case.

3.3 Numerical artefacts

In addition to the need of defining a well-sized problem, smart adaptations can be applied to the

computation of the method in order to enhance the efficiency of the algorithm. We face several430

sources of numerical artefacts in the computation of the method. In the quasi-Newtonian maximum

likelihood algorithm, numerical artefacts are generated by the under-constrained regions. After a few

steps, the computed gradient of the likelihood is dominated by these regions and the algorithm stays

stationary. This issue could be partly related to the under-optimality of the chosen representation

ω as suggested by the optimality criteria described in Bocquet et al. (2011). The stagnation of the435

maximum likelihood algorithm could then be used to detect too small regions of aggregation.

The under-constrained regions perturbing the maximum likelihood algorithm can be diagnosed

using the diagonal terms of the influence matrix KH (with K defined in Eq. 1 and following Cardi-

nali et al., 2004). This matrix represents the sensitivity of the inversion to elementary changes in the

observations. Strong observation constraints are related to high sensitivity. After stagnation, the re-440

gions with a diagnosed KH< 0.5 are flagged out and the algorithm is carried on. This way, only the

sufficiently constrained components of the state vector are processed until the algorithm converges.

A third to half of the regions are flagged out this way in our case study.

The detection of the mis-representation of hot-spot plumes should also be enhanced. Despite the

minimum daily sampling and the fine resolution close to the observation network, the plume issue445

can still generate strong temporal and spatial mismatches. For example, a point source can influence

a station in the real world, but not in the model because it has been mis-located, and conversely. This

creates significant differences between the simulated and the observed concentrations. The maxi-

mum likelihood algorithm attributes such mismatches to prior errors and/or observation errors. High

diagnosed errors in the maximum likelihood algorithm are then a criterion for plausible mismatches.450

We know such plumes must be flagged out from the inversion to avoid irrelevant high influence

from very local sources hard to represent. Since we notice that the observation and prior computed

errors seems to follow a Fischer-Snedecor distribution, we choose to flag out the observations that

are within the 95% tail of the distribution.

4 Validation experiments455

In Sect. 2, we described our modified atmospheric inversion by marginalization. In Sect. 3, we pro-

posed some essential rules to follow in order to properly define the problem, so that the rather simple

theoretical framework is not hindered by finite numerical resources. The marginalization method has

to be validated along objective criteria. In the following, we summarize the general structure of the
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method in order to identify the critical points to test in the method (Sect. 4.1). We deduce from these460

points some OSSEs to carry out. In Sect. 4.2, we define the scores according to which the method

will be evaluated.

4.1 Required tests

4.1.1 Method summary

The method described in Sect. 2 and 3 is condensed in the block diagram in Fig. 2. The marginal-465

ized inversion takes the same input as any other atmospheric inversion: some atmospheric mea-

surements and prior maps of fluxes with specified resolution and temporal profiles. In Sect. 3, we

gave recommendations on the processing of the ’raw’ inputs, so we get an observation vector yo,

a prior state vector xb and an observation operator H that are small enough to be computable by

the method. These highlights are mainly the sampling of the observations per day (in accordance470

with our objective of characterizing meso-scale fluxes in our case study) and the aggregation of the

fluxes by regions (based on physical considerations and footprint analysis). The maximum likeli-

hood algorithm processes yo, xb and H in order to find a couple of optimal diagonal error matrices

(Rmax,Bmax). This maximum likelihood is found by a quasi-Newtonian descent method. We then in-

fer from (Rmax,Bmax) the approximate χ2 shape of the distribution of all the possible error matrices475

(R,B). We carry out a Monte Carlo sampling on these distributions of errors and get an ensemble of

posterior state vectors (x̂a). The processing of this ensemble provides the final output of the method:

a tolerance interval TI68 of the posterior state and the posterior correlations between the components

of the state space. The method also allows the explicit computation of the influence matrix KmaxH

in order to analyse the constrained regions of emissions only.480

To summarize, the marginalized inversion processes two vectors and one operator: yo, xb, and

H, as any other atmospheric inversion. The main difference with most other atmospheric inversions

resides into the objective and automatic computation of the influence of ill-specified error statistics,

in contrast with the traditional assigning of frozen error matrices based on expert knowledge and

with the more recent online computations of error hyperparameters. Thus, we do not have to inquire485

into the sensitivity of our method to the prescribed spatial correlations of flux errors, or to the error

variances. Such a sensitivity is transposed to the choice of the aggregation patterns and the sampling

protocol, as defined in Sect. 3.1. The chosen configuration of aggregation and the sampling protocol

are checked afterwards to be relevant in our case study. OSSEs are then to be carried out to evaluate

the sensitivity of the method to yo, xb, H.490

4.1.2 Test strategy

We assume that, in our case, the method is not sensitive to errors in yo. Indeed, in all the following,

we consider that the measurement errors are negligible compared to transport errors; this is true for
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surface sites that fulfil the World Meteorological Organisation strict recommendations for accuracy

and precision (WMO/GAW, 2011). This approximation does not hold for satellite total columns495

measurements, for which the transport errors are smoothed over the vertical atmospheric column and

the instrument errors are larger. In addition, representativeness errors may also impact yo. OSSEs

should account for these errors. However, OSSEs may face difficulties in explicitly highlighting

these errors. Therefore, we do not perturb yo in order to represent the instrumental uncertainties and

representativeness errors in the OSSEs.500

The OSSEs are then based on perturbations of xb and H. The discrepancies between the back-

ground xb and the ’truth’ xt are of two types: 1) the erroneous distribution and temporal profile of the

fluxes within aggregation regions, and 2) incorrect total emissions by region. For example, in Eura-

sia, the maps of the distribution of the wetlands differ drastically from one database to another (Frey

and Smith, 2007). Apart from the distribution, the amount of gas emitted by each process is uncer-505

tain, due to mis-parametrizations or, for anthropogenic emissions, mis-specified activity maps (e.g.,

Rypdal and Winiwarter, 2001). The transport H differs from the ’true’ transport mainly because

of the resolution of the model, the parametrization of sub-grid processes (such as vertical turbulent

mixing in the planetary boundary layer or deep convection), and the meteorological forcing fields

(which are not necessarily optimized for transport applications).510

The main sources of errors in the inversion are then: 1) a wrong representation of the transport

(highly dependent of the transport model used, its resolution, its parametrization and the exactitude

of forcing wind fields), 2) an erroneous distribution of the fluxes within aggregation regions (each

inventory and database has different statistical methods and parameters to reproduce surface fluxes),

and 3) incorrect total emissions by regions. In order to evaluate the impact of each point on the515

inversion result, we carry out OSSEs with perfect synthetic observations from a nature run (i.e.

with ’true’ emissions and ’true’ transport, as defined in the set-up in Sect. 5). We test the ability

of the marginalized inversion to reproduce the ’true’ fluxes or, at least, to consistently include the

’truth’ within the tolerance intervals. There are eight possible combination of correct or perturbed

phases of the 3 parameters. The ’all true’ combination is not relevant: then yo−Hxb = 0 and the520

maximum likelihood algorithm is stationary. Seven combinations remain, detailed in Tab. 1. We

run the marginalized inversion for the seven OSSEs and evaluate them along the scores defined in

Sect. 4.2 below.

4.2 OSSE evaluation

4.2.1 Scoring system525

We expect an atmospheric inversion to provide reliable ranges of uncertainties for surface fluxes.

That is to say, for as many components of the state vector xi as possible, the ’truth’ xt
i should be

within the tolerance interval TI68, [xlow
i ,xhigh

i ] (defined in Sect. 2). In order to evaluate the ability of
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producing consistent fluxes, we define a relative score zrel for each component of the state vector:

(zrel)i = 2
|xa

i−x
t
i|

xhigh
i −xlow

i

. Hereafter, all the scores will be expressed in % for better readability. Statisti-530

cally, zrel has no upper bound. Relative scores bigger than 100% are not statistically inconsistent, but,

for the method to be validated, we expect that the proportion of state components with zrel < 100%

is dominant.

Furthermore, the atmospheric inversion is supposed to reveal pieces of information to the under-

standing of the system. Then, we also expect that a correct relative score below 100% is not reached535

by specifying huge tolerance intervals. To evaluate the ability of the marginalization of getting close

to the reality, i.e. providing valuable information on the state of the system, we define an absolute

score zabs: (zabs)i =
∣∣∣xa

i

xt
i
− 1
∣∣∣. The smaller the absolute score, the more accurate the marginalized

inversion.

An inversion also must be able to evaluate the observation constraints on the regions. An objective540

estimator of the constraints on the regions is the influence matrix KH defined in Sect. 3. The Kalman

gain matrix depends on the couple (R,B). Amongst all the Monte Carlo draws, we compute the

influence matrix KmaxH for the couple associated to the maximum likelihood. The diagonal terms

of this matrix range from 0 to 1. They give for all components of the state space the constraint given

by the observations. We then define the influence score: (zinfl)i = (KmaxH)i. The closest to 100%545

these terms, the more constraints the inversion provides. We can then deduce the typical range of

influence of the observation sites and detect the blind spots of the used network.

For each component i of the state space, we then have defined 3 indicators:
(zrel)i = 2

|xa
i−x

t
i|

xhigh
i −xlow

i

(zabs)i =
∣∣∣xa

i

xt
i
− 1
∣∣∣

(zinfl)i = (KmaxH)i

(7)

4.2.2 Posterior correlation processing550

Another point most inversions do not compute explicitly and objectively is the typical temporal and

spatial scales the inversion can differentiate in the fluxes, considering the atmospheric transport and

the density of the observations. Our marginalized inversion gives access to an explicit matrix of cor-

relations as defined in Sect. 3. Strong positive and negative correlations between two components of

the state space indicate that the inversion cannot separate the contributions from the two components.555

For example, air masses observed at a station and coming from two regions upwind the station will

have a mixed atmospheric signal difficult to analyse. Co-located emissions are also not necessarily

differentiated in the atmospheric signal. Moreover, in a regional framework, when a model of lim-

ited area is coupled to lateral boundary conditions (LBC), the inversion must explicitly alert on the

regions that cannot be separated from the boundary conditions, i.e. from the baseline signal.560

In the case of strong correlations between two components of the state space in the posterior co-

variance matrix, we consider that it is not relevant to try to infer specific information for the two
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separate components. Then, we group the state space components according to their posterior cor-

relations. We define a threshold of correlation rmax and associate couples of regions (i, j) within

groups such that |ri,j |> rmax. If we prescribe rmax = 0, all the regions will be grouped; on the oppo-565

site, if rmax = 1, no group will be formed. The optimal correlation threshold is not evident. We test

the grouping for all possible rmax. We flag out from the processing of the results all the groups, which

include some contributions from the LBC. Thus, from this post processing, we only keep the regions

that are clearly constrained by the observation sites, with no interference from the LBC. Moreover,

we can infer the spatial and temporal scale that the inversion can resolve from the grouping patterns.570

In Tab. 1, the three scores defined in Eq. 7 are averaged on the whole domain of interest for the

optimal correlation threshold rmax (as discussed in Sect. 6.1).

5 Set up of the OSSEs

We compute the OSSEs that we described in Sect. 4 in a realistic meso-scale case. We focus on a

domain spanning over Eurasia, from Scandinavia to Korea. At this scale, the air masses residence575

time is typically of days to a few weeks. This time scale is small compared to the lifetime of methane

of 8-10 years in the atmosphere (mainly due to oxidation by OH radicals; Dentener et al., 2003).

Hence, the observation operator can be consider linear. We apply the method on a region character-

ized by significant fluxes, with collocation of different sources with different emission time-scales:

Siberia. We describe the region of interest and the chosen ’truth’ for the experiments in Sect. 5.1.580

We use two transport models in order to simulate atmospheric transport. The technical details on

these models are summarized in Sect. 5.2. In Sect. 5.3, we explain how we choose and compute the

synthetic observations for our experiments.

5.1 Virtual true state xt

5.1.1 State space components585

In the region of interest, the emissions of methane are dominated by wetland, anthropogenic (here,

mainly related to the oil and gas industry) and wildfire emissions. In Fig. 3, the distributions of the

wetlands and of the oil and gas industry in the region are displayed. Anthropogenic emissions of

methane in the region are mainly hot spots related to the intense oil and gas industry in the Siberian

Lowlands and to the leaks in the distribution system in population centres in the South part of Siberia.590

Wetland emissions are mainly confined in the lower part of Siberia in the West Siberian plain, half

of which is lower than 100 meters above sea level.

The spatial distribution of the associated fluxes is deduced from: 1) EDGAR database v4.2 (http://

edgar.jrc.ec.europa.eu) for year 2008 for anthropogenic emissions, 2) LPX-Bern v1.2 process model

at a monthly scale for wetland emissions (Spahni et al., 2011), 3) GFED database at daily scale for595

wildfires (Giglio et al., 2009). The EDGAR inventory uses economic activity maps by sectors and
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convolves them with emission factors estimated in laboratories or with statistical studies (Olivier

et al., 2005). LPX-Bern is an update of process model LPJ-Bern (Spahni et al., 2011). It includes a

dynamical simulation of inundated wetland areas, dynamic nitrogen cycle, and dynamic evolution of

peatlands (Spahni et al., 2013; Ringeval et al., 2014). The model uses CRU TS 3.21 input data (tem-600

perature, precipitation rates, cloud cover, wetdays) and observed atmospheric CO2 for each year for

plant fertilization. GFED v4 is built from burnt area satellite product (MCD64A1). CH4 emissions

at monthly and daily scales are deduced from the burnt areas using the Carnegie-Ames-Stanford-

Approach (CASA model; Potter et al., 1993) and emission factors (van der Werf et al., 2010).

Wildfire emissions can be very strong and are punctual in time and space; they are then difficult605

to analyse by the inversion. Wildfires are included as inputs to the marginalized inversion, but are

automatically filtered out during the computation. As a consequence, they influence the number of

usable data points, but do not appear in the final inversion results. In all the following, we evaluate

the OSSEs only in terms of anthropogenic and wetland emissions.

In addition, at the meso-scale, we use a CTM (see Sect. 5.2.2) with a limited area domain. Initial610

and lateral boundary conditions (IC and LBC) are then also to be optimized in the system to correct

the atmospheric inflow in the domain. Lateral concentrations are deduced from simulations at the

global scale by the general circulation model LMDz with the assimilation of surface observations

outside the domain of interest (Bousquet et al., 2006). We aggregate the LBC along 4 horizontal

components and 2 vertical ones (1013-600 hPa and 600-300 hPa).615

5.1.2 Generation of a perturbed reference state xt

The EDGAR fluxes are given at the yearly scale and the LPX fluxes are calculated at a monthly

scale. Additionally, LPX monthly fluxes exhibit smoothed patterns while wetland emissions can

vary drastically from a point to another. We want the nature run for OSSEs to reproduce the potential

spatial and temporal variability of the emissions. To do so, we intensify the spatial and temporal con-620

trasts from the databases to the nature run. We then compute the ’true’ state vector xt by perturbing

EDGAR emissions on a monthly basis and LPX on a 10-day basis. That is to say: xt = α⊗xdata, with

the vector α depicting the scaling factors by state space component, ⊗ the point-wise multiplication

operator and xdata the emissions from the databases. The perturbations in α from original EDGAR

and LPX databases applied to get the ’truth’ are scaling factors up to 10. These scaling factors could625

have been chosen randomly, but we prefer inferring them with a raw expert-knowledge-based in-

version using real data. The purpose of using real data for computing xt is to generate potentially

realistic variations within the state space.

For both anthropogenic and wetland emissions, the scaling factors can significantly differ from

a period of inversion to another. We can then evaluate the ability of the marginalized inversion to630

catch quick variations. The distribution of the scaling factors α is shown in Fig. 4. These factors are

plausible, knowing the uncertainties on the wetland emissions and gas leakage (e.g., Reshetnikov
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et al., 2000). Such target scaling factors are at the edge of the validity of the Gaussian assumption

and of the positivity of methane fluxes. The ability of the marginalization to recover such correction

factors will prove its robustness.635

As for anthropogenic and wetland emissions, we apply the scaling factors α on the components

of xt related to LBC by periods of 10 days.

The OSSEs rely on xb perturbed from xt, or not. We apply two types of perturbations as summa-

rized in Tab. 1. In OSSE 1, 4, 5 and 7, we only implement prior fluxes with different total emissions

on the regions of aggregation. We take the emissions of the raw inventories as background to test640

the ability of recovering ’true’ fluxes from realistic background fluxes without assigning frozen prior

errors. In OSSE 2, 4, 6 and 7, the distribution of the prior fluxes is modified from the ’truth’. We

choose all flat flux distributions for each region of aggregation as prior fluxes.

5.2 Simulation of the observation operator H

The observation operator H is deduced from simulations of atmospheric transport We use two dif-645

ferent transport models in order to evaluate the impact of the transport on the inversion. We de-

fine HFLEXPART with the Lagrangian dispersion model FLEXPART and HCHIMERE with the Eulerian

Chemistry-Transport Model CHIMERE. Any transport model can be considered at some point bi-

ased compared with the reality. Confronting the results from FLEXPART to those from CHIMERE

will allow us to test the robustness of our method to the biases.650

5.2.1 The Lagrangian model: FLEXPART

With the Lagrangian dispersion model FLEXPART (Stohl et al., 2005), we can compute the foot-

prints of the observations, hence HT
FLEXPART. We use FLEXPART version 8.2.3 to compute numerous

back-trajectories of virtual particles from the observation sites. The model is forced by the European

Centre for Medium-range Weather Forecast (ECMWF) ERA-Interim data at an horizontal resolution655

of 1◦×1◦, with 60 vertical levels and 3 hour temporal resolution (Uppala et al., 2005). Virtual parti-

cles are released in a 3D box centred around each observation site with a 10-day lifetime backwards

in time. The footprints are computed on a 0.5◦× 0.5◦ horizontal grid, following the method of Lin

et al. (2003), taking the boundary layer height at each particle location into account. The footprints

only have to be convolved with the emission fields in order to get simulated concentrations at the660

observation sites. The method for computing the footprints considers that only the particles within

the boundary layer are influenced by surface emissions and that the boundary layer is well-enough

mixed to be considered as uniform. The uniform vertical mixing of the mixing layer can generate a

bias on the surface simulated concentrations. Such a bias is critical in the classical inversion frame-

work and consequently in the one we describe since all the uncertainties are considered unbiased.665

FLEXPART can easily compute an estimation of the adjoint of the full-resolution observation op-

erator before choosing the representation ω. Hence, despite the expectable biases, we use this model
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to estimate the footprints of the network and deduce the aggregation patterns needed to compute

HCHIMERE. This same model FLEXPART may also be used to compute explicitly and rigorously the

representation ω according to objective criteria (Koohkan and Bocquet, 2012).670

5.2.2 The Eulerian model: CHIMERE

Using the Eulerian meso-scale chemistry transport model CHIMERE (Vautard et al., 2001; Menut

et al., 2013) constrained by non-hydrostatic meteorological fields, we explicitly define the observa-

tion operator HCHIMERE by computing the forward atmospheric transport from the emission aggre-

gated regions (defined according to Sect. 3 criteria) to the observation sites. This model was devel-675

oped in a framework of air quality simulations (Schmidt et al., 2001; Pison et al., 2007), but is also

used for greenhouse gas studies (Broquet et al., 2011; Berchet et al., 2013). We use a quasi-regular

horizontal grid zoomed near the observation sites after the considerations of Sect. 3. The domain

of interest is of limited area and spans over the mainland of the Eurasian continent (see Fig. 3).

The average side length of the grid cells near the stations is 25 km, while it spans over 150 km680

away from the observation sites. The 3D-domain roughly embraces all the troposphere, from the

surface to 300 hPa (∼ 9000 m), with 29 layers geometrically spaced. The model time step varies

dynamically from 4 to 6 min depending on the maximum wind speed in the domain. The model is

an off-line model which needs meteorological fields as forcing. The forcing fields are deduced from

interpolated meteorological fields from ECMWF with a horizontal resolution of 0.5◦× 0.5◦ every685

3 h.

5.3 Synthetic observations yo

We compute the nature run, i.e., the synthetic observations, from the ’true’ state vector, with the CTM

CHIMERE. That is to say, in all the following, we consider that: yo = HCHIMERExt. The site and

date of available observations are chosen according to the operated observation sites in the region.690

Thirteen Eurasian surface sites have been selected. These sites are maintained by NIES (Tsukuba,

Japan; Sasakawa et al., 2010), IAO (Tomsk, Russian Federation), MPI (Iena, Germany; Winderlich

et al., 2010), NOAA-ESRL (Boulder, United States of America; Dlugokencky et al., 2009), and

KMA (Seoul, Korea). The description of the sites is given in Tab. 2. The observation sites do not carry

out measurements all the year round due to logistical issues and instrument dysfunctions. In order to695

reproduce this sampling bias, we generate synthetic observations only when real measurements are

available from January to December 2010.

6 Results and discussion

After the description of the set-up in Sect. 5, we now have a ’true’ state xt and some reference obser-

vations yo. We also have two observation operators HCHIMERE and HFLEXPART and several possible700
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prior fluxes xb as inputs for the marginalized inversion developed in Sect. 2. In order to evaluate

the method, we now carry out the OSSEs described in Tab. 1 following the complete procedure in

Fig. 2. In Sect. 6.1, we examine the average robustness of the method. Then, in Sect. 6.2, we explore

the spatial efficiency of the marginalized inversion in our case study. In Sect. 6.3, we discuss the

enhancement provided by our method compared to the classical Bayesian framework, despite some705

limitations.

6.1 Robustness of the method

6.1.1 Impact of the correlation processing

The marginalization should consistently reproduce the nature run in the OSSEs or, at least, it should

detect its inability in characterizing the fluxes from the given atmospheric constraints. As detailed710

in Sect. 4.2, the aggregation regions may have strong posterior correlations after the marginalized

inversions. This denotes the difficulties that the inversion encounters in separating some emissions.

The aggregation regions can be grouped along correlation thresholds rmax arbitrarily chosen in order

to explicitly take the emission dipoles into account. In Fig. 5, we plot the profiles of the scores defined

in Sect. 4.2 along the possible correlation thresholds rmax for grouping the regions. Specifying a715

correlation threshold rmax allows identifying the typical temporal and spatial scales that the inversion

can separate. In the case of a limited domain CTM, the influence of the LBC and of the inside fluxes

can be mis-separated. The correlations take this issue into account and the correlation threshold

specifies the tolerance to such mis-separations.

For all OSSEs, the influence score zinfl increases with rmax. In the correlation processing after720

the computation of the marginalized inversion, the threshold rmax depicts the degree of tolerance

to mis-separation between inside fluxes and LBC. The higher the threshold of tolerance rmax, the

fewer inside fluxes are considered unseparable from the LBC. Hence, fewer aggregation regions

are eliminated from the inversion and more fluxes are corrected by the inversion. As the number

of constraints increases, we notice that the absolute and relative scores, zabs and zrel, also tend to725

increase with rmax. That is to say, if we only try to get average information on big under-resolved

regions, the posterior fluxes can be expected to be closer to the ’truth’. On the opposite, if we try to

process too much spatial information from the inversion, we must expect more discrepancies with

the ’truth’.

In particular, in Fig. 5, one can notice some outlier peaks for low rmax. For low rmax, very few730

regions are computed in the inversion. The peaks are created by the regions that are not any more

considered as mis-separated from the LBC when rmax increases. For some OSSEs, these newly

computed regions have very wrong scores and dominate upon the other few computed regions. For

this reason, one should be very careful in the chosen correlation threshold. In order to avoid the score

instability, the optimum threshold should be chosen higher than 0.4. Above 0.5, in our meso-scale735
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case study, as described above, the inversion is limited by the temporal and spacial variability of

the fluxes to optimize and by the transport biases. Then, it can’t reach the requirement of consistent

reproduced fluxes.

One should find a balance between the physical scales one want to separate and the consistency

of the results. In Tab. 1, we summarize the scores of every OSSE for a chosen correlation threshold740

with respect to result consistency.

6.1.2 Hot-spots and large-area emissions

Both in Tab. 1 and Fig. 5, looking at a given correlation threshold rmax, one would expect influence,

relative and absolute scores that get more wrong when the inversion conditions degrades.

The fossil fuel influence score follows this trend: the more perturbed the transport and the prior745

fluxes are, the more state space components are considered un-invertible. The hot-spot regions of

emissions are broadly filtered out and the remaining regions can be well characterized by the inver-

sion even with wrong distribution and transport patterns. Some effects in the degrading conditions of

the inversion can though compensate each other. For example, the absolute scores of OSSEs 5 and 7

are better than the one of OSSEs 3 and 6.750

The situation for wetland emissions is different. These emissions are smoother than oil and gas

emissions and are then not excluded because of wrong transport or distributions. For this reason, the

influence score does not exhibit a clear trend with degrading inversion conditions. For wetland re-

gions, transport seems to be the predominant factor of errors. OSSEs 3, 5, 6 and 7 do not consistently

reproduce the ’truth’ with relative scores higher than 100% when rmax ≥ 0.4. These discrepancies755

can be attributed to the very high variability prescribed in the ’true’ wetland emissions. An erro-

neous transport will fail in detecting brutal changes of emissions at the synoptic scale. The wetland

emissions should then be grouped temporally and spatially in order to average the point releases of

methane.

The erroneous tolerance intervals can also be attributed to the biased transport in FLEXPART760

compared with CHIMERE. Since we filtered out most of the plumes with spatial and temporal mis-

matches with the observations, the horizontal biases in the transport are confined. Concerning the

vertical bias, a wrong simulated vertical mixing in the planetary boundary will affect all the fluxes.

This bias will then have an impact on the atmospheric concentrations that is relatively smoothed,

uniform and constant. Therefore, an accurate detection of such a bias is very difficult. Any inversion765

relies on the unbiased assumption of the errors. The inversion will attribute the biases to the flux for

wetland regions, impacting the result of the inversion. As other inversions, despite the marginaliza-

tion, it appears that the results on wetland regions may be sensitive to vertical transport biases in the

models (see discussion in Sect. 6.3.2).

Thus, the marginalized inversion seems to be sensitive to transport biases and to fluxes varying too770

quickly, as any other inversions. Nevertheless, a post-processing is made possible by the explicit and
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objective computation of the posterior covariances and of the influence matrix. This post-processing

proves that the atmospheric inversion is not able to inquire into very fine scales in our case study.

The correlation grouping of indifferentiable regions allows an accurate analysis of the best possible

signal detectable by the inversion. In the following, we take a correlation threshold of 0.5 as a good775

balance between sufficient constraints on the system and consistent posterior fluxes.

6.2 Spatial evaluation

We have chosen a threshold of correlation grouping the regions so that the averaged scores on the

whole domain of interest are optimal. The scores are not uniformly distributed. In Fig. 6, the distri-

butions of the three scores are displayed for fossil fuel regions and wetlands for OSSE 1 (transport780

and distribution of the fluxes same as the ’truth’, perturbed masses by regions; see Tab. 1). We choose

the ’easiest’ OSSE configuration in order to evaluate the behaviour of the marginalized inversion in

the best configuration possible, thus getting the upper bound for the expectable quality of the results.

Any more realistic set-up likely gives less good results. In the figure, the scores are projected on

the aggregation grid built on the considerations in Sect. 3. Most of the observation sites are located785

in the centre of the domain (see Fig. 3). Then, the influence score is on average better close to the

core of the network for the wetlands. For the fossil fuel regions, the influence score is relatively high

also upwind the monitoring network (dominant winds blow West to East in the region). Addition-

ally to the network density, the inversion suffers from mis-separation of side regions and LBC. For

this reason, side regions tend to be less constrained than centre ones. However, one can notice in790

both wetland and fossil fuel maps that some centre regions are significantly less constrained than

the core of the domain on average. These are regions of very high and dense emissions close to the

observation sites (< 500 km). The air masses coming from these regions to the observation sites are

plume shaped air masses. The inversion has troubles in assimilating single plumes. In Sect. 3, filters

have been implemented in order to detect these problematic regions. The marginalized inversion795

effectively filtered out these regions.

The absolute and relative scores also show unexpected patterns. Scandinavia and China regions

own some of the best absolute and relative scores. These two side regions are filtered out most of

the time because of strong correlations with the LBC components of the state space (confirmed

by their low influence score). Consequently, when not filtered out, these regions are very well and800

unambiguously constrained, so the good relative and absolute scores. For the rest of the domain, the

scores are mostly the better, the closer to the observation network.
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6.3 Limitations and benefits

6.3.1 Promising computation of the uncertainties

The marginalized inversion provides an objectified quantification of the errors in the inversion sys-805

tem. With the Monte Carlo approach we implemented, we are able to consistently take the sources of

uncertainties in the inversion process into account, especially those from the prescribed error covari-

ance matrices. As evaluated through OSSEs, the method proved to consistently catch ’true’ fluxes

on average in the particular Siberian set-up. Moreover, the Siberian set-up is a difficult case study

for atmospheric inversions, with co-located intense fluxes that vary at temporal and spatial scales810

smaller than the meso-scale. The processing of hot-spots, critical in most inversion configurations,

is consistently managed, through filters on the plume-shaped air masses. An in-depth analysis of the

temporal variability of the fluxes is carried out in a sister publication with the Siberian set-up and real

observations (Berchet et al., 2014). Additionally, as a comparison, we carried out the same OSSEs

on the same particular Siberian set-up, but with expert-knowledge frozen error matrices (diagonal815

matrices with the same representation ω as for the other OSSEs). The correlation profiles and the

spatial structures of the scores with the expert-knowledge matrices are not shown because the gen-

eral patterns are very similar to what is described for the marginalized inversion. Though similar in

patterns, the values of the scores are significantly depreciated from the marginalized inversion to the

expert-knowledge one. The expert-knowledge relative and absolute scores are several times bigger820

than the ones from the marginalized inversion, thus statistically incompatible with the ’truth’.

The marginalized inversion explicitly and objectively computes the posterior covariance matrix

and the influence matrix. The physical interpretation of the inversion results are then enhanced by

a clear analysis of the observation constraints to the fluxes. The processing of the posterior corre-

lations makes the detection of the dipoles and of indistinguishable regions possible. The influence825

of the lateral boundary conditions, specific to the meso-scale and to the use of limited area CTMs,

is estimated. Thus, the regions upwind the observation sites and mixed with lateral air masses can

be excluded from the inversion. From the correlations, the grouping of regions gives an estimate of

the typical spatial and temporal scale the method can compute. In our case, with few and distant

observation sites, the groups of regions cover very large areas. Thus, a grid-point high resolution830

inversion would not have given deep insights into the fluxes we are looking at. The reduced problem

approach described in Sect. 3 is then relevant when computed cautiously.

6.3.2 Subjective choices and biases

Despite all these benefits compared with the classical Bayesian framework, our method still has

limitations. The technical implementation of the method needs extensive computation power and835

memory requirements. For this reason, we have to drastically reduce the size of the problem to

solve. The size reduction relies on rigorous considerations that are difficult to formulate analytically.
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Therefore we applied heuristic principles in order to choose the aggregation patterns of the obser-

vations and the fluxes. This subjective procedure can modify the results of the inversion and must

be carried out very cautiously. The way we group the regions after the marginalized inversion in840

order to physically interpret the results is also subjective. We choose a correlation threshold of 0.5

in order to counter-balance the need of useful constraints from the inversion and the requirements

of consistently reproducing the ’true’ fluxes. Other thresholds could have been chosen and the typ-

ical distinguishable temporal and spatial scales would slightly differ from one threshold to another.

But, in any chosen correlation threshold, we notice that most aggregation regions are grouped within845

bigger ensembles, suggesting that the chosen aggregation patterns are small enough to have reduced

impact on the inversion post-processed results.

The marginalized inversion suffers from transport biases as any other inversion. However, the

maximum likelihood algorithm considers the biases as random errors and includes them into the

error matrix Rmax. The biases are then taken into account in the marginalized inversion, though850

as random errors. Biases can be represented, or at least detected, with non-diagonal matrices as

suggested by Berchet et al. (2013), but a non-diagonal framework would make the computation

of the marginalized inversion critically complicated. Despite the implicit inclusion of the biases as

random error in Rmax, we reduced the impact of the horizontal transport biases through filters on

the plume-shaped air masses. The vertical biases are smoother and more difficult to detect. This855

issue must be inquired into in further works. Biases can be studied through marginalizations on the

input vectors (e.g., Bocquet, 2011). Coupled marginalizations on the input vectors and on the error

statistics would provide a more complete view on atmospheric inversion uncertainties.

7 Conclusions

At the meso-scale, inconsistencies between inversion configurations appear in the classical Bayesian860

framework. One of the main sources of inconsistencies is the specification of the error matrices and

the non inclusion of the tenacious uncertainties on these matrices. Synthesizing the recent litera-

ture, we developed an updated Bayesian method of inversion from the classical Bayesian framework

based on a marginalization on the error matrices and on an objectified specification of the probability

density function of the error matrices. This new method makes the comprehensive inclusion of the865

impact of ill-specified uncertainty matrices possible for the first time in atmospheric inversion to our

knowledge. In principle, this method needs very high computation power and memory resources. To

avoid technical limitations, we reduce the size of the problem by aggregating the fluxes by region,

following objective principles for reducing aggregation errors. We test this method through OSSEs

on methane in a domain of interest spanning over Eurasia with significant emissions of different870

types and different time and space scales. The OSSEs are based on synthetic observations gener-

ated from a nature run. We evaluate the consistency and robustness of the method on OSSEs with
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inversion configurations from the more favourable to the most disadvantageous one (perturbed atmo-

spheric transport, flat flux distribution and wrong total masses). The method produces very consistent

and satisfactory results. In most cases, the tolerance intervals given by the inversion include the ’true’875

fluxes and the results remain close to the ’truth’. The method also provides an explicit computation

of the constraints on the regions and allows flagging out regions critically mis-separated from the

lateral boundary condition. We hence have developed a robust and objectified method able to con-

sistently catch ’true’ greenhouse gas emissions at the meso-scale and to explicitly group the regions

that are physically un-distinguishable with the atmospheric signal only. In addition, we developed a880

method that explicitly produces posterior tolerance intervals on the optimal distinguishable time and

space flux scales and that computes the observation network influence on the fluxes.

The robustness of our method on the Siberian case with a biased transport proves that it can be

generically applied to other meso-scale frameworks. The high spatial and temporal variability of

the fluxes in Siberia ensures the possibility of using the system in ’easier’ inversion set-up. Actual885

observations from the sites we used for the validation of the method are exploited in further steps

of our work in order to quantify the ’real’ methane fluxes in the Siberian Lowlands (Berchet et al.,

2014).
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Table 1: OSSEs summary. Three parameters of the inversion (sub-total masses emitted per regions,

emission distribution and transport) can be perturbed compared with the ’truth’. The seven possible

combinations are depicted by = and 6= signs for each parameter and each OSSE. Every OSSE is

evaluated along the scores defined in Sect. 4.2. The scores are given in % for the best correlation

threshold for grouping the state space components as presented in Sect. 4.2. The influence score

must be as close to 100% as possible. The other two scores must be as small as possible. The regions

are grouped along a correlation criterion rmax (see Sect. 4.2); we present the scores only for rmax

with the best results. For OSSE 7, the scores are zeros for the fossil fuel regions because most of

these regions were filtered out. The few remaining ones are very well constrained.

OSSE 1 OSSE 2 OSSE 3 OSSE 4 OSSE 5 OSSE 6 OSSE 7

Inversion inputs:

x sub-totals 6= = = 6= 6= = 6=

x distributions = 6= = 6= = 6= 6=

H = = 6= = 6= 6= 6=

Optimal rmax 0.5 0.5 0.5 0.5 0.6 0.5 0.4

Scores: ff wet ff wet ff wet ff wet ff wet ff wet ff wet

Relative score 79 94 16 27 40 84 3 66 30 117 20 93 0 112

Absolute score 9 16 2 11 36 24 1 27 18 40 37 30 0 15

Influence 63 56 39 37 45 30 37 28 46 58 32 32 13 33
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Table 2: Eurasian site characteristics (Sect. 5.3). The altitudes of the sites are given as m above sea

level (a.s.l.) and the inlet height is in m above ground level (a.g.l.).

Station ID Location Inlet

Lon Lat Alt height

(◦ E) (◦ N) (m a.s.l) (m a.g.l.)

Azovo AZV 73.03 54.71 100 50

Berezorechka BRZ 84.33 56.15 150 80

Demyanskoe DEM 70.87 59.79 75 63

Igrim IGR 64.42 63.19 25 47

Karasevoe KRS 82.42 58.25 50 67

Noyabrsk NOY 75.78 63.43 100 43

Pallas PAL 24.12 67.97 560 5

Shangdianzi SDZ 117.12 40.65 287 0

Tae-ahn

Peninsula
TAP 126.12 36.72 20 0

Ulaan Uul UUM 11.08 44.45 914 0

Vaganovo VGN 62.32 54.50 200 85

Yakutsk YAK 129.36 62.09 210 77

Zotino ZOT 89.35 60.80 104 301
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Figure 1: Distribution of one component of the Monte Carlo posterior ensemble. The histogram

displays the raw posterior distribution. The dark hatched part of the histogram depicts the proportion

of the ensemble within the tolerance interval TI68, [xlow,xhigh] (as defined in Sect. 2.2). The red

curve represents the Normal distribution with the same mode and tolerance interval; the green one

stands for a Normal distribution with the same mode and the same standard deviation; the black one

is the posterior distribution computed with the maximum likelihood couple of uncertainty matrices,

presenting under-estimated skewness compared with the Monte Carlo distribution.
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Figure 2: Block diagram of the method. Green boxes represent the raw inputs of the system. The blue

ones are intermediary results and red ones the outputs to be interpreted. The yellow ones depict the

algorithms to compute. Details in Sect. 2 and 3. Insights for output analyses are given in Sect. 4.2.
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Figure 3: Topographic map of the domain of interest. The colorbar shows the altitude above sea level

(from ETOPO1 database; Amante and Eakins, 2009). Red dots (resp. orange triangle) depicts hot

spots of CH4 emissions (based on EDGAR v4.2 inventory; see Sect. 5.1) related to oil welling and

refineries (resp. gas extraction and leaks during distribution in population centers). Purple squares

highlight the observation site localization. Blueish shaded areas represent average inundated regions,

wetlands and peatlands (from the Global Lakes and Wetlands Database; Lehner and Döll, 2004)
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Figure 4: Distribution of the scaling factors applied to the emission databases in order to compute

the ’truth’. All the emission components of the state vector have been included in the histogram. The

selection of the scaling factor distribution is detailed in Sect. 5.1.
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(a) Fossil fuels

(b) Wetlands

Figure 5: Score comparison on fossil fuel (up) and wetland (bottom) regions for all OSSEs along

correlation thresholds rmax of region grouping (see details in Sect. 4.2). (left) Influence correlation

zinfl profile. (center) Relative score zrel correlation profile. (right) Absolute score zabs correlation

profile. The red arrows depict the direction from lowest scores to best ones. The blue arrows de-

note the direction of grouping, from all grouped (’G’, rmax = 0) to all separated (’S’, rmax = 1).

The OSSEs are indexed along Tab. 1 numerotation. Thin (resp. thick) lines stand for correct (resp.

perturbed) sub-total emissions. Green (resp. brown) lines depict correct (resp. perturbed) emission

distributions. Solid (resp. dotted) lines represent correct (resp. perturbed) transport. As in Sect. 4.2,

the scores are noted in %.
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(a) Fossil fuels (b) Wetlands

Figure 6: Map of the average scores as defined in Sect. 4.2 for OSSE 1 (see Tab. 1) projected on the

aggregation grid defined in Sect. 3. (up) Influence score zinfl. (middle) Relative score zrel. (bottom)

Absolute score zabs. The colour maps have been chosen so that redder regions correspond to better

scores (denoted by 	 and ⊕ symbols). The zoom and map physical projection are the same as in

Fig. 3.
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