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Abstract

We describe and test a distributed subglacial hydrology model which combines a pres-
surized, plastic till with a system of water-filled, linked cavities which open through
sliding-generated cavitation and close through ice creep. The addition of this sub-model
to the Parallel Ice Sheet Model accomplishes three specific goals: (1) conservation of5

the mass of two-phase (solid/liquid) water in the ice sheet, (2) simulation of spatially-
and temporally-variable basal shear stress from physical mechanisms based on a mini-
mal number of free parameters, and (3) convergence under two-horizontal-dimensional
grid refinement of the subglacial water amount and pressure. The model is a common
generalization of at least four others: (i) the undrained plastic bed model of Tulaczyk10

et al. (2000b), (ii) a standard “routing” model used for identifying locations of subglacial
lakes, (iii) the lumped englacial/subglacial model of Bartholomaus et al. (2011), and (iv)
the elliptic-pressure-equation model of Schoof et al. (2012). We use englacial porosity
as a regularization, and we preserve physical bounds on the pressure. In steady state
the model generates a local functional relationship between water amount and pres-15

sure. We construct an exact solution of the coupled, steady equations which is used for
verification of our explicit time-stepping, parallel numerical implementation. We demon-
strate the model at scale by five year simulations of the entire Greenland ice sheet at
2 km horizontal resolution, with one million nodes in the hydrology grid.

1 Introduction20

Any reasonable dynamical model of the liquid water underneath and within a glacier
or ice sheet has at least these two elements: the mass of the water is conserved and
the water flows from high to low values of the modeled hydraulic potential. Beyond
that there are many variations considered in the literature. Modeled aquifer geometry
might be a system of linked cavities (Kamb, 1987), conduits (Nye, 1976), or a sheet25

(Creyts and Schoof, 2009). Geometry evolution processes might include the opening of
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cavities by sliding of the overlying ice past bedrock bumps (Schoof, 2005), the creation
of cavities by interaction of the ice with deformable sediment (Schoof, 2007), closure
of cavities and conduits by creep (Hewitt, 2011), or melt on the walls of cavities and
conduits which causes them to open (Clarke, 2005). Water could move in a macro-
porous englacial system (Bartholomaus et al., 2011; Harper et al., 2010) or it could be5

stored in a porous till (Tulaczyk et al., 2000a).
Successful models have combined subsets of these different morphologies and pro-

cesses – for examples see Flowers and Clarke (2002a), Hewitt (2013), van der Wel
et al. (2013), Werder et al. (2013), and de Fleurian et al. (2014). It is not, however,
always true that adding more processes makes a better model. Especially when used10

to understand variations in ice flow and sliding, which is a goal here, the completeness
of the modeled processes should be balanced against the number of uncertain model
parameters and the ultimate availability of observations with which to constrain them.

This paper describes a carefully-selected model for a distributed system of linked
subglacial cavities, with additional storage of water in the pore spaces of subglacial15

till. The mass conservation equation in our model describes the evolution of the sum
of the transportable water in the distributed system and the water stored in the till.
Water in excess of the capacity of the till passes into the transport system, and in this
sense the model could be called a “drained-and-conserved plastic bed” extension of
the “undrained plastic bed” model of Tulaczyk et al. (2000b).20

The goals of the current work are the implementation, verification, and practical
demonstration of this two-dimensional subglacial hydrology model. It must also be par-
allelizable, apply at a wide variety of spatial and temporal scales, exhibit convergence of
solutions under grid refinement, and have as few parameters as practical. The result is
a sub-model of a comprehensive three-dimensional ice sheet model, the open-source25

Parallel Ice Sheet Model (PISM; pism-docs.org). The submodel can be added to any
PISM run by a simple run-time option.

The cavities in our modeled distributed system open by sliding of the ice over bedrock
roughness and they close by ice creep, two physical processes which combine to
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determine the relationship between water amount and pressure. Pressure is thereby
determined non-locally over each connected component of the hydrological system. No
functional relation between subglacial water amount and pressure is assumed (com-
pare Flowers and Clarke, 2002a). The subglacial water pressure solves an equation
which is a parabolic regularization of the distributed pressure equation given in elliptic5

variational inequality form by Schoof et al. (2012).
In cases where boreholes have actually been drilled to the ice base, till is observed

(Hooke et al., 1997; Tulaczyk et al., 2000a; Truffer et al., 2000; Truffer and Harrison,
2006). Laboratory experiments on the rheology of till (Kamb, 1991; Hooke et al., 1997;
Tulaczyk et al., 2000a; Truffer et al., 2001) generally conclude that its deformation is10

well-approximated by a Mohr–Coulomb relation (Schoof, 2006b). For this reason we
adopt a compressible-Coulomb-plastic till model when determining the effective pres-
sure on the till as a function of the amount of water stored in it (Tulaczyk et al., 2000a).
Existing models which combine till and a mass conservation equation for the subglacial
water are rather different from ours, as they either have only one-horizontal dimension15

(van der Wel et al., 2013) or have a pressure equation which directly ties water pres-
sure to water amount, which generates a porous medium equation form (Flowers and
Clarke, 2002a; de Fleurian et al., 2014).

Wall melt in the linked-cavity system can be calculated diagnostically from the mod-
eled flux and hydraulic gradient. If included as a contribution to the mass conservation20

equation, however, the addition of wall melt generates an unstable distributed system
(Walder, 1982), though such a system can be stabilized to some degree by bedrock
bumps (Creyts and Schoof, 2009). In this model, wall melt is not added into the mass
conservation equation.

Conduits are also not included in our model. While the pressure and amount of25

water in conduits could evolve by physical processes, the existing theory of conduits
apparently requires their locations to be fixed a priori (Schoof, 2010b; Pimentel and
Flowers, 2011; Hewitt et al., 2012; Hewitt, 2013; Werder et al., 2013). Such lattice
models have no known continuum limit in the map plane. Because all PISM usage
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involves a run-time determination of grid resolution, which varies from 40 km to 10 mm
in the applications documented in the PISM User’s Manual (PISM authors, 2013), all
parameters must have grid-spacing-independent meaning. Lattice or other fixed-grid
models are therefore not acceptable as components of PISM.

The structure of the paper is as follows: Sect. 2 considers basic physical princi-5

ples, culminating with a fundamental advection-diffusion form of the mass conservation
equation. Section 3 reviews what is known about till mechanical properties, water in till
pore spaces, and shear stress at the base of a glacier. In Sect. 4 we compare closures
which directly or indirectly determine the subglacial water pressure. Based on all these
elements, in Sect. 5 we summarize the new model and the role of its major fields. In this10

section we also show how the model extends several published models, and we note
properties of its steady states; see also Appendix A. In Sect. 6 we compute an exact
steady solution in the map-plane, a useful tool for verification. In Sect. 7 we present all
numerical schemes, with particular attention to time step restrictions and the treatment
of advection. Section 8 documents the PISM options and parameters seen by a user.15

Section 9 shows numerical results from the model, including convergence under grid
refinement in the verification case, and a demonstration of the model in five year runs
on a 2 km grid covering the entire Greenland ice sheet.

2 Elements of subglacial hydrology

2.1 Mass conservation20

We assume that liquid water is of constant density. Thus the thickness of the layer of
laterally-transportable (mobile) water, denoted by W (t,x,y), determines its mass. In
addition there is liquid water stored locally in the pore spaces of till (Tulaczyk et al.,
2000b) which is also described by an effective thickness Wtil(t,x,y). Such thicknesses
are only meaningful compared to observations if they are regarded as averages over25

a horizontal scale of tens to thousands of meters (Flowers and Clarke, 2002a).
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The total effective thickness of the water at map-plane location (x,y) and time t is
W +Wtil. This sum is the conserved quantity in our model. In two map-plane dimensions
the mass conservation equation is (compare Clarke, 2005)

∂W
∂t

+
∂Wtil

∂t
+∇ ·q =

m
ρw

(1)
5

where ∇· = (∂/∂x)+ (∂/∂y) denotes divergence, q is the (vector) water flux (units
m2 s−1), m is the total input to the subglacial hydrology (units kg m−2 s−1) and ρw is
the density of fresh liquid water; see Table 1 for this and other physical constants. Note
that the water flux q is concentrated within the two-dimensional subglacial layer.

The water source m in Eq. (1) includes melt on the lower surface of the glacier and10

drainage from the glacier upper surface if that occurs. In portions of ice sheets with
cold surface conditions, such as Antarctica and the interior of Greenland, the basal
melt rate part of m is primarily determined by the energy balance at the base of the
ice (Aschwanden et al., 2012). The Greenland results in Sect. 9 use only that basal
melt for m. Drainage from the surface has also been added to m in applications of our15

model (van Pelt, 2013), but modelling such drainage is outside the scope of this paper.

2.2 Hydraulic potential

The hydraulic potential ψ(t,x,y) combines the pressure P (t,x,y) of the transportable
subglacial water and the gravitational potential of the top of the water layer (Goeller
et al., 2013; Hewitt et al., 2012),20

ψ = P +ρwg (b+W ). (2)

Here z = b(x,y) is the bedrock elevation.
We have added the term “ρwgW ” to the standard hydraulic potential formula ψ =

P +ρwgb (Clarke, 2005; Shreve, 1972) because differences in the potential at the top of25

the subglacial water layer determine the driving potential gradient for a fluid layer. The
4710
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W term in Eq. (2) makes the mass conservation equation diffusive, regardless of the
action of other diffusive mechanisms; see Sect. 5.3. When the water depth becomes
substantial (W � 1 m), as it would be in a subglacial lake, this term keeps the modeled
lakes from being singularities of the water thickness field. Indeed, subglacial lakes of
infinitesimal extent and infinite depth form at local minima of the hydraulic potential if5

this term is absent (Le Brocq et al., 2009).
Ice is a viscous fluid which has a stress field of its own. The basal value of the

downward normal stress, traditionally called the overburden pressure, is denoted by Po.
We accept the shallow approximation that it is hydrostatic (Greve and Blatter, 2009):

Po = ρigH , (3)10

where H is the ice thickness. Because the condition P > Po is presumed to cause the
ice to lift and thus reduce the pressure back to overburden P = Po (Schoof et al., 2012),
it follows that the pressure solution is subject to inequalities

0 ≤ P ≤ Po. (4)15

In temperate glaciers a similar upper bound applies because water rising to the
surface through efficient englacial conduits is free to flow at the surface, ensuring
P ≤ (ρw/ρi)Po, at least if supraglacial geysers are regarded as exceptional (Bartholo-
maus et al., 2011).20

2.3 Darcy flow

Transportable water flows from high to low hydraulic potential. The simplest expression
of this is a Darcy flux model for a water sheet,

q = −K W ∇ψ (5)
25

where the hydraulic conductivity K is a constant (Clarke, 2005). More generally Schoof
et al. (2012) suggests

q = −kW α |∇ψ |β−2∇ψ (6)
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for α ≥ 1, β > 1, and a coefficient k > 0 with units that depend on α and β (see Table 1).
The power-law form Eq. (6) is justified as an instance of a Manning or Darcy–Weisbach
law (Schoof et al., 2012). Clarke (2005) suggests α = 1 and β = 2, to give Eq. (5) above,
Creyts and Schoof (2009) use α = 3/2 and β = 3/2, Hewitt (2011, 2013) uses α = 3
and β = 2, and Hewitt et al. (2012) suggest α = 5/4 and β = 3/2. The current paper5

implements law Eq. (6) generally but uses the Clarke (2005) and Hewitt et al. (2012) ex-
ponents in an exact solution and in numerical experiments, respectively. When we use
Eq. (6) we call K = kW α−1 |∇ψ |β−2 the effective hydraulic conductivity, so that Eq. (5)
applies formally throughout.

2.4 Advection-diffusion decomposition10

Combining Eqs. (2) and (6), and separating the term proportional to ∇W , we get the
flux expression

q = −kW α |∇ψ |β−2∇ (P +ρwgb)−ρwgkW
α |∇ψ |β−2∇W . (7)

The second term with ∇W acts diffusively in the mass conservation Eq. (1). On the15

other hand, because P generally scales with the overburden pressure Po, the first
flux term in Eq. (7) will dominate in the common situation |∇H | � |∇W |. We will see
in Sect. 5.3 that in near-steady-state circumstances the part of the transport veloc-
ity which is proportional to ∇P is also significantly diffusive in the mass conservation
equation. In conditions far from steady state, however, the direction of ∇P is different20

from the direction ∇W .
We will construct our conservative numerical scheme based on decomposition

Eq. (7). To simplify the model slightly, the small thickness approximationW ≈ 0 is made
inside the absolute value signs in Eq. (7), namely

|∇ψ | ≈ |∇ (P +ρwgb)| . (8)25
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This simplification, which makes no change in the β = 2 case, lets us redefine the
effective hydraulic conductivity as

K = kW α−1 |∇(P +ρwgb)|β−2 . (9)

In terms of K we define a velocity field and a diffusivity coefficient:5

V = −K ∇ (P +ρwgb) , D = ρwgKW . (10)

Now Eq. (7) is a clean advection-diffusion decomposition,

q = V W −D∇W . (11)
10

From Eqs. (1) and (11) we now have an advection-diffusion-production equation for the
evolution of the water amount:

∂W
∂t

+
∂Wtil

∂t
= −∇ · (V W )+∇ · (D∇W )+

m
ρw

. (12)

There are distinct numerical approximations (Sect. 7) for the advection term ∇ · (V W )15

and the diffusion term ∇ · (D∇W ), and they impose time-step restrictions of different
magnitudes. We will see that Eq. (12) is often advection-dominated in the sense that
|VW | � |D∇W |, but the numerical schemes for advection and diffusion must be tested
in combination. We measure convergence of the combined numerical schemes in
Sect. 9.20

As is well known (Clarke, 2005), the flux q depends significantly on the ice surface
slope because the ice overburden pressure dominates the subglacial water pressure.
The model in this paper also generates pressure fields with this property in some cir-
cumstances, but the directions of hydraulic potential gradient and surface gradient are
significantly different in general because the pressure depends on physical mecha-25

nisms for the opening and closing of cavities.
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2.5 Capacity of a linked-cavity distributed system

The rate of change of the area-averaged thickness of the cavities in a distributed linked-
cavity system can be described as the difference of opening and closing rates (Hewitt,
2011). This thickness Y , also called the bed separation (Bartholomaus et al., 2011),
has evolution equation5

∂Y
∂t

=O(|v b|,Y )−C(N,Y ) (13)

where v b is the ice base (sliding) velocity and N = Po − P is the effective pressure on
the cavity system. Denoting X+ = max{0,X }, we choose an opening term based on
cavitation only:10

O(|v b|,Y ) = c1|v b|(Wr − Y )+. (14)

Here Wr is a maximum roughness scale of the basal topography (Schoof et al., 2012).
The closing term models ice creep only (Hewitt, 2011; Schoof et al., 2012):

C(N,Y ) = c2AN
3Y . (15)15

We have used Glen exponent n = 3 for concreteness and simplicity. By Eq. (14) the
opening term O is nonnegative, and the closing term C in Eq. (15) is also nonnegative
because our modeled pressure P satisfies bounds 0 ≤ P ≤ Po.

The physical intuition behind a model which combines Eq. (13) with mass conserva-20

tion Eq. (1) and a Darcy flux relation like Eq. (6) is as follows. If the cavity is larger than
local water sources can immediately fill then the pressure should drop. Lower pres-
sure encourages water inflow and, by Eq. (15), it speeds cavity closure, bringing the
pressure back up. Conversely, if local water sources exceed capacity then increased
pressure should push water out of the area and slow creep closure.25
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3 Till hydrology and mechanics

In areas where the ice base is not frozen, till with pressurized liquid water in its pore
spaces can be expected to support much of the ice overburden. When present, such
saturated till is central to the complicated relationship between the amount of subglacial
water and the speed of sliding. Our model includes storage of subglacial water in till,5

potentially everywhere under the ice sheet, both because of its role in conserving the
mass of liquid water and its role in determining basal shear stress.

We will assume throughout that liquid water or ice fills pore spaces in the till, and that
there are no air- or vapor-filled pore spaces. We suppose that when Wtil = 0 then the
pore spaces in the till are filled with ice and the basal shear stress is correspondingly-10

high. When Wtil is small the till will generally hold both liquid water and ice. Only when
Wtil attains sufficiently large values is the till conceived-of as entirely melted, at which
point a drop in effective pressure becomes possible (Sect. 3.2 below).

3.1 Evolution of water amount

While the thickness W in Eq. (1) describes the amount of mobile water in subglacial15

cavities, and in the connections between cavities (Kamb, 1987), the water in till pore
spaces is much less mobile because of the very low hydraulic conductivity of till (Lingle
and Brown, 1987; Tulaczyk et al., 2000a; Truffer et al., 2001). Therefore we choose an
evolution equation for Wtil for simplicity (Bueler and Brown, 2009), namely

∂Wtil

∂t
=
m
ρw

−Cd. (16)20

Here Cd ≥ 0 is a fixed rate that makes the till gradually drain in the absence of water
input. Equation (16) is the same as Eq. (2) in Tulaczyk et al. (2000b). In practice we
choose Cd = 1 mm a−1, which is small compared to typical values of m/ρw. Refreeze
is also allowed, as a negative value for m. Note that any water removed from the till25

enters the transport system; it is conserved.
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3.2 Effective pressure on the till

There is extensive evidence that deformation of saturated till is well-modeled by a plas-
tic (Coulomb friction) or nearly-plastic rheology (Hooke et al., 1997; Truffer et al., 2000;
Tulaczyk et al., 2000a; Schoof, 2006b). The yield stress τc of such till satisfies the
Mohr–Coulomb relation5

τc = c0 + (tanϕ)Ntil (17)

where c0 is the till cohesion, ϕ is the till friction angle, and Ntil is the effective pressure
of the overlying ice on the saturated till (Cuffey and Paterson, 2010). (The effective
pressure N = Po−P used in the next section for modeling cavity closure is distinct from10

Ntil in Eq. (17). This distinction is justified by the very low hydraulic conductivity of till.)
Let e = Vw/Vs be the till void ratio, where Vw is the volume of water in the pore spaces

and Vs is the volume of mineral solids (Tulaczyk et al., 2000a). From the standard theory
of soil mechanics and from laboratory experiments on till (Hooke et al., 1997; Tulaczyk
et al., 2000a), a linear relation exists between the logarithm of Ntil and e,15

e = e0 −Cc log10
(
Ntil/N0

)
. (18)

Figure 1a shows a graph of Eq. (18). Here e0 is the void ratio at a reference effective
pressure N0 and Cc is the coefficient of compressibility of the till. Equivalently, Ntil is an

exponential function of e, namely Ntil = N010(e0−e)/Cc (van der Wel et al., 2013, Eq. 15).20

Note that in Eq. (18), Ntil is nonzero for all finite values of e.
While Eq. (18) suggest that the effective pressure could be any positive number, in

fact the area-averaged value of Ntil under ice sheets and glaciers has limits. It cannot
exceed the overburden pressure for any sustained period. Furthermore, once the till is
close to its maximum capacity then the excess water will be “drained” into a transport25

system. We suppose this occurs at a small, fixed fraction of the overburden pressure.
Thus we assume bounds

δPo ≤ Ntil ≤ Po (19)
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where δ = 0.02 in the experiments in this paper.
The void ratio e and the effective water layer thickness Wtil are describing the same

thing, namely the amount of liquid water. In fact, if ∆x, ∆y are the horizontal dimen-
sions of a rectangular patch of till then Vw =Wtil∆x∆y and Vs = η∆x∆y where η is the
thickness of the mineral portion of the till. Because e = Vw/Vs it follows that5

e =
Wtil

η
. (20)

On the other hand we will describe the maximum capacity of the till by specifying
a maximum on the water layer thickness (Bueler and Brown, 2009), that is,

0 ≤Wtil ≤W max
til . (21)10

The minimum Ntil = δPo of the effective pressure occurs at the maximum void ratio
e and at maximum Wtil. But then Eqs. (18) and (20) combine to express the solid-till
thickness η in terms of our preferred parameters and the overburden pressure,

η =
W max

til

e0 −Cc log10
(
δPo/N0

) . (22)15

From Eqs. (18), (20), and (22), the effective pressure Ntil can now be written as the
following function of Wtil:

N̂til = N0

(
δPo

N0

)s
10(e0/Cc) (1−s) (23)

20

where s =Wtil/W
max
til . However, as noted above, Ntil is bounded, so the form we use is

shown in Fig. 1b:

Ntil = min
{
Po, N̂til

}
. (24)

It follows from Eqs. (17) and (24) that the yield stress τc can be determined from the25

water amount Wtil. Regarding the parameters in this relation:
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i. Experiments on till suggest small values for cohesion, 0 ≤ c0 . 1 kPa (Tulaczyk
et al., 2000a), and we choose c0 = 0 for concreteness.

ii. Observed till friction angles ϕ are in a 18◦– 40◦ range (Cuffey and Paterson,
2010). Simulations of the whole Antarctic (Martin et al., 2011) and Greenlandic
(Aschwanden et al., 2013) ice sheets have been based on a hypothesis that the5

till friction angle ϕ can depend on bed elevation, so as to accommodate the sub-
marine history of some sediments.

iii. The ratio e0/Cc can be determined by laboratory experiments on till samples
(e.g. Hooke et al., 1997; Tulaczyk et al., 2000a). Values for the dimensionless
constants e0 and Cc used in this paper are from till samples from ice stream B10

in Antarctica, namely e0 = 0.69 and Cc = 0.12 in Fig. 6 of Tulaczyk et al. (2000a),
thus e0/Cc = 5.75.

iv. The till capacity parameter W max
til could be set in a location-dependent manner

from in situ (Tulaczyk et al., 2000a) or seismic reflection (Rooney et al., 1987)
evidence, but for simplicity we set it to a constant 2 m.15

3.3 Sliding law

The ice sliding velocity is determined by solving a stress balance in which the vector
basal shear stress τb appears either as a boundary condition (Schoof, 2010a) or as
a term in the balance (Schoof, 2006a; Bueler and Brown, 2009). In PISM the scalar
yield stress τc determines the basal shear stress through a sliding law20

τb = −τc
u

|u|1−quq0
(25)

where u is the sliding velocity of the base of the ice, 0 ≤ q ≤ 1 , and u0 is a threshold
sliding velocity (Aschwanden et al., 2013). Power law (Eq. 25) generalizes, and includes
as the case q = 0, the purely-plastic (Coulomb) relation τb = −τcu/|u|. At least in the25
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q� 1 cases, under Eq. (25) the till “yields” and the magnitude of the basal shear stress
becomes nearly independent of |u| as |u| � u0. Equation (25) could also be written in
generic power-law form τb = −β|u|q−1

u with coefficient β = τc/u
q
0 ; in the linear case

q = 1 we have β = τc/u0.

4 Closures to determine pressure5

The evolution equations listed so far, namely Eqs. (12), (13), and (16), can be simplified
to three equations in the four major variablesW ,Wtil, Y , and P . We do not yet know how
to compute the water pressure P or its rate of change ∂P/∂t given the other variables
and data of the problem. A closure is needed.

4.1 Simplified closures without cavity evolution10

We first consider two simple closures which appear in the literature but which do not
use cavity evolution Eq. (13) or similar physics. These simplified closures differ in their
physical motivation and the form of their mass conservation equations. We list them
because the resulting simplified conservation equations emerge as reductions of our
more complete theory. For simplicity we present them without till storage, that is, with15

W max
til = 0 in previous equations. We state only the constant conductivity case (α = 1

and β = 2 in Eq. 6).
Setting the pressure equal to the overburden pressure is the simplest closure

(Le Brocq et al., 2009; Shreve, 1972):

P = Po. (26)20

This model is sometimes used for “routing” subglacial water under ice sheets so
as to identify subglacial lake locations (Livingstone et al., 2013; Siegert et al.,
2009). Straightforward calculations using Eqs. (1), (5), and (26) show that the
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advection-diffusion form Eq. (12) has an ice-geometry-determined velocity,

∂W
∂t

= −∇ ·
(
Ṽ W

)
+∇ · (ρwgK W ∇W )+

m
ρw

(27)

where

Ṽ = −ρwgK
[
ρi

ρw
∇h+

(
1−

ρi

ρw

)
∇b
]

. (28)5

Because the approximation W � H is usually accepted, so that the hydraulic poten-
tial is insensitive to the water layer thickness, i.e. ψ = Po+ρwgb (Le Brocq et al., 2009),
the diffusion term ∇· (ρwgK W ∇W ) on the right of Eq. (27) is usually not included. With
this common simplification, Eq. (27) becomes a pure advection with a velocity Ṽ which10

is independent of W . It therefore possesses characteristic curves (Evans, 1998) which
are the a priori known trajectories of the water flow. These trajectories are determined
by ice sheet geometry.

However, without a diffusion term (Eq. 27) also exhibits continuum solutions W
with infinite water concentration at every location where the simplified potential ψ =15

Po +ρwgb has a minimum. Applications using the simplified potential only compute
the characteristic curves (i.e. “pathways”, Livingstone et al., 2013) themselves. We
therefore prefer Eq. (27) as stated, with the diffusion term, because it is well-posed for
positive initial and boundary values on W (compare Hewitt et al., 2012), so numerical
solutions can converge under sufficient grid refinement.20

At an almost opposite extreme in terms of the mathematical form, the second simpli-
fied closure we consider assumes that the water pressure is locally determined by the
amount of water. Specifically, Flowers and Clarke (2002a) propose

PFC(W ) = Po

(
W
Wcrit

)7/2

. (29)
25
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For Trapridge glacier Flowers and Clarke (2002b) use Wcrit = 0.1 m. Thus no separate
pressure evolution equation needs to be solved (Pimentel et al., 2010; Pimentel and
Flowers, 2011). One obvious concern with form Eq. (29) is that PFC(W ) can be arbitrar-
ily larger than overburden pressure (Schoof et al., 2012).

In the flat bedrock case ∇b = 0, we can derive an equation from Eqs. (1), (5), and5

(29), namely

∂W
∂t

= ∇ · (kW∇PFC(W ))+
m
ρw

. (30)

Equation (30) is a nonlinear diffusion which generalizes the porous-medium equation
∂W/∂t = ∇2(W γ) (Schoof et al., 2012; Vázquez, 2007). The main idea in such a nonlin-10

ear diffusion is that the direction of the flux is −∇W . Physically, however, it would seem
that q ∼ −∇ψ would give flux directions different from −∇W in many cases, especially
in rapidly-evolving hydrologic systems.

4.2 Full-cavity closure

Requiring the subglacial layer to be full of water is a closure for the subglacial pressure15

P . Following Bartholomaus et al. (2011), we adopt it in our model:

W = Y . (31)

The consequences of this closure are actually explored at some length by Schoof et al.
(2012), Hewitt et al. (2012), and Werder et al. (2013), where they describe the full-cavity20

case as the “normal pressure” condition (e.g. Eq. 4.13 in Schoof et al., 2012).
Equation (31) obviously allows us to eliminate either W or Y as a state variable.

We choose to eliminate Y because W is part of the conserved mass W +Wtil. Using
Eqs. (1), (13), and (31) we can then derive

O(|v b|,W )−C(N,W )+
∂Wtil

∂t
+∇ ·q =

m
ρw

. (32)25
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In the zero till storage case (set W max
til = 0 so Wtil = 0), Eq. (32) is exactly the ellip-

tic pressure equation (Eq. 2.12) of Schoof et al. (2012). They solve Eq. (32) in one
dimension with pressure boundary conditions at the lateral edges of the subglacial hy-
drologic system to determine the pressure P , and they argue that a model based on
Eq. (32) should accommodate the possibility of partially-empty cavities withW < Y and5

at zero pressure P = 0. Direct evidence for such vapor/air-filled cavities does not exist
for tidewater glaciers or ice sheets, though of course subglacial hydrology is poorly-
observed generally. In any case we accept a potential loss of model completeness by
using a full-cavity model.

Overpressure P > Po has been observed in ice sheets (Das et al., 2008; Bartholo-10

maus et al., 2011, for example), but only for short durations. Our modelled pressure
satisfies P ≤ Po; compare Werder et al. (2013).

4.3 Notional englacial porosity as a regularization

Englacial systems of cracks, crevasses, and moulins have been observed in glaciers
(Fountain et al., 2005; Bartholomaus et al., 2008; Harper et al., 2010, for example), and15

these have been included in combined englacial/subglacial hydrology models (Flowers
and Clarke, 2002a; Bartholomaus et al., 2011; Hewitt, 2013; Werder et al., 2013). The
englacial system is generally parameterized as having macroporosity 0 ≤φ< 1. If the
englacial system is efficiently-connected to the subglacial hydrology then the amount of
englacial water is equivalent to the subglacial pressure. Subglacial pressure is reflected20

by an englacial “water table” in such models.
Bueler (2014) shows that an extension of the lumped englacial/subglacial model in

Bartholomaus et al. (2011) to the distributed case gives an equation similar to Eq. (32),
but with the crucial difference that the equation is parabolic for the pressure and not el-
liptic (compare Hewitt et al., 2012). Based on this analysis, we use a parabolic equation25
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with constant notional englacial porosity φ =φ0:

φ0

ρwg
∂P
∂t

= −∇ ·q+
m
ρw

+C(N,W )−O(|v b|,W )−
∂Wtil

∂t
. (33)

Compare Eq. (7) in Hewitt (2013) and Eq. (24) in Werder et al. (2013).
Addition of englacial porosity as in Eq. (33) allows a user-adjustable trade-off be-5

tween temporal detail in the pressure evolution vs. computational effort (van Pelt, 2013).
If the englacial porosity φ0 is small, so that there is a nearly impermeable “cap” on the
subglacial system, as would occur under a thick ice sheet, then Eq. (33) is stiff (As-
cher and Petzold, 1998) and indeed similar, in terms of numerical solution, to an elliptic
equation. By contrast, if φ0 is relatively large then Eq. (33) causes local changes in10

subglacial pressure P to be damped in the speed and range of their influence on other
parts of the connected subglacial hydrologic system. In fact, the diffusive range of
Eq. (33) is proportional to φ0. If the elliptic Eq. (32) is used instead of Eq. (33) then the
system in Sect. 5 (below) is differential-algebraic in time (Ascher and Petzold, 1998)
and is hardest to solve numerically.15

Schoof et al. (2012) show that the time-independent mathematical problem encom-
passing Eq. (32), constraints Eq. (4), and appropriate pressure boundary conditions
can be written as an elliptic variational inequality (Kinderlehrer and Stampacchia,
1980). This variational inequality problem is asserted to be “prohibitively expensive”
by Werder et al. (2013) when solved in two dimensions at each step of a time-stepping20

model. Our adaptive explicit time-stepping scheme (Sect. 7), by contrast, satisfies con-
straints Eq. (4) at demonstrably-reasonable computational cost (Sect. 9).

Stiffness of pressure equation (Eq. 33) follows from the incompressibility of water
and the relative non-distensibility (i.e. hardness) of the ice and bedrock. Clarke (2003)
addresses this in a physically-different way by including a relaxation (damping) param-25

eter “β” which is based on the small compressibility of water, but which is more than
two orders of magnitude larger than the physical value. Clarke’s parameter β appears
in his equation exactly as the englacial porosity φ0 appears in Eq. (33), multiplying the
pressure time derivative.
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5 A new subglacial hydrology model in PISM

5.1 Summary of equations and symbols

The major evolution equations for the model are mass conservation (Eq. 12), till-stored
water amount evolution (Eq. 16), and pressure evolution (Eq. 33). Recalled here for
clarity they are:5

∂W
∂t

+
∂Wtil

∂t
= −∇ · (V W )+∇ · (D∇W )+

m
ρw

, (34)

∂Wtil

∂t
=
m
ρw

−Cd,

φ0

ρwg
∂P
∂t

+
∂Wtil

∂t
= −∇ · (V W )+∇ · (D∇W )+

m
ρw

+c2A(Po − P )3W −c1|v b|(Wr −W )+,

using these definitions:10

D = ρwgKW diffusivity of W

K = kW α−1 |∇(P +ρwgb)|β−2 effective conductivity

Po = ρigH overburden pressure

s =Wtil/W
max
til Wtil relative to capacity

V = −K∇ (P +ρwgb) velocity of W .15

The model includes bounds on major variables: 0 ≤W , 0 ≤Wtil ≤W
max
til , 0 ≤ P ≤ Po.

The model is also coupled to ice dynamics by Mohr–Coulomb equation (Eq. 17) and
till effective pressure equation (Eq. 24), namely

τc = c0 + (tanϕ)Ntil, (35)20

Ntil = min
{
Po, N0

(
δPo

N0

)s
10(e0/Cc) (1−s)

}
.
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The functions used above can be categorized into state functions, which must be pro-
vided with initial values and which evolve according to the model, input functions, which
are either supplied by observations or by other components of an ice sheet model
(e.g. the stress balance in an ice dynamics model will provide |v b|), and output func-
tions which are supplied to other components of the ice sheet model (e.g. the yield5

stress τc is fed back to the stress balance); see Table 2. In two-way coupling the ice
dynamics model passes H , m, and |v b| to the subglacial hydrology model, and τc is
passed the other way.

5.2 Reduction to existing models

Four reductions (limiting cases) of model Eq. (34) can now be stated precisely:10

i. The zero till storage (W max
til = 0) and zero englacial porosity (φ0 = 0) case of

Eq. (34) is the model described by Schoof et al. (2012), recalling that q =
−KW∇ψ ,

∂W
∂t

= −∇ · (KW∇ψ)+
m
ρw

, (36)

0 = ∇ · (KW∇ψ)+
m
ρw

+c2A(Po − P )3W −c1|v b|(Wr −W )+.15

The bounds W ≥ 0 and 0 ≤ P ≤ Po are unchanged. Model Eq. (34) is a parabolic
regularization of Eq. (36) based on a notional connection to porous englacial stor-
age, and with coupling to additional till storage.

ii. The P = Po limit of Eq. (34), in which physical processes for the evolution of pres-20

sure are ignored, is essentially the model for “routing” water to subglacial lakes
under cold ice sheets in Siegert et al. (2009) and Livingstone et al. (2013). As-
suming again that till storage is removed (W max

til = 0) then the model has only W
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as a state variable, the single evolution equation is

∂W
∂t

= −∇ · (V W )+∇ · (D∇W )+
m
ρw

. (37)

along with the bound W ≥ 0 and further-simplified definitions K =
kW α−1 |∇(Po +ρwgb)|β−2 and V = −K∇ (Po +ρwgb). As noted in Sect. 4, the5

α = 1 case of this model routes water with a velocity which is determined entirely
by ice and bedrock geometry. This reduced model is mostly an advection, but,
because of Eq. (2) for the hydraulic potential, which implies some diffusion, model
Eq. (37) has continuous solutions for W .

iii. The non-distributed “lumped” form of Eq. (34), in which, in particular, ∇·q = (qout−10

qin)/L where L is the length of a one-dimensional glacier and qout,qin are given
by observations, is the model of Bartholomaus et al. (2011); see Bueler (2014).

iv. The undrained plastic bed (UPB) model of Tulaczyk et al. (2000b) arises as the
W = 0,q = 0,φ0 = 0 reduction of Eq. (34). This lumped model depends on friction-
heating feedback to keep Wtil bounded, which is not effective in a membrane-15

stress-inclusive theory in which local friction heating is a non-local function of
changes in till strength. Bueler and Brown (2009) therefore enforce Wtil ≤W

max
til

by non-conservatively removing water above the capacity, which is a minimal
“drained” version of the UPB model.

The above list does not imply that all possible subglacial hydrology models are sub-20

sumed in ours. For example, the subglacial hydrology model of Johnson and Fastook
(2002) is a variation on idea (ii) above but it is not a reduction. The Flowers and Clarke
(2002a) model is also not a reduction, although a significant connection is explained in
the section on steady states below. Most significantly, models which include conduits
(Schoof, 2010b; Pimentel and Flowers, 2011; Hewitt et al., 2012, among others) are25

not reductions of our model. Conduit evolution is numerically-straightforward to imple-
ment in one-dimensional hydrology models (Pimentel and Flowers, 2011; Hewitt et al.,
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2012; van der Wel et al., 2013) but when extended to two-horizontal dimensions all
existing models (Schoof, 2010b; Hewitt, 2013; Werder et al., 2013) become “lattice”
models without a known continuum limit.

5.3 Steady states

The steady states of Eq. (34) are of physical modelling importance because the sub-5

glacial system can be close to steady state much of the time, but also because physical
processes become decoupled in steady state, and this helps us understand the model.
Specifically, the steady form of model Eq. (34), with α = 1, β = 2, and W max

til = 0 for
simplicity, can be written as follows in terms of V ,q,W ,P :

V = −k∇ (P +ρwgb) , (38)10

q = VW −ρwgkW∇W , (39)

0 = −∇ ·q+
m
ρw

, (40)

0 = c2A(Po − P )3W −c1|v b|(Wr −W )+. (41)

Steady state Eqs. (38)–(41) are stated in the one-dimensional case by Schoof et al.15

(2012) model, where the decoupling is also noted; see Eqs. (5.8) and (5.10) in Schoof
et al. (2012).

We can make four specific observations about solutions to Eqs. (38)–(41), which we
find are useful in understanding the time-dependent model at longer time-scales also:

i. from Eq. (41) there is a functional relationship P = P (W ) which determines the20

pressure given the water amount,

ii. by Eqs. (38) and (41), the apparently advective flux “VW ” in Eq. (39) actually
acts diffusively, if sliding is occurring and if the water amount is either small or
comparable to the roughness scale,
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iii. by Eqs. (39) and (40) the water amount W generally scales inversely with the
conductivity, and

iv. exact solutions can be constructed.

In Appendix A we detail points (i), (ii), and (iii). Observation (iv) is addressed in the next
section.5

6 An exact steady state solution

6.1 Radial equations

Steady Eqs. (38)–(41) are the basis on which we now build a nearly-exact solution
for W and P in the map-plane, in a case with nontrivial overburden pressure and ice
sliding speed. This solution is useful for verifying numerical schemes. It depends on10

the numerical solution of a scalar first-order ordinary differential equation (ODE) initial
value problem, something we can do with high accuracy. Traveling wave exact solutions
in one horizontal dimension also appear in Schoof et al. (2012).

Consider the flat bed case (b = 0). Assuming dependence only on the radial coordi-
nate r =

√
x2 + y2, from Eqs. (38)–(40) one may eliminate the velocity to get15

q = −kW
(

dP
dr

+ρwg
dW
dr

)
, (42)

1
r

d
dr

(r q) =
m
ρw

. (43)

In the case of constant water input m =m0, we can integrate Eq. (43) from 0 to r and
use symmetry (q(0) = 0) to get20

q(r) =
m0

2ρw
r . (44)
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Suppose H(r) is given so that Po(r) is also determined. Assume that the scaled sliding
speed sb(r) has a bounded derivative and that the solution W (r) satisfies conditions
Wc <W <Wr; these properties can be verified for the constructed solution. By combin-
ing Eqs. (A4), (A5), (42), and (44) we can eliminate q and P to find

ω0 r = −W
[

dPo

dr
−

dsb

dr

(
Wr −W
W

)1/3

+

(
sbWr

3W 4/3(Wr −W )2/3
+ρwg

)
dW
dr

]
(45)5

where ω0 =m0/(2ρwk).
Equation (45) is a first-order ordinary differential equation (ODE) for W (r). To put it

in the standard form expected by a numerical ODE solver we solve it for dW/dr .

6.2 A nontrivial solution10

Though Eq. (45) has a constant solution W (r) =Wr, to generate a nontrivial exact solu-
tion we will choose a positive thickness of ice at the margin (a cliff) so that Po(L−) > 0.
At the ice margin r = L we have water pressure P = 0 so W (L) =Wc(L−) is the bound-
ary condition for the ODE. We assume that at the margin there is some sliding so that
sb(L−) > 0, and by Eq. (A1) we require that sb(L−)Wr > Po(L−)3W (L). The condition at15

r = L also satisfies W (L) <Wr. Then we integrate Eq. (45) from r = L to r = 0. The
central water thickness value W (0) is determined as part of the solution.

It is useful to have an ice cap geometry in which the surface gradient formula is
simple so that dPo/dr in Eq. (45) is also simple, so we choose a parabolic profile

H(r) = H0

(
1− r2

R2
0

)
(46)20

where H(0) = H0 is the height (thickness) at the center of the ice cap. It follows that
dPo/dr = −Cr where C = 2ρigH0R

−2
0 . We choose L = 0.9R0 and we note that H(L) =

0.19H0 is the size of the cliff.
4729
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The sliding speed could be determined by a model for stresses at the ice base and
within the ice (Greve and Blatter, 2009), but for hydrology model verification we simply
choose a well-behaved sliding speed function which has no sliding near the ice cap
center, until a radius r = R1 at which sliding increases:

|v b|(r) =

0, 0 ≤ r ≤ R1,

v0

(
r−R1
L−R1

)5
, R1 < r ≤ L.

(47)5

It follows from Eqs. (A2) and (47) that dsb/dr in Eq. (45) is bounded and continuous
on 0 ≤ r ≤ L.

Now we solve ODE Eq. (45) with initial condition W (L) and the specific values in
Table 3. We use adaptive numerical ODE solvers, both a Runge–Kutta 4(5) Dormand–10

Prince method and a variable-order stiff solver, with relative tolerance 10−12 and abso-
lute tolerance 10−9. The two solvers gave essentially identical results. Modest stiffness
(Ascher and Petzold, 1998) of ODE Eq. (45) is observed at r ≈ R1. The result W (r) is
shown in Fig. 2.

Because Eqs. (46) and (47) imply a pressure functional relation P = P (W ,r) from15

Eq. (A4), we can also show in Fig. 2 the regions of the r ,W plane which correspond to
overpressure, normal pressure, and underpressure. We see that W (r) is in the normal
pressure region as r decreases from r = L to r = R1, but at r = R1 the function W (r)
switches into the overpressure case because there is no sliding. Figure 3 shows the
corresponding pressure solution P (r) = P (W (r)) from Eq. (A4).20

The reason for stiffness near R1 is that as the sliding goes to zero the cavitation
rate goes to zero. Because creep closure balances cavitation in steady state, effective
pressure also goes to zero (P → Po). The remaining active mechanisms in the model
are the variable overburden pressure and the rate of water input, and they must exactly
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balance. In this case Eq. (45) reduces to the simpler form

dW
dr

= −
ϕorW

−1 + dPo
dr

ρwg
. (48)

Though we have not derived it this way, Eq. (48) is the steady radial form of the mass
conservation equation under the “P = Po” closure, namely Eq. (27).5

In Eq. (48) we see that dW/dr = 0 ifW satisfiesW = −ω0r/(dPo/dr). In our case with
geometry Eq. (46) this reduces to a constant value W ∗ = 0.21764 m because dPo/dr
is linear in r . Both numerical ODE solvers used here confirm that W (r) is asymptotic
to this constant value W ∗ as r → 0, and that W (r) ≈W ∗ within about 1 % on all of
0 ≤ r ≤ R1. This is seen in Fig. 2.10

7 Numerical schemes

All the numerical schemes described in this section are implemented in parallel using
the PETSc library (Balay et al., 2011).

7.1 Mass conservation: time-stepping

The mass conservation equation in model Eq. (34) will be discretized by an explicit,15

conservative finite difference method. A centered, second-order scheme will be applied
to the diffusion part. Two schemes for the advection part will be compared, namely first-
order upwinding and a higher-order flux-limited upwind-biased method.

We first consider stable time steps. Stability for the advection schemes occurs with
a time step ∆t ≤∆tCFL where20

∆tCFL

(
max |u|
∆x

+
max |v |
∆y

)
=

1
2

. (49)
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Because of the additional diffusion process, for stability the time step should also satisfy
∆t ≤∆tW where (Morton and Mayers, 2005)

∆tW maxD
(

1

∆x2
+

1

∆y2

)
=

1
4

. (50)

The condition ∆t ≤ min{∆tCFL,∆tW } is sufficient for stability and convergence of the5

scheme. We show this for the first-order upwind scheme, but standard theory suggests
the same conclusion for the higher-order flux-limited advection scheme Hundsdorfer
and Verwer, 2010.

We can understand the scale of these restrictions better by considering an exam-
ple using the parameter values in Table 1. We ran the model on a ∆x = ∆y = 250 m10

grid to approximate steady state for the subglacial hydrology of Nordenskiöldbreen
(van Pelt, 2013). We used a hypothesized water input distribution with average value
about 1 m a−1, and a glacier-wide constant sliding rate of 50 m a−1. The result is that
the maximum computed water speed |V | is about 0.2 m s−1 so the advective restric-
tion Eq. (49) is ∆tCFL ≈ 300s ≈ 10−5 a. Computed diffusivity D = ρwgKW has a maxi-15

mum value that varies significantly in time, 0.1 ≤ maxD ≤ 5m2 s−1. Diffusive restriction
Eq. (50) using value maxD = 1m2 s−1 is ∆tW ≈ 8000s ≈ 2.5×10−4 a. Thus in this ex-
ample ∆tW ≈ 25∆tCFL.

This example suggests that, unless both the maximum velocity is unusually slow and
deep subglacial lakes develop so that D is large, the diffusive time scale is significantly20

longer than the CFL time scale for a 250 m grid. The scaling ∆tW = O(∆x2) vs. ∆tCFL =
O(∆x1) makes it clear that under sufficient spatial grid refinement ∆tW is the controlling
restriction, but we suppose that ∆tCFL is controlling for ∆x� 100 m. We will see below,
however, that the time step restriction associated to an explicit time-stepping method
for the pressure equation is typically shorter than either of ∆tW ,∆tCFL, and it scales as25

O(∆x2) like ∆tW .
If implicit time-stepping is used for the pressure equation, which requires variational

inequality treatment to preserve physical pressure bounds (Schoof et al., 2012), then
4732
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the time scales ∆tW ,∆tCFL addressed here are the only restrictions. The time step re-
striction ∆tW could also be removed by implicit steps for the mass-conservation equa-
tion, though it would seem this requires another variational inequality formulation be-
cause of the lower bound W ≥ 0. Our observation that ∆tCFL �∆tW for practical ice
sheet grids suggests that implicit time-stepping for the mass-conservation equation is5

not beneficial.

7.2 Mass conservation: spatial discretization

To set notation, suppose the rectangular computational domain hasMx×My gridpoints

(xi ,yj ) with uniform spacing ∆x,∆y . Let W l
i ,j ≈W (tl ,xi ,yj ), (Wtil)

l
i j ≈Wtil(tl ,xi ,yj ), and

P li ,j ≈ P (tl ,xi ,yj ) denote the numerical approximations.10

We will compute velocity components and flux components at the staggered (cell-
face-centered) points shown in Fig. 4 using centered finite difference approximations
of Eqs. (10) and (11). We use “compass” indices such as ue = ui+1/2,j for the “east”
staggered value of u and vn = vi ,j+1/2 for the “north” staggered value of v . Similarly we
use compass indices for staggered grid values of the water layer thickness, computed15

by averaging regular grid values:

We =
(
W l
i ,j +W

l
i+1,j

)
/2, (51)

Wn =
(
W l
i ,j +W

l
i ,j+1

)
/2.

The nonlinear effective conductivity K from Eq. (9) is also needed at staggered loca-20

tions. As a notational convenience define R = P+ρwgb and define these staggered-grid
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values (compare Mahaffy, 1976):

Πe =

∣∣∣∣Ri+1,j −Ri ,j
∆x

∣∣∣∣2

+

∣∣∣∣Ri+1,j+1 +Ri ,j+1 −Ri+1,j−1 −Ri ,j−1

4∆y

∣∣∣∣2

,

Πn =

∣∣∣∣Ri+1,j+1 +Ri+1,j −Ri−1,j+1 −Ri−1,j

4∆x

∣∣∣∣2

+

∣∣∣∣Ri ,j+1 −Ri ,j
∆y

∣∣∣∣2

.

Thereby define5

Ke = kW
α−1
e Π(β−2)/2

e , Kn = kW
α−1
n Π(β−2)/2

n . (52)

The velocity components are then found by differencing:

ue = −Ke

(
Pi+1,j − Pi ,j

∆x
+ρwg

bi+1,j −bi ,j
∆x

)
, (53)

vn = −Kn

(
Pi ,j+1 − Pi ,j

∆y
+ρwg

bi ,j+1 −bi ,j
∆y

)
.10

Similarly for diffusivity we have

De = ρwgKeWe, Dn = ρwgKnWn. (54)

We get the remaining staggered-grid quantities by shifting indices:15

uw = ue|(i−1,j ), Kw = Ke|(i−1,j ), Dw = De|(i−1,j ),

vs = vn|(i ,j−1), Ks = Kn|(i ,j−1), Ds = Dn|(i ,j−1).

Now we define Qe(ue), Qw(uw), Qn(vn), and Qs(vs) as the face-centered (staggered-
grid) normal components of the advective flux VW . These quantities are described in20
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more detail in the next subsection. They use only the staggered velocity component but
there is upwinding to determine which W value, or combination of W values, is used.

The grid values of D = ∇ ·q = ∇ · (VW )−∇ · (D∇W ) using Eqs. (53) and (54) now
become:

Di ,j =
Qe(ue)−Qw(uw)

∆x
+
Qn(vn)−Qs(vs)

∆y
(55)5

−
De(W l

i+1,j −W
l
i ,j )−Dw(W l

i ,j −W
l
i−1,j )

∆x2

−
Dn(W l

i ,j+1 −W
l
i ,j )−Ds(W l

i ,j −W
l
i ,j−1)

∆y2
.

To ensure conservation, Qe(ue) used in computing Di ,j must be the same as Qw(uw)
used in computing Di+1,j , and similarly for “north” and “south” staggered fluxes; our10

formulas have these properties.
Now our scheme for approximating mass conservation Eq. (12) is

W l+1
i ,j −W l

i ,j

∆t
+

(Wtil)
l+1
i ,j − (Wtil)

l
i ,j

∆t
= −Di ,j +

mi j

ρw
. (56)

The updated value of Wtil, which appears on the left side of Eq. (56), is computed by15

trivial integration of Eq. (16), namely

(Wtil)
l+1
i ,j = (Wtil)

l
i ,j +∆t

(mi j

ρw
−Cd

)
. (57)

The right-hand-side value is used if it is in the closed interval [0,W max
til ], but otherwise

the bounds 0 ≤Wtil ≤W
max
til are enforced. Once W l+1

til is computed, the value of W l+1
20

can be updated by Eq. (56) in a mass-conserving way.
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Assuming no error in the flux components Q, the local truncation error (Morton and
Mayers, 2005) of scheme Eq. (56) would be O(∆t1+∆x2+∆y2) as an approximation of
Eq. (12). The actual truncation error depends on the nature of the approximation which
generates the discrete fluxes, next.

7.3 Discrete advective fluxes5

We test two flux discretization schemes Eq. (56), namely first-order upwind and the
Koren flux-limited third-order scheme (Hundsdorfer and Verwer, 2010). Both schemes
achieve non-oscillation and positivity, but with different local truncation error and com-
plexity of implementation. The third-order scheme is best explained as a modification of
the better-known conservative (“donor cell”; LeVeque, 2002) first-order upwind scheme10

we use.
In fact, the following formulas apply in the cases ue ≥ 0, ue < 0, vn ≥ 0, and vn < 0,

respectively:

Qe(ue) = ue
[
Wi ,j +Ψ(θi )(Wi+1,j −Wi ,j )

]
, (58)

Qe(ue) = ue

[
Wi+1,j +Ψ

(
(θi+1)−1

)
(Wi ,j −Wi+1,j )

]
,15

Qn(vn) = vn
[
Wi ,j +Ψ(θj )(Wi ,j+1 −Wi ,j )

]
,

Qn(vn) = vn

[
Wi ,j+1 +Ψ

(
(θj+1)−1

)
(Wi ,j −Wi ,j+1)

]
.

The subscripted θ quotients are as follows:

θi =
Wi ,j −Wi−1,j

Wi+1,j −Wi ,j
, (θi+1)−1 =

Wi+2,j −Wi+1,j

Wi+1,j −Wi ,j
,20

θj =
Wi ,j −Wi ,j−1

Wi ,j+1 −Wi ,j
, (θj+1)−1 =

Wi ,j+2 −Wi ,j+1

Wi ,j+1 −Wi ,j
.

The first-order upwind scheme simply sets Ψ(θ) = 0 in formulas Eq. (58). The Koren
scheme “limits” its third-order and positive-coefficient correction to the upwind scheme
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by using this formula (Hundsdorfer and Verwer, 2010):

Ψ(θ) = max
{

0,min
{

1,θ,
1
3
+

1
6
θ
}}

. (59)

When using the Koren flux-limiter the stencil in Fig. 4 is extended because regular
grid neighbors Wi+2,j , Wi−2,j , Wi ,j+2, Wi ,j−2 are also involved in updating Wi ,j . The flux-5

correction-limited Koren third-order scheme bypasses the first-order limitation of pos-
itive linear finite difference/volume schemes imposed by Godunov’s barrier theorem
(Hundsdorfer and Verwer, 2010, Sect. I.7.1) by having a nonlinear correction formula,
i.e. the combination of Eqs. (58) and (59) above. Though the Koren scheme is usu-
ally third-order where smoothness allows, it reverts to first-order at extrema and other10

non-smooth areas where θ� 1 or θ� 1.
For either the first-order or Koren schemes, if the water input m is negative then we

must actively enforce the positivity of the water thickness W . Positivity of the source-
free advection-diffusion scheme is a desirable property but it does not ensure positivity
of the solution if there is actual water removal (i.e. if (m/ρw)−∂Wtil/∂t < 0). Therefore15

we project (reset) W to be nonnegative at the end of each time step.

7.4 Mass conservation: positivity and stability

Explicit numerical scheme Eq. (56) for the mass conservation PDE Eq. (12), combined
with the first-order upwind case of formulas Eq. (58), is sufficiently simple so that we
can analyze its stability properties. For this scheme we now sketch a maximum prin-20

ciple argument which shows stability (Morton and Mayers, 2005). The argument also
shows positivity (Hundsdorfer and Verwer, 2010) as long as the total water input is non-
negative, but here only the case m = 0 and W max

til = 0 case is shown. Also we consider
only the upwinding case where the discrete velocities at cell interfaces are nonnega-
tive: ue ≥ 0, uw ≥ 0, vn ≥ 0, vs ≥ 0. The other upwinding cases can be handled by similar25

arguments.
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Define νx = ∆t/∆x, νy = ∆t/∆y , µx = ∆t/∆x2, and µy = ∆t/∆y2. Collecting terms
in Eq. (56) to write the new value as a linear combination of the old values, we get

W l+1
i ,j = (νxuw +µxDw)W l

i−1,j + (µxDe)W l
i+1,j

+ (νyvs +µyDs)W l
i ,j−1 + (µyDn)W l

i ,j+1

+
[
1− νxue − νyvn −µx(De +Dw)−µy (Dn +Ds)

]
W l
i ,j5

= ÃW l
i−1,j + B̃W

l
i+1,j + C̃W

l
i ,j−1 + D̃W

l
i ,j+1 + Ẽ W

l
i ,j . (60)

Because of our assumption about nonnegative velocities, and noting that the diffusiv-
ities are nonnegative, we see that coefficients Ã, B̃, C̃, D̃ are all nonnegative. Only Ẽ
could be negative, depending on values of νx,νy ,µx, and µy .10

Requiring Ẽ in Eq. (60) to be nonnegative is a sufficient stability condition (Morton
and Mayers, 2005), which we generate based on an equal split between advective and
diffusive parts. First there is a CFL restriction for the advection terms, namely νxαe +
νyβn ≤ 1

2 , which is condition Eq. (49) when generalized to all upwinding cases. The
second is a time-step restriction on the diffusion, namely µx(De+Dw)+µy (Dn+Ds) ≤ 1

2 ,15

which is condition Eq. (50). If both Eqs. (49) and (50) hold then the coefficient Ẽ in
Eq. (60) is nonnegative.

Because the coefficients in linear combination Eq. (60) also add to one, as the reader
may check, it follows from Eqs. (49) and (50) that the scheme is stable (Morton and
Mayers, 2005). It also follows from Eqs. (49) and (50) that if W l

i ,j ≥ 0 for all i , j then20

Eq. (60) gives W l+1
i j ≥ 0, in this m = 0 and W max

til = 0 case, which is our positivity claim.
Thus, under conditions Eqs. (49) and (50), scheme Eq. (56) is stable and positivity-
preserving.
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7.5 Discretization of the pressure equation

The pressure evolution Eq. (33) is a nonlinear diffusion with additional “reaction” terms
associated to opening and closing. The time step restriction for our explicit pressure
scheme is comparable to Eq. (50), though the proof above for the stability of the mass
conservation scheme does not suffice to prove stability. That is, if the time step satisfies5

∆t ≤∆tP , where

∆tP

(
2maxD
φ0

)(
1

∆x2
+

1

∆y2

)
= 1 (61)

then we assert that, and observe in practice that, the scheme is stable. From Eq. (50)
the resulting time step ∆tP is a fraction of ∆tW :10

∆tP = 2φ0∆tW . (62)

We can again be quantitative in a particular example. Consider the same 250 m sim-
ulation of the hydrology of Nordenskiöldbreen as earlier. With φ0 = 0.01 we have ∆tP
which is 50 times smaller than ∆tW and half of ∆tCFL:15

∆tW ≈ 8000 s from Eq. (50),

∆tCFL ≈ 300 s from Eq. (49),

∆tP ≈ 160 s from Eq. (62).

This analysis suggests that the numerical scheme for pressure diffusion, given next,20

may often have the shortest time step, but it may be comparable to CFL. Note that
∆tCFL = O(∆x) while ∆tW and ∆tP are O(∆x2). The time step restriction ∆tP scales
with the adjustable regularizing porosity φ0 so we can make it more or less severe.

The scheme we use for the pressure Eq. (33) is similar to the scheme we have
just presented for the mass continuity Eq. (12). Denote ψ li ,j = P

l
i ,j +ρwg(bi ,j +W

l
i ,j ).25

Let Oi j = c1|v b|i ,j (Wr−W
l
i ,j )+ and Ci j = c2A(ρigHi ,j −P

l
i ,j )

3W l
i ,j be the gridded values of
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the cavitation-opening and creep-closure rates. Also define the sum of all zero order
(i.e. without spatial derivatives) terms

Zi j = Ci j −Oi j +
mi j

ρw
−

(Wtil)
l+1
i j − (Wtil)

l
i j

∆t
. (63)

Using Eq. (55) for the flux divergence, the scheme for pressure Eq. (33) is now5

φ0

ρwg

P l+1
i ,j − P li ,j

∆t
= −Di ,j +Zi j , (64)

or, in explicit update form,

P l+1
i ,j = P li ,j +

ρwg∆t
φ0

(
−Di ,j +Zi j

)
. (65)

10

Because Eq. (63) uses the updated value (Wtil)
l+1
i j , Eq. (57) must be applied before

Eq. (65) can be used to update P to the new time tl+1.
There are special cases at the boundaries of the active subglacial layer: (i) where

there is land (bi ,j > 0) and no ice (Hi ,j = 0) we set P l+1
i ,j = 0, (ii) where the ice is float-

ing we set P l+1
i ,j = (Po)i ,j , and (iii) where there is grounded ice (Hi ,j > 0) and no water15

(W l
i ,j = 0) we set P l+1

i ,j = (Po)i ,j if there is no basal sliding and P l+1
i ,j = 0 if there is sliding

(because of cavitation; see Eq. A4).

7.6 One time step of the model

Mathematical model Eq. (34) evolves W , Wtil, and P . Here we describe one time step
of the fully-discretized evolution. For convenience we treat the ice geometry and sliding20

speed as fixed, and so hi ,j , bi ,j , (Po)i ,j , and |v b|i ,j are all denoted as time-independent.
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The ice geometry may be quite general, with ice-free land or floating ice allowed at
any location (xi ,yj ). The ice geometry determines boolean “masks” for grid cell state
(based on zero sea level elevation):

icefree i ,j = (hi ,j > 0) and (hi ,j = bi ,j ),

float i ,j = (ρi(Hfloat)i ,j < −ρswbi ,j ).5

Here we take a sea-water density ρsw = 1028.0 and define Hfloat = hi ,j/(1− r) as the
thickness of the ice if it is floating, where r = ρi/ρsw. Note that float i ,j is also true
in ice-free ocean. The subglacial hydrology model exists only for grounded ice, that is,
only if both icefree and float are false. The other mask cases provide boundary10

conditions when they are neighbors to grounded ice-filled cells.
One time step follows this algorithm:

i. Start with valuesW l
i ,j , (Wtil)

l
i ,j , P

l
i ,j which satisfy the boundsW ≥ 0, 0 ≤Wtil ≤W

max
til ,

and 0 ≤ P ≤ Po.

ii. Get (Wtil)
l+1
i ,j by Eq. (57). Enforce 0 ≤Wtil ≤W

max
til . If icefree i ,j or float i ,j then15

set (Wtil)
l+1
i ,j = 0.

iii. Get W values averaged onto the staggered grid from Eq. (51), staggered grid
values of the effective conductivity K from Eq. (52), velocity components u, v at
staggered grid locations from Eq. (53), and staggered grid values of the diffusivity
D from Eq. (54).20

iv. Get time step ∆t = min{∆tCFL,∆tW ,∆tP } using criteria Eqs. (49), (50), and (62).

v. Using Eq. (58) and a particular flux-limiter, compute the advective fluxes Qe(αe) at
all staggered-grid points (i +1/2, j ) and Qn(βn) at all staggered-grid points (i , j +
1/2).
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vi. Get approximations Di ,j of the flux divergence from Eq. (55). For each direction
(i.e. x- and y-directions), do not compute the divided-difference contribution to the
flux divergence in Eq. (55) if either neighbor is icefree or float .

vii. If icefree i ,j then set P l+1
i ,j = 0. If float i ,j then set P l+1

i ,j = (Po)i ,j . If W l
i ,j = 0 and

icefree i ,j and float i ,j are both false, then set P l+1
i ,j = (Po)i ,j . Then use Eq. (65)5

to compute values for P l+1
i ,j at the remaining locations.

viii. If P l+1
i ,j does not satisfy bounds 0 ≤ P ≤ Po then reset (project) into this range.

ix. If icefree i ,j or float i ,j then set W l+1
i ,j = 0. Otherwise use Eq. (56) to compute

values for W l+1
i ,j .

x. If W l+1
i ,j < 0 then reset (project) W l+1

i ,j = 0.10

xi. Update time tl+1 = tl +∆t and repeat at (i).

This recipe goes with a reporting scheme for mass conservation. Note that in steps (ii)
and (ix) water is lost or gained at the margin where either the ice thickness goes to zero
on land (margins), or at locations where the ice becomes floating (grounding lines).
Because such loss/gain may be the modeling goal – users want hydrological discharge15

– these amounts are reported. This reporting scheme also tracks the projections in step
(x), which represent a mass conservation error which goes to zero under the continuum
limit ∆t→ 0.

8 PISM options for hydrology models

In this section we document the runtime options for the PISM hydrology model (PISM20

authors, 2013). There are three choices of model equations, namely distributed ,
routing , and null . The first of these is the complete model described in this paper.
The other two are reductions; we list them in order of decreasing complexity.
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8.1 distributed

This most-complete PISM hydrology model is chosen by runtime option -hydrology
distributed . It is governed by the full set of Eq. (34) in Sect. 5; see also Tables 1
and 2.

8.2 routing5

This model is chosen by option -hydrology routing . It is governed by a subset of
Eq. (34), with the equation for evolution of pressure P removed, and with the replace-
ment P 7→ Po = ρigH in defining K , V , and ψ . Thus the equations simplify to:

∂W
∂t

+
∂Wtil

∂t
= −∇ · (V W )+∇ · (D∇W )+

m
ρw

, (66)

∂Wtil

∂t
=
m
ρw

−Cd,10

along with bounds 0 ≤W and 0 ≤Wtil ≤W
max
til . The determination of Ntil and τc is un-

changed.

8.3 null

This non-conserving model is chosen by option -hydrology null . It is the default15

hydrology model in PISM. It has only the state variable Wtil. It uses only evolution
Eq. (16).

8.4 Configurable constants

All of the constants in Table 1 are configurable parameters in PISM. The correspon-
dence between PISM parameters names and the symbols in this paper is in Table 4.20

These parameters can be changed at runtime by using the parameter name as an
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option or by setting a pism_overrides variable in a NetCDF file which is read with
the -config_override option. See src/pism_config.cdl for default values and
units.

9 Results

9.1 Verification of the coupled model5

By using the coupled steady-state exact solution constructed in Sect. 6 we can verify
most of the numerical schemes described above. Verification is the process of mea-
suring and analysing the errors made by the numerical scheme, especially as the nu-
merical grid is refined (Wesseling, 2001; Bueler et al., 2005).

We initialize our time-stepping numerical scheme with the exact steady solution and10

we measure the error relative to the steady exact values after one model-month. The
continuum time-dependent model Eq. (34) would cause no drift away from steady state,
so any drift is error.

For the verification runs we use the values in Table 3. We do runs on grids decreasing
by factors of two from 2 km to 125 m. Figure 5 shows the results based on first-order15

upwinding for the fluxes.
This convergence evidence suggests that the coupled advection-diffusion-reaction

equations for W and P have correctly-implemented numerical schemes. The rate of
convergence is roughly linear (i.e. about O(∆x1)) because largest errors arise at lo-
cations of low regularity of the solution, including the radius r = R1 where P abruptly20

drops from Po, and at the ice sheet margin r = L where there is a jump in the water
thickness to zero.

The rates of convergence for average errors are nearly identical for the higher or-
der flux-limited (Koren) scheme and for the first-order upwinding scheme (not shown).
Because our problem is an advection-diffusion problem in which both the advection25

velocity and the diffusivity are solution-dependent, it is difficult to separate the errors
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arising from numerical treatments of advection and diffusion. The first-order upwind-
ing scheme for the advection has much larger numerical diffusivity but this diffusivity
is masked by the physical diffusivity. Based on our verification evidence it is reason-
able to choose the simpler first-order upwinding for applications. It also requires less
interprocess communication in a parallel implementation like ours.5

9.2 Application of the model at ice sheet scale

We now apply our mass-conserving hydrology models to the entire Greenland ice sheet
at 2 km grid resolution. This nontrivial example demonstrates the model at large compu-
tational scale using real ice sheet geometry, with one-way coupling from ice dynamics
for a realistic distribution of sliding and basal melt rate.10

9.2.1 Spun-up initial state

The PISM dynamics and thermodynamics model (Bueler and Brown, 2009; Winkel-
mann et al., 2011; Aschwanden et al., 2012), using the non-mass-conserving null
hydrology model (Sect. 8), was applied by grid sequencing to compute a consistent
and nearly-steady model of the ice sheet, a “spun-up” initial state. Model choices for ice15

dynamics, including enhancement factor, sliding law power, and till friction angle, follow
Aschwanden et al. (2013). The steady present-day climate of the ice sheet, especially
surface mass balance and surface temperature (Ettema et al., 2009), were from the
SeaRISE data set for Greenland (Bindschadler and twenty-seven others, 2013). The
grid sequence was 50 ka on a 20 km grid, 20 ka on a 10 km grid, 2 ka on a 5 km grid,20

and finally 200 a on a 2 km grid. All model fields were bilinearly interpolated at each
refinement stage. This whole spinup used 2800 processor-hours on 72 processors on
a linux cluster with 2.2 GHz AMD Opteron processors, a small computation for modern
supercomputers.

The final 2 km stage, on a horizontal grid of 1.05 million grid points, used uniform25

10 m vertical spacing so that the ice sheet flow was modelled on a structured 3-D
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grid of 460 million grid points (e.g. locations where ice temperature and velocity were
computed). In the last 100 a of the final stage the ice sheet volume varied by less than
0.04 %. Other more active measures showed stability during the last 100 a at the level
of less than one percent (e.g. the area of temperate base and the maximum ice velocity
over the whole sheet) to at most a few percent (the floating ice area).5

The results of this whole-ice-sheet spinup were validated by comparing results to
present-day observations. (Though the model is in nearly steady state, the actual
Greenland ice sheet may not be as close to steady.) The spun-up ice sheet volume
of 3.094×106 km3 is close to the present-day volume of 3.088×106 km3 computed
from the SeaRISE data on the same grid. However, in describing more careful valida-10

tion measures for similar 2 km PISM model runs, Aschwanden et al. (2013) observe
that volume alone is inadequate for model validation. A better evaluation of dynam-
ical quality is shown in Fig. 6, which compares the modeled and observed surface
speed. We see that the extent of the Northeast Greenland ice stream is smaller than
observed, and the distribution of flow in Western Greenland outlet glaciers differs from15

the observed pattern. Our model uses no spatially-variable parameter values such as
basal shear stresses found by inversion of surface velocities.

The spun-up initial state includes, in particular, modelled ice thickness H , basal melt
rate m, and sliding velocity |v b|; the latter two fields are shown in Fig. 7. We note that
the areas of sliding roughly coincide with areas of basal melt because modeled basal20

resistance comes from the yield stress parameterized in Sect. 3.

9.2.2 Experimental setup

We used fields H , m, |v b| from the spun-up state as steady data in five model-year
runs of our mass-conserving hydrology routing and distributed models. Because
these fields were fixed, only one-way coupling was tested: a steady ice dynamics model25

fed its fields to an evolving subglacial hydrology model. The hydrology model was ini-
tialized with the Wtil values from the spun-up state, but with W = 0 initial values and
P = 0 initial values (for distributed ).
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These runs had 1.05 million subglacial hydrology grid points at which variables W ,
Wtil, and P were recomputed at each time-step according to the numerical model de-
scribed in Sect. 7. In both routing and distributed models the modelled hydro-
logical system became quite steady after the first three model years.

The adaptively-determined time-steps for the hydrology model reached a steady5

level of 4 model hours for the routing model based on maximum subglacial wa-
ter speeds |V | of 0.05 m s−1 and maximum diffusivity D of 10.6 m2 s−1. For the
distributed model the time steps were actually slightly longer, primarily because
routing concentrates large water amounts and fluxes along steepest-descent paths.
The time steps were about 6 model hours based on speeds |V | of 0.03 m s−1 and10

smaller maximum diffusivities D of about 0.25 m2 s−1. (Higher water velocities V were
seen in the 250 m grid resolution Nordenskiöldbreen case mentioned in Sect. 7, based
on additional simulated surface water input added to the thermodynamically-generated
basal melt rate (van Pelt, 2013), and the pressure time steps in that case were shorter
than the mass time steps.)15

9.2.3 routing results

The final values of Wtil and W for the routing run are shown in Fig. 8. We see that
the till is fully saturated (Wtil = 2 m) in essentially all areas where basal melt occurs.
In the outlet glacier areas the transportable water W concentrates along curves of
steepest descent of the hydraulic potential; this effect is seen in detail in Fig. 9. The20

grid resolution of 2 km, while very high for contemporary ice dynamics models, still
represents a significant spatial “smearing” of the flow pathways. Specifically, though
relatively few areas have W > 1 m, the continuum limit of the model would be expected
to have W � 1 m in concentrated pathways of a few meters to tens of meters width.

This model could be regarded as a minimal “conduit-like” description of the subglacial25

flow, because of these concentrated pathways. As noted in the introduction, however,
our model has no “R-channel” conduit mechanism, in which dissipation heating of the
flowing water generates wall melt-back. The location of pathways here is determined
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primarily by the bedrock elevation detail provided by the SeaRISE data set, which is
limited; the results are especially suspect in the Eastern outlet glaciers in Fig. 9.

9.2.4 distributed results

The final values of W and the relative water pressure P/Po for the five model-year
distributed run are shown in Fig. 10. Again the till is full (Wtil = 2 m) in essentially5

all areas where basal melt occurs, and indeed Wtil is not shown because it is identical
to that in the routing model in this one-way coupled case.

Recall that |v b| determines the pressure drop caused by cavitation. The effect is
to spread out the water W relative to the routing model, as clearly seen in Fig. 10.
There is no strong concentration ofW along curves of steepest descent of the hydraulic10

potential. This result depends, however, on the opening and closing parameters in
the distributed model, especially parameters c1,c2,φ0,Wr; see Tables 1 and 4.
Darcy flux model parameters α,β,k are also important. Parameter identification using
observed surface data, though needed, is beyond our current scope.

We can examine the local relationship between water amount W and pressure P15

in the distributed results. Though the model is near steady state, the basal melt
rate, sliding speed, and overburden pressure all show the large spatial variations which
are characteristic of a real ice sheet. Figure 11 shows that if we “bin” pairs (W ,P ) by
relatively-narrow sliding velocity ranges, as shown in each scatter plot, then there is
usually a rough increasing relationship between W and the relative pressure P/Po. At20

fast-sliding locations the water amount is often comparable to the bed roughness scale
Wr. For low sliding velocities we see generally lower water amounts (W .Wr/10) but
a full range of pressures. In thick ice the pressure P is close to overburden even if there
is fast sliding. Locations with high sliding, high water amount, and low pressure also
have low ice thickness. Note Fig. 11 would show even more scatter if the run were not25

close to steady state, for example if there were time-varying surface melt input into the
subglacier (van Pelt, 2013).
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10 Conclusions

This paper documents additions made to the Parallel Ice Sheet Model in its 0.6 version
released February 2014. It describes and demonstrates a subglacial hydrology model
which is novel in having these features:

– a 2-D parallel implementation of a coupled till-and-linked-cavities model (Sects. 2–5

7),

– an englacial porosity regularization which allows a practical numerical model in
which physical bounds 0 ≤ P ≤ Po hold at all times (Sects. 4 and 7),

– an analysis of steady states (Sect. 5.3 and Appendix A), describing the actual
diffusivity of the advective flux in that case,10

– an exact solution of the coupled mass and pressure equations in the steady radial
case (Sect. 6), leading to verification (Sect. 9), and

– demonstration at whole ice-sheet scale on a million-point hydrology grid (Sect. 9).

The comprehensive treatment here of certain subjects is also important. We have

– clarified the relationship of several “closures” which turn morphological ideas15

about the subglacial aquifer into concrete pressure equations (Sect. 4), and

– created and implemented a common extension of several seemly-disparate pub-
lished models (Sect. 5).

A deliberate limitation in scope of the current paper is that we show only one-way
coupling. In this paper the PISM ice flow and thermodynamics model feeds basal melt20

rate and sliding velocities to the hydrology model. Two-way coupling will appear in
future work.
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Appendix A: Analysis of steady states

Relative to the time-dependent form Eq. (34), steady-state Eqs. (38)–(41) have sepa-
rate balances between the divergence of the flux and the water input (Eq. 40), and the
opening and closing processes (Eq. 41).

Equation (41) allows us to write the pressure P = P (W ) in steady state as a con-5

tinuous function of the water amount W . Steady state is only possible if a condition
holds:

c1|v b|(Wr −W )+ ≤ c2A P
3
o W . (A1)

That is, the maximum closing rate C(N,W ), which occurs at zero water pressure, must10

match the opening rate O(|v b|,W ), which is pressure-independent. Define the following
scaled basal sliding speed which has units of pressure; it is a scale for the pressure
drop caused by cavitation:

sb =
(
c1|v b|
c2A

)1/3

. (A2)
15

Then Eq. (A1) is equivalent to

W ≥Wc :=
s3

b

s3
b + P

3
o

Wr. (A3)

If Eqs. (A1) or (A3) holds then

P (W ) = Po − sb

(
(Wr −W )+

W

)1/3

. (A4)20

Note that in Eq. (A4) we have P (Wc) = 0. Underpressure (P = 0) with subcritical water
amount (W <Wc) does not occur in steady state though it can occur in nonsteady
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conditions. Equation (A4) may apply even if W ≥Wr, in which case the water pressure
takes the overburden value P = Po.

Figure A1 shows the function P (W ) from Eq. (A4) for different values of sliding speed
|v b|, and Fig. A2 shows the function for values of overburden pressure Po. We see that
as the water amount reaches the roughness scale (W↗Wr) the pressure rises rapidly5

to overburden (P (W )↗Po). At the other extreme, we see that P (W )↘0 as W↘Wc. The
curves P (W ) in Figs. A1 and A2 do not include the underpressure cases 0 ≤W <Wc
wherein Eq. (A3) is violated.

Recall that Flowers and Clarke (2002a) propose function PFC(W ) for both steady and
nonsteady circumstances. Both functions P (W ) in Eq. (A4) and PFC(W ) in Eq. (29) are10

increasing. They both relate the water pressure to the overburden pressure Po. How-
ever, while in Eq. (A4) the relation to Po is additive, in Eq. (29) it is a multiplicative
scaling. The power law form Eq. (29) is not justified by the physical reasoning which
led to Eq. (A4), even in steady state. It would appear that any functional relationship
P (W ) should also depend on the sliding velocity, as it does here, if cavitation influences15

the water pressure. Also, theW >Wcrit case gives PFC(W ) > Po in Eq. (29), but this con-
dition does not arise in Eq. (A4). In the current paper is that we do not set a relationship
P = P (W ) at all, even though such a relation emerges in runs with steady state inputs.

We now consider how the steady state water velocity V , and the associated flux q,
depends on other quantities. Because V depends on ∇P , according to Eqs. (38) and20

(A4) in steady state we have

∂P
∂W

=
sbWr

3W 4/3(Wr −W )2/3
(A5)

if Wc <W <Wr. If W ≤Wc then ∂P/∂W is undefined, and if W >Wr then ∂P/∂W = 0.
Note that the condition Wc <W <Wr corresponds to the pressure condition 0 < P < Po25

in steady state. Equation (A5) and Figs. A1 and A2 agree that ∂P/∂W →∞ asW↗Wr.
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Equations (38), (A4), and (A5) imply a formula for the velocity in steady state:

V = −k
[
∇ψo −

(
Wr −W
W

)1/3

∇sb +
sbWr

3W 4/3(Wr −W )2/3
∇W
]

, (A6)

where ψo = Po +ρwgb. Equation (A6) helps us understand the advective flux “VW ” in
q. The direction of water velocity V is determined by a combination of a geometric5

direction (∇ψo), a direction derived from spatial variations in the sliding speed (∇sb),
and a diffusive direction (∇W ). Thus a portion of VW is diffusive in steady state, in
addition to the a priori diffusive flux −D∇W . In fact we can write the whole flux as
a linear combination of gradients,

q = −kA1∇ψo +kA2∇sb −kA3∇W , (A7)10

with coefficients

A1 =W , (A8)

A2 = (Wr −W )1/3W 2/3,

A3 =
sbWr

3(Wr −W )2/3W 1/3
+ρwgW .15

The first two coefficients A1,A2 go to zero asW → 0, but A3 remains large whenW → 0
as long as sliding is occurring (sb > 0). Thus for low water amount and sustained sliding
we should think of the water as diffusing in the layer. When the water thickness is
greater, namely if it is almost at the roughness scale (W .Wr), then A3 is large in20

sliding cases (sb > 0); again the effect is diffusive.
In steady state the water amount W roughly scales with 1/k where k is the hydraulic

conductivity. In fact, if we combine Eq. (40) with Eq. (A7) and rearrange slightly then
we find

−∇ · (A3∇W ) =
m
kρw

+∇ · (A1∇ψo)−∇ · (A2∇sb) . (A9)25
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One may regard Eq. (A9) as a non-linear elliptic equation for W . In fact, in the case
where H , b, and |v b| are all spatially-uniform, so that ∇ψo = ∇sb = 0, Eq. (A9) is of the
form −∇ · (A3(W )∇W ) =m/(kρw) where A3(W ) = A3 is given in Eq. (A8). If W is both
bounded away from zero and bounded away from the roughness scale Wr (i.e. there
is ε > 0 so that ε < W <Wr −ε) then this equation is uniformly elliptic. Thus a maxi-5

mum principle applies (Evans, 1998). This means that the maximum of W will equal
or exceed the maximum of W along the boundary of that region, so the graph of W is
concave down. Thus the values of W will scale with 1/k. Indeed, for the simpler equa-
tion −∇·(D0∇W ) =m0/(kρw), with D0,m0 positive constants, on a disc of radius L, and
zero boundary values, the solution has maximum value W (0) which precisely scales10

as 1/k. As seen in numerical results, the solution W of Eq. (A9) will also scale with
1/k if ∇ψo and ∇sb are not too large. However, if W ≈ 0 or W .Wr then the diffusivity
coefficient A3(W ) will be large and so the values of W away from the boundary will be
flattened-out by the resulting fast diffusion.
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Table 1. Physical constants and model parameters. All values are configurable in PISM.

Name Default Units Description

A 3.1689×10−24 Pa−3 s−1 ice softness (Huybrechts et al., 1996)
α 5/4 power in flux formula (Schoof et al., 2012)
β 3/2 power in flux formula (Schoof et al., 2012)
c0 0 Pa till cohesion (Tulaczyk et al., 2000a)
c1 0.5 m−1 cavitation coefficient (Schoof et al., 2012)
c2 0.04 creep closure coefficient
Cc 0.12 till compressibility (Tulaczyk et al., 2000a)
Cd 0.001 m a−1 background till drainage rate
δ 0.02 Ntil lower bound, as fraction of overburden pressure
e0 0.69 reference void ratio at N0 (Tulaczyk et al., 2000a)
φ0 0.01 notional (regularizing) englacial porosity
g 9.81 m s−2 acceleration of gravity
k 0.001 m2β−α s2β−3 kg1−β conductivity coefficient (Schoof et al., 2012)
N0 1000 Pa reference effective pressure (Tulaczyk et al., 2000a)
ρi 910 kg m−3 ice density (Greve and Blatter, 2009)
ρw 1000 kg m−3 fresh water density (Greve and Blatter, 2009)
Wr 0.1 m roughness scale (Hewitt et al., 2012)
W max

til 2 m maximum water in till (Bueler and Brown, 2009)
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Table 2. Functions used in subglacial hydrology model Eq. (34).

Type Description (symbol, units, meaning)

state W m transportable water thickness
Wtil m till-stored water thickness
P Pa transportable water pressure

input b m bedrock elevation
ϕ till friction angle
H m ice thickness
m kg m−2 s−1 total melt water input
|v b| m s−1 ice sliding speed

output Ntil Pa till effective pressure
τc Pa till yield stress
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Table 3. Constants used in constructing the exact solution.

Name Value Units Description

α 1 power in flux
β 2 power in flux
H0 500 m center thickness
k 0.01/(ρwg) m3 s kg−1 hydraulic conductivity
L 22.5 km cliff at r = 0.9R0

m0 0.2ρw kg m−2 a−1 water input rate
R0 25 km ideal ice cap radius
R1 5 km sliding starts
v0 100 m a−1 sliding speed scale
Wr 1 m roughness scale
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Table 4. Correspondence between symbols in this paper and PISM configuration parameter
names. Alphabetical by parameter name. All of these are used in the distributed model,
with the indicated subsets also used in the routing and null models.

PISM configuration name Symbol routing null

fresh_water_density ρw × ×
hydrology_cavitation_opening_coefficient c1
hydrology_creep_closure_coefficient c2
hydrology_gradient_power_in_flux β ×
hydrology_hydraulic_conductivity k ×
hydrology_regularizing_porosity φ0
hydrology_roughness_scale Wr
hydrology_thickness_power_in_flux α ×
hydrology_tillwat_decay_rate Cd × ×
hydrology_tillwat_max W max

til × ×
ice_density ρi × ×
ice_softness A
standard_gravity g × ×
till_c_0 c0 × ×
till_compressibility_coefficient Cc × ×
till_effective_fraction_overburden δ × ×
till_reference_effective_pressure N0 × ×
till_reference_void_ratio e0 × ×
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Bueler and Van Pelt: Subglacial hydrology in PISM 5

the ice base is not frozen. When present, such saturated till is
central to the complicated relationship between the amount315

of subglacial water and the speed of sliding. Our model in-
cludes storage of subglacial water in till, potentially every-
where under the ice sheet, both because of its role in con-
serving the mass of liquid water and its role in determining
basal shear stress.320

We will assume throughout that liquid water or ice fills
pore spaces in the till, and that there are no air- or vapor-filled
pore spaces. We suppose that when m= 0 and Wtil = 0 then
the pore spaces in the till are filled with ice and the basal
shear stress is correspondingly-high. When Wtil is small the325

till will generally hold both liquid water and ice. Only when
Wtil attains sufficiently large values is the till conceived-of as
entirely melted, at which point a drop in effective pressure
becomes possible (subsection 3.2 below).

3.1 Evolution of water amount330

While the thickness W in (1) describes the amount of water
in subglacial cavities, and in the connections between cavi-
ties (Kamb, 1987), the water in till pore spaces is much less
mobile because of the very low hydraulic conductivity of
till (Lingle and Brown, 1987; Tulaczyk et al., 2000a; Truf-335

fer et al., 2001). Therefore we choose an evolution equation
for Wtil for simplicity (Bueler and Brown, 2009), namely

∂Wtil

∂t
=
m

ρw
−Cd. (16)

Here Cd ≥ 0 is a fixed rate that makes the till gradually drain
in the absence of water input. Equation (16) is the same as340

equation (2) in Tulaczyk et al. (2000b). In practice we choose
Cd = 1 mm/a, which is small compared to typical values of
m/ρw. Refreeze is also allowed, as a negative value for m.
Note that any water removed from the till enters the transport
system; it is conserved.345

3.2 Effective pressure on the till

There is extensive evidence that deformation of saturated till
is well-modeled by a plastic (Coulomb friction) or nearly-
plastic rheology (Hooke et al., 1997; Truffer et al., 2000; Tu-
laczyk et al., 2000a; Schoof, 2006b). The yield stress τc of350

such till satisfies the Mohr-Coulomb relation

τc = c0 + (tanϕ)Ntil (17)

where c0 is the till cohesion, ϕ is the till friction angle, and
Ntil is the effective pressure of the overlying ice on the satu-
rated till (Cuffey and Paterson, 2010). (The effective pressure355

N = Po−P used in the next section for modeling cavity clo-
sure is distinct from Ntil in (17). This distinction is justified
by the very low hydraulic conductivity of till.)

Let e= Vw/Vs be the till void ratio, where Vw is the vol-
ume of water in the pore spaces and Vs is the volume of min-360

eral solids (Tulaczyk et al., 2000a). From the standard the-
ory of soil mechanics and from laboratory experiments on
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Fig. 1. (a) Equation (18) determines the effective pressure Ntil as a
function of the void ratio e, as shown here. Reference values of e0
and N0 are indicated. (b) The same curve, with Ntil as a function of
Wtil, and bounded above by overburden pressure Po and below by a
fixed fraction δ of Po (solid curve), is used in our model. The case
shown is for 1000 meters ice thickness.

till (Hooke et al., 1997; Tulaczyk et al., 2000a), a linear rela-
tion exists between the logarithm of Ntil and e,

e= e0−Cc log10 (Ntil/N0) . (18)365

Figure 1(a) shows a graph of (18). Here e0 is the void ratio at
a reference effective pressure N0 and Cc is the coefficient of
compressibility of the till. Equivalently, Ntil is an exponen-
tial function of e, namelyNtil =N010(e0−e)/Cc (van der Wel
et al., 2013, equation (15)). Note that in (18), Ntil is nonzero370

for all finite values of e.
While equations (18) suggest that the effective pressure

could be any positive number, in fact the area-averaged value
of Ntil under ice sheets and glaciers has limits. It cannot ex-
ceed the overburden pressure for any sustained period. Fur-375

thermore, once the till is close to its maximum capacity then
the excess water will be “drained” into a transport system.
We suppose this occurs at a small, fixed fraction of the over-
burden pressure. Thus we assume bounds

δPo ≤Ntil ≤ Po (19)380

where δ = 0.02 in the experiments in this paper.

Figure 1. (a) Equation (18) determines the effective pressure Ntil as a function of the void ratio
e, as shown here. Reference values of e0 and N0 are indicated. (b) The same curve, with Ntil as
a function of Wtil, and bounded above by overburden pressure Po and below by a fixed fraction
δ of Po (solid curve), is used in our model. The case shown is for 1000 m ice thickness.
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Bueler and Van Pelt: Subglacial hydrology in PISM 11

Table 3. Constants used in constructing the exact solution.

Name Value Units Description
α 1 power in flux
β 2 power in flux
H0 500 m center thickness
k 0.01/(ρwg) m3 skg−1 hydraulic conductivity
L 22.5 km cliff at r = 0.9R0

m0 0.2ρw kgm−2 a−1 water input rate
R0 25 km ideal ice cap radius
R1 5 km sliding starts
v0 100 ma−1 sliding speed scale
Wr 1 m roughness scale
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Fig. 2. An exact radial, steady solution for water thickness W (r)
(dashed). In r-versus-W space the overpressure (O), normal pres-
sure (N), and underpressure (U) regions are determined by ice ge-
ometry and sliding velocity (solid curves; see text).

In equation (48) we see that dW/dr = 0 if W satis-825

fies W =−ω0r/(dPo/dr). In our case with geometry (46)
this reduces to a constant value W ∗ = 0.21764 m because
dPo/dr is linear in r. Both numerical ODE solvers used here
confirm that W (r) is asymptotic to this constant value W ∗

as r→ 0, and that W (r)≈W ∗ within about 1% on all of830

0≤ r ≤R1. This is seen in Figure 2.

7 Numerical schemes

All the numerical schemes described in this section are im-
plemented in parallel using the PETSc library (Balay et al.,
2011).835

7.1 Mass conservation: time-stepping

The mass conservation equation in model (34) will be dis-
cretized by an explicit, conservative finite difference method.
A centered, second-order scheme will be applied to the dif-
fusion part. Two schemes for the advection part will be com-840
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Fig. 3. An exact radial, steady solution pressure P (r) (dashed) and
overburden pressure Po (solid).

pared, namely first-order upwinding and a higher-order flux-
limited upwind-biased method.

We first consider stable time steps. Stability for the advec-
tion schemes occurs with a time step ∆t≤∆tCFL where

∆tCFL

(
max |u|

∆x
+

max |v|
∆y

)
=

1

2
. (49)845

Because of the additional diffusion process, for stability the
time step should also satisfy ∆t≤∆tW where (Morton and
Mayers, 2005)

∆tW maxD

(
1

∆x2
+

1

∆y2

)
=

1

4
. (50)

The condition ∆t≤min{∆tCFL,∆tW } is sufficient for sta-850

bility and convergence of the scheme. (We show this for the
first-order upwind scheme, but standard theory suggests the
same conclusion for the higher-order flux-limited advection
scheme (Hundsdorfer and Verwer, 2010).)

We can understand the scale of these restrictions better by855

considering an example using the parameter values in Table
1. We ran the model on a ∆x= ∆y = 250 m grid to approx-
imate steady state for the subglacial hydrology of Norden-
skiöldbreen (van Pelt, 2013). We used a hypothesized water
input distribution with average value about 1 m a−1, and a860

glacier-wide constant sliding rate of 50 m a−1. The result is
that the maximum computed water speed |V| is about 0.2
m s−1 so the advective restriction (49) is ∆tCFL ≈ 300s≈
10−5 a. Computed diffusivity D = ρwgKW has a maxi-
mum value that varies significantly in time, 0.1≤maxD ≤865

5m2 s−1. Diffusive restriction (50) using value maxD =
1m2 s−1 is ∆tW ≈ 8000s≈ 2.5×10−4 a. Thus in this simu-
lation ∆tW ≈ 25∆tCFL.

This example suggests that, unless both the global peak
velocity is unusually slow, and deep subglacial lakes develop870

so that D is large, the diffusive time scale is significantly

Figure 2. An exact radial, steady solution for water thickness W (r) (dashed). In r-vs.-W space
the overpressure (O), normal pressure (N), and underpressure (U) regions are determined by
ice geometry and sliding velocity (solid curves; see text).

4764

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/4705/2014/gmdd-7-4705-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/4705/2014/gmdd-7-4705-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 4705–4775, 2014

Mass-conserving
subglacial hydrology

in PISM

E. Bueler and W. Van Pelt

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Bueler and Van Pelt: Subglacial hydrology in PISM 11

Table 3. Constants used in constructing the exact solution.

Name Value Units Description
α 1 power in flux
β 2 power in flux
H0 500 m center thickness
k 0.01/(ρwg) m3 skg−1 hydraulic conductivity
L 22.5 km cliff at r = 0.9R0

m0 0.2ρw kgm−2 a−1 water input rate
R0 25 km ideal ice cap radius
R1 5 km sliding starts
v0 100 ma−1 sliding speed scale
Wr 1 m roughness scale
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Fig. 2. An exact radial, steady solution for water thickness W (r)
(dashed). In r-versus-W space the overpressure (O), normal pres-
sure (N), and underpressure (U) regions are determined by ice ge-
ometry and sliding velocity (solid curves; see text).

In equation (48) we see that dW/dr = 0 if W satis-825

fies W =−ω0r/(dPo/dr). In our case with geometry (46)
this reduces to a constant value W ∗ = 0.21764 m because
dPo/dr is linear in r. Both numerical ODE solvers used here
confirm that W (r) is asymptotic to this constant value W ∗

as r→ 0, and that W (r)≈W ∗ within about 1% on all of830

0≤ r ≤R1. This is seen in Figure 2.

7 Numerical schemes

All the numerical schemes described in this section are im-
plemented in parallel using the PETSc library (Balay et al.,
2011).835

7.1 Mass conservation: time-stepping

The mass conservation equation in model (34) will be dis-
cretized by an explicit, conservative finite difference method.
A centered, second-order scheme will be applied to the dif-
fusion part. Two schemes for the advection part will be com-840
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Fig. 3. An exact radial, steady solution pressure P (r) (dashed) and
overburden pressure Po (solid).

pared, namely first-order upwinding and a higher-order flux-
limited upwind-biased method.

We first consider stable time steps. Stability for the advec-
tion schemes occurs with a time step ∆t≤∆tCFL where

∆tCFL

(
max |u|

∆x
+

max |v|
∆y

)
=

1

2
. (49)845

Because of the additional diffusion process, for stability the
time step should also satisfy ∆t≤∆tW where (Morton and
Mayers, 2005)

∆tW maxD

(
1

∆x2
+

1

∆y2

)
=

1

4
. (50)

The condition ∆t≤min{∆tCFL,∆tW } is sufficient for sta-850

bility and convergence of the scheme. (We show this for the
first-order upwind scheme, but standard theory suggests the
same conclusion for the higher-order flux-limited advection
scheme (Hundsdorfer and Verwer, 2010).)

We can understand the scale of these restrictions better by855

considering an example using the parameter values in Table
1. We ran the model on a ∆x= ∆y = 250 m grid to approx-
imate steady state for the subglacial hydrology of Norden-
skiöldbreen (van Pelt, 2013). We used a hypothesized water
input distribution with average value about 1 m a−1, and a860

glacier-wide constant sliding rate of 50 m a−1. The result is
that the maximum computed water speed |V| is about 0.2
m s−1 so the advective restriction (49) is ∆tCFL ≈ 300s≈
10−5 a. Computed diffusivity D = ρwgKW has a maxi-
mum value that varies significantly in time, 0.1≤maxD ≤865

5m2 s−1. Diffusive restriction (50) using value maxD =
1m2 s−1 is ∆tW ≈ 8000s≈ 2.5×10−4 a. Thus in this simu-
lation ∆tW ≈ 25∆tCFL.

This example suggests that, unless both the global peak
velocity is unusually slow, and deep subglacial lakes develop870

so that D is large, the diffusive time scale is significantly

Figure 3. An exact radial, steady solution pressure P (r) (dashed) and overburden pressure Po
(solid).
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12 Bueler and Van Pelt: Subglacial hydrology in PISM

longer than the CFL time scale for a 250 m grid. The scaling
∆tW =O(∆x2) versus ∆tCFL =O(∆x1) makes it clear
that under sufficient spatial grid refinement ∆tW is the con-
trolling restriction, but we suppose that ∆tCFL is control-875

ling for ∆x� 100 m. We will see below, however, that the
time step restriction associated to an explicit time-stepping
method for the pressure equation is typically shorter than ei-
ther of ∆tW ,∆tCFL, and it scales as O(∆x2) like ∆tW .

If implicit time-stepping is used for the pressure equation,880

which requires variational inequality treatment to preserve
physical pressure bounds (Schoof et al., 2012), then the time
scales ∆tW ,∆tCFL addressed here are the only restrictions.
The time step restriction ∆tW could also be removed by
implicit steps for the mass-conservation equation, though it885

would seem this requires another variational inequality for-
mulation because of the lower bound W ≥ 0. Our observa-
tion that ∆tCFL�∆tW for practical ice sheet grids sug-
gests that implicit time-stepping for the mass-conservation
equation is not beneficial.890

i-1 i i+1

j-1

j

j+1

w e

s

n

Fig. 4. Numerical schemes (56) and (64) use a grid-point-centered
cell. Velocities, diffusivities, and fluxes are evaluated at staggered
grid locations (triangles at centers of cell edges denoted e,w,n,s).
State functions W,P are located at regular grid points (diamonds).

7.2 Mass conservation: spatial discretization

To set notation, suppose the rectangular computational do-
main has Mx×My gridpoints (xi,yj) with uniform spacing
∆x,∆y. Let W l

i,j ≈W (tl,xi,yj), (Wtil)
l
ij ≈Wtil(tl,xi,yj),

and P li,j ≈ P (tl,xi,yj) denote the numerical approxima-895

tions.
We will compute velocity components and flux compo-

nents at the staggered (cell-face-centered) points shown in
Figure 4 using centered finite difference approximations of
equations (10) and (11). We use “compass” indices such900

as ue = ui+1/2,j for the “east” staggered value of u and
vn = vi,j+1/2 for the “north” staggered value of v. Similarly
we use compass indices for staggered grid values of the water

layer thickness, computed by averaging regular grid values:

We = (W l
i,j +W l

i+1,j)/2, (51)905

Wn = (W l
i,j +W l

i,j+1)/2.

The nonlinear effective conductivity K from (9) is also
needed at staggered locations. As a notational convenience
define R= P + ρwgb and define these staggered-grid values910

(compare Mahaffy, 1976):

Πe =

∣∣∣∣Ri+1,j −Ri,j
∆x

∣∣∣∣2
+

∣∣∣∣Ri+1,j+1 +Ri,j+1−Ri+1,j−1−Ri,j−1

4∆y

∣∣∣∣2 ,
Πn =

∣∣∣∣Ri+1,j+1 +Ri+1,j −Ri−1,j+1−Ri−1,j

4∆x

∣∣∣∣2
+

∣∣∣∣Ri,j+1−Ri,j
∆y

∣∣∣∣2 .915

Thereby define

Ke = kWα−1
e Π(β−2)/2

e , Kn = kWα−1
n Π(β−2)/2

n . (52)

The velocity components are then found by differencing:

ue =−Ke

(
Pi+1,j −Pi,j

∆x
+ ρwg

bi+1,j − bi,j
∆x

)
, (53)920

vn =−Kn

(
Pi,j+1−Pi,j

∆y
+ ρwg

bi,j+1− bi,j
∆y

)
.

Similarly for diffusivity we have

De = ρwgKeWe, Dn = ρwgKnWn. (54)

We get the remaining staggered-grid quantities by shifting925

indices:

uw = ue
∣∣
(i−1,j)

, Kw =Ke

∣∣
(i−1,j)

, Dw =De

∣∣
(i−1,j)

,

vs = vn
∣∣
(i,j−1)

, Ks =Kn

∣∣
(i,j−1)

, Ds =Dn

∣∣
(i,j−1)

.

Now we define Qe(ue), Qw(uw), Qn(vn), and Qs(vs) as930

the face-centered (staggered-grid) normal components of the
advective flux VW . These quantities are described in more
detail in the next subsection. They use only the staggered ve-
locity component but there is upwinding to determine which
W value, or combination of W values, is used.935

The grid values of D =∇ ·q =∇ · (VW )−∇ · (D∇W )
using (53) and (54) now become:

Di,j =
Qe(ue)−Qw(uw)

∆x
+
Qn(vn)−Qs(vs)

∆y
(55)

−
De(W

l
i+1,j −W l

i,j)−Dw(W l
i,j −W l

i−1,j)

∆x2

−
Dn(W l

i,j+1−W l
i,j)−Ds(W

l
i,j −W l

i,j−1)

∆y2
.940

Figure 4. Numerical schemes Eqs. (56) and (64) use a grid-point-centered cell. Velocities,
diffusivities, and fluxes are evaluated at staggered grid locations (triangles at centers of cell
edges denoted e, w, n, s). State functions W ,P are located at regular grid points (diamonds).
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16 Bueler and Van Pelt: Subglacial hydrology in PISM

Table 4. Correspondence between symbols in this paper and PISM configuration parameter names. Alphabetical by parameter name. All of
these are used in the distributed model, with the indicated subsets also used in the routing and null models.

PISM configuration name Symbol routing null

fresh_water_density ρw × ×
hydrology_cavitation_opening_coefficient c1
hydrology_creep_closure_coefficient c2
hydrology_gradient_power_in_flux β ×
hydrology_hydraulic_conductivity k ×
hydrology_regularizing_porosity φ0

hydrology_roughness_scale Wr

hydrology_thickness_power_in_flux α ×
hydrology_tillwat_decay_rate Cd × ×
hydrology_tillwat_max Wmax

til × ×
ice_density ρi × ×
ice_softness A
standard_gravity g × ×
till_c_0 c0 × ×
till_compressibility_coefficient Cc × ×
till_effective_fraction_overburden δ × ×
till_reference_effective_pressure N0 × ×
till_reference_void_ratio e0 × ×
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Fig. 5. Average water thickness error |W −Wexact| decays as
O(∆x0.91), and average pressure error |P −Pexact| decays as
O(∆x0.92), for grids with spacing 250≤∆x= ∆y ≤ 2000 m.

correctly-implemented numerical schemes. The rate of con-
vergence is roughly linear (i.e. about O(∆x1)) because
largest errors arise at locations of low regularity of the so-
lution, including the radius r =R1 where P abruptly drops1220

from Po, and at the ice sheet margin r = L where there is a
jump in the water thickness to zero.

The rates of convergence for average errors are nearly
identical for the higher resolution flux-limited (Koren)
scheme and for the first-order upwinding scheme (not1225

shown). Because our problem is an advection-diffusion prob-
lem in which both the advection velocity and the diffusivity

are solution-dependent, it is difficult to separate the errors
arising from numerical treatments of advection and diffusion.
The first-order upwinding scheme for the advection has much1230

larger numerical diffusivity but this diffusivity is masked by
the physical diffusivity. Based on our verification evidence
it is reasonable to choose the simpler first-order upwinding
for applications. It also requires less interprocess communi-
cation in a parallel implementation like ours.1235

9.2 Application of the model at ice sheet scale

We now apply our mass-conserving hydrology models to the
entire Greenland ice sheet at 2 km grid resolution. This non-
trivial example demonstrates the model at large computa-
tional scale using real ice sheet geometry, with one-way cou-1240

pling from ice dynamics for a realistic distribution of sliding
and basal melt rate.

9.2.1 Spun-up initial state

The PISM dynamics and thermodynamics model (Bueler
and Brown, 2009; Winkelmann et al., 2011; Aschwanden1245

et al., 2012), using the non-mass-conserving null hydrol-
ogy model (section 8), was applied by grid sequencing to
compute a consistent and nearly-steady model of the ice
sheet, a “spun-up” initial state. Model choices for ice dynam-
ics, including enhancement factor, sliding law power, and till1250

friction angle, follow Aschwanden et al. (2013). The steady
present-day climate of the ice sheet, especially surface mass
balance and surface temperature (Ettema et al., 2009), were
from the SeaRISE data set for Greenland (Bindschadler and

Figure 5. Average water thickness error |W −Wexact| decays as O(∆x0.91), and average pressure
error |P − Pexact| decays as O(∆x0.92), for grids with spacing 250 ≤∆x = ∆y ≤ 2000 m.
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Figure 6. To evaluate the result of the 2 km grid spun-up ice dynamical model we compare
modelled ice speed at the ice surface (left; ma−1) to satellite observations (right; ma−1).
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18 Bueler and Van Pelt: Subglacial hydrology in PISM

Fig. 7. The inputs to the hydrology model are the modeled basal melt rate m/ρw (left; ma−1) and sliding speed |vb| (right; ma−1) from the
spun-up model.

each time-step according to the numerical model described
in section 7. In both routing and distributed models
the modelled hydrological system became quite steady after
the first three model years.1310

The adaptively-determined time-steps for the hydrol-
ogy model reached a steady level of 4 model hours for
the routing model based on maximum subglacial water
speeds |V| of 0.05 ms−1 and maximum diffusivity D of
10.6 m2 s−1. For the distributed model the time steps1315

were actually slightly longer, primarily because routing
concentrates large water amounts and fluxes along steepest-
descent paths. The time steps were about 6 model hours
based on speeds |V| of 0.03 ms−1 and smaller maximum
diffusivities D of about 0.25 m2 s−1. (Higher water veloci-1320

ties V were seen in the 250 m grid resolution Nordenskiöld-
breen case mentioned in section 7, based on additional sim-
ulated surface water input added to the thermodynamically-
generated basal melt rate (van Pelt, 2013), and the pressure
time steps in that case were shorter than the mass time steps.)1325

9.2.3 routing results

The final values of Wtil and W for the routing run are
shown in Figure 8. We see that the till is fully saturated
(Wtil = 2 m) in essentially all areas where basal melt occurs.
In the outlet glacier areas the transportable water W concen-1330

trates along curves of steepest descent of the hydraulic poten-

tial; this effect is seen in detail in Figure 9. The grid resolu-
tion of 2 km, while very high for contemporary ice dynamics
models, still represents a significant spatial “smearing” of the
flow pathways. Specifically, though relatively few areas have1335

W > 1 m, the continuum limit of the model would be ex-
pected to have W � 1 m in concentrated pathways of a few
meters to tens of meters width.

This model could be regarded as a minimal “conduit-like”
description of the subglacial flow, because of these concen-1340

trated pathways. As noted in the introduction, however, our
model has no “R-channel” conduit mechanism, in which dis-
sipation heating of the flowing water generates wall melt-
back. The location of pathways/conduit here is determined
primarily by the bedrock elevation detail provided by the1345

SeaRISE data set, which is limited; the results are especially
suspect in the Eastern outlet glaciers in Figure 9.

9.2.4 distributed results

The final values of W and the relative water pressure P/Po
for the five model-year distributed run are shown in1350

Figure 10. Again the till is full (Wtil = 2 m) in essentially all
areas where basal melt occurs, and indeed Wtil is not shown
because it is identical to that in the routing model in this
one-way coupled case.

Recall that |vb| determines the pressure drop caused by1355

cavitation. The effect is to spread out the water W rela-

Figure 7. The inputs to the hydrology model are the modeled basal melt ratem/ρw (left; m a−1)
and sliding speed |v b| (right; m a−1) from the spun-up model.
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Figure 8. Outputs from the routing hydrology model are the modelled till-stored water layer
thickness Wtil (left; m) and modelled transportable water layer thickness W (right; m).
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Figure 9. Detail of transportable water W plotted in Fig. 8, covering Jakobshavn (J), Helheim
(H), and Kangerdlugssuaq (K) outlet glaciers.
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Figure 10. Outputs from the distributed hydrology model include the modelled trans-
portable water layer thicknessW (left; m), and the modelled transportable water layer pressure,
shown relative to overburden pressure P/Po (right).
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Fig. 11. Scatter plots of (W,P ) pairs for all cells at end of a 5 model year steady-input simulation on a 2 km grid for the whole Greenland
ice sheet using roughness scale Wr = 0.1 m. Each scatter plot shows the pairs for a select range of ice sliding speeds, as indicated. Points
are colored by ice thickness using a common scale shown beside last figure.

performance computing resources from the Arctic Region Super-1415

computing Center. Constantine Khroulev helped with the PISM
implementation. Detailed comments by Andy Aschwanden, Tim
Bartholomaus, and Martin Truffer were much appreciated.
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Appendix A

Analysis of steady states

Relative to the time-dependent form (34), steady-state equa-1615

tions (38)–(41) have separate balances between the diver-
gence of the flux and the water input (equation (40)), and
the opening and closing processes (equation (41)).

Equation (41) allows us to write the pressure P = P (W )
in steady state as a continuous function of the water amount1620

W . Steady state is only possible if a condition holds:

c1|vb|(Wr −W )+ ≤ c2AP 3
oW. (A1)

That is, the maximum closing rate C(N,W ), which oc-
curs at zero water pressure, must match the opening rate
O(|vb|,W ), which is pressure-independent. Define the fol-1625

lowing scaled basal sliding speed which has units of pres-
sure; it is a scale for the pressure drop from cavitation:

sb =

(
c1|vb|
c2A

)1/3

. (A2)

Then (A1) is equivalent to

W ≥Wc :=
s3b

s3b +P 3
o

Wr. (A3)1630

If (A1) or (A3) holds then

P (W ) = Po− sb
(

(Wr −W )+
W

)1/3

. (A4)

Note that in (A4) we have P (Wc) = 0. Underpressure (P =
0) with subcritical water amount (W <Wc) does not occur
in steady state though it can occur in nonsteady conditions.1635

Formula (A4) may apply even if W ≥Wr, in which case the
water pressure takes the overburden value P = Po.

Figure A1 shows the function P (W ) from (A4) for dif-
ferent values of sliding speed |vb|, and Figure A2 shows the
function for values of overburden pressure Po. We see that1640

as the water amount reaches the roughness scale (W↗Wr)
the pressure rises rapidly to overburden (P (W )↗Po). At
the other extreme, we see that P (W )↘0 as W↘Wc. The
curves P (W ) in Figures A1 and A2 do not include the un-
derpressure cases 0≤W <Wc wherein (A3) is violated.1645
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Fig. A1. The steady state function P (W ) defined by equation (A4)
depends on the sliding speed |vb|. Four cases are shown. All use
Wr = 1 m and a uniform ice thickness of H = 1000 m. Values
of Wc are indicated by black dots at P = 0. Relation (29) (dashed
black) is shown with Wcrit = 1 m for comparison.

Recall that Flowers and Clarke (2002a) propose function
PFC(W ) for both steady and nonsteady circumstances. Both
functions P (W ) in (A4) and PFC(W ) in (29) are increasing.
They both relate the water pressure to the overburden pres-
sure Po. However, while in (A4) the relation to Po is additive,1650

in (29) it is a multiplicative scaling. The power law form (29)
is not justified by the physical reasoning which led to equa-
tion (A4), even in steady state. It would appear that any func-
tional relationship P (W ) should also depend on the sliding
velocity, as it does here, if cavitation influences the water1655

pressure. Also, the W >Wcrit case gives PFC(W )> Po in
(29), but this condition does not arise in (A4). In the current
paper is that we do not set a relationship P = P (W ) at all,
even though such a relation emerges in runs with steady state
inputs.1660

We now consider how the steady state water velocity V,
and the associated flux q, depends on other quantities. Be-

Figure A1. The steady state function P (W ) defined by Eq. (A4) depends on the sliding speed
|v b|. Four cases are shown. All use Wr = 1 m and a uniform ice thickness of H = 1000 m. Values
of Wc are indicated by black dots at P = 0. Relation Eq. (29) (dashed black) is shown with
Wcrit = 1 m for comparison.
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Fig. A2. The graph of P (W ) defined by (A4) also depends on over-
burden pressure Po = ρigH . We fix |vb|= 100 m/a and Wr = 1 m
and consider four cases of uniform thickness H .

cause V depends on ∇P , according to equations (38) and
(A4) in steady state we have

∂P

∂W
=

sbWr

3W 4/3(Wr −W )2/3
(A5)1665

if Wc <W <Wr. If W ≤Wc then ∂P/∂W is undefined,
and if W >Wr then ∂P/∂W = 0. Note that the condition
Wc <W <Wr corresponds to the pressure condition 0<
P < Po in steady state. Formula (A5) and Figures A1 and A2
agree that ∂P/∂W →∞ as W↗Wr. Equations (38), (A4),1670

and (A5) imply a formula for the velocity in steady state:

V =−k
[
∇ψo−

(
Wr −W
W

)1/3

∇sb (A6)

+
sbWr

3W 4/3(Wr −W )2/3
∇W

]
,

where ψo = Po + ρwgb.1675

Formula (A6) helps us understand the advective flux
“VW ” in q. The direction of water velocity V is determined
by a combination of a geometric direction (∇ψo), a direction
derived from spatial variations in the sliding speed (∇sb),
and a diffusive direction (∇W ). Thus a portion of VW is1680

diffusive in steady state, in addition to the a priori diffusive
flux −D∇W . In fact we can write the whole flux as a linear
combination of gradients,

q =−kA1∇ψo + kA2∇sb− kA3∇W, (A7)

with coefficients1685

A1 =W, (A8)

A2 = (Wr −W )
1/3

W 2/3,

A3 =
sbWr

3(Wr −W )2/3W 1/3
+ ρwgW.

The first two coefficients A1,A2 go to zero as W → 0, but1690

A3 remains large when W → 0 as long as sliding is occur-
ring (sb > 0). Thus for low water amount and sustained slid-
ing we should think of the water as diffusing in the layer.
When the water thickness is greater, namely if it is almost
the roughness scale (W .Wr), then A3 is large in sliding1695

cases (sb > 0); again the effect is diffusive.
In steady state the water amount W roughly scales with

1/k where k is the hydraulic conductivity. In fact, if we com-
bine equation (40) with (A7) and rearrange slightly then we
find1700

−∇·(A3∇W ) =
m

kρw
+∇·(A1∇ψo)−∇·(A2∇sb) . (A9)

One may regard (A9) as a non-linear elliptic equation for
W . In fact, in the case where H , b, and |vb| are all spatially-
uniform, so that ∇ψo =∇sb = 0, equation (A9) is of the
form −∇ · (A3(W )∇W ) =m/(kρw) where A3(W ) =A31705

is given in (A8). If W is both bounded away from zero
and bounded away from the roughness scale Wr (i.e. there
is ε > 0 so that ε <W <Wr − ε) then this equation is uni-
formly elliptic. Thus a maximum principle applies (Evans,
1998). This means that the maximum of W will equal or1710

exceed the maximum of W along the boundary of that re-
gion, so the graph of W is concave down. Thus the val-
ues of W will scale with 1/k. Indeed, for the simpler equa-
tion−∇·(D0∇W ) =m0/(kρw), withD0,m0 positive con-
stants, on a disc of radius L, and zero boundary values, the1715

solution has maximum valueW (0) which precisely scales as
1/k. As seen in numerical results, the solution W of (A9)
will also scale with 1/k if ∇ψo and ∇sb are not too large.
(However, if W ≈ 0 or W .Wr then the diffusivity coef-
ficient A3(W ) will be large and so the values of W away1720

from the boundary will be flattened-out by the resulting fast
diffusion.)

Figure A2. The graph of P (W ) defined by Eq. (A4) also depends on overburden pressure
Po = ρigH . We fix |v b| = 100 m a−1 and Wr = 1 m and consider four cases of uniform thickness
H .
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