
REPLIES TO ALL REFEREE COMMENTS ON

MASS-CONSERVING SUBGLACIAL HYDROLOGY IN PISM

ED BUELER

We thank the reviewers for many thoughtful comments. Indeed, there are 19 pages worth of

(formatted) reviewer comments below, and our replies take another 21 pages, yielding this long 40

page document.

As emphasized by the editor and some reviewers, the paper should be shortened, and we have

done so. Specifically we replace section 6 and subsection 7.41 by brief text summaries. Table 3

and Figure 6 have been removed. Just as significant, exposition has been made briefer. As a

result the two-column-format length of the text portion of the paper, i.e. not counting Tables and

Figures but including References, has shrunk from 18.75 pages to 15.5 pages, a reduction of 17%.

The accompanying latexdiff output is enormous because essentially every paragraph has been

revised, and most shortened.

While the reviewers disagree, at times, with the way we describe our results, and with the

processes we choose to include in the model, these reviews do not assert that anything in the paper

is wrong. There is no assertion that our model is wrong in the sense of not being compatible with

physical principles, deductively wrong, or that numerical schemes are inconsistent or nonconvergent.

Instead, the majority of the reviewers’ comments amount to asking us to add process models

and add commentary, or to change our conceptual picture to match theirs. This has been resisted.

Furthermore, it is frustrating that none of the reviewers seem to be seriously interested in, or have

apparent experience in, applying models of any type at whole ice sheet scale, which is clearly our

emphasis. Our model is already a super-model of four (identified) important subglacial hydrology

models in the literature, two of which are essentially always applied to ice sheets and not glaciers

[21, 22], and we have demonstrated this super-model at unprecedented scale. We have a sense that

this is all overlooked in the quest for conduits and true englacial storage, which we have good,

and clearly-stated, reasons for not including. Regarding conduits, we make clear our intent to

stick to continuum physics, as that physical paradigm is the only accepted one in climate and fluid

modeling.

Scalability, so that the model can apply at high resolution to a whole ice sheet, and configurability,

so that climate modelers inexperienced in fiddling with subglacial hydrology models can still use

it, are goals which dominate the design of the model. These goals motivate many replies below.

Comments by Editor Goldberg.

• There are now 3 very helpful and insightful reviews from 3 very qualified and

industrious referees. I think that all their major concerns have merit, and I ask

that you make efforts to address these concerns. There maybe a couple of typos in

Date: February 12, 2015.
1Unless otherwise stated, numbering refers to the old version, not the revised manuscript.
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reviewer 3’s review, and I disagree that Weng is unaccounted for (it just may need

to be added to some early equations)—but there are some very good points made

about the difference between your model and the Schoof 2012 model with respect

to the regions where pressure is either overburden or zero. . . . I hope that you can

address all of these concerns, as I expect this to be a very valuable addition to

GMD.

We believe we have addressed the reviewers’ comments. Furthermore, we have non-trivially

revised the paper in useful ways for the reader.

While we appreciate the industriousness of the referees, we would also like to point out

the narrowness of their expressed concerns. The history of ice sheet dynamics modelling

suggests there is a huge difference between equations that might work at glacier scale

versus equations that make sense at whole ice sheet spatial scale, on long time-scale in-

tegrations, and at high resolution, simultaneously. There is no evidence that subglacial

hydrology modelling is, or will be, any different. One has to make nontrivial theoretical

compromises to extend real physical principles to large scale. These compromises, and

their motivations, are a major feature of the paper. Applications to which a scalable

model might be put (esp. subglacial lake identification under ice sheets, and the modeling

of the thermodynamically-dominated basal shear stress under ice streams) are indicated

as motivation of our work in many places. The paper has “ice sheet” in the title and it

was submitted to a “model development” journal which will have primarily a large-climate

modeling audience, and we believe our model’s scope and choices are highly-appropriate to

this context.

• I want to highlight something that Dr Bartholomaus mentioned, offhand that the

coupling is essentially one-way, because melt rate affects Ntil, and thus yield stress,

locally and P/W do not in any way feed back on it. . . .

In our model basal melt rate affects bothWtil andW , through conservation of mass, and this

results in changes in P . This causal direction is already very important for understanding

hydrology. Exploring the consequences of hydrology at large scale under ice sheet has barely

begun in the literature.

However, only the effective thickness of water in the till (Wtil) has an immediate effect

on the effective pressure on the till (Ntil). Thus only Wtil has an immediate effect on the till

yield stress τc, and this key fact in the model is something we think is a feature; our model

extends the best-understood hydrology/dynamics feedback, which is the plastic bed till-based

model of [22]. Our conservative, i.e. drained, version of that model improves it, as opposed

to just launching into an unknown region of parameter space. Not guessing wildly about

how cavity and/or conduit pressures affect the plastic bed paradigm is a feature here, not

a bug.

Indeed, our point in modeling till is that the actual evidence for sustained patterns of

weak and strong bed under significant areas of ice sheets is based on till, and thus our use

of the Tulaczyk et al. (2000) [22] model is highly appropriate. Our use of a sliding law is

also physical and appropriate; see our responses to Dr. Bartholomaus’ comments on this

topic.
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On the other hand, as explained in multiple PISM-related and other papers on membrane

stresses, there are extensive non-local connections between the basal shear stress, i.e. on

coefficient τc by the sliding law, back to sliding speed |vb| and basal melt rate m. The last

two quantities affect Wtil and W and P in highly non-trivial ways. The coupling is already

complicated, and adding complexity is not always desireable.

• . . . This is why I asked initially if there was some way of allowing conduit pressure

to influence till storage. I don’t remember this being emphasized anywhere in the

text, and that it should be. (this also bears on Dr Bartholomaus’s comment on

the mixing it is indeed odd for the ice flow to be opening up cavities, and yet the

normal stress of the asperities not affecting basal velocity.)

There are many ways to connect conduit pressure to till storage. Indeed, there being no

observations to constrain such a parameterization, we could implement in PISM whichever

one you liked, according to whatever dynamics you intend to generate.2

Regarding Dr. Bartholomaus’ comments on “mixing” soft-bed and hard-bed concepts,

there are two ways to answer. One is that the large hard-bed subglacial hydrology modeling

literature ignors the presence of till at the bottom of every borehole drilled to the bed where

the presence or absence of till can be assessed; we know of no exceptions to this rule and

none are offered by reviewers. The other is that there is a perfectly reasonable expectation

that cavities form in soft bed through a sliding instability [19].

Comments by Dr. Bartholomaus.

• In this manuscript, the authors present a novel extension of the existing Parallel

Ice Sheet Model that includes the most complete treatment to date of subglacial

hydrology in a large-scale ice sheet model. Subglacial hydrology is immensely im-

portant in glacier dynamics, but is often neglected in the major ice sheet models

used to predict future sea level rise. The computational expense of tracking changes

in the rapidly evolving subglacial environment has generally prevented all but the

crudest of parameterizations (see table 2 of Bindschadler 2013’s summary of the

SeaRISE experiment).

Thus, the present work is novel and worthy of publication in GMD. The writing

is generally clear and fluent. Both the theoretical development of the continuum

equations and the numerical implementation are clearly outlined.

We appreciate this summary and the comments below, which have improved the text.

• Beyond these over-arching strengths, I have four critiques that I believe would

significantly enhance the impact and accessibility of the manuscript. These four

opportunities for improvement are below. My line edits follow these more signifi-

cant points.

2Acknowledging that this is a “snarky” reply, we feel this really describes the situation. A model that has till, and

cavities, and conduits, and englacial storage has a lot of parameters. It can do anything you want. We are already

at great risk this way, and it is time to stop adding parameters to our model and start trying to use ice-sheet-wide

observations to constrain it.
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—Four significant opportunities—

+ The authors offer some comparison between their model and those of Werder,

Hewitt, Flowers, Schoof, etc., but these are generally smaller scale models that

have yet to be implemented or applied at the ice sheet scale, and rarely to the

complex geometries of existing glaciers or ice sheets. Some discussion regarding

how the new PISM hydrology model compares with the hydrology models of other

major ice sheet models, such as those discussed in the SeaRISE project would be

very valuable. At present, comparison to existing ice sheet models is entirely lack-

ing. Without much knowledge of these models myself, I suspect that the present

model may represent a significant advance over the implementations in other ice

sheet models. If appropriate, the authors may consider adding a sentence regard-

ing this comparison to the abstract. Also, by way of review, please consider adding

a table comparing features of presently-used ice sheet models.

We do compare to existing large-scale models, by describing and citing the work of [9, 14,

16, 21]. Such find-the-subglacial-lakes-and-drainage-paths modeling, which either uses an

ill-posed version of our well-posed overburden-pressure-based routing model, or a balance

velocity model, is the only whole-ice-sheet-scale work we know about.3 We have also added

a citation to [12], which describes the construction of a related hydrology submodel within

the Community Ice Sheet Model, but which is applied only at the scale of a single idealized

mountain glacier in [12].4

We believe it would be inappropriate, and a surprising use of space, to add a table

comparing features of presently-used ice sheet models in a PISM model-description paper.

It is already an inherent deficiency of model description papers that they can only describe

a snapshot of an evolving piece of software. Snapshotting other software projects, many of

which, unlike PISM, do not have open development heads, would only make this worse.

• + Considering that efficient, low-pressure conduits are such important features

of the subglacial hydrologic system, some discussion/justification of why a model

without conduits is useful is necessary. While consistent model behavior under

grid refinement is certainly tremendously valuable, if one of the fundamental pro-

cesses (i.e., transport of water in conduits) is entirely neglected, then all the model

results may be called into question. The present model is still an improvement on

the general lack of subglacial hydrology in existing ice sheet models, but ideally,

conduits will be included in future generations of ice sheets.

We discuss why a conduit model is not included in our model, and we have amplified our

points in the revised version.

At present, all 2D conduit models are not physics by the normal standards of the field

(e.g. the field “climate modeling” or “fluid modeling” or “continuum physics”, according

to taste). Note that “consistent model behavior under grid refinement,” in the sense used

by this reviewer, is normally called “continuum physics”, and has been the standard for

3We care about this whole ice sheet scale application. The fact that we are building an improvement of the

[9, 14, 16, 21] models is important to us, clearly stated in the paper, and never mentioned by reviewers.
4It has not yet been applied at whole ice sheet scale (S. Price personal communication).
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physics since Fourier and Maxwell.5

We clearly state that the existing lattice models of 2D conduits can’t work in a user-

controlled large-scale ice dynamics model, and that for that reason we do not add them.

That these models are useful for process exploration is not denied or disputed.

Linked-cavities could also be forced onto the nodes of a 2D lattice, but we, and all exist-

ing 2D models, do not put them on a lattice. That is because we (collectively) do have the

PDE which describes the effect of a linked cavity system as continuum physics. We have

added this point to the paper.

We encourage this reviewer, and the other reviewers who we also believe (by their ques-

tions) are interested in including conduits into subglacial hydrology models, to proceed in

the normal manner of physics and attempt to develop a PDE description (i.e. a lattice-free

formulation) of conduit effects. Or they can apply an actual conduit formation model to

whole ice sheet scale, that is, one the causes a conduit to appear at the location where the

data suggests it should, not where lattice location input data forces it. To complain that

we have not invented the former ourselves, or made a model trillions of times more efficient

than existing models so that we can claim the latter, is unfair.

That “all the model results may be called into question” is the normal state of affairs

in climate modeling. But this phrase profoundly explains why we don’t use lattice models.

We will not risk having a user of PISM, in runs coupled to a GCM, have a reviewer of the

results correctly point out that there was a single subsystem in the entire coupled mess

which was not using the usual translation-invariant structures of physics . . . namely a 2D

lattice model of subglacial conduits.

We completely agree that “ideally conduits will be included in future generations of ice

sheet [models]”.

• + This manuscript and model includes an ambiguous mixing of hard-bedded and

soft-bedded ideas. For example, the model includes opening and closing of cavities

at the glacier bed, driven by basal sliding (section 2.5). This is generally considered

a hard-bedded view of basal hydrology and motion. However, the description of

the Mohr-Coulomb yield stress for till (section 3.2) is appropriate for soft beds

and basal motion accomplished by deformation within the till, not at the interface

between the till and the glacier ice. Similarly, the sliding law that depends on the

till’s yield stress (section 3.3) is also a soft-bedded concept. The combination of

soft- and hard-bedded ideas in this model appears to be inappropriate or at least

confusing. . . .

We are not quite sure why our mixing of hard- and soft-bedded morphology is “ambiguous”.

The equations are clear.

Though the reviewer may not have read it, we cite [19] which models the formation of

cavities, by sliding, in a deformable subglacial till. This is precisely a “combination of soft-

and hard-bedded ideas” for “opening and closing of cavities at the glacier bed, driven by

basal sliding” in the sense used by the reviewer. We also cite [23] which uses till essentially

5Numerical model behaviour under “grid refinement”, as used in the field of numerical approximations of con-

tinuum physics, and as normal in geoscientific models, is the very different concept of numerical convergence to the

solution of a differential equation. It is directly addressed by our verification case.
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as we do, combined with a conduit in a 1D model.

The literature of subglacial hydrology usually avoids including till in model-based explo-

ration of hard-bed processes, but we can’t find a single published (or unpublished) example

of a till-free bed-reaching borehole in ice, and none are offered by reviewers. Because we

expect, based on the observations that do exist, that the majority of the ice overburden

pressure of an ice sheet, in non-frozen areas, is supported by saturated till, we include a

model for its strength, namely Mohr-Coulomb.

Yes, the Mohr-Coulomb model for the yield stress for till is appropriate for soft beds and

basal motion accomplished by deformation within the till. However, basal ice deformation

may occur in a thin (meters) layer of temperate ice with high water and sediment content.

This deformation, and also notional hard-bed sliding if it occurs, are all modeled in the

current literature by power-law sliding relations. An ice sheet model, and the actual data

available to constrain it,6 cannot distinguish these mechanisms occurring close to the bed.

Finally, as stated in section 3.3, our computed yield stress value τc is used as a physically-

meaningful coefficient in a power law for sliding [1], and such power laws are effectively reg-

ularized Coulomb stress models in the range of powers we use [18]. Having the coefficient

of the sliding law be physically meaningful, and being tied to modeled basal water pressure

so that it can physically evolve, is both conceptually and practically better then providing

a sliding law with no physical meaning of, or physically-based way to model the temporal-

or spatial-variation of, the coefficient.

• . . . Furthermore, the description of 1-way and 2-way coupling could be more clear.

If the rate of basal motion (ub or vb) is an input to the model, then why is there

a section on the sliding law (section 3.3)?

Section 3.3 is included exactly to give meaning to the yield stress τc as a submodel output,

something clearly stated in several places, including Table 2. Because this is a model

description paper for a submodel of PISM, we are obliged to state what the inputs and

outputs of the submodel are.

One connection between vb and τc is our hydrology model. The other is the whole ice

dynamics model of PISM, which ice-sheet-modeler readers know takes boundary stress as

an input and produces velocity as an output. This ice dynamics model is well-described in

literature we cite.

As hinted above, in the most common use of sliding laws in ice sheet modeling, the

coefficient in the sliding law has no physical meaning. It is often set by inversion of surface

velocities, thus totally by-passing a process-based description of how it might evolve. We

think that having mass-conservation for liquid water in the subglacial system, and using a

physically-based computation of the coefficient in a sliding law, is a preferred situation.

• + It is interesting and surprising to note that you find an inverse relationship

between water pressure and basal motion for systems at steady state. This is

contrary to almost all prevailing sliding laws. Is [it] a result of the 1-way coupling

(vb that does not directly depend on water pressure)? Whatever the cause, it is

sufficiently surprising to warrant additional discussion.

6Esp. DEM, surface velocity, and bed elevation, but also, increasingly, isochrones and layer geometry.



REPLIES TO REFEREE COMMENTS 7

We include an analysis of steady states because this analysis is not done elsewhere for

the (now) standard linked-cavity system equations [10, 20]. Our first point is that these

equations imply a functional form P (W ) at steady state, and thus that Flowers and Clarke

[8] are not crazy to propose such.

Indeed there emerges a “inverse relationship between water pressure and basal motion for

systems at steady state” from this analysis. Why is this surprising? Basal motion generates

cavities (i.e. space for the water to fill), so the pressure drops. Said another way (as we do

in the paper), sliding increases the opening rate, so if creep closure must balance it then

the pressure will drop, to speed the closure, unless there is a simultaneous increase of water

into the system (which does not happen at steady state). We presumed this observation,

which is not offered as a “sliding law” at all, and indeed should not be used that way, was

standard. In any case it follows from the equations, the reviewers don’t believe our analysis

is in error, and we have included it with the prominence we believe it deserves.

Presumably the idea is surprising because the reviewer believes in sliding laws. Regarding

the idea that the sliding velocity “does not directly depend on water pressure”, we remark

that sliding laws usually relate the basal shear stress applied to the ice and the water

pressure and the ice base velocity. Equation (25) in section 3.3 is thus a sliding law, and

it is the one that we offer. It is utterly standard, except that it (appropriately) includes

the Coulomb case (q = 0) and it has a water-pressure-linked coefficient with physically-

meaningful units.

The presence of longitudinal stresses in the ice implies that there is globalized connection

from water pressure back to sliding velocity, via (e.g.) stress boundary conditions at the

boundary of the ice fluid mass (i.e. the glacier). This connection via a stress balance is

outside of the scope of this submodel description paper, but is described at length in [5]

and other citations.

Our analysis of steady states is not offered as a sliding law, and in that sense the reviewer

is correct that our analysis “is a result of the 1-way coupling.” That is, conservation of

momentum in the ice—especially, the applied stress on the base of the ice—plays no role

in the relationship. The relationship simply follows from equations (13), (14), (15) in their

steady state cases, as clear in the paper.

• —Line Edits—

p. 4706, l. 26 Also consider citing Walder 1982 if your purpose is to highlight

some of the early work here.

We cite Walder (1982) on line 22 of page 4708. We use Creyts and Schoof at this point on

page 4706 because only stable (i.e. viable) models of aquifer geometry are worth listing as

alternatives which might go into a subglacial hydrology numerical model.

• p. 4707 l. 5 I think the best reference for englacial porosity is Fountain et al. 2005,

from Storglaciaren.

These citations here are about models. We already cite Fountain later when describing

observations.
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• p. 4708, l. 24 It may be worth mentioning that wall melt in linked cavities is

generally expected to be small (Kamb, 1987 and Bartholomaus et al., 2011)

We have added this comment, thanks.

• p. 4709, l. 1 What are the ramifications of neglecting to model conduits? Many ob-

servational studies (including work by Nienow, Mair, Anderson, Cowton, Harper)

have shown that efficient conduits are a fundamental component of subglacial hy-

drology. How will your model provide insightful and realistic results without a

conduit component?

We had assumed that models like [3], which seem to explain the behavior of (rare) well-

observed hydrological-plus-glacier-dynamics systems without using conduits, were of some

value, but we may be wrong.

Remember that the model is intended for whole ice sheet use. We want, therefore, a well-

posed extension of the models used for identifying subglacial lakes [14, 21], and we want a

mass-conserving extension of a successful (in terms of explaining surface velocity observa-

tions) ice stream basal stress model [1, 5, 22]. While these purposes are all quite prominent

in the paper we actually wrote, they are essentially ignored in reviewer comments.

• p. 4712, l. 17 It is not immediately clear to me why ∇H � ∇W . Where does this

suggestion/observation come from?

We have revised the relevant sentence to say: “If P scales with the overburden pressure

Po then the first term will dominate in the situation |∇(H + b)| � |∇W |”. We no longer

assert the situation is “common”.

This comment is in the context of explaining why, for nearly the first time, we have

included “ρwgW” into the formula for hydraulic potential. We presumed that the reason

it is left out of nearly all prior literature is because that literature assumes that flow along

the gradient of the (prior) hydraulic potential ψ = P +ρwgb dominates over the gradient of

the other part (i.e. the gradient of the added part “ρwgW”). This is the only case in which

it would be acceptable to leave out the now-added part. Furthermore, it is widely-accepted

in the literature—for example, in the review paper [6]—that gradients in P follow gradient

in the overburden pressure Po = ρigH, so that gradients in P follow gradients in H.

So either: (i) all the prior literature is worthless (perfectly possible), or (ii) the case

|∇(H+ b)| � |∇W | is worth considering as a way to relate our formulas to prior literature,

and that is the spirit in which we consider it. Our model only assumes |∇(H+ b)| � |∇W |
in a minor part of the given formula for the flux; see the next reply.

• p. 4712, l. 23 If here you assume that W � b or P, and thus can be neglected in

eq. 8, why have you made the distinction in eq. 2 and the discussion that follows

to include the W term?

This question only makes sense if “you assume that W � b or P” is interpreted as “you

assume that |∇W | � |∇(H + b)|”. We do not compare values of W (a thickness) to b (an

elevation) to P (a pressure); we are comparing only gradients of distances to each other.

As noted, the simplification is for simplicity, in particular for simplicity in the final
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implementation. Despite the simplification we keep the part of the flux proportional to

∇W , so the model is more complete than any other applied at ice sheet scale. Furthermore,

the simplified model is always diffusive for any pressure closure, and so, in particular, the

routing model is well-posed unlike the related models in the prior literature [14, 21].

The simplification occurs inside our formula for the effective hydraulic conductivity K,

which is wildy-uncertain in practice anyway. That is, in the formula K = kWα−1|∇ψ|β−2,

which appears throughout the literature, the correct values for coefficient k and the powers

α, β are all subject to minimally-constrained speculation.7 We note that the simplification

in question makes no difference at all if β = 2, the value used in half of the cited work.

• p. 4713, l. 1 Near here, or somewhere else within the paper, please compare your

values for hydraulic conductivity [k] with those that may be calculated from field

observations. Are your values in line with those found in the field? Googling

“subglacial hydraulic conductivity” yields several points of comparison.

We have looked and not found. There is not a single observational paper we can find which

argues that a directly-measurable value of the hydraulic conductivity is describing the av-

erage effect of a linked cavity system over the area of a grid cell relevant to this work (100

m to 5 km squares, say). Values are, of course, always given when these papers include

a model—our Table 1 cites the default value of k as from [20]—but one should be very

skeptical that a value from applying one model to the data (supposing this is done) is still

the right value when applying a different model to the data.

Of course hydraulic conductivity for till is given in literature, based on specific in situ

observational work. Such values appear in the literature we cite, and they dominate the

results from Googling “subglacial hydraulic conductivity”. But the till hydraulic conduc-

tivity value should not be used as k. The conductivity of till is so low that water does

not move laterally through till in a time, and over distances, which could explain any of

the apparent behavior of water under glaciers and ice sheets. Rather it is the macroscopic

conductivity of the connected cavity network which is relevant. Such a network can be

present even as there is sediment (till) lying around; this is the situation we are modelling.

To quote [3], which we already cite,

Each of these three parameters, γ, [k =]Cτnb , and φ, is only weakly constrained

by observations reported in the literature. . . . [k =]Cτnb has units that depend on

the exponent, and varies from 1.5 × 10−5 m s−1 Pa0.18 to 1.1 × 10−3 m s−1 Pa0.4

(Jansson, 1995; Sugiyama and Gudmundsson, 2004).

Is this “weakly constrained” result the kind of “field observations” meant by the reviewer?

Why should space in this model description paper be used to recapitulate such a weak and

uncertain state of affairs? The source of the default value of k (Table 1) is, of course, cited,

but we actually want to avoid asserting that any particular value of any constant is correct.

This is because we are building the model so users can relate its relatively-few parameters,

k among them, to rich, but often indirect, available data. As pointed out in our paper,

“Darcy flux parameters α, β, k are also important [to the distribution of water thickness in

7We make this point in citations in subsection 2.3, which give a wide range of values for the same situations.
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the model results]. Parameter identification using observed surface data, though needed, is

beyond the scope of this paper.”

• p. 4714, l. 15 Here and nearby: define c1, c2, and A.

We have done so.

• p. 4715, l. 6 Phrasing is ambiguous, as it makes it sound as though your model

potentially does not include till water storage beneath some parts of the ice sheet.

The issue is that the majority (by area) under the world’s ice sheets does not have liquid

water under it, though it may have till. The equations for till storage, transfer into the

transport system, and weakening of the saturated till, must all reflect the amount of liquid

water there, not frozen water. We model frozen locations as not having liquid water in the

till, so Wtil = 0, and as being strong because Ntil is small (from (23) and (24)). We have

attempted to make this point clearer, without increased length.

• p. 4715, l. 20 Why not include lateral transport of water through till if vertical

transport is included? Till is often regarded as having an anisotropic hydraulic

conductivity (e.g., Jones, 1993, “A comparison of pumping and slug tests. . .” in

Ground Water vol. 31(6)). Horizontal conductivity can be at least several times

greater than vertical conductivity.

The reason for not including horizontal transport is the standard fact of ice sheet modeling

generally, a fact which is even more applicable here: the flowing layers in ice sheet models

are thin. In particular, any till thickness ever given in the literature is 1/1000 (or less)

of the lateral distances traveled by subglacial water. Anisotropy is irrelevant unless the

horizontal conductivity can make up for this thinness. As the reviewer’s figures suggest,

the conductivity in the horizontal is not one thousand or more times the conductivity in

the vertical.

Of course, there is presumably a transport network of cavities, conduits, or thin sheets

in addition, which has a low (lateral) macroscopic conductivity. We attempt to model

the first of these morphologies because stable continuum physics evolution equations are

available for it. The overall structure of the model is exactly what we believe is appropriate

for water moving underneath ice sheets which have much of their overburden supported by

saturated till: we model transport in combination with till storage, and the till is modeled

as Mohr-Coulomb.

• p. 4715, l. 20 Is m in eq. 16 the same as m in eq. 1? If so, these terms cancel

out of eq. 1.

Yes, m in equation (16) is the same as in equation (1). Yes, they cancel out when Wtil <

Wmax
til , so that no water enters the transport network (i.e. so that ∂W/∂t = 0 in (1)) in that

case. But we conserve water. Thus if the right side of (16) is positive and also Wtil = Wmax
til ,

at a given location, then ∂Wtil/∂t = 0, i.e. we put no more water in till, and the water goes

into the transport network (W ) according to equation (1).
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We have attempted to clarify this logic here in section 3, and also in section 7 where

numerical schemes are nailed down.

• p. 4715, l. 20 If m/ρ is almost always bigger than Cd, then dWtil/dt is always

increasing up to the cap Wmax
til . It would be useful to lay this out more explicitly,

and include eq. 21 in this subsection. Essentially, you have a Boolean relationship,

where in some places there is wet till and other places the till is frozen. Is model

sensitive to selection of Wmax
til ?

Yes, when there is positive8 basal melt, then m/ρ is almost always bigger than Cd, so that

dWtil/dt is always increasing up to the cap Wmax
til . The figures in section 9 reflect this.

Though we would not say we have a “Boolean relationship,” we agree with the spirit of

the reviewer’s assertion. We repeatedly emphasize that we enforce inequalities including

(21), the bounds on Wtil. It follows that in some places there is wet till and other places

the till is frozen; well-known reference [5] covers these ideas. No, the model is not very

sensitive to the selection of Wmax
til , at least in areas of substantial basal melt rate.

• p. 4715, l. 24 Inclusion of Cd with fixed value is poorly justified and seems very

ad hoc. Even if used by Tulaczyk, why is it necessary here and what is the model

sensitivity to the selection of 1 mm a−1? A constant rate of till water drainage

into the subglacial hydrologic system, that does not depend on pressure gradients,

seems very odd.

We agree that Tulaczyk’s [22] use of Cd is ad hoc. His model needs such a background

loss of till-stored water, and ours too, but unlike him we have implemented a conservation

model. We keep track of all the water globally, but we need previously wet areas which no

longer have water input to not be eternally weak (i.e. permanently remain with till full of

liquid water).

In areas resembling anything in the present-day northern hemisphere, with relatively high

basal melt rates, the model is insensitive to Cd. In areas of very low melt rate (e.g. EAIS)

there is a time-scale sensitivity. We have no time-dependent information about changes in

EAIS subglacial melt rates with which to constrain values. The implication that we should

use something complicated (which is the only alternative to “ad hoc” here) simply implies

adding more unconstrained parameters.

If the reviewer has a 2D, data-supported, physics-based, applicable-at-large-scale model

of how till and a linked-cavity (or other) system interact, then we hope he publishes that.

We can’t find it, and this paper proposes a simple alternative which arises from the only

observation-supported literature which we know about which is related to these processes

[22]. We seek relative simplicity and few parameters, instead of implementing process

speculation.

• p. 4717, l. 1 What is the effect of this choice? How was it selected?

The value δ = 0.02 is based on the observations that subglacial water pressure at the

bottoms of boreholes, i.e. in till, have pressure within a few percent of overburden pressure.

8Note that the majority by area of ice sheets are assumed to have frozen base, so m ≤ 0 there.
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The particular value used means that fully-saturated till has water pressure which is (1−
0.02)Po = 0.98Po. This parameter is very influential on sliding, and is explored the right

way (i.e. by using lots of observations of surface velocity) in [1], using the earlier PISM

model of non-conserving subglacial hydrology.

• p. 4718, l. 16 I recommend changing the title of this section to “Basal motion

relation” or some other phrase. “Sliding law” implies slip at the interface between

the ice and its bed, whether bedrock or sediment, whereas your equation for yield

stress (eq. 17) is appropriate for till deformation.

Ice sheet modelers use “sliding law” the way we do, that is, Equation (25) is called a sliding

law by all readers familiar with ice sheet modeling, the target audience of this paper.

Ice sheet models can’t make the distinction implied by this reviewer. That is, there is no

distinction in results in any existing ice sheet model between modeling slip at the ice-bed

interface and a meter down within the till. Vertical resolution like this is only in the heads

of process modelers.

• p. 4718, l. 21 q is already used for flux (even if printed in bold-face to identify its

vector character). I suggest using another variable name.

Exponent q is used in prior literature, including [1], and in the PISM users manual.9 There

is consistent use of bold for vectors in the paper, thus the flux is q while the power is q, so

no confusion will arise.

• p. 4718, l. 23 Previously (eq. 14), vb was the rate of basal motion. u and vb are

used inconsistently throughout the paper.

This has been corrected. Only “vb” is used for the ice base sliding velocity, with “|vb|” for

the sliding speed.

• p. 4719, l. 4 What value of q have you selected for your simulations? Justification?

Value q = 0.25 was used in the spinup that preceded the hydrology run [1]. The sliding

law equation (25) is, as stated above, included so that the reader knows that τc is a model

output and how it is used, so the particular q value is unimportant. More important

content, explaining the meaning of the q = 0 and q = 1 extremes, is given instead.

• p. 4720, l. 1 While “velocity” is technically correct, it is an odd choice for a

thickness change. I suggest using “rate.”

Sorry. We mean that Ṽ is a velocity, not ∂W/∂t. This has been clarified.

• p. 4720, l. 5 Define h- the ice surface elevation.

This is simply a typo. It should be H, the ice thickness. Corrected.

9Despite the content of all reviews . . . oddly enough we are actually trying to publish a model description.
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• p. 4722, l. 7 “. . . does not exist for tidewater glaciers or ice sheets.” This may not

be strictly true see Gulley et al, 2009, in QSR, where they report exploring many

englacial conduits. In subsequent work, Gulley has mapped subglacial conduits. A

safer statement would be that “vapor/air-filled cavities are not known to exist far

from glacier margins.” The distinction regarding tidewater glaciers or ice sheets

is unnecessary.

The relevant sentence has been removed in the revisions which shortened the paper. As

a general matter, however, we believe that vapor/air-filled cavities are not a feature well-

supported by observations in a model intended for ice sheets.

• p. 4722, l. 10 “observed in ice sheets and glaciers“ instead of “observed in ice

sheets”

We have clarified that we only mean ice sheets here by only citing Das 2008.

• p. 4722, l. 21 Add that the englacial water table is intended to represent the mean

over some large area of glacier, perhaps > 1 km2. Here, it is best to avoid the

extreme complications of, e.g., Fudge, 2008 in J Glac, where subglacial water

pressures vary significantly over very short distances.

Our point is not that there is variation over any particular scale, but that efficient connection

to the subglacier implies a close connection between subglacial pressure and the height of

water englacially. This is not, fundamentally, contradicted by Fudge (2008). We agree that

our (notional) englacial water table represents a spatial-average of the nearly-unobservable

englacial macroporous network.

• p. 4723, l. 8 You might add that we can expect phi to be large everywhere that

dP/dt would be large (a highly fractured temperate glacier in coastal Alaska), and

that phi would be small only where dP/dt is small (ice sheet interiors). Thus,

even hydraulically/numerically “stiff” ice sheets shouldnt experience physical or

numerical shocks.

Actually, we think dP/dt may be very large in ice sheet “interiors”, namely during abrupt

subglacial lake filling or drainage (observed in Antarctica) or moulin drainage of supraglacial

lakes (observed in Greenland). However, we don’t really expect the model to be good for

either highly-fractured temperate glaciers in Alaska, or for modeling the temporal or spatial

detail associated to these ice sheet dramas. Our point with englacial porosity regularization

is that it eases the solution of a stiff problem.

• p. 4724, eq. 34 As before, are these m’s supposed to be the same?

Yes. See comment above.

• p. 4724, eq. 34 This is an odd combination of equations, because the top equation

is a component of the bottom equation, but the middle equation has not been

incorporated in the bottom equation.
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Yes. This is “odd,” but that is different from “incorrect,” and the situation is complicated

by very important bounds (inequalities) on the conserved variables. If the reviewer finds it

incorrect (i.e. deductively incorrect) he should say so.

The context: As clearly stated in subsections 2.3 and 2.4, one can write either of two

expressions for the flux, namely q = −KW∇ψ or q = VW − D∇W . Also, a term ∇ · q
appears in both the water amount evolution equation and the pressure evolution equation.

The complications are that (i) we are indeed enforcing inequalities on W,Wtil, P , and (ii)

we want to handle the ∇ · q terms by the same numerics in both equations in which it

appears.

In this context, the theory is made most clear, given that we don’t want to write a paper

using variational inequalities which would only be understandable to mathematicians, when

we describe the numerical scheme in section 7. After writing (and tossing) our paper several

times with other expository choices, we find the current exposition most clear.

• p. 4726, l. 3 Note that this is essentially the same as eq. 27.

Yes. This redundancy in the exposition has been removed.

• p. 4726, l. 23 Another connection is presented on p. 4721.

Yes, we have noted this connection now.

• p. 4727, l. 20 Around here, discuss that, in steady state, eq. 41 suggests that at

water pressure decreases, the rate of basal motion increases. This flies in the face

of most sliding laws. Can you offer any insight as to how we are to incorporate

these two views in our understanding of hydrology and glacier dynamics? Is the

one-way coupling of your hydrology model with a glacier dynamics model sufficient

to gain insight?

The reviewer has already made this comment above (page 6), and we address it there.

In summary, we are not stating a sliding law and we are stating correctly-deduced conse-

quences of well-known and widely-used equations (esp. equation (13) from [10]).

• p. 4727, l. 20 Also note that P depends also on vb, not on W alone.

Here P depends on a lot of things, sorry. Our notation “P (W )” emphasizes that one

can write the equation as a function which yields P given W , if all other symbols in the

equation are defined. This is the usual convention in more than a century of exposition in

theories using mathematics. A mathematician would presumably be equally-happy calling

it “P (A, c1, c2,Wr, Po, |vb|,W ),” so as to precisely state the dependencies, but probably not

the reader.

• p. 4727, l. 23 I dont see the relationship between eq. 41 and the VW advective

flux. Please elaborate.

As noted immediately after this claim about equations (41) and (38), we explain it in the

Appendix. It is nontrivial, so we explain it.
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• p. 4729, l. 5 Readers should not have to turn to the appendix to learn what sb is.

Move essential material out of the appendix and into the main text.

Good point. As noted at the top of this document we have replaced section 6 by a brief

text summary, in section 5.4, and so this issue with sb does not arise.

• p. 4729, l. 6 Defining this new ω0 variable seems unnecessary.

Yes. The relevant text has been removed, and the issue does not arise.

• p. 4730, l. 5 What is the justification of the 5th power in the sliding speed?

In constructing an exact solution for the purpose of verification, specificity is essential,

and qualitative reasonableness is of some importance, but uniqueness is not asserted or

important. Here the power used is simple (an integer) and implies smoothness (because

the power on |vb| is 1/3 in the formula P (W ), smoothness requires that this power exceed

3). However, the reader is no longer bothered with the particular power because section

6 is replaced by a short text description of the construction of the nearly-exact solution.

Figures 2 and 3 remain, which show the solution.

• p. 4730, l. 17 Define what you mean by “under”, “normal” and “over” pressure.

Yes. We have added this into the text.

• p. 4731, l. 13 Give a few sentence introduction to the numerics here. The point

is to discretize eq. 34. What is the order of calculations? What will feed into

what over the next sub-sections of section 7? A thumbnail sketch similar to what

is presented in 7.6 would be useful to guide the reader.

Our reordering of the exposition of the numerics now includes a brief introduction. However,

precision requires defining most symbols before 7.6, where the important description of

calculation order happens.

• p. 4731, l .19 Near here, is it necessary for a model development paper to include

a reference for “CFL” and “upwind”

We have defined “CFL” in the revised version. We believe that readers of this material will

know what “upwind,” “explicit”, “finite difference”, “centered,” “second-order,” “stability,”

and “convergence” mean, but in any case these are defined in the cited textbooks.

• p. 4731, l. 21 Be sure to clarify that u and v are not components of vb, but are

for the water speed.

Thanks for the reminder. We have now defined u, v components at their first use.

• p. 4732, l. 8 Parenthesis around the citation

Yes, got it.
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• p. 4736, l. 7 Is it important that the reader understand what it means for a scheme

to be “flux-limited?” Without modeling expertise myself, Im not sure what this

means.

Readers experienced with numerical advection schemes will know, but in any case the

references to [13, 15, 17] are adequate.

• p. 4742, l. 17 Because you report that your scheme is mass conserving so promi-

nently in the abstract, you should report how much error is involved with step (x),

where negative water thicknesses are discarded. This could be for the Greenland

run of section 9.2.

The quantity in question, the error in step (x), is bigger than we would like. Quantita-

tively, in a run like the distributed run in section 9.2, the rate of loss of water from the

subglacial hydrology into the ocean (esp. at outlet glaciers) is about 300, 000 kg/s, the rate

of loss of water onto ice-free land (i.e. rivers and proglacial lakes) is about 1000 kg/s, and

the conservation error in step (x) is about 300 kg/s.

The size of this conservation error is a result of the implementation of the energy conser-

vation scheme at the ice base [2], not the hydrology scheme itself. Note that we only discard

negative water thicknesses (W l+1
i,j < 0) when, essentially, the energy-conservation-computed

basal melt rate m is negative, i.e. in the refreeze case. The size of the discarded negative

thicknesses thus has to do with the magnitude and extent of large negative basal melt rates,

and not the quality of the hydrology model at all. The scheme itself is positivity-preserving.

The size of this conservation error is thus not an issue in this model, but the fact that ours

is the only paper which has ever even mentioned this quantity should be at issue. Noticing

this error for the first time in a hydrology scheme is a feature not a bug. Figuring out the

best way to reduce it, and demonstrating its reduction to zero under grid refinement, are

for future research. But you have to notice it, or admit to it, before you can fix it.

• p. 4745, l. 22 Are the 2800 processor-hours on each of the 72 processors or divided

amongst the processors?

It is the total number of processor-hours in the computation, as is standard in describing

parallel computations and when using the units “processor-hours”.

• p. 4746, l. 16 Do you specify a geothermal heat flux? The handling (or lack

thereof) of geothermal heat should also be specified earlier, where the model setup

is described.

We specify geothermal flux from input data to the model. The relevant Shapiro and Fitz-

woller data is addressed in the SeaRISE description paper [4]. The “handling of geothermal

heat” in PISM is documented carefully at full paper length [2]; it is nontrivial.

• p. 4746, l. 18 Please report if you identified any basal freeze-on (m < 0) consistent

with Bell et al., 2014, Nat. Geosci., vol. 7?

Why this particular insistence? As noted, we allow basal freeze-on. Comparison to all

existing observations is not the role of a model description paper.
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• p. 4747, l. 25 Again, this is a good place to discuss the ramifications of a model

without R-channels. What are the limitations of your model? Is there a way that

aspects of R-channels emerge in your model without explicit channel modeling?

Yes, “aspects of R-channels emerge . . . ”. We say, about the routing model, on page 4747,

line 25 of the submitted text:

The continuum limit of the model would have concentrated pathways of a few me-

ters to tens of meters width. These concentrated pathways could be regarded as

minimal “conduit-like” features of the subglacial hydrology. As noted in the in-

troduction, however, our model has no “R-channel” conduit mechanism, in which

dissipation heating of the flowing water generates wall melt-back.

Similar text is in the revised version.

• p. 4748, l. 2 What about the eastern outlet glacier results makes them particularly

suspect? 7, C1774–C1781, 2014

They are suspect because of the quality of the “bed elevation detail provided by the SeaRISE

data set,” as stated in the paper, given that the bed elevation field there is from few flight

lines. This sentence has been removed, however, and only a note that the bed elevation

detail from SeaRISE is “limited” remains.

• p. 4748, l. 4 You report on the run time for your spin-up with the null hydrology

model, but what are the processor demands for the distributed model described

here?

Good point. We have added the numbers, which are very small because we are not modeling

ice dynamics, namely 14.2 processor hours for distributed and 14.7 for routing. As noted,

the higher modeled water velocities and modeled diffusivities in the routing model decrease

the time step, which implies more computation, but on the other hand the per-time-step

work in routing is less, so the computational times are very comparable.

• p. 4748, l. 5 Another statement regarding the sensitivity of results to Wmax
til would

be useful here.

Though this model has a substantially-reduced number of parameters, relative to the model

the reviewer would want, there are still far too many to examine sensitivity of all of these

parameters.

• p. 4748, l. 20 Around here, worth mentioning that pressure as an increasing func-

tion of W is vaguely in line with the results of the Flowers (2002) model, although

your model reveals additional complexity.

We already make this connection at four different spots in the paper. Additionally cluttering-

up the description of our model results is, we believe, unnecessary.

• p. 4749, l. 17 “seemingly-disparate”

Yes, thanks.
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• p. 4750, l. 20 Again, reference the observation that steady pressure here increases

as sliding decreases, which is inconsistent with almost all sliding laws.

As noted, we are not giving a sliding law, the inverse relation in question also applies to all

the published models which have both cavity formation through sliding and cavity collapse

through creep [10, 20, 24, and others], and this is not an important result of the paper.

• Table 3 Odd to present the melt rate as a function of water density. Change this

to a straight scalar (i.e., 200).

Yes. Table 3, and other details of the construction of the exact solution, have been removed,

so the issue does not arise.

Comments by Anonymous Referee #2.

• This paper describes a new sub-component of the open source ice-sheet model

PISM, which accounts for subglacial drainage of meltwater. The model and a

number of subcases are described in considerable detail and then the numerical

implementation is described. A simple steady state solution is used to test the

numerical method, and the model is then applied to the whole of the Greenland ice

sheet.

I enjoyed reading this paper. It represents to my knowledge the first serious at-

tempt to include an evolving subglacial drainage model within an ice-sheet scale

ice-sheet model, and the results are encouraging. As such, I would like to recom-

mend publication. However, I have a few issues that I think need to be clarified

or thought about first.

The major comments are here, followed by some specific but more minor points.

We appreciate this summary of the paper.

• 1. The first term of (33), involving the pressure derivative and which represents

changes in englacial water content, ought to appear in (34a) also, since this term

derives from the mass flux into/out of the englacial system, and it is the addition

of this term to the mass conservation equation (34a) that gives rise to its appear-

ance in (33). As it stands in (34), subtraction of the first and third equations

puts the ∂P/∂t term into the opening/closure equation ∂W/∂t, which I don’t see

justification for.

As we state, we only have notional englacial porosity, because it is used as a regulariza-

tion. The fact that this pressure derivative term does not appear in mass conservation

equation (34a) is a reflection of the fact that we use englacial porosity only to cause the

otherwise-elliptic pressure equation to become parabolic. Actual englacial storage, which

would enter into the conservation equation, would require another mass variable (e.g. with

notation “Weng” as suggested by anonymous referee #3) and then more coupling param-

eters between subsystems,10 and more inequalities to deal with refreeze cases, would be

10Both transfers between Wtil and Weng and transfers between W and Weng would need to be parameterized.

We wrote such a model and paper and threw it away.
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required.

The divergence of flux term ∇·q appears in both the water thickness evolution and pres-

sure evolution equations, in any model which has these three aspects: (i) mass conservation,

(ii) cavity thickness evolution, and (iii) full cavities. Such models appear in [10, 11, 20, 24].

Thus we agree that “subtraction . . . puts . . . into the opening/closure equation . . . ” is cor-

rect in our equations, and those in the just-cited work too. Our use of this manipulation is

correct even if the reviewer does not already do it, or think of it this way.11

In any case we cannot know what “justification” should be in the reviewer’s head. If the

reviewer asserts our deduction is wrong here, or anywhere else, then he/she should say so.

• 2. p4738, l11, and this section generally—is it clear that these arguments prove

stability for the system of equations in this model (in which the coefficients in (60),

say are varying at each timestep due to the pressure evolution)? The analysis here

seems to be for a standard advection-diffusion equation on its own, but it is not

immediately clear to me that standard results can be used here. I have no doubt

that the method is stable, but I think if the stability properties are to be discussed

in this much detail, it needs to be done for the whole system together, and not for

the individual components of the operator splitting separately. Or if there is an

argument as to why this is sufficient, that should be included.

Yes, these arguments prove the stability of the numerical scheme for the particular equation

in the presence of irregular coefficients which might come from coupling. We are not

using a linearized stability analysis here,12 an analysis which would “break” if the coupling

is present, but a maximum principle analysis. Though it often gives overly-pessimistic

stability conditions, one of the benefits of max principle analysis is that the details of the

coefficients, including the possibility of them coming from coupling to other equations,

don’t enter into the analysis.13 We suppose that the reviewer has seen “standard results”

for advection-diffusion equations which come from a linear stability analysis, as such results

are closer to necessary and sufficient conditions in the constant-coefficient textbook cases.

On the other hand, the case of negative source term, which in this case comes from outside

the model (i.e. through the energy-conservation-determined melt rate m not through the

involvement of coupled equations for P and Wtil), requires enforcing inequalities, and this

is not in our stability analysis, as we state. Furthermore, so as to shorten the paper we

have removed the subsection in which the scheme is shown to have positivity-preserving

and stable properties. We have replaced this subsection with a brief text description.

11In fact our equation (32), which is verbatim from [20] in the till-free case, mixes opening/closing processes and

the divergence of the flux, and so the same manipulation would put open/closing processes into the mass conservation

equation in [20].
12E.g. von Neumann or Fourier analysis [17].
13Thus the max principle analysis of stability of schemes for the three abstract heat-like PDEs ut = (1 + x2)uxx,

ut = (1+u2)uxx and ut = (1+w2)uxx, where w is the solution of another equation, is the same if one wants sufficient

conditions to ensure a maximum principle at each time step. The positivity of the coefficient is important here for

the analysis to work at all, and its size is important in determining a sufficient condition on the time step, but the

origin of the coefficient is irrelevant.
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• 3. The boundary conditions should really be described in more detail. It’d be

helpful to state mathematically what boundary conditions are imposed (in section

5 say), rather than having it algorithmically described in section 7. In particular,

the diffusive nature of the W equation suggests that one should apply some sort

of conditions on W at all boundaries, but these are rather hidden, . . .

On the one hand, the situation is much worse than portrayed by the reviewer, and it is

not primarily about what is inside this paper. On the other hand, there is no boundary in

PISM in one of the senses meant by the reviewer. We now explain these statements.

Our model is, as clearly stated in the paper, subject to inequalities on water amount

(i.e. W ≥ 0) and on pressure (i.e. 0 ≤ P ≤ Po). These constraints imply that a mathemati-

cally rigorous description of the equations needs free boundary conditions to be determined

by a variational inequality or similar weak formulation.

This is clearly understood for the pressure equation by Schoof et al 2012 [20]. However,

[20] does not consider negative basal melt rate (i.e. the case m < 0 in equation (4.5) for

the evolution of water thickness hw in [20]). As a result they miss the fact that both evolu-

tion equations, i.e. for water amount W and for pressure P (our notation), are subject to

variational inequalities. Indeed, diffusive or otherwise, the continuum equation for water

thickness W , as stated in [20] or [10] or our manuscript or elsewhere, does not maintain pos-

itive values of W if m can be negative (i.e. refreeze), so a free boundary appears which we

must deal with.14 Roughly-speaking, this free boundary delimits basins where ice stream-

ing can occur. A numerical scheme for W evolution must actively enforce the inequality

in some way, such as by restricting admissible functions or by truncation/projection in an

explicit scheme.15

Thus the only mathematically-honest treatment of our continuum model, or that in [20],

would require coupled variational inequalities. As just one variational inequality is hard

to handle—see [24], who say it is “prohibitive” in 2D and then skip it—the complications

of a coupled pair are great. We actually believe we are correctly (i.e. convergently) nu-

merically solving this coupled pair of free boundary problems by an explicit scheme which

truncates/projects to enforce the inequalities, but we are not close to proving that. If we

took on this topic with mathematical precision then (i) the paper would be enormous and

(ii) no one would read it.

On the other hand, note that the periodic domain (i.e. flat torus) version of our model,

or of the model in [20], would have no classically-defined boundary conditions because the

domain on which the continuum model is solved has no boundary. For whole ice sheet

simulations in PISM, the ocean or ice free land surrounding the ice sheet has exactly

such a periodic extension, that is, no boundary. This has little disadvantage in practice,

and it allows the advantage that every grid point in PISM, on every processor, has the

same physics. We do state how all free boundaries are handled numerically—this is what

we are doing “algorithmically in section 7”, by stating where inequalities are enforced by

14It is a free boundary not seen in [20] primarily because there is no allowance for coupling to an energy-conserving

basal melt rate, which would sometimes be negative. In this sense the pre-determined water input of most subglacial

hydrology modeling is addressing an easier problem than ours.
15Our scheme for mass conservation is explicit, but also the scheme in [20] is explicit.
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truncation/projection—but we don’t have classical boundaries at which to apply boundary

conditions.

In summary, we describe what the numerical scheme actually does in section 7.6. Then

we show verification results in a case where the exact continuum solution, subject to the

two coupled (but unstated) variational inequalities, with free boundary, is known. We think

this is actually addressing the boundary conditions in a manner which is more helpful to

the GMD reader than some more-mathematical expository alternatives.

• . . . and in section 9.1 it is claimed that there are convergence issues associated

with a jump in W , which seems at odds with the diffusive term.

We have rewritten some text on how the boundaries in this model are really all free bound-

aries. In particular, in section 5.1 where we summarize the continuum model, we explain

that in ice-free land and ocean (i.e. ice shelf or ice-free ocean) locations, the hydrology

model sees such a large (in magnitude) negative value for m that any water which flows to,

or diffuses to, that location during a time step is immediately removed. Thus we have a

marginal jump in W in the nearly-exact solution under consideration in section 9.1.

The low regularity of the exact solution dominates the convergence rate, because the

jump occurs along a non-grid-aligned curve. (In polar coordinates one could do a 1D com-

putation in which the jump is added as a grid point. This would tell us nothing about the

performance of our schemes in the presence of irregular source terms.)

• . . . I suspect the boundary conditions are mostly imposed by step (vi) on p4742, but

I was not entirely clear on what is meant by ’not computing’ the divided difference

contribution to the flux divergence.

The sentence in question on step (vi) is simply wrong, and should not be there at all as it

describes an old state of the code. It has been removed.

Equation (55) is used as stated at all grid points, regardless of neighbor mask state.16

Thus the boundary conditions, which can all be interpreted as free boundary conditions

and which are motivated by concerns listed in replies above, are applied in steps (ii), (vii),

(viii), (ix), and (x) in the list given in section 7.6.

We have added the following ideas about boundary conditions to the revised text, in

section 5.1, before going into detail about numerics: (i) PISM always has a periodic grid

for whole ice sheet computations, so there is no classical boundary to the hydrology system.

(ii) Free boundaries occur all over the place as a result of enforcement of inequalities. (iii)

In ice-free land and ocean (i.e. ice shelf or ice-free ocean) grid points, the hydrology model

effectively sees such a large (in magnitude) negative value for m that any water which flows

to, or diffuses to, that location during a time step is immediately removed. (iv) The ice-free

land and ocean grid points have pressure determined by external factors (e.g. atmospheric

or ocean-base pressures).

16See method raw update W() in file PISMRoutingHydrology.cc in branch stable0.6 of the PISM source code.
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• Finally, I felt the paper might be shortened without losing detail; there are a num-

ber of places where the discussion of relatively simple points is laboured. Sections

that might be reduced include section 2.4, section 4.3, section 6.2, section 7.1,

section 9.2.1, (could just reference Aschwanden et al for much of this?), section

9.2.4, and the appendix.

With this comment we heartily agree, and we have reduced length by 17%. Regarding

the specific recommendations, we have shortened section 2.4, improved 4.3 without much

reduction, removed almost all of section 6.2, but mostly-kept 7.1. We have shortened 9.2.1

and 9.2.4, removed Figure 6, and emphasized [1] as a reference on our spinup procedure. We

have halved the length of the Appendix. In addition we have made substantial reductions

in section 5.2, we have removed sections 6.1 and 7.4 (replaced them by a sentence or two),

and we have substantially shortened sections 7.2, 7.5, and 8.

• Specific comments

1. p4708, l3, also throughout - I do not see why the parabolic equation is always

described as a ’regularization’, which suggests some element of artifice. For the

physical system described, the equation is parabolic, and there is no need to treat

it as a regularization.

The reason we call it a “regularization” is that we do not have a conserved variable for

englacial water amount, namely “Weng” in the language of referee 3. Whether or not the

parabolization effect of the englacial term is a “regularization”, our englacial model is thus

not complete. We use the englacial porosity coefficient as a way to make computations

with our explicit scheme faster. Because our pressure equation is parabolic, we can do

explicit time-stepping and enforce, by truncation/projection, the inequalities on all the

state variables. The reader is allowed to believe there is an element of artifice if she wants,

but “regularization” is appropriate.

• 2. p4708, l7 - I’d temper this by saying that till is ’sometimes’ observed, as I don’t

think it is true that it is always observed.

Though all reviewers objected to our categorical language here, none offered counter exam-

ples. Nonetheless we added an expected weasel word to the revised text.

• 3. p4708, l20 - it is not the inclusion of wall melt in the mass conservation

equation that leads to the instability but rather [the] inclusion of wall melt in the

kinematic opening-closure equation.

In a model where the subglacial aquifer is always full (i.e. “W = Y ” in our model), there is

no distinction between these ideas. The cavity volume is the mass, and both are conserved.

Thus the comment also applies to the “normal pressure” case in the model in [20, 24], for

example.

• 4. p4711, l9 - given the coupling with PISM, it seems a bit odd to say that

you ’accept’ the hydrostatic approximation, since you should be calculating Po
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consistently with the ice flow. As I understand it Po is always hydrostatic for the

level of approximation in PISM, so this would seem a better justification.

It is perfectly reasonable, and clear, to describe this as “accepting” an approximation which

we make just for our subglacial hydrology model. Someone using a Stokes ice dynamics

model could accept, or not accept, this simplification of the hydrology model.

• 5. p4713, l11, also throughout - I find the repeated reference to the ’advection-

diffusion equation’ a bit misleading as although it has advection and diffusion

terms, it is rather different from what is normally associated with that term, as

the velocity depends on the pressure which is evolving simultaneously. Perhaps this

is my own connotation of advection-diffusion, but I think it should be emphasized

that (12) is not stand-alone and is inherently coupled to more equations.

This is mystifying. There is a large literature of numerical advection-diffusion equations,

and all of it implicitly or explicitly assumes that the numerical recommendations therein

should apply both in uncoupled and coupled circumstances. Nobody seriously models ad-

vection in a case where the velocity is given by God, though all textbooks start that way.

Of course motion comes from other, coupled equation(s).

We agree that many proofs of qualitative properties, or convergence of numerical schemes,

only hold in the uncoupled case. But good advice for constructing numerical schemes, com-

ing from careful analysis in the uncoupled case, should be used when working numerically in

the coupled case, unless there is a coupled analysis which is more informative.17 The point

of this text, clearly made, is that the advection-diffusion separation allows us to carefully

choose numerical schemes for the two terms in the mass conservation equation. Since the

same divergence of the same flux appears in the pressure evolution equation, we use the

same numeric split there too.

• 6. p4717 - the prescription of a minimum value for N seems a bit arbitrary—

could it be explained briefly what this physically represents? (e.g. this is the level at

which the till becomes sufficiently deformable that a cavity system is developed and

that effectively caps the water pressure?) I would have thought a critical pressure,

rather than a critical fraction of overburden, might be more reasonable? . . .

Broadly speaking, the reviewer seems to be saying that he/she does not have a plan for

modeling the manner in which the effective pressure in the till should not reach full overbur-

den pressure. Note that till water pressure has been observed to not reach full overburden

pressure in those boreholes through ice sheets which have been drilled to the base.

We do have a plan, and we explain where it comes from (esp. Tulaczyk), and derive

specific equations because otherwise there is no model. The manner in which this “critical

pressure” arises is modeled nowhere in the literature of distributed subglacial hydrology

systems, that we know of, and the reviewer offers no suggestions either. But we have

constructed a highly-simplified, very-few-parameters version which is supported, though

indirectly, by comparing its results to observations at the surface of the ice [1].

17What a nice thing to imagine! I know of no examples.
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• . . . That aside, I found the prescription of Wmax
til , and subsequent derivation of till

thickness η (22) rather odd, since it seems more natural to prescribe the thickness

of till η and have Wmax
til derived from that (and δ and Po). As it is, η varies

as the overburden varies (when coupled with ice flow), so that there is implicit

redistribution of sediment.

We are actually quite clear that the pore void ratio and the water amount in the till are

proportional; see equation (20). We are then quite clear that, because we are enforcing

inequalities on the conserved quantity Wtil, we prefer to parameterize the maximum capac-

ity of the till by a maximum water amount value. It is trivial to choose to specify the till

(mineral part) thickness instead of Wmax
til , if the reader so desires.

Whether or not the reviewer likes our way of parameterizing the lower bound on effective

pressure, as scaling with the overburden, in fact equations (18) and (20), which come from

in situ observations of till [22], imply a relationship where η varies as the minimum effective

pressure varies. Indeed, redistribution of till may be the way a minimum effective pressure

arises.

Again, our choice is not asserted to be wrong but “rather odd” and less “natural”. It is

hard to argue against such criticism.

• 7. p4721, (30) and following sentences - it is a bit confusing to write P = PFC(W )

here (and in (29), and similarly in the appendix), as the formula depends upon Po
and therefore space, as well as on W . It’d be clearer to include x as an additional

argument here ((30) is not then a clean porous-medium equation).

Reviewer 1 wants us to emphasize that P (W ) in our steady state is actually P (|vb|,W ), and

reviewer 2 wants us to replace PFC(W ) with PFC(Po,W ). But our notation for functional

dependence is used in the normal way of applied mathematics.

The reviewer believes the phrase “clean porous-medium equation” is reserved for the

constant-coefficient case? To avoid this, we have written “generalizes the porous medium

equation” now, for the relevant equation.

• 8. p4723, l5 - this sentence reads rather strangely. Aren’t most of the parameters

’user-adjustable’? What is meant by temporal ’detail’ in the pressure evolution -

is it suggesting that φ0 = 0 is ’correct’? Later that paragraph, what is meant by

diffusive ’range’, and would it not scale as φ
1/2
0 ?

Most of the parameters in climate models are only barely user-adjustable; it is standard to

require recompilation if there is a parameter change. In PISM this is a runtime adjustment

only, through either a command-line option or a configuration file.

In any case, our point is that users of the model in computationally-challenging coupled

circumstances (e.g. high-resolution, ice-age-duration simulations of whole ice sheets coupled

to GCMs) can choose to lose (i.e. smooth out) temporal resolution in the model but thereby

gain performance. In other words, we are emphasizing that the tradeoff is user adjustable,

not just the parameter. Emphasizing the “user” aspect of this is relevant.

The “correct” value of φ0 is a silly concept; the macroporosity of the near-base parts of

ice sheets is, and will remain, nearly unobservable. This is one more reason why we call



REPLIES TO REFEREE COMMENTS 25

the way we include this parameter a “regularization.” We have removed the concept of

“diffusive range” from that part of the text, as one of many shortenings.

• 9. p4723, l16-22 - this algorithm is certainly a lot more computationally effi-

cient than the method used to solve the elliptic variational problem of Schoof et al

(2012), but it should be noted that the schemes are not solving exactly the same

problem (at least, for non-steady states, which is where the computational cost

lies). Difficulties of Schoof et al’s method stemmed notably from discontinuities

in W associated with unfilled cavities, which are absent in the current problem.

This is mystifying. By no means do we assert that [20] is solving “exactly the same”

time-dependent problem. There are many points in the paper where we distinguish, most

prominently: (i) We say in section 4.2 that we assume full cavities and there draw a contrast

with [20]. (ii) We have a large section 4.3 on the englacial regularization, which clearly states

that this is a change from [20]. (iii) We then say in 5.2 what specific changes would convert

back to the [20] model.

Furthermore we don’t say “this algorithm is certainly a lot more computationally efficient

than the method used to solve the elliptic variational problem of Schoof et al (2012).” It

would be tedious (read “it would be a math paper”) to analyze the algorithms so as to

perform this comparison, supposing we had enough detail from a 2D implementation of

[20] to do so. The comparison would involve the efficiency of the numerical choices used

in solving the nonlinear elliptic problem in [20], presumably including Newton solver and

iterative linear algebra choices.

What we do show is an actual example at a much larger computational scale, not to

mention in 2D, than offered in [20]. However, the differences are from different continuum

models and different numerics. Because the 2D implementation in [24] does not actually

bother with the elliptic variational problem of [20], we can’t compare apples to apples at

all.

• 10. p4727, l6 - I’m not sure how much we know that the system is close to steady

state ’much of the time’, so I’d recommend removing this; justification for looking

at steady states is probably not required.

Thanks! We have removed the wordy justification for looking at the steady state equations.

• 11. p4728, l1 - clarify that this statement is for a given discharge?

This statement was justified by a specific argument in the Appendix, but the whole concern

is to subtle. We have removed the statement and its justification to save space.

• 12. p4729, l11 - I am confused by the ’solution’ W = Wr to (45). This would

only be a solution if the ice surface were a very particular shape?

The idea that the ODE in question had a constant solution, which was not clear relative to

the statement of equation (45) anyway, has been removed as part of our major reduction

of the description of the nearly-exact solution.
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• 13. Section 6.2 - the discussion of the boundary conditions here seems unnecessar-

ily confusing and it could be much clearer just to state the shape, sliding velocity,

and boundary conditions that are used, rather than explaining in generality how

the solution works. Note that Wc has only been defined in the appendix so comes

out of the blue here. Since r = L is the edge of the domain, the distinction between

L− and L seems pedantic (the definition of variables outside of the domain has

not yet been given, and is more of an algorithmic issue).

Again, this text has been removed. We agree it, and the material in the Appendix, were

not well-factored.

• 14. p4731, (48) - ϕ0 is ω0 ?

Again, the relevant text, and the symbol ω0, have been removed. (And the answer is “yes”;

it was a typo.)

• 15. p4731, l7 - presumably the numerical value for W ∗ given here corresponds to

a particular parameter set? It must depend upon k, H0 etc?

Yes, the numerical value of W ∗ depended upon particular parameter values listed in Table

3. But the text in this section 6.2, and Table 3, have been removed. The nearly-exact

solution is described in words and then pictured in Figures 2 and 3.

• 16. p4736, l20 - the right hand column here seems unnecessary?

Yes. We have simplified these equations by removing the right-hand column.

• 17. p4739, l25 - The numerical values of timesteps here and on p4732 could be

brought together to save space and avoid repetition. The value of φ0 used seems

rather large; if a smaller value were used (going towards the elliptic limit) might

the timestep restriction become restrictive?

The time step restrictions have been brought together, as suggested, in the revised text.

We agree the value of φ0 is rather large. A smaller time step would cause more expensive

computations, which is exactly the point made earlier about the “user-adjustable tradeoff”.

In the text in question, our point becomes stronger with a smaller value of φ0: the time-step

for the pressure equation is controlling for the coupled scheme.

• 18. p4748, l15, and figure 11 - I was a bit confused by the comparison of W and

P/Po; what significance is P/Po believed to have? Doesn’t a lot of this information

come just from the steady state relationship between W and P in (A4)?, The

caption is a bit confusing when it refers to ’pairs’ (W,P ), but what is plotted is

really P/Po.

Yes, a lot of the information comes from formula (A4), but we want to show it, not just

state it. Showing a figure with various cases makes the multi-parameter dependence in

(A4) clearer to the reader, we believe.

Because P is always bounded above by Po, and because creep closure of cavities is a

function of the difference N = Po − P , we want to clearly show areas which are close
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to overburden. Because the thickness of the Greenland ice sheet, and thus Po, is highly

variable on our 2km grid, the easiest way to show the areas where the pressure is close to

overburden is to show P/Po. We have fixed the caption to refer to (W,P/Po) pairs.

• 19. p4749, l9 - what is the ’actual diffusivity of the advective flux’? ’diffusive

nature of the advective flux’ might be clearer.

Yes, that is a better rewording, and we now use it.

• 20. p4749, l15 - this statement is rather vague, and I’m not sure what it’s trying

to say.

We have simplified and improved the relevant text. In particular, the two-item un-numbered

list on lines 14–19 of page 4749 has become the following single sentence: “The reasonably-

comprehensive exposition here also clarifies the relationship among several pressure-determining

“closures” (section 4), and it allows us to understand our model as a common extension of

several seemingly-disparate published models (section 5).”

• 21. p4751, l17 - something missing from this sentence?

Right. It should not have “is that”. The totally-rewritten sentence now says “In any case,

in the current paper we do not impose a relationship P = P (W ) at all, though such a

relation emerges in steady state.”

Comments by Anonymous Referee #3.

• Summary of the manuscript

The manuscript (MS) describes a novel subglacial hydrology model implemented as

part of the PISM ice sheet model. To my knowledge, this model together with the

model of de Fleurian et al. (2014) (Elmer/Ice) are the currently most complex

hydrology models included in large scale ice sheet models. The hydrology model

consists of a cavity-like layer which can conduct the water horizontally, and two

storage components: a till layer and an englacial aquifer. The coupling to ice

flow would be through the yield strength of the till, which in terms [sic; “turn”?]

depends on the amount of water stored (although no two-way coupled runs are

demonstrated). The model performs well on test cases with analytic solutions and

on an application to the Greenland ice sheet.

The MS is very detailed and describes the mathematical model, some analytic

solutions, the numerical implementation and some test applications. The MS is

suitable for publication in GMD after the comments below are addressed.

We appreciate this summary but want to make some comments.

While the de Fleurian et al. (2014) [7] model is included in the ice sheet model Elmer/Ice

there is no evidence whatsoever that it applies at “large scale” as implied by the reviewer.

The paper [7] itself applies it only to a single mountain glacier, and does not give an estimate

of the number of degrees of freedom in the hydrological system; we suspect it is more than

an order of magnitude less than in our application.18

18Scale is not everything, and the application in [7] may be a very good one. But not “large scale”.
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Next, we do not have “englacial storage,” although this is clearly desired by the reviewer

(below). As our manuscript states in a variety of ways, we use the regularization effect of

an englacial network to make the pressure equation better behaved, but we do not have

conserved degrees of freedom describing the englacial water, which would be “Weng” in the

reviewer’s notation. Thus we do not have as large a space of unknown transfer coefficients

as would such a theory.

• Mathematical model

My main comments are that water in englacial storage is not accounted for, that

the statements 0 ≤ P ≤ Po and W = Y are inconsistent, and that boundary

conditions are omitted. Further, in the mathematical sections it is never explained

how in detail the bounds on P and also W till are enforced, although it can be

deciphered from the later sections on numerical implementation. Also the authors

mention that their pressure regularisation is necessary to allow enforcing 0 ≤ P ≤
Po (by projection). Why is this so? Why could this not be done using the elliptic

pressure equation?

Yes, the water in englacial storage is not in the model, thus not accounted-for.

The statement P ≤ Po and W = Y are of course consistent, and also apply to the model

[20], so we presume that the concern is with the combination 0 ≤ P and W = Y . In

this case, what does “inconsistent” mean? Inconsistent with a physical principle—none is

named—or not well-posed in combination with the other equations—we disagree—or just

inconsistent with the imagery in [20]? In any case, it is hard to respond to this vague claim.

We have attempted to improve, and bring earlier, the presentation of boundary condi-

tions. In particular, we note the inequality W ≥ 0 which implies additional free boundaries

not addressed in the literature. We handle such free boundaries, and the ones which arise

from enforcement of pressure bounds, by a common, documented scheme.

We never assert “pressure regularisation is necessary to allow enforcing 0 ≤ P ≤ Po (by

projection)”. Rather, we enforce these inequalities on the solution of a regularized (thus

parabolic) version of the unregularized (elliptic) equation in [20]. These same inequalities

are enforced in [20] for that elliptic equation, by restricting admissible functions in a varia-

tional inequality formulation. The enforcement of inequalities is thus an independent issue

from regularization.

• Mass conservation (Eq. 1, 34a) should also take into account Weng, the equivalent

layer of water stored englacially:

∂W

∂t
+
∂Wtill

∂t
+
∂Weng

∂t
+∇ · q = m/ρw. (1)

In particular, for the void ratios (φ0 = 0.01) considered in this MS the Weff [sic;

presumably “Weng”] term is important. For instance, a relatively small pressure

difference of 10 m water head leads to a change in Weff of 0.1m which is on the

order of W . In fact, having φ0 = 0.01 is probably beyond what may be considered

a regularisation (i.e. having negligible effect on the solution), and the MS should

be updated accordingly.
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In our model the conserved mass is W + Wtil, not W + Wtil + Weng, as desired by the

reviewer. This reduces the number of parameters and inequalities to which the solution is

subjected. Instead we only use the parabolicization effect of englacial porosity to make the

pressure equation less stiff. This is very clearly-stated in the paper.

• If possible, it would be nice to state the bounds on the various state equations more

explicitly, e.g.:

∂Wtill

∂t
=

{
m/ρw − Cd if . . .

0 otherwise
(2)

Or if that is not possible, state the bounds next to the equations.

This is a good point. We now state the bounds immediately after the evolution equation.

• For the pressure, according to the numerics outlined in section 7.6, the authors

solve Eq.33 on the whole domain for P and then project/update P such that 0 ≤
P ≤ Po (except where W = 0 also P = Po ). Therefore Y = P [huh?; sic;

presumably “Y = W”?] is only true in the so-called ”normal-pressure” regions,

which should be stated. In the overpressure or underpressure regions the authors

instead use the mathematical closures P = Po and P = 0, which should also be

stated. Also, it seems that the pressure equation is solved for the whole domain

using boundary conditions at the edge of the domain, which is in contrast to Schoof

et al. (2012). This difference needs to be discussed in a section about boundary

conditions.

We are not quite sure how to respond to this comment, which seems to ignor what we have

written and instead be a re-argument for the model in Schoof et al. (2012) [20], which has

never been implemented in 2D. In summary, our cavities are full (Y = W ), our pressure has

bounds (0 ≤ P ≤ Po), and we believe our model is well-posed and correctly implemented,

and the reviewer seems not to be pointing to any evidence to the contrary.

We have improved our text in one related way, namely clearly defining “underpressure” as

P = 0 and “overpressure” as P = Po at the first use of these phrases to describe our model

results. The underpressure and overpressure regions in the model results are not using

new closures as stated by the reviewer. The closure is still “Y = W” but the continuum

model includes the inequalities. Where there is no water (W = 0) we set either P = 0

or P = Po—we have clarified this—so as to determine pressure gradients at boundaries

numerically, but this is not a “closure”, as the water in such locations is absent.

• Even apart from the storage term (which the authors acknowledge), the presented

scheme is not quite equivalent to the one in Schoof et al. (2012): To determine

the regions where pressure equation needs to be solved (Eq.34c in this MS) Schoof

et al. (2012) uses constraints on W and not on P (see their equations 4.1, 4.7 and

4.11). In the region where the pressure equation is solved, Schoof et al. (2012)

uses appropriate boundary condition to link to the adjacent regions. Also in un-

derpressure regions Schoof et al. (2012) solve both for Y and W (their h and

hw).



30 ED BUELER

As we write above in reply to the previous reviewer, by no means do we assert that Schoof et

al. (2012) [20] is solving an “equivalent” model. There are many points in the paper where

we distinguish, most prominently: (i) We say in section 4.2 that we assume full cavities

and there draw a contrast with [20]. (ii) We have a large section 4.3 on the englacial

regularization, which clearly states that this is a change from [20]. (iii) We then say in 5.2

what specific changes would convert back to the [20] model.

The reviewer is actually wrong, however, that “Schoof et al. (2012) uses constraints on

W and not on P”. It is very clear in [20] that constraints on P are used to define the

convex space of admissible functions on which the variational inequality acts, and W only

plays the role of an input into the resulting weak problem. In this sense our model is more

like [20] than portrayed by the reviewer.

In any case a 2D version of the [20] is not solved by the numerical work which those

authors actually pursued, i.e. in [24], because they were apparently unable to do so. Indeed

our Y = W assumption is exactly as in [24], but in this case we do enforce the pressure

bounds that are used in [20].

• To illustrate the impact of the different models, here [is] a pathological case which

(I think) the mathematical model of Schoof et al. (2012) handles fine but the one

in this MS less so:

Starting with an initial, steady state with a region where W > Wr and P =

Po. Decrease input into that region until P < Po, i.e. something like a draining

subglacial lake. Now (as far as I understand the equations in the MS) W in that

region would evolve according to Eq.13, i.e. shrink by viscous creep (unless P < 0

at which point it would again evolve according to Eq.34a). This contrasts to Schoof

et al. (2012) which keeps P = Po until W ≤Wr.

Ice creep is sensitive to stress (i.e. pressure differences in this case) not whether the ice is

in contact with water. Thus we say yes: once P < Po then the cavities should start to

close even if the cavity height is greater than the roughness scale Wr. Indeed, none of the

models in the literature tie the creep closure rate to the roughness scale. In the absence

of other factors, which relate to horizontal gradients in hydraulic potential, and to water

inputs, this will have the effect of driving the pressure back up to Po.

We think the reviewer wants instantaneous action at a distance, a property of the [20]

model, to instantly set P to Po in this W > Wr case.19 All that the reviewer actually is

saying, as far as we can tell, is that P < Po and W > Wr would violate the equations in

[20], which we are not even sure is actually true.

We are not asserting that our model is equivalent to [20]. We think that this “pathological

case” may even make our model look better as it does sensible things to initial states which

would, apparently, be rejected in [20]. We think we do roughly the same thing to this initial

state that would occur in the model of Werder et al (2013) [24].

19This is the way differential-algebraic systems like [20] work. We point out in the paper the numerical difficulties

of differential-algebraic systems, but one could also note the physical undesirability of pressure “wave” propagation

at infinite speed.
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• Not getting this and other corner cases right is not bad and still results in a

great subglacial hydrology model, in particular for the application intended here.

However, Schoof et al. (2012) gets them right(er) (as far as I understand) and

thus the authors’ claims that they successfully solve that problem should be a bit

more qualified (see line-comments below).

As above, we can disagree that we get this corner case wrong.

We don’t claim to “successfully solve” the model in [20]. We do claim that our model

is a “common generalization” of four models, of which [20] is one, and we precisely clarify

what we mean by this phrase. But readers do not expect that changed equations give the

same solutions.

• Other comments

The manuscript is quite lengthy and could do with some streamlining. Among

others, Section 4.1 and 5.2 should be merged, Section 9.2.1 should be shortened

and Fig. 6 removed.

We agree that the manuscript should be shortened, and we have done so. However, merging

4.1 and 5.2 is undesirable because our explanation of what closure we put in to the model

(section 4) is very different from our text on what behavior appears from our relatively-

comprehensive model (subsections 5.2 and 5.3). Section 9.2.1 has been shortened, and

Figure 6 has been removed, as suggested.

• It would help if the authors would state the unknown variables at the beginning of

the mathematical description.

This will be greatly helped by the placement of Table 2 in the published version (if that

happens). We have moved the first mention of Tables 1 and 2 to the start of section 2.

• The authors mention frozen conditions but never go into details about them. What

happens to the cavity sheet and till layer when input is negative? What does the

water pressure do? What do the cavities and thus W do? In fact, the evolution

equation for Y does not contain a melt/freeze term so Y > 0 even when frozen.

How does this link to setting P = Po when W = 0 (p.4742 l.4). This should

warrant at least a paragraph.

“Frozen conditions” can only be handled by considering conservation of energy. We (ap-

propriately) cite [2] for the two-phase conservation of energy model in PISM, which, in

particular, determines the basal melt rate under an ice sheet. We furthermore note that,

unlike other work, can handle a negative basal melt rate and thus we must actively enforce

W ≥ 0 for the distributed system water thickness.

In summary, there is no separate thermodynamic variable for the temperature of the till.

Since the till (i.e. not cavities) makes up the vast majority of the base of the ice sheet, by

area, adding such a variable would be the primary way in which the model could made

more complicated and physical. The equations we present for hydrology modeling are in-

dependent of thermodynamics except through their dependence on the (signed) value of

the melt rate m and the meaning of the inequalities W ≥ 0 and Wtil ≥ 0. Our formula for
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till yield stress implies that un-saturated till (i.e. with small values of Wtil) is quite strong;

this is the content of the model in [22], which we cite. We believe we have already supplied

adequate information on these points to the reader in the revised text.

• Comments by page and line number (add 4700 to the page number):

p.6 l.8 State how many parameters are used

Other papers do not do this. We will not either, because the number of parameters can

be made small or large by deciding on the meaning of “parameter”.20 We prefer that the

reader see Table 1, which can be compared to similar tables in other papers, if the reader

wants a sense of the relative number of parameters between models.

Far more relevant than the number requested here is the content of section 5.2, where we

show that by setting particular parameters to particular values we get specific published

reduced models. This gives a reader a clear, practical sense of the “number of parameters.”

• p.6 l.8 Instead of “We use englacial porosity as a regularization, and we preserve

physical bounds on the pressure.” write “We use englacial porosity as a regular-

ization to impose physical bounds on the pressure.” But in fact, I am not sure this

statement is right, as bounds on the pressure are enforced by projecting it onto

0 ≤ P ≤ Po.

In fact we do not use “englacial porosity as a regularization to impose physical bounds on the

pressure”. We have changed the relevant sentence in the abstract to say simply “We preserve

physical bounds on the pressure.” The separate technical fact that we have regularized the

elliptic variational inequality model of [20] to a parabolic model, using notional englacial

porosity as a regularization constant, is now not mentioned in the abstract, though it is

fleshed-out and clear in the text. The reviewer gets to the correct fact—in our explicit

scheme the bounds on pressure are enforced by projecting—and we have made this clearer

in the revised text.

• p.6 l.21 reword “reasonable”

We have written “Any continuum-physics-based dynamical model” to replace “Any reason-

able dynamical model”.

• p.8 l.4-6 This is not quite right, see my Section above.

The sentence in question is quite right. It is simply true that “The subglacial water pressure

solves an equation which is a parabolic regularization of the distributed pressure equation

given in elliptic variational inequality form by [20].” Compare equations (32) and (33) in

the till-free case.

20Is the acceleration of gravity a parameter? It is adjustable in PISM, because Mars ice models are encouraged,

but [7] does not list it as a parameter with a value while [24] does. In our paper symbols “e0” and “Cc” appear, but

only their ratio e0/Cc appears in our actual model (and in [22]); do we count this observation-based value as one

parameter or two?
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• p.8 l.19-24 Maybe this paragraph should be moved to start at line 7.

We have done so.

• p.8 l.29 Whilst no mathematical proven [sic; “proof”] of convergence of grid-

based models is available, they do seem to converge under grid refinement in a

statistical sense (see appendix of Werder et al. (2013)). Also, their parameters

are independent of the grid. Thus automatic grid-resolution determination should

be possible.

The Appendix of [24] in question is wrong. It contains only evidence for the opposite of

what it attempts to sell.

It is started by the correct sentence “The solution produced by a numerical scheme for

solving partial differential equations should converge to the true solution under mesh re-

finement.” The second sentence is “However, for the presented model convergence in this

sense will not be satisfied as the mesh forms part of the solution by restricting potential

channel locations . . . ” Now that there is no PDE, we don’t know what they are looking

for as “convergence;” no meaning of that word is given though it is then used.

Indeed, they show next that they have not made progress toward a PDE because their

evidence shows their model does not converge as would a solution to a PDE, even statisti-

cally. Their figure of results (Figure A1) shows that as the mesh distance decreases, and so

the number of channels increases, the maximal discharge of any channel converges to around

100 m3/s, the level against which they then report a “convergence rate” of “O(∆x2)”.

But convergence of edge fluxes to a non-zero amount is not a property of a numerical

solution of a 2D PDE model. When the number of mesh edges increases, in such a model

in which fluxes are along edges, the maximum flux must decrease to zero. Specifically,

for a 2D, flux-conservation PDE problem solved by a structured-grid method as here, the

number of edges crossing a fixed line21 is proportional to 1/∆x as ∆x→ 0. The total flux

across that line should converge to whatever amount is given by the continuum solution, so

the flux through each edge should converge to zero at rate O(∆x).22 The evidence given is

actually adequate to make this statement: The parameters in the model do not currently

scale so as to generate a PDE limit.

Thus we are in a bad situation, made worse by additional text in the same Appen-

dix and now by the reviewer’s assertions. First, the final sentence of the Appendix is an

evidence-free claim of prospective performance: “This variability should decrease further

once real topography is used and is unlikely to be larger than the errors of field measure-

ments.” Second, the reviewer now implies that what is missing from [24] is merely a proof

of convergence,23 but this is apparently only indirection; we never come close to saying it

was a lack of a “proof” of convergence that caused us to not implement conduits. Third,

the claim by the reviewer of additional prospective “automatic” numerical performance,

without evidence, is unfortunate given the available evidence.

21I.e. “at x = 5km”.
22If the PDE solution is irregular then the maximum flux though any edge might converge at an even slower rate

like O(∆x1/2), but if it does not converge to zero then there is no PDE solution.
23“Whilst no mathematical proven of convergence . . . ”
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Reviewers # 1 and # 3 want us to buy into this idea of using a 2D lattice model of

conduits in a scalable ice sheet model, and the only offered evidence of this even being

possible, much less the right modeling choice for a model to be applied at every point of an

ice sheet, is actually evidence for the opposite view.

• p.9 l.8 “closures” here and elsewhere can be confused with “creep closure,” reword.

While we don’t think this is a likely reader confusion, we have put quotes around “closure”

here, so that the reader looks to the referenced section 4 for the meaning of the word.

• p.9 l.19 It would help to briefly introduce which processes will be described and in

particular which are the unknown variables (or major variables as the authors call

them later).

We have moved the first mention of Table 2, which categorizes major variables into “state”,

“input”, and “output,” forward to this point. The introduction states what processes are

involved.

• p.10 Eq.1 add a term ∂Weng/∂t

No. As noted, we do not conserve water held englacially.

• p.10 l.9 it is not quite clear what “the two-dimensional subglacial layer” is. Pre-

sumably it is the layer which has thickness W .

We model the base of the glacier as a two-dimensional surface. Furthermore, in common

with the literature, we have a thickness for subglacial water, which makes the model two-

dimensional. The conserved quantity W +Wtil is a thickness, the flux follows the ice base

(instead of going into the ice or into the ground), and the equations for all variables only

involve x and y derivatives; these are all the usual meanings of “two-dimensional”.

• p.10 l.18 Specify that the pressure P is at the top of the water layer too.

No. This is not what we mean, nor what is meant by the pressure variable in other

literature (e.g. pw in equation (1) of [24]). In such 2D pressure equation models one can

regard the pressure variable as a vertical average of the pressure, but note it does not

increase with thickening of the layer alone, which it would if it had the meaning implied

by the reviewer. This is why we add “ρwgW” to our formula for the hydraulic potential,

because (in common with all the literature) we have no vertical profile of pressure in the

distributed system, but (not in common with the literature) we want subglacial lakes to

spread-out as they physically would.

• p.16 l.8 write “and Ntil = Po − Ptil is the effective pressure of the overlying ice

on the saturated till . . . ”

We don’t feel we need to introduce the new symbol Ptil only to eliminate it in this way.

The cited literature adequately defines the phrase “the effective pressure of the overlying

ice on the saturated till.”
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• p.16 l.10 Should be “previous section” but specify section number instead.

Yes. Fixed.

• p.16 l.19 I find N0 confusing. The very similar looking subscript “o” in Po refers

overburden but the “0” is something else. Maybe Nr or Nref?

We do not use symbol “No” or other things that could be confused. We are using here the

notation from [22], and we would like to keep that correspondence.

• p.17 l.8-16 What follows in this part is unclear. Reformulate of [sic] this intro-

ductory sentence “On the other hand we will describe the maximum capacity of

the till by specifying . . . ” to prepare the reader that instead of working with δ you

change to Wmax
til .

The sentence in question now says “On the other hand we specify a maximum Wmax
til on

the water layer thickness, . . . ”, to bring forward the symbol Wmax
til .

• p.17 l.10 Should this not just be Wtil < Wmax
til . The lower bound is never used, or

is it?

The lower bound 0 ≤ Wtil is most-certainly used. We observe that almost all of the

literature, in situations like this, fails to note this inequality. In fact, if the source terms

can be negative in a mass conservation equation for which the conserved variable is a

thickness then the model must actively enforce the fact that the thickness is nonnegative.

Within our paper we have also made this is made clearer with respect to the thickness Wtil.

• p.19 l.10 For this section the Y equation is not needed/decoupled. That should be

mentioned.

This is precisely what the sentence on lines 11–12 says: “We first consider two simple

closures which appear in the literature but which do not use cavity evolution Eq. (13) or

similar physics.” Equation (13) is the ∂Y/∂t equation.

• p.20 l.22 comma after “consider.”

The sentence in question now says “At an almost opposite extreme, our second simplified

closure makes the water pressure a function of the amount of water.” This avoids the issue.

• p.22 l.10 Expand here (or maybe elsewhere) on how P ≤ Po is enforced.

We now state how this inequality is enforced in both sections 5.1 and 6.5 (new numbering).

• p.23 l.15-22 This paragraph is a bit misplaced in this section. Maybe the enforce-

ment of the various constraints, including 0 ≤ P ≤ Po, warrants its own section.

Which is where this paragraph would belong.

This paragraph belongs here because explicit time-stepping is only possible in equations

without algebraic constraints. That is, only after we state our regularized pressure evolution

equation can we make a basic point: because of the ∂P/∂t term in our equation, a time-

stepping solution can be explicit. Now we don’t have to follow [20] and use an elliptic
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variational inequality form to incorporate the bounds 0 ≤ P ≤ Po.
24 This paragraph, and

the following paragraph about Clarke’s model, are indeed about consequences and meaning

of the englacial porosity regularization.

• p.23 l.19-22 These two sentences suggest that the authors have solved the “prohib-

itively expensive” problem of Werder et al. (2013). But as discussed above, they

only solve a simplified version of Schoof et al. (2012) without channels. Reword.

The reviewer is not paying attention to what Werder et al. (2013) [24] actually says:

Note that we impose no restrictions on the values that the water pressure can

attain. This is in contrast to the model in Schoof et al. [2012] and Hewitt et al.

[2012] which assumes that an air/vapor gap forms when the pressure drops to zero,

and instantaneous ice uplift occurs when pressure exceeds overburden. However,

the numerical procedure used in those studies is prohibitively expensive to use in

2-D.

This makes it copiously clear that it is the “numerical procedure used in those studies”,

including in Schoof et al. (2012) which has no conduits, which is expensive. And that it is

is a numerical procedure to “impose . . . restrictions on the values that the water pressure

can attain.” We have indeed offered an alternative, and demonstrated without question

that it ours is not “prohibitively expensive”.

The reviewer claims this issue is about “channels” (conduits). It isn’t. We stand by what

we said, “This variational inequality problem is asserted to be ’prohibitively expensive’ by

Werder et al. (2013) when solved in two dimensions at each step of a time-stepping model.”.

• p.24 Sec.5.1 I like this summary. One suggestion: write the equations in Eq.34

all as “time derivative of unknown = something.” Add the boundary conditions.

We have added text about boundary conditions to subsection 5.1.

However, we do not take the suggestion that we write as “time derivative . . . = something”

for a well-known reason. When there are constraints, ODE systems are often written

M
du

dt
= Au

and not
du

dt
= M−1Au,

even when M is invertible. The reasons are subtle, but they apply here: we want the

minimum well-posed statement of evolution in a model in which there are constraints on

the variables. In our case our system is PDEs, but (appropriately-interpreted) our M is

triangular and invertible. It ceases to be invertible as φ0 → 0, as we state in comparing

our model to that of [20], which has a differential-algebraic version of our problem.

24We could follow [20] in this respect, but we have an easier-to-implement option which is numerically consistent

and (we believe) convergent.
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• p.25 l.1-8 Either be specific about which functions are what type or leave the para-

graph away.

Table 2 makes it copiously clear which functions are of which type. We have pointed the

reader to that Table earlier in the paragraph. This paragraph is key for explaining coupling

to ice dynamics.

• p.25 Sec.5.2 This section should be merged with section 4.1, probably at this loca-

tion in the MS.

We believe that the existing structure of sections 2–5 is very important in this regard.

In sections 2 and 3 we point out physical principles with which readers will not disagree.25

Then we start section 4 with the key statement “The evolution equations listed so far . . . can

be simplified to three equations in the four major variables . . . We do not yet know how to

compute the water pressure P . . . ” Subsection 4.1 then collects closures which are for this

purpose (i.e. determining the water pressure) but which are scattered all over the literature.

Only with this structure can we then make clear why our choice (i.e. simply W = Y ) is

reasonable and how it fits in, and can we also regularize the resulting pressure-determining

equation (subsections 4.2 and 4.3). At that point (i.e. section 5.1) we can summarize our

whole model. Then we can help the actual user of our model by showing in what parameter

limits we get some simpler or different models (section 5.2).

• p.25 l.11-19 as stated above, I dont think this is quite the Schoof et al. (2012)

model.

This is indeed the Schoof et al. (2012) [20] model. Equations (2.8)–(2.10) in [20] give our

equation (36a). Equation (2.12) in [20] is our equation (36b).

• p.27 l.23 write “layer thickness” instead of “amount”

p.28 l.1 write “layer thickness” instead of “amount” (and other places in the MS)

We somewhat agree. First, our exposition of this particular list of observations has been

simplified so that the issue does not arise.

Throughout the manuscript, when we refer to W or Wtil in particular we generally use

“thickness”. But “water amount” is an appropriate phrase when we want to contrast with

other water properties, especially “water pressure.”

• p.37 l.15 What happens when W < 0 should probably be discussed in the mathe-

matical section too.

We have added some discussion of the appearance of free boundaries, from the enforcement

of inequalities including W ≥ 0, to subsection 5.1 on the continuum model.

25I.e. disagree fundamentally. Details are subject to disagreement, of course.
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• p.39 l.14 For a mountain glacier porosity seems to be around 0.01 (Bartholomaus

et al., 2011). Porosity for an ice sheet may be more on the order of 10−4.

Yes. (Or rather, we don’t doubt that perhaps someday a careful survey will reveal that to

be so.) The role of our englacial porosity in regularizing the solution, and in smoothing-out

modeled temporal detail if it is too large, is already adequately covered.

• p.40 l.13 What is the “active subglacial layer”?

That ambiguous phrase has been removed. We now say “There are also special cases at

the boundaries of the region where W > 0 . . . ”

• p.42 l.17 is this connected to the statement on p. 37, l.15? How?

Yes, it is connected. Because literature including [11, 20, 24] is modeling water input into

mostly-temperate mountain glaciers, mostly from surface melt, that literature misses the

point that W ≥ 0 must be enforced. That is, it must be enforced when there is refreeze,

a known case under ice sheets. Thus there are more-diverse free boundaries, and potential

for conservation errors, in our physical model for ice sheets than in that literature.

• p.45 l.20 write “The spin-up grid sequence...”

Done.

• 45 Sec.9.2.1 This section is too long and detailed considering this is not about

ice flow modelling. Is this spin-up different from others used before? Also in a

similar vein, Fig. 6 could be removed.

This section has been shortened, and Figure 6 removed, but nonetheless this material defines

the meaning and quality of the input data into the subglacial hydrology model. It cannot

be removed entirely.

• p.48 l.5-7 The till is either completely full or empty. If I understand the depen-

dence of sliding on the till hydrology correctly, this means either fully slippery on

not at all. So, is there no dependence of sliding on hydrology? Maybe this point

could be briefly discussed.

There is dependence of sliding on hydrology. While basal shear stress only directly depends

on the amount of water in the till, not in the transport network, the model in its two-way

coupled form can “turn on” and “turn off” ice streams for the correct (e.g. at least from

what is understood for Kamb ice stream) thermodynamically-determined reasons.26

It is also true that when there is sufficient basal melt then the till in the model will be

fully-saturated. Is this asserted to be wrong?

Finally it is very important to note that the velocity of sliding is not, by any means, a

local function of basal shear stress, much less hydrology. PISM solves a nontrivial stress

balance to determine where sliding occurs, implying high-quality results (in the sense of

comparison to observed surface velocities in outlet glaciers [1]).

26While none of the reviewers seem to note this aspect of subglacial hydrology, it is probably our highest priority,

as revealed by all the papers on whole ice sheet modeling which we cite . . . all of which are ignored.
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• Comments for tables and figures

Tab. 3 Why is Wr so much higher here?

Table 3 itself is removed. The particular value of a parameter in a verification test is rarely

the issue. We think both Wr ≈ 0.1 m and Wr ≈ 1 m are reasonable given the roughness

seen in deglaciated areas.

• Fig. 2 Label R1 and L.

The presentation of the nearly-exact solution has been made briefer and clearer, and the

labels are not (now) needed.

• Fig 2 & 3 they could be combined.

Perhaps as subplots, but our arrangment allows separate, and clearer, captions. We want

to show W and P separately.

• Fig. 6 could be left away

Done.

• Fig. 8 [sic; 9?] & 11 mention what model run this is for

The Figure 8 caption is clear on which model. The Figure 9 caption is clear that it is the

same model as in Figure 8. The Figure 11 caption (now Figure 10) has been corrected to

make it clear it is distributed.

• Fig. 11 Add a label to the colour-scale. Also, I think there is a inconsistency

between the caption and the text (p.48, l.18), one says ice thickness one says

sliding speed.

The caption already says that the color scale is for ice thickness. We are not sure what was

the “inconsistency between the caption and the text”. We have re-written the caption to

make it as clear as possible.
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Abstract. We describe and test a distributed

:::::::::::::::::::::
two-horizontal-dimension

::
subglacial hydrology model

which combines a pressurized, plastic till with a
::::::::
distributed

system of water-filled, linked cavities which open through
sliding-generated cavitation

:::::
sliding

::
and close through

ice creep. The addition of this sub-model to the Paral-
lel Ice Sheet Model accomplishes three specific goals:
(1) conservation of the mass of two-phase (solid/liquid)
waterin the ice sheet

::::
water, (2) simulation of spatially-

and temporally-variable basal shear stress from physical
mechanisms based on a minimal number of free parameters,
and (3) convergence under two-horizontal-dimensional
grid refinementof the subglacial water amount and
pressure

:::
grid

::::::::::
refinement. The model is a common gen-

eralization of at least four others: (i) the undrained plastic
bed model of Tulaczyk et al. (2000b), (ii) a standard
“routing” model used for identifying locations of sub-
glacial lakes, (iii) the lumped englacial/subglacial model
of (Bartholomaus et al., 2011)

::::::::::::::::::::::
Bartholomaus et al. (2011) ,

and (iv) the elliptic-pressure-equation model of Schoof et al.
(2012). We use englacial porosity as a regularization, and we
preserve physical bounds on the pressure. In steady state the
model generates a local

:
a functional relationship between

water amount and pressure
::::::
emerges. We construct an exact

solution of the coupled, steady equations which is used
:::
and

:::
use

:
it
:

for verification of our explicit time-stepping, parallel
numerical implementation. We demonstrate the model at
scale by five year simulations of the entire Greenland ice
sheet at 2 km horizontal resolution, with one million nodes
in the hydrology grid.

1 Introduction

Any reasonable
:::::::::::::::::::::
continuum-physics-based dynamical model

of the liquid water underneath and within a glacier or
ice sheet has at least these two elements: the mass of
the water is conserved and the water flows from high to
low values of the modeled hydraulic potential. Beyond
that there are many variations considered in the literature.
Modeled aquifer geometry might be a system of linked
cavities (Kamb, 1987), conduits (Nye, 1976), or a sheet
(Creyts and Schoof, 2009). Geometry evolution processes
might include the opening of cavities by sliding of the
overlying ice past bedrock bumps (Schoof, 2005), the
creation of cavities by interaction of the ice with de-
formable sediment (Schoof, 2007), closure of cavities and
conduits by creep (Hewitt, 2011), or melt on the walls of
cavities and conduits which causes them to open (Clarke,
2005). Water could move in a macro-porous englacial system
(Bartholomaus et al., 2011; Harper et al., 2010)

:::::::::::::::::::::::
(Bartholomaus et al., 2011) or

it could be stored in a porous till (Tulaczyk et al., 2000a).
Successful models

::::::
Models

:
have combined subsets of these

different morphologies and processes—for examples see
Flowers and Clarke (2002a); Hewitt (2013); van der Wel et al. (2013); Werder et al. (2013); de Fleurian et al. (2014) .
It is not, however, always true that adding more
processes makes a better model. Especially
when used to understand variations in ice flow
and sliding, which is a goal here

:::::::
processes

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Flowers and Clarke, 2002a; Hewitt, 2013; Hoffman and Price, 2014; van der Wel et al., 2013; Werder et al., 2013; de Fleurian et al., 2014) .

:::::::
However, the completeness of the modeled processes should

::::
must

:
be balanced against the number of uncertain model

parameters and the ultimate availability of observations with
which to constrain them.

This paper describes a carefully-selected model for a
distributed system of linked subglacial cavities, with ad-
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ditional storage of water in the pore spaces of subglacial
till. The mass conservation equation in our model describes
the evolution of the sum of the transportable water in the
distributed system and the water stored in the till. Water in
excess of the capacity of the till passes into the transport
system, and in

:::::::::
distributed

:::::::
transport

:::::::
system.

::
In

:
this sense the

model could be called a “drained-and-conservedplastic bed”
extension of the “undrainedplastic bed” ”

::::::
plastic

::::
bed model

of Tulaczyk et al. (2000b).
The goals of the current work are the implementation,

verification, and practical demonstration of this
two-dimensional subglacial hydrology model. It must
also be parallelizable, apply at a wide variety of spatial and
temporal scales, exhibit convergence of solutions under grid
refinement, and have as few parameters as practical. The
result is a sub-model of a comprehensive three-dimensional
ice sheet model, the open-source Parallel Ice Sheet Model
(PISM; pism-docs.org). The submodel can be used in
any PISM run by a simple run-time option.

The cavities in our modeled distributed system open by
sliding of the ice over bedrock roughness and they close by
ice creep,

:
.
:::::
These

:
two physical processes which combine to

determine the relationship between water amount and pres-
sure. Pressure is thereby determined non-locally over each
connected component of the hydrological system. No func-
tional relation between subglacial water amount and pres-
sure is assumed (compare Flowers and Clarke, 2002a). The
subglacial water pressure solves an equation which is a
parabolic regularization of the distributed pressure equation
given in elliptic variational inequality form by Schoof et al.
(2012).

In cases where boreholes have actually been drilled to
the ice base, till is

::::
often

:
observed (Hooke et al., 1997; Tu-

laczyk et al., 2000a; Truffer et al., 2000; Truffer and Harri-
son, 2006). Laboratory experiments on the rheology of till
(Kamb, 1991; Hooke et al., 1997; Tulaczyk et al., 2000a;
Truffer et al., 2001) generally conclude that its deformation
is well-approximated by a Mohr-Coulomb relation (Schoof,
2006b). For this reason we adopt a compressible-Coulomb-
plastic till model when determining the effective pressure on
the till as a function of the amount of water stored in it (Tu-
laczyk et al., 2000a). Existing models which combine till
and a mass conservation equation for the subglacial water
are rather different from ours, as they either have only one-
horizontal dimension (van der Wel et al., 2013) or have a
pressure equation which directly ties water pressure to wa-
ter amount, which generates a porous medium equation form
(Flowers and Clarke, 2002a; de Fleurian et al., 2014).

Wall melt in the linked-cavity system can be calculated
diagnostically from the modeled flux and hydraulic gradient.
If included as a contribution to the mass conservation
equation, however, the addition of wall melt generates an
unstable distributed system (Walder, 1982) , though such
a system can be stabilized to some degree by bedrock
bumps (Creyts and Schoof, 2009) . In this model, wall melt

is not added into the mass conservation equation
:::
The

:::::
major

::::
goals

:::::
here

:::
are

::
to

::::::::::
implement,

::::::
verify,

::::
and

:::::::::::
demonstrate

:::
this

:::::::::::::
two-dimensional

:::::::::
subglacial

:::::::::
hydrology

::::::
model.

::::
The

:::::
model

::
is

::::::::
applicable

::
at
::

a
:::::
wide

::::::
variety

::
of

::::::
spatial

::::
and

::::::::
temporal

:::::
scales

:::
but

:
it
::::
has

:::::::::::
relatively-few

::::::::::
parameters.

::
It
::
is

::::::::::
parallelized

::::
and

:
it

::::::
exhibits

:::::::::::
convergence

::
of

::::::::
solutions

:::::
under

:::
grid

::::::::::
refinement.

::
It

:
is

:
a
:::::::::
sub-model

::
of

:
a
:::::::::::::
comprehensive

:::::::::::::::
three-dimensional

:::
ice

::::
sheet

::::::
model,

::::
the

:::::::::::
open-source

:::::::
Parallel

:::
Ice

:::::
Sheet

:::::::
Model

::::::
(PISM;

::::::::::::::::
pism-docs.org

:
);

:::
the

::::::::::
sub-model

:::
can

:::
be

::::::
added

:::
to

:::
any

:::::
PISM

:::
run

::
by

::
a
::::::
simple

:::::::
run-time

::::::
option.

Conduits are also not includedin our model. While
the pressure and amount of water in conduits could
evolve by physical processes, the existing theory

::
not

:::::::
included.

:::::::::
Existing

:::::::::
theories

::
of conduits apparently

requires
::::::
require

:
their locations to be fixed a priori

(Schoof, 2010b; ?; Hewitt et al., 2012; Hewitt, 2013; Werder et al., 2013)
:::::::::::::::::::::::::::::::::::::::::
(Schoof, 2010b; Hewitt, 2013; Werder et al., 2013) .

Such lattice models have no known continuum limit
in the map plane. Because

::
By

::::::::
contrast

:::::
with

::::::::
conduits,

::::::::::
linked-cavity

:::::::
models

::
do

:::
not

:::
put

:::
the

:::::::
cavities

::
at

:::
the

:::::
nodes

::
of

:
a

::::::::::::
pre-determined

::::::
lattice,

:::::::
exactly

:::::::
because

:::
the

:::::::::
continuum

::::
limit

::
of

::::
such

::
a
::::::
lattice

::::::
model

::
is

::::::
known

::::::::::::::
(Hewitt, 2011) ,

::::::
namely

:::::
partial

::::::::::
differential

:::::::
equation

::::::
(PDE) (13)

::
in

:::
the

::::::
current

:::::
paper.

::::::::
Regarding

::::::
lattice

:::::::
models,

:::::::
because all PISM usage involves

a run-time determination of grid resolution, which varies
from 40 km to 10 mm in the applications documented in the
PISM User’s Manual (PISM authors, 2013) , all parameters
must have grid-spacing-independent meaning. Lattice or
other fixed-grid

:::::::::::::
input-grid-based

:
models are therefore not

acceptable as components of PISM.

::::
Wall

::::
melt

::
in

:::
the

::::::::::::
linked-cavity

::::::
system,

::::::
which

::
is

:::::::
believed

::
to

:::
be

:::::
small

:::::::::::::
(Kamb, 1987) ,

:::
is

::::
not

:::::
added

:::::
into

:::
the

:::::
mass

::::::::::
conservation

::::::::
equation

::
in

::::
our

::::::
model.

:::
(It

::::
can

::
be

:::::::::
calculated

:::::::::::
diagnostically

:::::
from

:::
the

:::::::
modeled

:::
flux

::::
and

::::::::
hydraulic

:::::::
gradient,

::::::::
however.)

::
If
::::::::

included
:::

in
:::::
mass

:::::::::::
conservation,

::::
the

:::::::
addition

::
of

::::
wall

:::::
melt

:::
can

::::::::
generate

:::
an

:::::::
unstable

::::::::::
distributed

::::::
system

:::::::::::::
(Walder, 1982) ,

::::::
though

:::::
such

:
a
:::::::

system
:::
can

:::
be

::::::::
stabilized

::
to

::::
some

::::::
degree

:::
by

::::::
bedrock

::::::
bumps

:::::::::::::::::::::::
(Creyts and Schoof, 2009) .

The structure of the paper is as follows: Section 2 consid-
ers basic physical principles, culminating with a fundamental
advection-diffusion form of the mass conservation equation.
Section 3 reviews what is known about till mechanical prop-
erties, water in till pore spaces, and shear stress at the base
of a glacier. In section 4 we compare closures

::::::::
“closures”

which directly or indirectly determine the subglacial water
pressure. Based on all these elements, in section 5 we sum-
marize the new model and the role of its major fields. In this
section we also show how the model extends several pub-
lished models, and we note properties of its steady states ;

:
(see also Appendix A. In section ?? we compute an exact

:
),

:::
and

:::
we

:::::::
compute

::
a
::::::::::
nearly-exact

:
steady solution in the map-

plane, a useful tool for verification. In section 6 we present
all

::
the

:
numerical schemes, with particular attention to time

step restrictions and the treatment of advection. Section ??
documents

:
,
:::
and

:::
we

::::::::
document

:
the PISM options and param-

eters seen by a user
::::
users. Section 7 shows numerical results
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from the model, including
::::::
starting

::::
with

:
convergence under

grid refinement in the verification case, and a demonstration
of

:
.
:::
We

::::
then

::::::::::
demonstrate

:
the model in five year runs on a 2

km grid covering the entire Greenland ice sheet.

2 Elements of subglacial hydrology

2.1 Mass conservation

We assume that liquid water is of constant density
:::
ρw;

:::
see

::::
Table

::::
A1

:::
for

::::::::
constants. Thus the thickness of the layer of

laterally-transportable (mobile)
:::::::::::::
laterally-moving

:
water, de-

noted by W (t,x,y), determines its mass
:
;
:::
see

:::::
Table

:::
A2

:::
for

::::::
variable

::::::
names

:::
and

:::::::::
meanings. In addition there is liquid wa-

ter stored locally in the pore spaces of till (Tulaczyk et al.,
2000b) which is also described by an effective thickness
Wtil(t,x,y). Such thicknesses are only meaningful compared
to observations if they are regarded as averages over a hori-
zontal scale of tens to thousands

:::::
meters

::
to

::::::::
hundreds of meters

(Flowers and Clarke, 2002a).
The

::::
Thus

:::
the total effective thickness of the water at map-

plane location (x,y) and time t is W +Wtil. This sum is the
conserved quantity in our model. In two map-plane dimen-
sions the mass conservation equation is (compare Clarke,
2005)

∂W

∂t
+
∂Wtil

∂t
+∇ ·q =

m

ρw
(1)

where ∇·= (∂/∂x) + (∂/∂y)
:::::::::::::::
∇·= ∂/∂x+ ∂/∂y

:
denotes

divergence, q is the (vector )
:::::
vector water flux (units m2 s−1),

:::
and

:
m is the total input to the subglacial hydrology (units

kgm−2 s−1)and ρw is the density of fresh liquid water; see
Table A1 for this an other physical constants. Note that the
water flux q is concentrated within the two-dimensional sub-
glacial layer.

The water source m in equation (1) includes
::::
both

:
melt

on the lower surface
::::
base of the glacier and drainage

:
to

:::
the

:::
bed from the glacier surfaceif that occurs. In portions of ice
sheets with cold surface conditions, such as Antarctica and
the interior of Greenland, the basal melt rate part of m is
determined

::::::::
dominated

:
by the energy balance at the base of

the ice (Aschwanden et al., 2012). The
:
,
:::
and

:::
the

:
Greenland

results in section 7 use only that basal melt for m. Drainage
from the surface has also been added to m in applications of
our model (van Pelt, 2013), but modelling such drainage is
outside the scope of this paper.

2.2 Hydraulic potential and water pressure

The hydraulic potential ψ(t,x,y) combines the pressure
P (t,x,y) of the transportable subglacial water and the grav-
itational potential of the top of the water layer (Goeller et al.,
2013; Hewitt et al., 2012),

ψ = P + ρwg (b+W ). (2)

Here z = b(x,y) is the bedrock elevation.
We have added the term “ρwgW ” to the standard hy-

draulic potential formula ψ = P + ρwgb (Clarke, 2005;
Shreve, 1972) because differences in the potential at
the top of the subglacial water layer determine the
driving potential gradient for a fluid layer. The W
term in makes the mass conservation equation diffusive,
regardless of the action of other diffusive mechanisms;
see subsection 5.3. When the water depth becomes sub-
stantial (W � 1 m), as it would be in a subglacial lake,
this term keeps the modeled lakes from being singulari-
ties of the water thickness field . Indeed, subglacial lakes
of infinitesimal extent and infinite depth form at local
minima of the hydraulic potential if this term is absent
(Le Brocq et al., 2009)

::::::::::::::::::::::::::
(compare Le Brocq et al., 2009) .

Ice is a viscous fluid which has a stress field of its own.
The basal value of the downward normal stress, traditionally
called the overburden pressure, is denoted by Po. We accept
the shallow approximation that it

:::
this

::::::
stress is hydrostatic

(Greve and Blatter, 2009): ,
:

Po = ρigH, (3)

where H is the ice thickness. Because

:::::::::::
Overpressure

:::::::
P > Po :::

has
:::::

been
::::::::

observed
:::

in
:::
ice

::::::
sheets,

:::
but

::::
only

::::
for

:::::
short

:::::::::
durations

::::::::::::::::
(Das et al., 2008) .

:::
In

::::
our

:::::
model

::::
and

::::::
others

::::::::::::::::::
(Schoof et al., 2012) ,

::::::::
however,

:::::::
because

the condition P > Po is presumed to cause the ice to
lift and thus reduce the pressure back to overburden P =
Po(Schoof et al., 2012) , it follows that ,

:
the pressure solu-

tion is subject to inequalities

0≤ P ≤ Po. (4)

In temperate glaciers a similar upper bound applies
because water rising to the surface through efficient
englacial conduits is free to flow at the surface, ensuring
P ≤ (ρw/ρi)Po, at least if supraglacial geysers are regarded
as exceptional (Bartholomaus et al., 2011; Bueler, 2014) .

2.3 Darcy flow

Transportable
:::::::::
Subglacial water flows from high to low hy-

draulic potential. The simplest expression of this is a Darcy
flux model for a water sheet,

q =−KW∇ψ (5)

where the hydraulic conductivity K is a constant (Clarke,
2005). More generally Schoof et al. (2012) suggests

:
a
:::::
power

:::
law

::::
form

:

q =−kWα |∇ψ|β−2∇ψ (6)

for α≥ 1, β > 1, and a coefficient k > 0 with units that de-
pend on α and β (see Table A1). The power-law form is
justified as an instance of a Manning or Darcy-Weisbach law
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(Schoof et al., 2012) . Clarke (2005) suggests α= 1 and β =
2, to give (5) above, Creyts and Schoof (2009) use α= 3/2
and β = 3/2, Hewitt (2011, 2013) uses α= 3 and β = 2, and
Hewitt et al. (2012) suggest α= 5/4 and β = 3/2. The cur-
rent paper implements law (6) generally but uses the Clarke
(2005) and Hewitt et al. (2012) exponents in an exact solution
and in numerical experiments, respectively. When we use we

:::
We call K = kWα−1 |∇ψ|β−2 the effective hydraulic con-
ductivity, so that equation (5) applies formally throughout.

2.4 Advection-diffusion decomposition

Combining (2) and (6), and separating the term proportional
to ∇W , we get the flux expression

q =−kWα |∇ψ|β−2∇(P + ρwgb) (7)

− ρwgkWα |∇ψ|β−2∇W.

The second term with ∇W acts diffusively in the mass
conservation equation . On the other hand, because

:::::
which

:::::::
suggests

:
a
::::

mix
:::

of
:::::::::::
mechanisms.

::
If

:
P generally scales with

the overburden pressure Po, :::
and

::
if

::::::::::::::::::
|∇(H + b)| � |∇W |,

:::
then

:
the first flux term in (7) will dominatein the common

situation |∇H| � |∇W |
:
.
::::
The

::::::
second

::::
term

:::::
with

::::
∇W

::::
acts

:::::::::
diffusively

::
in

:::
the

:::::
mass

:::::::::::
conservation

:::::::
equation

:
(1). We will

see in subsection 5.3 that in near-steady-state circumstances
the part of the transport velocity which is proportional to

:::::
where

:::::
there

::
is

:::::::::
significant

::::::
sliding,

:::
the

::::
first

::::
term

:::::
with ∇P is

also significantly diffusive in the mass conservation equation

:::::::::
(subsection

::::
5.3). In conditions far from steady state, how-

ever, the direction of ∇P is
:::::::::
presumably

:
different from the

direction ∇W .
We will construct our conservative numerical scheme

based on decomposition (7). To simplify the model

:::::::::
expression slightly, the small thickness approximation W ≈
0 is made inside the absolute value signs in (7), namely

|∇ψ| ≈ |∇(P + ρwgb)| . (8)

This simplification, which makes no change in the β = 2 case

:::
(see

:::::::::
subsection

::::
2.3), lets us define

:::::::
redefine the effective hy-

draulic conductivity as

K = kWα−1 |∇(P + ρwgb)|β−2
. (9)

In terms of K we define a velocity field and a diffusivity
coefficient:

V =−K∇(P + ρwgb) , D = ρwgKW., (10)

Now
::
so

:::
that

:
(7) is a clean advection-diffusion decomposition,

q = VW −D∇W. (11)

From equations (1) and (11) we now have an advection-
diffusion-production equation for the evolution of the water

amount
::::::::
conserved

:::::
water

::::::
amount

:::::::::
W +Wtil:

∂W

∂t
+
∂Wtil

∂t
=−∇ · (VW ) +∇ · (D∇W ) +

m

ρw
. (12)

There are distinct numerical approximations (section 6) for
the advection term ∇ · (VW ) and the diffusion term ∇ ·
(D∇W ), and they impose

:::
with

:
time-step restrictions of dif-

ferent magnitudes . We will see that equation
::::::
(section

:::
6).

:::::::
Equation

:
(12) is often advection-dominated in the sense that

|VW | � |D∇W |, but the
::
and

:
numerical schemes for ad-

vection and diffusion must be tested in combination . (We
measure convergence of the combined numerical schemes in
section 7.)

As is well known (Clarke, 2005) , the flux q depends
significantly on the ice surface slope because the ice
overburden pressure dominates the subglacial water pressure.
The model in this paper also generates pressure fields with
this property in some circumstances, but the directions of
hydraulic potential and surface gradients are significantly
different in general because the pressure depends on physical
mechanisms for the opening and closing of cavities

::::::
(section

::
7).

2.5 Capacity of a linked-cavity distributed system

The rate of change of the area-averaged thickness of the cav-
ities in a distributed linked-cavity system can be described
as

:
is

:
the difference of opening and closing rates (Hewitt,

2011). This thickness Y , also called the bed separation
:::
“bed

:::::::::
separation”

:
(Bartholomaus et al., 2011), has

::::::
generic evolu-

tion equation

∂Y

∂t
=O(|vb|,Y )−C(N,Y ) (13)

where vb is the ice base (sliding) velocity andN = Po−P is
the effective pressure on the cavity system. Denoting X+ =
max{0,X}, we choose an

:
a
::::::::::
nonnegative

:
opening term based

on cavitation only:

O(|vb|,Y ) = c1|vb|(Wr −Y )+. (14)

Here
::
c1::

is
:
a
::::::
scaling

:::::::::
coefficient

::::
and Wr is a maximum rough-

ness scale of the basal topography (Schoof et al., 2012);
:::
see

::::
Table

:::
A1. The closing term models ice creep only (Hewitt,

2011; Schoof et al., 2012):

C(N,Y ) = c2AN
3Y ., (15)

:::::
where

::
c2::

is
::
a

::::::
scaling

:::::::::
coefficient

:::
and

::
A

::
is

:::
the

:::::::
softness

::
of

:::
the

:::
ice. We have used Glen exponent n= 3 for concreteness and
simplicity. By the opening term O is nonnegative, and the

:::
The

:
closing term C in (15) is also nonnegative because our

modeled pressure P satisfies bounds 0≤ P ≤ Po.
The physical intuition behind a model which combines

with mass conservation and a Darcy flux relation like is
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as follows. If the cavity is larger than local water sources
can immediately fill then the pressure should drop. Lower
pressure encourages water inflow and, by , it speeds cavity
closure, bringing the pressure back up. Conversely, if local
water sources exceed capacity then increased pressure should
push water out of the area and slow creep closure.

3 Till hydrology and mechanics

Till with pressurized liquid water in its pore spaces can be

:
is
:

expected to support much of the ice overburdenin areas
where the ice base is not frozen. When present, such satu-
rated till is central to the complicated relationship between
the amount of subglacial water and the speed of sliding. Our
model includes storage of subglacial water in till , potentially
everywhere under the ice sheet, both because of its role in
conserving the mass of liquid water and its role in determin-
ing basal shear stress.

We will assume throughout that liquid water or ice fills
pore spaces in the till, and that there are no air- or vapor-
filled pore spaces. We suppose that when m= 0 and

::::
When

Wtil = 0 then
::
in

:::
the

:::::::
model,

:
the pore spaces in the till

are
:::::::
regarded

:::
as

:
filled with ice and the basal shear stress

is correspondingly-high
:::::::::::::
correspondingly

:::::
high. When Wtil is

small the till will generally hold both liquid water and ice.
Only when Wtil attains sufficiently large valuesis the till
conceived-of as entirely melted, at which point ,

::::::::
however,

::
the

:::
till

::
is

::::::::
regarded

::
as

::::::::
saturated

::::
with

:::::
liquid,

::::
and a drop in ef-

fective pressure becomes possible (subsection 3.2 below).

3.1 Evolution of till-stored water amount layer thick-
ness

While the thickness W in describes the amount of water
in subglacial cavities, and in the connections between
cavities (Kamb, 1987) , the

:::
The

:
water in till pore spaces

is much less mobile
:::
than

::::
that

::
in
::::

the
:::::::::::
linked-cavity

::::::
system

because of the very low hydraulic conductivity of till
(Lingle and Brown, 1987; Tulaczyk et al., 2000a; Truffer et al., 2001)

::::::::::::::::::::::::::::::::::::::
(Lingle and Brown, 1987; Truffer et al., 2001) .

Therefore we choose an evolution equation for
Wtil for simplicity (Bueler and Brown, 2009)

::::::
without

::::::::
horizontal

:::::::::::::::
transport

::::::::::
for

:::::::::::::::
simplicity

::::::::::::::::::::::::::::::::::::::::
(Bueler and Brown, 2009; Tulaczyk et al., 2000a) , namely

∂Wtil

∂t
=
m

ρw
−Cd. (16)

Here Cd ≥ 0 is a fixed rate that makes the till gradually
drain in the absence of water input. Equation is the same
as equation (2) in Tulaczyk et al. (2000b) . In practice ;

:
we

choose Cd = 1 mm/a, which is small compared to typical
values ofm/ρw. Refreeze is also allowed, as a negative value
for m. Note that any water removed from the till

::
As

:::
in

::::::::::::::::::::::
(Bueler and Brown, 2009) ,

:::
we

::::::::
constrain

::::
the

::::
layer

:::::::
thickness

:::
by

0≤Wtil ≤Wmax
til .

::::::::::::::
(17)

:::
Any

::::::
water

::
in

::::::
excess

::
of

::::
the

:::::::
capacity

::
of
::::

the
:::
till,

:::
i.e.

::::::
Wmax

til ,

::::::::::
“overflows”

::
the

:::
till

::::
and enters the transport system; it is con-

served.
:::::::
Because

:::
the

::::::
source

::::
term

:::
m

::
in

:::::::
equation

:
(16)

:
,
::
or

:::
the

:::::
whole

::::
right

:::::
side,

:::
can

:::
be

::::::::
negative,

:::
the

:::::
lower

::::::
bound

::
in

:
(17)

::::
must

:::
be

:::::::::::::::
actively-enforced.

::::
The

::::::
upper

:::::
bound

:::
in

:
(17)

:::
also

:::::
relates

::
to

:::
the

:::::::
effective

:::::::
pressure

:::
on

:::
the

:::
till,

::
as

:::
we

::::::
explain

::::
next.

3.2 Effective pressure on the till

There is extensive evidence that deformation
::::::::::
Deformation

:
of

saturated till is well-modeled by a plastic (Coulomb friction)
or nearly-plastic rheology (Hooke et al., 1997; Truffer et al.,
2000; Tulaczyk et al., 2000a; Schoof, 2006b). The

::
Its yield

stress τc of such till satisfies the Mohr-Coulomb relation

τc = c0 + (tanϕ)Ntil (18)

where c0 is the till cohesion, ϕ is the till friction angle, and
Ntil is the effective pressure of the overlying ice on the satu-
rated till (Cuffey and Paterson, 2010). (The

::::
Note

::::
that

:::
the ef-

fective pressure N = Po−P used in the next section
:::::
section

:::
2.5 for modeling cavity closure is distinct from Ntil in (18).
This distinction is justified

:::::
again

::::::::
explained

:
by the very low

hydraulic conductivity of till.)
Let e= Vw/Vs be the till void ratio, where Vw is the vol-

ume of water in the pore spaces and Vs is the volume of min-
eral solids (Tulaczyk et al., 2000a). From the standard the-
ory of soil mechanics and from laboratory experiments on
till (Hooke et al., 1997; Tulaczyk et al., 2000a), a linear rela-
tion exists between the logarithm of Ntil and e,

e= e0−Cc log10 (Ntil/N0) . (19)

Figure A1(a) shows a graph of (19). Here e0 is the void ra-
tio at a reference effective pressure N0 and Cc is the coeffi-
cient of compressibility of the till. Equivalently

:
to
:

(19), Ntil

is an exponential function of e, namelyNtil =N010(e0−e)/Cc

(van der Wel et al., 2013, equation (15)). Note that in ,
:
,
::
so

Ntil is nonzero for all finite values of e.
While equations (19) suggest

:::::::
suggests

:
that the effective

pressure could be any positive number, in fact the area-
averaged value of Ntil under ice sheets and glaciers has
limits. It cannot exceed the overburden pressure for any
sustained period. Furthermore, once the till is close to its
maximum capacity then the excess water will be “drained”
into a transport system. We suppose this occurs at a small,
fixed fraction

:
δ
:
of the overburden pressure. Thus we assume

bounds

δPo ≤Ntil ≤ Po (20)
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where δ = 0.02 in the experiments in this paper.
The void ratio e and the effective water layer thickness

Wtil are describing the same thing, namely the amount of
liquid water. In fact, if ∆x, ∆y are the horizontal dimen-
sions of a rectangular patch of till

::::
with

::::::::::::::
(mineral-portion)

:::::::
thickness

::
η
:
then Vw =Wtil ∆x∆y and Vs = η∆x∆ywhere

η is the thickness of the mineral portion of the till. Because
e= Vw/Vs it follows that .

:::::
Thus

e=
Wtil

η
. (21)

On the other hand we will describe the maximum capacity of
the till by specifying a maximum

::::::
specify

:
a
:::::::::

maximum
:::::
Wmax

til
on the water layer thickness(Bueler and Brown, 2009) , that
is,

0≤Wtil ≤Wmax
til .

:
,
::
in

::::::
bounds

:
(17)

:
.
:
The minimum Ntil = δPo of the effective

pressure occurs at the maximum
::::::::
maximum

::::::
values

::
of

:
void

ratio e and at maximum
:::::::
effective

::::::::
thickness

:
Wtil. But then ,

::
so equations (19) and (21) combine

::::
allow

::
us

:
to express the

solid-till thickness η in terms of our preferred parameters and
the overburden pressure,

:::::
Wmax

til ,
::
δ,

:::
e0,

::::
N0,

:::
and

:::
Cc::

η =
Wmax

til

e0−Cc log10 (δPo/N0)
. (22)

From (19), (21), and (22), the effective pressure Ntil can
now be written as the following function of Wtil:

N̂til =N0

(
δPo
N0

)s
10(e0/Cc)(1−s) (23)

where s=Wtil/W
max
til . However, as noted above, Ntil is

bounded, so the form we use
:
:
:

Ntil = min
{
Po, N̂til

}
.

::::::::::::::::::

(24)

::::
This

:::::::
function is shown in Figure A1(b):

Ntil = min
{
Po, N̂til

}
.

:
.

It follows from equations (18),
:

(23),
:
and (24) that the

yield stress τc can be determined from the water amount
:
is

:::::::::
determined

::
by

:::
the

:::::
layer

::::::::
thicknessWtil. Regarding the param-

eters in this relation:

(i) Experiments on till suggest small values for cohesion
:
c0

::
in (18), 0≤ c0 . 1 kPa (Tulaczyk et al., 2000a), and we
choose c0 = 0 for concreteness.

(ii) Observed
::::::::
Measured

:
till friction angles ϕ are in a

18◦– 40◦ range (Cuffey and Paterson, 2010). Simula-
tions of the whole Antarctic (Martin et al., 2011) and

Greenlandic (Aschwanden et al., 2013) ice sheets have
been based on a hypothesis that the till friction an-
gle ϕ can depend

:::::::
depends

:
on bed elevation , so as

to accommodate
:::::
model

:
the submarine history of some

:::::::::::
low-elevation sediments.

(iii) The ratio e0/Cc can be determined by laboratory ex-
periments on till samples (e.g. Hooke et al., 1997; Tu-
laczyk et al., 2000a). Values for the dimensionless con-
stants e0 and Cc used in this paper

:::
here

::::::
(Table

::::
A1)

are from till samples from ice stream B in Antarc-
tica , namely e0 = 0.69 and Cc = 0.12 in Figure 6 of
Tulaczyk et al. (2000a) , thus

::::::::::::::::::::
(Tulaczyk et al., 2000a) ,

:::
and

::::
they

::::
give e0/Cc = 5.75

:
in

:
(23).

(iv) The till capacity parameter Wmax
til could be set in a

location-dependent manner from in situ (Tulaczyk et al.,
2000a) or seismic reflection (Rooney et al., 1987) evi-
dence, but for simplicity we set it to a constant 2 meters.

3.3 Sliding law

The
::::::
Observe

::::
that

:::
the

:
ice sliding velocity

::
vb :

is
:::

an
:::::
input

:::
into

::
the

:::::::::
subglacial

::::::::::
hydrology

:::::
model

::::
we

:::
are

::::::::
building,

:::::::
because

::
of

:::::::
equation

:
(14)

:
.
:::
On

:::
the

:::::
other

::::::
hand,

:::
the

:::::
yield

:::::
stress

::
τc::

is

::
an

::::::
output

:::
of

:::
the

:::::::::
till-related

::::
part

:::
of

:::
the

:::::::::
hydrology

::::::
model

:::::::::
(subsection

:::::
3.2).

::
In

:::
an

:::
ice

::::::::
dynamics

::::::
model

::::
like

::::::
PISM,

::
vb

is determined by solving a stress balance in which the vector
basal shear stress τ b appears either as a boundary condition
(Schoof, 2010a) or as a term in the

:
a
:::::::::::::::::
vertically-integrated bal-

ance (Schoof, 2006a; Bueler and Brown, 2009). In PISMthe
scalar yield stress ,

:
τc determines the basal shear stress

:::
and

::
vb:::::::

combine
::
to
:::::::::
determine

:::
τ b through a sliding law

τ b =−τc
u

|u|1−quq0
vb

|vb|1−qvq0
.

:::::::::

(25)

where u is the sliding velocity of the base of
the ice, 0≤ q ≤ 1 , and u0 :::

and
:::
v0::

is a threshold
sliding velocity (Aschwanden et al., 2013) .

::::
speed

::::::::::::::::::::::
(Aschwanden et al., 2013) .

:

Power law (25) generalizes, and includes as the
case q = 0, the purely-plastic (Coulomb) relation
τ b =−τcu/|u|::::::::::::::

τ b =−τcvb/|vb|. At least in the q� 1
cases, under (25) the till “yields” and the magnitude of the
basal shear stress becomes nearly independent of |u| as
|u| � u0::::

|vb|,:::::
when

:::::::::
|vb| � v0. Equation (25) could also

be written in generic power-law form τ b =−β|u|q−1u
with coefficient β = τc/u

q
0::::::::::::::::
τ b =−β|vb|q−1vb::::::

with

::::::::
coefficient

::::::::::
β = τc/v

q
0; in the linear case q = 1 we have

β = τc/u0:::::::::
β = τc/v0.

4 Closures to determine pressure

The evolution equations listed so far, namely (12), , and (13),

:::
and (16), can be simplified to three equations in the four ma-
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jor variables W , Wtil, Y , and P . We do not yet know how
to compute the water pressure P or its rate of change ∂P/∂t
given the other variables and data of the problem. A closure
is needed.

4.1 Simplified closures without cavity evolution

We first consider two simple closures which appear in the lit-
erature but which do not use cavity evolution equation (13)
or similar physics. These simplified closures differ in their
physical motivation and the form of their mass conservation
equations. We list them because the resulting simplified con-
servation equations emerge as reductions of our more com-
plete theory. For simplicity we present them without till stor-
age , that is, with

:
(Wmax

til = 0in previous equations. We state
only

:
)
:::
and

::::
only

::
in
:
the constant conductivity case (α= 1 and

β = 2in equation ).
Setting the pressure equal to the overburden pressure is the

simplest closure (Le Brocq et al., 2009; Shreve, 1972):

P = Po. (26)

This model is sometimes used for “routing” subglacial water
under ice sheets so as to identify subglacial lake locations
(Livingstone et al., 2013; Siegert et al., 2009)

:::::::::::::::::::::::::::::::::::::::::::::::::
(Goeller, 2014; Livingstone et al., 2013; Siegert et al., 2009) .

Straightforward calculations using equations (1), (6), and
(26) show that the advection-diffusion form (12) has an
ice-geometry-determined velocity ,

∂W

∂t
=−∇ ·

(
ṼW

)
+∇ · (ρwgkW ∇W ) +

m

ρw

where

Ṽ =−ρwgk
[
ρi
ρw
∇h+

(
1− ρi

ρw

)
∇b
]
.

::
Ṽ,

:

∂W

∂t
:::

=−∇ ·
(
ṼW

)
+∇ · (ρwgkW ∇W ) +

m

ρw
,

::::::::::::::::::::::::::::::::::::

(27)

Ṽ
:

=−ρwgk
[
ρi
ρw
∇H +

(
1− ρi

ρw

)
∇b
]
.

:::::::::::::::::::::::::::::::

Because the approximation W �H is usually accepted,
so that the hydraulic potential is insensitive to the water layer
thickness, i.e. ψ = Po + ρwgb (Le Brocq et al., 2009), the
diffusion term ∇ · (ρwgkW ∇W ) on the right of

:
in

:
(27) is

usually not included. With this common simplification, equa-
tion (27) becomes a pure advection with a velocity Ṽ which
is independent of W

::
an

::::::::
advection

::::::::
equation

::::
with

::
a
::::::

source

::::
term. It therefore possesses characteristic curves(?) which
are the a priori known

:
, trajectories of the water flow . These

trajectories
::
or

::::::::::
“pathways”

::::::::::::::::::::::
(Livingstone et al., 2013) ,

:::::
which

are determined by ice sheet geometry.

However, without a diffusion term
:::
the

::::::::
diffusion

:::::
term,

equation (27) also exhibits continuum solutions with
infinite water concentration at every location where
the simplified potential ψ = Po + ρwgb has a min-
imum. Applications using the simplified potential

:::::::
therefore

:::
only compute the characteristic curves

(i.e. “pathways”, Livingstone et al., 2013) themselves.
We therefore prefer equation (27) as stated, with the diffu-
sion term, because it is well-posed for positive initial and
boundary values on W (compare Hewitt et al., 2012), so

:::
that

:
numerical solutions can converge under sufficient grid

refinement.
At an almost opposite extremein terms of the mathematical

form, the
:
,
::::

our
:
second simplified closure we consider

assumes that
:::::
makes the water pressure is locally determined

by
:
a

:::::::
function

::
of

:
the amount of water. Specifically, Flowers

and Clarke (2002a) propose

PFC(W ) = Po

(
W

Wcrit

)7/2

., (28)

For Trapridge glacier
:::::
where,

:::
for

:::::::::
Trapridge

::::::
glacier,

:
Flowers

and Clarke (2002b) useWcrit = 0.1 m. Thus no separate pres-
sure evolution equation needs to be solved(??) . One obvious

:
.

:::
One

:
concern with form (28) is that PFC(W ) can be arbi-

trarily larger than overburden pressure (Schoof et al., 2012).
In the flat bedrock case∇b= 0, we can derive an equation

from
::
In

:::
any

::::
case, , and (28) , namely

∂W

∂t
=∇ · (kW∇PFC(W )) +

m

ρw
.

Equation is
::
is

:::::
used

:::
in
::::::::::

equations
::

(1)
:::
and

::
(6)

:
to

::::
yield

:::
a nonlinear diffusion which generalizes

the porous-medium equation ∂W/∂t=∇2(W γ)
(Schoof et al., 2012; Vázquez, 2007)

::::::::::::::
(Vázquez, 2007) .

The main idea in such a nonlinear diffusion is that the
direction of the flux is −∇W . Physically, however, it
would seem that

::::::::
However,

::
a
::::::::::
Darcy-type

:::::
model

:
q∼−∇ψ

would give
:::
like (6)

::::::::
normally

::::
gives

:
flux directions different

from −∇W in many cases, especially in rapidly-evolving
hydrologic systems,

::
if

:::
the

:::::::
pressure

::
is

::::::::::
determined

::
by

::
a

::::
more

:::::::
physical

::::::
closure.

::::
We

:::::::
consider

::::
such

:
a
:::::::
closure

::::
next.

4.2 Full-cavity closure

Requiring
:::::
Simply

::::::::
requiring

:
the subglacial layer to be full of

water is a closure for the subglacial pressure P . Following
Bartholomaus et al. (2011) , we adopt it in our model

:::
also

:
a

::::::
closure

:::::::::::::::::::::::
(Bartholomaus et al., 2011) ,

::::::
which

::
we

:::::
adopt:

W = Y. (29)

The consequences of this closure are actually explored at
some length by Schoof et al. (2012), Hewitt et al. (2012),
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and Werder et al. (2013), where they
:::
who

:
describe the full-

cavity case as the “normal pressure” condition(e.g. equation
(4.13) in Schoof et al. (2012) ).

Equation (29) obviously allows us to eliminate either W
or Y as a state variable. We choose to eliminate Y because
W is part of the conserved mass W +Wtil. Using equations ,
, and we can then derive

O(|vb|,W )−C(N,W ) +
∂Wtil

∂t
+∇ ·q =

m

ρw
.

In the zero till storage case(set Wmax
til = 0 so Wtil = 0),

equation is exactly the
:
,
::::::::
equations

:
(1),

:
(13)

:
,
:::
and

:
(29)

:::::
imply

:

O(|vb|,W )−C(N,W ) +∇ ·q =
m

ρw
.

:::::::::::::::::::::::::::::::

(30)

:::::
which

::
is

::::::
exactly

:
elliptic pressure equation (2.12) of Schoof

et al. (2012). They solve in one dimension with pressure
boundary conditions at the lateral edges of the subglacial
hydrologic system to determine the pressure P , and they
argue that a model based on (30) should accommodate
the possibility of partially-empty cavities with W < Y
and at zero pressure

:::::
when

:
P = 0. Direct evidence for

such vapor/air-filled cavities does not exist for tidewater
glaciers or ice sheets, though of course subglacial hydrology
is poorly-observed generally. In any case

:::::::
However,

::::
like

::::::::::::::::::::
Werder et al. (2013) who

::::::::::
implement

::::
the

:::::::
model

:::
in

::::
two

::::::::::
dimensions, we accept a potential loss of model complete-
ness by using a full-cavity model.

Overpressure P > Po has been observed in ice sheets
(Das et al., 2008; Bartholomaus et al., 2011, for example) ,
but only for short durations. Our modelled pressure satisfies
P ≤ Po; compare Werder et al. (2013) .

4.3 Notional englacial Englacial porosity as a pressure
regularization

Englacial systems of cracks, crevasses, and moulins have
been observed in glaciers (Fountain et al., 2005; Bartholo-
maus et al., 2008; Harper et al., 2010, for example), and these
have been included in combined englacial/subglacial hydrol-
ogy models (Flowers and Clarke, 2002a; Bartholomaus et al.,
2011; Hewitt, 2013; Werder et al., 2013). The englacial sys-
tem is generally parameterized as having macroporosity 0≤
φ < 1. If the englacial system is efficiently-connected to the
subglacial water then the amount of englacial water is equiv-
alent to the subglacial pressure. Subglacial pressure

:
,
:::::
which

is reflected by an englacial “water table” in such models.
Bueler (2014) shows that an

:
a
:::::::::
distributed

:
extension of the

lumped englacial/subglacial model in Bartholomaus et al.
(2011) to the distributed case gives an equation similar to
(30), but with the crucial difference

:
.
::::
The

::::::
crucial

::::::::
difference

::::
from

:
(30)

::
is

:
that the equation is parabolic for the pres-

sure and not elliptic (compare Hewitt et al. (2012)). Based
on this analysis, we use a parabolic equation with constant

notional englacial porosity φ= φ0:::
our

:::::
model

::::
uses

::
a

:::::::
parabolic

:::::::::::
regularization

::
of

:
(30)

:::::
which

:::
has

:::::::
constant

:::::::::
(notional)

:::::::
englacial

:::::::
porosity

::
φ0:

φ0

ρwg

∂P

∂t
=−∇ ·q+

m

ρw
+ C(N,W ) (31)

−O(|vb|,W )− ∂Wtil

∂t
.

Compare equations (7) in Hewitt (2013)
::::::::::::
(Hewitt, 2013) and

(24) in Werder et al. (2013)
::::::::::::::::::
(Werder et al., 2013) .

::::::
Unlike

:::::::::::::::::
Werder et al. (2013) ,

::::::::
however,

:::
we

:::
do

:::
not

::::
add

::
an

::::::::
englacial

::::
water

:::::::
amount

:::::::
variable

::
to
::::

the
::::::::::
conservation

:::::::::
equation,

:::
and

::
in

:::
this

:::::
sense

:::
the

:::::::
porosity

::::
only

::::::
serves

::
to

::::::::
regularize

:::
the

:::::::
pressure

:::::::
equation.

Addition of
:::::
Using

:
englacial porosity as

:
a
::::::::::::
regularization,

::
as in (31)

:
, allows a user-adjustable trade-off between tem-

poral detail in the pressure evolution versus computational
effort (van Pelt, 2013). If the englacial porosity φ0 is
small , so that

::::
then

:
there is a nearly impermeable “cap”

on the subglacial system , as would occur under a thick
ice sheet, then

:::
and equation (31) is stiff (Ascher and Pet-

zold, 1998)and indeed .
::::::::
Equation

:
(31)

::
is

::::
then

:
similar, in

terms of numerical solution, to an elliptic equation . If

::::::
elliptic

:::::::
equation

:
(30).

:::::::
Indeed,

::
if
:::::::

elliptic
::::::::
equation

:
(30)

:
is

::::
used

::::::
instead

::
of

:
(31)

::::
then

:::
the

:::::::
coupled

::::::::::
hydrological

::::::::
equations

::::::
system

:
is
::::::::::::::::::

differential-algebraic
:::::::::::::::::::::::
(Ascher and Petzold, 1998) ,

:::
and

:::::::
hardest

::
to
::::::

solve
:::::::::::
numerically.

:::
By

::::::::
contrast,

:::
if

:
φ0 is

relatively large
:::::
larger then equation (31) causes local changes

in subglacial pressure P to be damped in the speed and range
of their influence

::::::::
influence,

:
on other parts of the connected

subglacial hydrologic system. In fact, the diffusive range of
equation is proportional to φ0. If the elliptic equation is used
instead of then the system is differential-algebraic in time
(Ascher and Petzold, 1998) and hardest to solve numerically,

:::
and

:::
the

::::::::
numerical

:::::::
solution

::
is

:::::
easier.

Schoof et al. (2012) show that the time-independent math-
ematical problem encompassing (30), constraints (4), and
appropriate pressure boundary conditions can be written as
an elliptic variational inequality (Kinderlehrer and Stampac-
chia, 1980). This

::::::
Solving

::::
this variational inequality problem

::
in

:::
two

::::::::::
dimensions,

::
at
:::::
each

::::
time

::::
step,

:
is asserted to be “pro-

hibitively expensive” by Werder et al. (2013)when solved in
two dimensions at each step of a time-stepping model. Our
adaptive explicit time-stepping scheme (section 6

:
), by con-

trast, satisfies
:::::
solves

:
(31)

:
,
:::::
while

::::::::
satisfying constraints (4),

:
at

demonstrably-reasonable computational cost (section 7).
Stiffness of pressure equation

:
in

:::::
these

:::::::
pressure

::::::::
equations

::::::::
ultimately

:
follows from the incompressibility of water and

the relative non-distensibility (i.e. hardness) of the ice
and bedrock. Clarke (2003) addresses this in a physically-
different way by including

::::::
manner

:::::
from

::::::::
englacial

:::::::
porosity.

::
He

::::::::
includes a relaxation (damping) parameter “β” which is

based on the small compressibility of water, but which is
more than two orders of magnitude larger than the physical
value. Clarke’s parameter β appears in his equation exactly
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as the englacial porosity φ0 appears in equation (31), multi-
plying the pressure time derivative.

5 A The new subglacial hydrology model in PISM

5.1 Summary of equations and symbols the model

The major evolution equations for the model are mass con-
servation (12), till-stored water amount

::::
layer

::::::::
thickness

:
evo-

lution (16), and pressure evolution (31). Recalled
:::::::
Collected

here for clarity they are:

∂W

∂t
+
∂Wtil

∂t
=−∇ · (VW ) +∇ · (D∇W ) +

m

ρw
, (32)

∂Wtil

∂t
=
m

ρw
−Cd,

φ0

ρwg

∂P

∂t
+
∂Wtil

∂t
=−∇ · (VW ) +∇ · (D∇W ) +

m

ρw

+ c2A(Po−P )3W − c1|vb|(Wr −W )+,.

using
::::
Also

:::::
recall these definitions:

D = ρwgKW diffusivity of Wdiffusivity,
::::::::

K = kWα−1 |∇(P + ρwgb)|β−2 effective conductivityeffective conductivity,
:::::::::::::::::

Po = ρigH overburden pressures=Wtil/W
max
til Wtil relative to capacityoverburden pressure, and

::::::::::::::::::::

V =−K∇(P + ρwgb) velocity of Wvelocity
::::::

.

::::::::
Equations

::
(32)

::
are

::::::::
coupled

::::
to

:::::
ice

:::::::::
dynamics

::::
by

:::::::::::::
Mohr-Coulomb

::::::::
equation

:
(18)

:::
and

::::
till

::::::::
effective

:::::::
pressure

::::::::
equations (23)

:
, (24).

:

The model includes
::::
these

:
bounds on major variables:

0≤W , 0≤Wtil ≤Wmax
til , 0≤ P ≤ Po. The model is also

coupled to ice dynamics by Mohr-Coulomb equation and till
effective pressureequation , namely

τc = c0 + (tanϕ)Ntil,

Ntil = min
{
Po, N0

(
δPo

N0

)s
10(e0/Cc)(1−s)

}
.

0≤W, 0≤Wtil ≤Wmax
til , 0≤ P ≤ Po.

::::::::::::::::::::::::::::::::::
(33)

::
As

::
a
:::::
result

::
of

::::::::::
inequalities

:
(33),

::::
free

::::::::::
boundaries

::::
arise

::
in

:::
the

::::::
domain

::
at
::::::::

locations
:::::::

where,
::
in

:::::::::
particular,

::
m

:::
is

:::::::::
sufficiently

:::::::
negative

::
to

:::::
drive

:::
W

::
to

::::
zero

::
or
::::::

where
:::
the

::::::::
pressure

::
P

::::
goes

::
to

:::
zero

:::
or

::::::::::
overburden.

The functions used above
::
A

:::::::
coupled

:::::
weak

::::::::::
formulation

::
of

:::::::::
equations

::
(32)

::
and

:::::::::::
constraints

:
(33)

:::::
would

::::
be

::
a

::::::::::::::::::::
mathematically-rigorous

:::::::
unified

::::::::::
description

:::
of

::::
the

::::
free

::::::::
boundary

:::::::::
conditions,

:::
but

::::
this

:::::
paper

::::
takes

::
a
:::::
more

::::::::
pragmatic

::::::::
approach,

::
as

::::::::
follows.

:::::
First,

:::::
PISM

::::
uses

::
a
::::::::
periodic

::::::
domain

::
for

:::::::
whole

:::
ice

::::::
sheet

::::::::::::
computations

::::::::
(section

:::
7),

::::
so

:::
the

:::::::::::
computational

:::::::
domain

::::
has

:::
no

:::::::
classical

:::::::::
boundary.

:::::::
Second,

:::::::::
inequalities

:
(33)

::
are

:::::::
enforced

::
in
::::
our

::::::
coupled

:::::::
explicit

::::::
scheme

::
by

::::::::::::::::::
truncation/projection

:::::::
(section

::
6).

::::::
Third,

::
at
:::::::

ice-free
::::
land

:::
and

:::::
ocean

::::
(i.e.

:::
ice

:::::
shelf

:::
or

:::::::
ice-free

::::::
ocean)

::::
grid

::::::::
locations,

:::::::
pressure

::
P

::
is

:::::::::
determined

:::
by

::::::::::
atmospheric

::
or

::::::
ocean

:::::::
pressure,

::::::::::
respectively.

::::::
Fourth

::::
and

::::::
finally,

::
at

:::::::
ice-free

::::
land

::::
and

:::::
ocean

:::
grid

::::::::
locations

::::
the

:::::
mass

:::::::::::
conservation

::::::::
equation

:::::::::
effectively

::::
have

::
m

::::::::::
sufficiently

:::::::
negative

:::
so

::::
that

:::::
water

::::::
which

:::::
flows

::
or

::::::
diffuses

::::
into

::::
that

::::
grid

:::::::
location

::::::
during

::
a
:::::
time

::::
step

::
is

::::
fully

:::::::
removed

::::
and

::::
thus

:::::::
W = 0

::::
and

::::::::
Wtil = 0;

::::
see

:::
the

:::::::
“mask”

:::::::
variables

::
in

::::::
section

::
6.
:

::
As

::
in
::::::

Table
:::
A2,

:::
the

:::::::::
functions

::
in

:::
the

::::::
model can be cate-

gorized into state functions, which must be provided with
initial valuesand which evolve according to the model, in-
put functions, which are either supplied by observations or
by other components of an ice sheet model(e.g. the stress
balance in an ice dynamics model will provide |vb|), and out-
put functions which are supplied to other components of the
ice sheet model(e.g. the yield stress τc is fed back to the stress
balance); see Table A2. In two-way coupling the ice dynam-
ics model passes H , m, and |vb| to the subglacial hydrology
model, and τc is passed the other way

:::::::
returned.

5.2 Reduction to existing models

Four reductions (limiting cases) of model (32) can now be
stated precisely:

(i) The zero till storage (Wmax
til = 0) and zero englacial

porosity (φ0 = 0) case of (32) is
:::::::::
essentially the model

described by Schoof et al. (2012), recalling .
::::::::
Recalling

that q =−KW∇ψ,
::
the

::::::::
equations

:::
are

:

∂W

∂t
=−∇ · (KW∇ψ) +

m

ρw
, (34)

0 =∇ · (KW∇ψ) +
m

ρw

+ c2A(Po−P )3W − c1|vb|(Wr −W )+.

The bounds W ≥ 0 and 0≤ P ≤ Po are unchanged.
Model (32) is a parabolic regularization

::::::
version

:
of

(34)based on ,
::::::::::

regularized
::::::

using
:
a notional connec-

tion to porous englacial storage, and with coupling to
additional till storage.

(ii) The P = Po limit of (32), in which physical processes
for the evolution of pressure are

:::
the

::::::::
evolution

:::::::
equation

::
for

::::::::
pressure

::
is
:

ignored, is essentially the model for
“routing” water to subglacial lakes under cold ice sheets
in

::::
used

:::
by Siegert et al. (2009) and Livingstone et al.

(2013). Assuming again that till storage is removed
(Wmax

til = 0) then the model has only W as a state
variable, the single evolution equation is

∂W

∂t
=−∇ · (VW ) +∇ · (D∇W ) +

m

ρw
.
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along with the bound W ≥ 0 and further-simplified
definitions K = kWα−1 |∇(Po + ρwgb)|β−2 and
V =−K∇(Po + ρwgb). As noted in section 4, the

::::::::
Wmax

til = 0
::::
and

:
α= 1 case of this model routes water

with a velocity which is determined entirely by ice and
bedrock geometry. This reduced model is mostly an
advection, but, because of for the hydraulic potential,
which implies some diffusion, model has continuous
solutions for W .

(iii) The non-distributed “lumped” form of (32), in which, in
particular,∇·q = (qout− qin)/L where L is the length
of a one-dimensional

:::
the glacier and qout, qin are given

by observations, is the model of Bartholomaus et al.
(2011); see Bueler (2014).

(iv) The undrained plastic bed (UPB) model of Tulaczyk
et al. (2000b) arises as the W = 0,q = 0,φ0 = 0 reduc-
tion of (32). This model depends on friction-heating
feedback to keep Wtil bounded, which is not effec-
tive in a membrane-stress-inclusive theory in which

:
if
:

local friction heating is a non-local function of
changes in till strength. Bueler and Brown (2009) there-
fore enforceWtil ≤Wmax

til by non-conservatively remov-
ing water above the capacity

::::::
Wmax

til ,
:::::
giving

::
a
:::::::
minimal

::::::::::::::
non-conservative,

::::
but

::::::::
“drained,which is a minimal

“drained” version of the UPB model.

The above list does not imply that all possible subglacial
hydrology models are subsumed in

::::::::
reductions

::
of

:
ours. For

example, the subglacial hydrology model of Johnson and
Fastook (2002) is a variation on idea (ii) above but it is not a
reduction. The Flowers and Clarke (2002a) model

::::::::
mentioned

::
in

:::::::::
subsection

:::
4.1 is also not a reduction, although

::::::
though a

significant connection is explained in the section on steady
states below. Most significantly,

::::::::
Appendix.

:

::::::::::::::
Two-dimensional

::
models which include conduits

(Schoof, 2010b; ?; Hewitt et al., 2012, among others)
::::::::::::::
(Schoof, 2010b) are

not reductions of our model. Conduit evolu-
tion is numerically-straightforward to imple-
ment in one-dimensional hydrology models
(?Hewitt et al., 2012; van der Wel et al., 2013)

:::::::::::::::::::::::::::::::::::::
(Hewitt et al., 2012; van der Wel et al., 2013) ,

but when extended to two-horizontal dimensions all existing
models (Schoof, 2010b; Hewitt, 2013; Werder et al., 2013)
become “lattice” models without a known continuum limit.

:::
Our

::::::
model

:::
has

:::
no

:::::::::::
conduit-like

::::::::
evolution

:::::::::
equations

::
at

:::
all,

::::::
though

::::
the

::::::::::::::
gradient-descent

:::::::::
locations

:::
of

::::::::::::
characteristic

:::::
curves

:::::
from

::::::
models

::::::
using

::::
idea

:::
(ii)

:::
may

::::::::::
correspond

::
to

:::
the

:::::::
locations

::
of

::::::::
conduits

::
in

::::
some

::::::
cases.

5.3 Steady states

The steady states of equations are of physical modelling
importance because the subglacial system can be close to
steady state much of the time, but also because physical
processes become decoupled in steady state, which helps us

understand the model. Specifically, the
::::
The steady form of

model (32), with
:::::
stated

:::::
using

:
α= 1, β = 2, and Wmax

til =
0 for simplicity, can be written as follows in terms of
V,q,W,P :

V =−k∇(P + ρwgb) , (35)
q = VW − ρwgkW∇W, (36)

0 =−∇ ·q+
m

ρw
, (37)

0 = c2A(Po−P )3W − c1|vb|(Wr −W )+. (38)

Steady state equations –are
:::::
These

::::::
steady

:::::
state

::::::::
equations

::
are

:::::
also

:
stated in the one-dimensional case by Schoof

et al. (2012)model, where the decoupling is also noted; see
equations (5.8) and (5.10) in (Schoof et al., 2012)

:
,
:::::
where

::::::::::::
traveling-wave

:::::
exact

::::::::
solutions

:::
are

::::
also

:::::
found.

::::::::
Observe

:::
that

::
the

:::::::::
equations

:::::::::
describing

::::
mass

:::::::::::
conservation

:
(37)

:::
and

:::::
cavity

:::::::::::::
opening/closing

::::::::
processes (38)

::::
have

:::::::
become

::::::::
decoupled.

We can make four specific
:::::
make

:::::
three

:
observations

about solutions to (35)–(38), which we find are useful
in understanding the time-dependent model at longer
time-scales also:

(i) from (38) there is a functional relationship P =
P (W )which determines the pressure given the water
amount,

(ii) by (35) and (38), the apparently advective flux “VW ”
in (36) actually acts diffusively, if sliding is occurring
and if the water amount is either small or comparable
to the roughness scale, the water amount W generally
scales inversely with the conductivity, and

(iii) exact
::::
radial

:::::::::::
nearly-exact solutions can be constructed.

In Appendix A we detail points (i) , (ii), and (
:::
and

:
(iii

::
ii). Ob-

servation (iv
::
iii) is addressed in the nextsection

:::
next.

6 An exact steady state solution

5.1 Radial equations A nearly-exact steady state solu-
tion

Steady equations –are the basis on which we now build a

:::
For

:::
the

:::::::
purpose

::
of

::::::::
verifying

:::::::::
numerical

::::::::
schemes

:::
we

::::
have

::::
built

:
a
::::::::::::::
two-dimensional,

:
nearly-exact solution forW and P in

the map-plane, in a case with nontrivial overburden pressure
and ice slidingspeed. This solution is useful for verifying
numerical schemes. It depends on the numerical solution of
a scalar first-order ordinary differential equation (ODE) ini-
tial value problem, something we can do with high accuracy.
Traveling wave exact solutions in one horizontal dimension
appear in Schoof et al. (2012) .

Consider
:::
We

:::::
solve the flat bed case (b= 0) . Assuming

dependence only on the radial coordinate r =
√
x2 + y2,
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from
::::::::::::::::
angularly-symmetric

::::
case

:::
of

:::::::
coupled

:
equations (35)–

one may eliminate the velocity to get

q =−kW
(
dP
dr + ρwg

dW
dr

)
,

1
r
d
dr (r q) = m

ρw
.

In the case of constant water input m=m0, we can
integrate from 0 to r and use symmetry (q(0) = 0)to get

q(r) =
m0

2ρw
r.

Suppose h(r) is given so that Po(r) is also determined.
Assume that the scaled sliding speed sb(r) has a bounded
derivative and that the solution W (r) satisfies conditions
Wc <W <Wr; these properties can be verified for the
constructed solution. By combining , (38).

::::
By

::::::::
assuming

::::::::::::::
spatially-constant

::::::
water

:::::
input

:::::::::
(m=m0), , and we can

eliminate q and P to find

ω0 r =−W
[
dPo

dr −
dsb
dr

(
Wr−W
W

)1/3
+
(

sbWr

3W 4/3(Wr−W )2/3
+ ρwg

)
dW
dr

]
where ω0 =m0/(2ρwk).

Equation is a
:
a
::::::::
parabolic

:::
ice

::::::::
thickness

:::::
profile

::
in
:::
the

:::::
radial

::::::::
coordinate

:::
r,

:::
and

::
a
::::::::
particular

::::::
profile

:::
of

::::::::::::::
sliding—namely

:
a

:::::::
function

::::::
|vb(r)|::::

with
:::::
onset

::
of

::::::
sliding

:::
at

:::::::
location

:::::
r = 5

:::
km,

::::
about

::::::::::
one-fourth

::
of

::::
the

:::
ice

::::
cap

::::::
radius

:::::::
r = 22.5

::::::::
km—the

::::::::
equations

::::::
reduce

::
to

:
a
::::::

single first-order ordinary differential
equation (ODE) for W (r). To put it in the standard form
expected by a numerical ODE solver we solve it for dW/dr.

5.2 A nontrivial solution

Though equation has a constant solution W (r) =Wr, to
generate a nontrivial exact solution we will choose a
positive thickness of ice at the margin (a cliff) so that
Po(L

−)> 0. At the ice margin r = Lwe have water pressure
P = 0 so W (L) =Wc(L

−) is the boundary condition
for the ODE. We assume that at the margin there is
some sliding so that sb(L−)> 0, and by we require that
sb(L

−)Wr > Po(L
−)3W (L). The condition at r = L also

satisfies W (L)<Wr. Then we integrate
::::
ODE

::
in
::
r
:::
for

:::
the

::::
water

::::::::
thickness

::::::
W (r).

::::
The

:::::::
pressure

::::
P (r)

::
is

::::
then

:::::::::
determined

from r = L to r = 0. The central water thickness valueW (0)
is determined as part of the solution.

It is useful to have an ice cap geometry in which the
surface gradient formula is simple so that dPo/dr in is also
simple, so we choose a parabolic profile

H(r) =H0

(
1− r2

R2
0

)

where H(0) =H0 is the height (thickness ) at the center
of the ice cap. It follows that dPo/dr =−Cr where
C = 2ρigh0R

−2
0 . We choose L= 0.9R0 and we note that

H(L) = 0.19h0 is the size of the cliff.
The sliding speed could be determined by a

model for stresses at the ice base and within the ice
(Greve and Blatter, 2009) , but for hydrology model
verification we simply choose a well-behaved sliding speed
function which has no sliding near the ice cap center, until a
radius r =R1 at which sliding increases:

|vb|(r) =

0, 0≤ r ≤R1,

v0

(
r−R1

L−R1

)5

, R1 < r ≤ L.

It follows from and that dsb/dr in is bounded and continuous
on 0≤ r ≤ L

::::
W (r)

:::
by

:::
the

::::::::
functional

::::::::::
relationship (A3)

:::::
which

:::::
arises

::
in

:::::
steady

::::
state

:::::::::
(Appendix

:::
A).

Now we solve ODE with initial condition W (L) and the
specific values in Table ??. We

:::
To

:::::::
compute

:::
the

::::::::::
nearly-exact

::::::
solution

::::
we

:
use adaptive numerical ODE solvers, both a

Runge-Kutta 4(5) Dormand-Prince method and a variable-
order stiff solver, with relative tolerance 10−12 and absolute
tolerance 10−9. The two solvers gave essentially identical
results . Modest stiffness (Ascher and Petzold, 1998) of
ODE is observed at r ≈R1:::::::

identical
::::::
results

::
to

::::
more

::::
than

:::
six

::::
digits. The result W (r) is shown in Figure A2.

Because equations and imply a pressure functional relation
P = P (W,r) from , we can also show in Figure A2 ,

:::::
which

::::
also

:::::
shows

:
the regions of the r,W plane which cor-

respond to overpressure
:::::::
(P = Po:::

in
:::
our

:::::::
model), normal

pressure
:::::::::::
(0< P < Po), and underpressure . We see that

W (r)
:::::::
(P = 0).

::::::
Figure

:::
A3

:::::
shows

:::
the

::::::::::::
corresponding

:::::::
pressure

::::::
solution

:::::
P (r).

:::::::
Starting

::
at

:::
the

::::::
margin,

:::
we

:::
see

::::
that

:::
the

::::::
solution

is in the normal pressure region as r decreasesfrom r = L to
r =R1, but at r =R1 the function W (r) ,

::::
until

:::
the

:::::
onset

::
of

:::::
sliding

::::::
(r = 5

::::
km).

:::
At

:::
that

:::::::
location

::
it switches into the over-

pressure case because there is no sliding. Figure A3 shows
the corresponding pressure solution P (r) = P (W (r)) from
.

The reason for stiffness near R1 is that as the sliding goes
to zero the cavitation rate goes to zero. Because creep closure
balances cavitation in steady state, effective pressure also
goes to zero (P → Po) . The remaining active mechanisms in
the model are the variable overburden pressure and the rate
of water input, and they must exactly balance. In this case
reduces to the simpler form

dW

dr
=−

ϕorW
−1 + dPo

dr

ρwg
.

Though we have not derived it this way, Equation is the
steady radial form of the mass conservation equation under
the “P = Po” closure, namely equation .

In equation we see that dW/dr = 0 if W satisfies
W =−ω0r/(dPo/dr). In our case with geometry this
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reduces to a constant value W ∗ = 0.21764 m because
dPo/dr is linear in r. Both numerical ODE solvers used
here confirm that W (r) is asymptotic to this constant value
W ∗ as r→ 0, and that W (r)≈W ∗ within about 1on
all of 0≤ r ≤R1. This is seen in Figure A2

:::::::::
Verification

:::::
results

::::::
using

:::
the

:::::::::::
nearly-exact

::::::::
solution

::::::
appear

:::
in

::::::
section

::
7.

::::
The

:::::::::
numerical

:::::::
methods

:::::
(next

::::::::
section)

:::
use

::
a
::::::::

cartesian

:::::
(x,y)

:::
grid

::::::::
unrelated

::
to

:::
the

:::::
radial

::::::::::
nearly-exact

::::::::
solution.

::::
Thus

::::::::
numerical

:::::
error

::::::
comes

::::
from

:::::::
generic

:::::::::::
relationships

:::::::
between

::::
exact

:::::::
solution

:::::::
features

:::
and

:::
the

::::
grid.

6 Numerical schemes

All the numerical schemes described in this section
are implemented in parallel using the PETSc library
(Balay et al., 2011) .

6.1 Mass conservation: time-stepping

The mass conservation equation
:::
The

:::::::::
equations

:
in model

(32) will be discretized by an explicit , conservative finite
difference method

::
are

:::::::::
discretized

:::
by

::::::
explicit

:::::
finite

::::::::
difference

:::::::
methods

:::::::::::::::::::::::
(Morton and Mayers, 2005) . A centered, second-

order scheme will be
:
is

:
applied to the diffusion part .

Two
::
of

::::
the

:::::
mass

:::::::::::
conservation

::::::::
equation

::
in

:
(32)

:
,
:::
but

::::
two

::::::::::
upwind-type

:
schemes for the advection part will be

:::
are com-

pared, namely first-order upwinding
::::::
“donor

::::
cell”

:::::::::
upwinding

::::::::::::::
(LeVeque, 2002) and a higher-order flux-limited upwind-
biased method

:::::::::::::::::::::::::::
(Hundsdorfer and Verwer, 2010) .

We first consider stable time steps. Stability for the
advection schemes occurs with a time step ∆t≤∆tCFL
where

∆tCFL

(
max |u|

∆x
+

max |v|
∆y

)
=

1

2
.

Because of the additional diffusion process, for stability
the time step should also satisfy ∆t≤∆tW where
(Morton and Mayers, 2005)

∆tW maxD

(
1

∆x2
+

1

∆y2

)
=

1

4
.

The condition ∆t≤min{∆tCFL,∆tW } is sufficient for
stability and convergence of the scheme. (We show this for
the first-order upwind scheme, but standard theory suggests
the same conclusion for the higher-order flux-limited
advection scheme (Hundsdorfer and Verwer, 2010) . )

We can understand the scale of these restrictions better
by considering an example using the parameter values
in Table A1. We ran the model on a ∆x= ∆y = 250
m grid to approximate steady state for the subglacial
hydrology of (van Pelt, 2013) . We used a hypothesized
water input distribution with average value about 1 m
a−1, and a glacier-wide constant sliding rate of 50

m a−1. The result is that the maximum computed
water speed |V| is about 0.2 m s−1 so the advective
restriction is ∆tCFL ≈ 300s≈ 10−5 a. Computed diffusivity
D = ρwgKW has a maximum value that varies significantly
in time, 0.1≤maxD ≤ 5m2 s−1. Diffusive restriction using
value maxD = 1m2 s−1 is ∆tW ≈ 8000s≈ 2.5× 10−4 a.
Thus in this simulation ∆tW ≈ 25∆tCFL.

This example suggests that, unless both the global peak
velocity is unusually slow, and deep subglacial lakes develop
so that D is large, the diffusive time scale is significantly
longer than the CFL time scale for a 250 m grid. The
scaling ∆tW =O(∆x2) versus ∆tCFL =O(∆x1) makes it
clear that under sufficient spatial grid refinement ∆tW is
the controlling restriction, but we suppose that ∆tCFL is
controlling for ∆x� 100 m. We will see below, however,
that the time step restriction associated to an explicit
time-stepping method for the pressure equation is typically
shorter than either of ∆tW ,∆tCFL, and it scales as O(∆x2)
like ∆tW .

If implicit time-stepping is used for the pressure equation,
which requires variational inequality treatment to preserve
physical pressure bounds (Schoof et al., 2012) , then the
time scales ∆tW ,∆tCFL addressed here are the only
restrictions. The time step restriction ∆tW could also
be removed by implicit steps for the mass-conservation
equation, though it would seem this requires another
variational inequality formulation because of the lower
bound W ≥ 0. Our observation that ∆tCFL�∆tW for
practical ice sheet grids suggests that implicit time-stepping
for the mass-conservation equation is not beneficial

::
All

:::
the

::::::::
numerical

::::::::
schemes

:::
are

:::::::::::
implemented

:::
in

:::::::
parallel

:::::
using

:::
the

::::::
PETSc

:::::
library

:::::::::::::::::
(Balay et al., 2011) .

6.1 Mass Discretization of the mass conservation : spa-
tial discretization equation

To set notation, suppose the rectangular computational do-
main has Mx×My gridpoints (xi,yj) with uniform spacing
∆x,∆y. Let W l

i,j ≈W (tl,xi,yj), (Wtil)
l
ij ≈Wtil(tl,xi,yj),

and P li,j ≈ P (tl,xi,yj) denote the numerical approxima-
tions.

We will compute velocity components and flux compo-
nents at the staggered (cell-face-centered) points,

:
shown in

Figure A4using ,
:::::

from
:
centered finite difference approxi-

mations of equations (10) and (11). We use “compass” in-
dices such as ue = ui+1/2,j for

::
for

:::::
such

::::::::
staggered

::::::
values,

::
so

::::
that,

:::
for

::::::::
example,

:
the “east” staggered value of u and

vn = vi,j+1/2 for the
:::
and

:
“north” staggered value of v.

Similarly we use compass indices for staggered grid values
of the water layer thickness,

::::
water

::::
layer

::::::::::
thicknesses

:::
are com-

puted by averaging regular grid values:

We = (W l
i,j +W l

i+1,j)/2,

Wn = (W l
i,j +W l

i,j+1)/2.
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We = (W l
i,j +W l

i+1,j)/2, Wn = (W l
i,j +W l

i,j+1)/2.
::::::::::::::::::::::::::::::::::::::::::::

(39)

The nonlinear effective conductivity K from (9) is also
needed at staggered locations. As a notational convenience
define R= P + ρwgb and define these staggered-grid values
(compare Mahaffy, 1976):

Πe =

∣∣∣∣Ri+1,j −Ri,j
∆x

∣∣∣∣2
+

∣∣∣∣Ri+1,j+1 +Ri,j+1−Ri+1,j−1−Ri,j−1

4∆y

∣∣∣∣2 ,
Πn =

∣∣∣∣Ri+1,j+1 +Ri+1,j −Ri−1,j+1−Ri−1,j

4∆x

∣∣∣∣2
+

∣∣∣∣Ri,j+1−Ri,j
∆y

∣∣∣∣2 .
Thereby define

Ke = kWα−1
e Π(β−2)/2

e , Kn = kWα−1
n Π(β−2)/2

n . (40)

The velocity components
:::::
(u,v)

::
of

:::
the

:::::
water

:::::::
velocity

::
V

:
are

then found by differencing:

ue =−Ke

(
Pi+1,j−Pi,j

∆x + ρwg
bi+1,j−bi,j

∆x

)
,

vn =−Kn

(
Pi,j+1−Pi,j

∆y + ρwg
bi,j+1−bi,j

∆y

)
.

Similarly for diffusivity we have

ue =−Ke
Ri+1,j −Ri,j

∆x
, vn =−Kn

Ri,j+1−Ri,j
∆y

.
:::::::::::::::::::::::::::::::::::::::::::

(41)

:::
For

::::::::
diffusivity

:::
we

::::::
simply

::::
have

:

De = ρwgKeWe, Dn = ρwgKnWn. (42)

We get the remaining staggered-grid quantities by shifting
indices:

uw = ue
∣∣
(i−1,j)

, Kw =Ke

∣∣
(i−1,j)

, Dw =De

∣∣
(i−1,j)

,

vs = vn
∣∣
(i,j−1)

, Ks =Kn

∣∣
(i,j−1)

, Ds =Dn

∣∣
(i,j−1)

.

:
.

Now we define
:::::
Define

:
Qe(ue), Qw(uw), Qn(vn), and

Qs(vs) as the face-centered (staggered-grid) normal com-
ponents of the advective flux VW . These quantities are
described in more detail ;

:::::
more

:::::
detail

:::
is

:::::
given in the next

subsection. They use only the staggered velocity component
but there is upwinding to determine which W value, or
combination of W values, is used.

The grid values of D =∇ ·q =∇ · (VW )−∇ · (D∇W )
using (41) and (42) now become:

Di,j =
Qe(ue)−Qw(uw)

∆x
+
Qn(vn)−Qs(vs)

∆y
(43)

−
De(W

l
i+1,j −W l

i,j)−Dw(W l
i,j −W l

i−1,j)

∆x2

−
Dn(W l

i,j+1−W l
i,j)−Ds(W

l
i,j −W l

i,j−1)

∆y2
.

To ensure conservation ,
:::::
Local

:::::::::::
conservation

::
is

:::::::
ensured

::
by

::::
using

:
Qe(ue) used in computing Di,j must be the same as

::::
equal

:::
to Qw(uw) used in computing Di+1,j , and similarly

for “north” and “south” staggered fluxes; our formulas have
these properties

:
so

:::
on.

Now our
:::
Our

:
scheme for approximating mass conserva-

tion equation (12) is

W l+1
i,j −W l

i,j

∆t
+

(Wtil)
l+1
i,j − (Wtil)

l
i,j

∆t
=−Di,j +

mij

ρw
. (44)

The updated value of Wtil, which appears on the left side
of (44), is computed by trivial integration of equation (16),
namely

(Wtil)
l+1
i,j = (Wtil)

l
i,j + ∆t

(
mij

ρw
−Cd

)
. (45)

The right-hand-side value
::::
given

:::::
value

:::::
W l+1

til :
is used if it is

in the closed interval [0,Wmax
til ], but otherwise the bounds

0≤Wtil ≤Wmax
til are enforced. Once W l+1

til is computed, the
value of W l+1 can be updated by (44) in a mass-conserving
way.

Assuming no error in the flux components Q, the local
truncation error (Morton and Mayers, 2005) of scheme (44)
would beO(∆t1 +∆x2 +∆y2) as an approximation of (12).
The actual truncation error depends on the nature of the
approximation which generates

::::::::::::
approximation

::
of

:
the dis-

crete fluxes,
::::::::
addressed

:
next.

6.2 Discrete advective fluxes

We test two flux discretization schemes, namely

:::::::::::::::
flux-discretization

:::::::::
schemes,

:::::::
namely

:::
a
::

first-order up-
wind

::::::
scheme and the Koren flux-limited third-order scheme

(Hundsdorfer and Verwer, 2010). Both schemes achieve
non-oscillation and positivity, but with different local
truncation error and complexity of implementation. The
third-order scheme is best explained as a modification of
the better-known

::
our

:
conservative (“donor cell”; LeVeque

(2002)) first-order upwind schemewe use.
In fact

:::
For

::
a

::::::::::
flux-limited

:::::::
scheme, the following formulas

apply in the cases ue ≥ 0, ue < 0, vn ≥ 0, and vn < 0, re-



14 Bueler and van Pelt: Subglacial hydrology in PISM

spectively:

Qe(ue) = ue [Wi,j + Ψ(θi)(Wi+1,j −Wi,j)] , (46)

Qe(ue) = ue
[
Wi+1,j + Ψ

(
(θi+1)−1

)
(Wi,j −Wi+1,j)

]
,

Qn(vn) = vn [Wi,j + Ψ(θj)(Wi,j+1−Wi,j)] ,

Qn(vn) = vn
[
Wi,j+1 + Ψ

(
(θj+1)−1

)
(Wi,j −Wi,j+1)

]
.,

The
::::
where

:::
the

:
subscripted θ quotients are as follows:

θi =
Wi,j −Wi−1,j

Wi+1,j −Wi,j
, (θi+1)−1 =

Wi+2,j −Wi+1,j

Wi+1,j −Wi,j
,

θj =
Wi,j −Wi,j−1

Wi,j+1−Wi,j
, (θj+1)−1 =

Wi,j+2−Wi,j+1

Wi,j+1−Wi,j
.

θi =
Wi,j −Wi−1,j

Wi+1,j −Wi,j
, θj =

Wi,j −Wi,j−1

Wi,j+1−Wi,j
.

::::::::::::::::::::::::::::::::::::

The first-order upwind scheme simply sets Ψ(θ) = 0
in formulas (46). The Koren scheme “limits ”

::::
limits

:
its

third-order and positive-coefficient correction to the upwind
scheme by using this formula (Hundsdorfer and Verwer,
2010):

Ψ(θ) = max

{
0,min

{
1,θ,

1

3
+

1

6
θ
}}

. (47)

When using the Koren flux-limiter the stencil in Figure
A4 is extended because regular grid neighbors Wi+2,j ,
Wi−2,j , Wi,j+2, Wi,j−2 are also involved in updating Wi,j .
The flux-correction-limited Koren third-order scheme by-
passes the first-order limitation of positive linear finite differ-
ence/volume schemes imposed by Godunov’s barrier theo-
rem (Hundsdorfer and Verwer, 2010, section I.7.1) by having

::::
using

:
a nonlinear correction formula, i.e. the combination of

and above. Though the Koren scheme is usually third-order
where smoothness allows, it reverts to first-order at extrema
and other non-smooth areas

:::::
jumps where θ� 1 or θ� 1.

For either the first-order or Koren schemes
::::::
scheme, if the

water input m is negative then we must actively enforce
:
,
::
by

:::::::::
truncation, the positivity of the water thicknessW . Positivity

::
In

::::
fact,

:::::::::
positivity

:
of the source-free advection-diffusion

schemeis
:
, a desirable property but it

:::::
which

:::
we

:::
can

:::::
show

::
by

:::::::
standard

::::::::
methods

:::::::::::::::::::::::::::
(Hundsdorfer and Verwer, 2010) ,

:
does

not ensure positivity of the solution if there is actual water
removal(

:::::
water

::::::::
removal,

:
i.e. if (m/ρw)− ∂Wtil/∂t < 0).

Therefore we project (reset) W to be nonnegative at the end
of each time step.

::::::::::::::::::
m/ρw − ∂Wtil/∂t < 0.

:

6.3 Mass conservation: positivity and stability

Explicit numerical scheme

6.3 Discretization of the pressure equation

:::::::
Pressure

::::::::
evolution

:::::::
equation (31)

:
is
::
a
::::::::
nonlinear

:::::::
diffusion

::::
with

::::::::
“reaction”

:::::
terms

:::::
from

:::
the

:::::::
opening

::::
and

:::::::
closing

::
of

:::::::
cavities.

::::::::
However,

:::
our

::::::::
numerical

::::::
scheme

:::
for

:::
this

::::::::
equation

:
is
::::::
similar

::
to

::
the

:::::::
scheme

:
for the mass conservation PDE , combined with

the first-order upwind case of formulas , is sufficiently simple
so that we can analyze its stability properties. For this scheme
we now sketch a maximum principle argument which shows
stability (Morton and Mayers, 2005) . The argument also
shows positivity (Hundsdorfer and Verwer, 2010) as long as
the total water input is nonnegative, but here only the case
m= 0 and Wmax

til = 0 case is shown. Also we consider
only the upwinding case where the discrete velocities at
cell interfaces are nonnegative: ue ≥ 0, uw ≥ 0, vn ≥ 0,
vs ≥ 0.The other upwinding cases can be handled by
similar arguments.

:::::::
equation

:::::::
(section

::::
6.1)

::::::
because

::::
the

:::::
spatial

:::::::::
derivatives

:::
are

:::::::
actually

:::
the

:::::
same

::
in

:::::
each

::::::::
equation,

::::::
namely

:::::
∇ ·q.

::::
Thus

:::
we

:::::
reuse

:::
the

:::::::::::
computation

:::
of

:::::
those

:::::::::
derivatives,

::::::
namely

::::::
scheme

:
(43)

:
,
:::::
which

:::::
gives

::::
Di,j .:

Define νx = ∆t/∆x, νy = ∆t/∆y
:::
Let

::::
Oij ,::::

Cij:::
be

:::
the

::::::
gridded

::::::
values

:::
of

::::
the

:::::::::::
zeroth-order

:::::
(i.e.

:::::::
without

::::::
spatial

:::::::::
derivatives)

::::::::
opening

:::
and

:::::::
closing

:::::
rates;

:::
see

:::::::::
equations

:
(14),

µx = ∆t/∆x2, and µy = ∆t/∆y2. Collecting terms in to
write the new value as a linear combination of the old values,
we get

W l+1
i,j = (νxuw +µxDw)W l

i−1,j + (µxDe)W
l
i+1,j

+(νyvs +µyDs)W
l
i,j−1 + (µyDn)W l

i,j+1

+
[
1− νxue− νyvn

−µx(De +Dw)−µy(Dn +Ds)
]
W l
i,j

= ÃW l
i−1,j + B̃W l

i+1,j + C̃W l
i,j−1

+D̃W l
i,j+1 + ẼW l

i,j .

Because of our assumption about nonnegative velocities, and
noting that the diffusivities are nonnegative, we see that
coefficients Ã, B̃, C̃, D̃ are all nonnegative. Only Ẽ could
be negative, depending on values of νx,νy,µx, and µy(15).

:::::
Define

:::
the

::::
sum

::
of

:::
all

::::::::::
zeroth-order

::::::
terms:

Zij = Cij −Oij +
mij

ρw
−

(Wtil)
l+1
ij − (Wtil)

l
ij

∆t
.

:::::::::::::::::::::::::::::::::::::

(48)

:::::
Using (43)

:::
for

:::
the

::::
flux

:::::::::
divergence,

:::
the

:::::::
scheme

:::
for

:::::::
pressure

:::::::
equation (31)

::
is

φ0

ρwg

P l+1
i,j −P li,j

∆t
=−Di,j +Zij .

::::::::::::::::::::::::::

(49)

:::::::
Because

::::::::
equation

:
(48)

:::
uses

::::
the

:::::::
updated

::::::
value

::::::::
(Wtil)

l+1
ij ,

:::::::
equation

:
(45)

::::
must

::
be

:::::::
applied

::::::
before

:
(49)

:::
can

:::
be

::::
used

::
to
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:::::
update

:::
P .

:::::
There

:::
are

::::
also

:::::::
special

::::
cases

:::
at

:::
the

:::::::::
boundaries

::
of

::
the

::::::
region

:::::
where

:::::::
W > 0;

:::
see

:::::::::
subsection

:::
6.5.

Requiring Ẽ in to be nonnegative is a sufficient stability
condition (Morton and Mayers, 2005) , which we generate
based on an equal split between advective and diffusive
parts. First there is a CFL restriction for the advection terms,
namely νxαe + νyβn ≤ 1

2 , which is

6.4 Stability of time-stepping

:
A
:::::::::

sufficient
:
condition when generalized to all upwinding

cases. The second is a time-step restriction on the diffusion
, namely µx(De +Dw) +µy(Dn +Ds)≤ 1

2 , which is
condition . If both and hold then the coefficient Ẽ in
is nonnegative

:::
for

:::::::
stability

:::
of

::::::::::::::::
mass-conservation

:::::::
scheme

(44)
:::::
comes

:::::
from

:::::::::::
combining

:::::::::
sufficient

:::::::::
conditions

::::
for

::::::
stability

:::
of

::::
the

:::::::::
advection

::::
and

:::::::::
diffusion

::::::
parts.

::::
For

:::
the

::::::::
advection

::::
part

:::
we

::::
first

:::::
define

:::::::
∆tCFL,

::::
after

:::
the

::::::::::
well-known

::::::::::::::::::::
Courant-Friedrichs-Lewy

:::::::::
restriction

:::
for

:::::::::
advection

:::::::
schemes

:::::::::::::::::::::::
(Morton and Mayers, 2005) ,

:::
by

∆tCFL

(
max |u|

∆x
+

max |v|
∆y

)
=

1

2
,

::::::::::::::::::::::::::::

(50)

:::::
where

::::::::::
V = (u,v)

:::
is

:::
the

::::::::
velocity

:::
of

::::
the

::::::
water

:::
in

:::
the

:::::::::
distributed

::::::
system.

:::
For

:::
the

::::::::
diffusion

:::
part

:::
we

::::::
define

::::
∆tW:::

by

∆tW maxD

(
1

∆x2
+

1

∆y2

)
=

1

4
.

::::::::::::::::::::::::::::

(51)

:::
The

:::::::::
condition

:::::::::::::::::::::
∆t≤min{∆tCFL,∆tW }:::

is
:::::::::

sufficient
:::

for

::::::
stability

:::::
and

:::::::::::
convergence

:::
of

:::::::
scheme

:
(44)

:
if

:::
V,

:::
D,

::::
and

::
m

:::::
were

::
all

:::::::::::::::::
externally-provided

:::::::::
functions,

:::
i.e.

:::
in

:::
the

::::
case

:::::
where

:::
the

:::::::::
equations

::
of

:
(32)

:::
are

:::::::::
decoupled.

::::
We

:::
can

:::::
show

:::
this

:::
by

:::::::::
maximum

::::::::
principle

::::::::::
arguments

:::
for

:::
the

:::::::::
first-order

::::::
upwind

:::::::::
advection

::::::
choice

::::::::::::::::::::::::
(Morton and Mayers, 2005) ,

:::
but

:::::::
standard

::::::
theory

:::
at

:::::
least

::::::::
suggests

::::
the

:::::
same

::::::::::
conclusion

::
for

:::::
the

::::::::::::
higher-order

:::::::::::
flux-limited

::::::::::
advection

::::::::
scheme

:::::::::::::::::::::::::::
(Hundsdorfer and Verwer, 2010) .

Because the coefficients in linear combination also add
to one, as the reader may check, it follows from and that
the scheme is stable (Morton and Mayers, 2005) . It also
follows from

:::::
These

::::::::
time-step

:::::::::
restrictions

:::
can

:::
be

:::::::::
understood

::
by

:::::::::::
considering

:::
an

:::::::::
example.

::::
We

::::
ran

:::
the

:::::::
model

:::
on

::
a

:::::::::::::
∆x= ∆y = 250

:::
m

:::
grid

:::
to

::::::::::
approximate

::::::
steady

::::
state

:::
for

:::
the

::::::::
subglacial

:::::::::
hydrology

::
of Nordenskiöldbreen

:::::::::::::
(van Pelt, 2013) .

:::
We

::::
used

:::::::
realistic

::::::
inputs

:::
for

:::
H ,

::
b,

:
and that if W l

i,j ≥ 0 for
all i, j then gives W l+1

ij ≥ 0, in this m= 0 and Wmax
til = 0

case, which is our positivity claim. Thus, under conditions

::
m,

::::
but

::
a
:::::::::::::::
spatially-constant

:::
ice

:::::::
sliding

::::
rate

:::
of

::::::::
|vb|= 50

::
m

:::::
a−1;

:::::
other

:::::::::
parameter

:::::::
values

:::::
were

:::::
from

::::::
Table

::::
A1.

:::
The

::::::
result

::
is
::::

that
::::

the
:::::::::
maximum

:::::::::
computed

::::::
water

:::::
speed

:::
|V|

::
is
::::::

about
:::
0.2

:::
m

::::
s−1

:::
so

:
(50) and , scheme is stable

and positivity-preserving
::::
gives

::::::::::::::
∆tCFL ≈ 300s.

:::::::::
Computed

::::::::
diffusivity

::::::::::::
D = ρwgKW::::

has
:
a
:::::::::

maximum
:::::
value

::::
that

:::::
varies

::::::::::
significantly

:::
in

:::::
time,

::::::::::::::::::::::
0.1≤maxD ≤ 5m2 s−1.

::::::
Using

::
a

:::::
typical

:::::
value

:::::::::::::::
maxD = 1m2 s−1

::
in
:
(51)

::::
gives

::::::::::::
∆tW ≈ 8000s.

::::
Thus

:::
in

:::
this

::::::::::
simulation

::::::::::::::::
∆tW ≈ 25∆tCFL.

:::::
This

:::::::
example

:::::::
suggests

:::::
that,

::::::
unless

:::::
both

:::
the

::::::::::
maximum

::::::
speed

::::
|V|

::
is

::::::::
unusually

::::
low,

::::
and

:::::
deep

:::::::::
subglacial

:::::
lakes

:::::::
develop

::
so

::::
that

::::::
maxD

:
is
:::::
large,

:::
the

:::::::
diffusive

::::
time

:::::
scale

::
is

::::::::::
significantly

:::::
longer

:::
than

:::
the

::::
CFL

::::
time

:::::
scale.

::::
The

::::::
scaling

::::::::::::::
∆tW =O(∆x2)

:::::
versus

:::::::::::::::
∆tCFL =O(∆x1)

::::::
makes

:
it
:::::
clear

:::
that

:::::
under

::::::::
sufficient

:::::
spatial

:::
grid

::::::::::
refinement

:::::
∆tW ::

is
:::::::::::

controlling,
:::
but

:::
we

:::::::
suspect

::::
that

::::::
∆tCFL::

is
:::::::::
controlling

:::
for

:::::::::
∆x > 100

::
m.

6.5 Discretization of the pressure equation

The pressure evolution equation is a nonlinear diffusion
with additional “reaction” terms associated to opening and
closing

:::::::
However,

::::
the

::::
time

::::
step

::::::::
restriction

:::::
from

:::
the

:::::::
pressure

:::::::
equation

:::::::
scheme

::
is
::::::::

typically
:::::::

shorter
::::
than

::::::
either

:::::
∆tW ::

or

::::::
∆tCFL. The time step restriction for our explicit pressure
scheme

::::::
scheme

:
(49) is comparable to

::::
∆tW , though the proof

above for the stability of the mass conservation scheme does
not suffice to prove stability. That is, if

:::::::::
Nonetheless

:::
we

:::::
define

::::
∆tP ::

by
:

∆tP

(
2maxD

φ0

)(
1

∆x2
+

1

∆y2

)
= 1.

::::::::::::::::::::::::::::::::

(52)

:
If
:
the time step satisfies ∆t≤∆tP , where

::
is

::
set

:::
by

∆tP
2maxD

φ0

1

∆x2
+

1

∆y2
= 1min{∆tCFL,∆tW ,∆tP }.

::::::::::::::::::::

(53)

then we assert that, and observe in practice that , the scheme

::
the

:::::::
coupled

:::::::
scheme

:::::::::
consisting

::
of (44),

:
(45)

:
,
:::
and

:
(49) is sta-

ble. From

::::::::
Recalling (51)the resulting time step

:
,
::::::::
however,

:
∆tP is

::::::
actually

:
a fraction of ∆tW :

∆tP = 2φ0 ∆tW .

We can again be quantitative in a particular example.
Consider the same 250 m simulation of the hydrology of ,

::::::
namely

:::::::::::::::
∆tP = 2φ0 ∆tW .

::
If

::
we

::::::
return

::
to

:::
the

:::::
above

:::::::
example

::
for

:
Nordenskiöldbreenas earlier. With ,

::::
with

:
φ0 = 0.01 we

have ∆tP which is 50 times smaller than ∆tW and half of
∆tCFL:

∆tW ≈ 8000 s from (51),
∆tCFL ≈ 300 s from (50),
∆tP ≈ 160 s from (??).

This analysis suggests that the numerical scheme for
pressure diffusion, given next, may often have

::::::::::
∆tW ≈ 8000
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:
s,
:::::::::::
∆tCFL ≈ 300

::
s,

:::
and

::::::::::
∆tP ≈ 160

::
s.

::
In

:::
this

::::
case

:::
the

:::::::
pressure

::::::
scheme

:::
has

:
the shortest time step, but it may be

::
is compa-

rable to CFL. Note that ∆tCFL =O(∆x) while ∆tW and

:::::::
Because

:
∆tP are

:
is

:
O(∆x2). The time step restriction ,

::
the

::::::::
pressure

:::::::
scheme

:::::::::
restriction

::
is

::::::::
certainly

:::::::::
controlling

:::
for

:::::::::::::
sufficiently-fine

:::::
grids.

::::::::
However,

::::
the

::::
time

::::
step

:
∆tP scales

with the adjustable regularizing
:::
also

:::::
scales

::::
with

:
porosity φ0,

so we can make it more or less severe
::
by

::::::::
adjusting

::::
that

::::::::
parameter.

The scheme we use
:
If

::::::::
implicit

::::::::::::
time-stepping

:::::
were

::::::
instead

:::::
used

:
for the pressure equationis similar to the

scheme we have just presented for the mass continuity
equation . Denote ψli,j = P li,j + ρwg(bli,j +W l

i,j).
Let Oij = c1|vb|i,j

(
Wr −W l

i,j

)
+

and

Cij = c2A
(
ρigHi,j −P li,j

)3
W l
i,j be the gridded values

of the cavitation-opening and creep-closure rates. Also
define the sum of all zero order (i.e. without spatial
derivatives) terms

Zij = Cij −Oij +
mij

ρw
−

(Wtil)
l+1
ij − (Wtil)

l
ij

∆t
.

Using for the flux divergence, the scheme for pressure
equation is now

φ0

ρwg

P l+1
i,j −P li,j

∆t
=−Di,j +Zij ,

or, in explicit update form,

P l+1
i,j = P li,j +

ρwg∆t

φ0
(−Di,j +Zij) .

Because equationuses the updated value (Wtil)
l+1
ij , equation

must be applied before can be used to update P to the new
time tl+1.

There are special cases at the boundaries of the active
subglacial layer: (i) where there is no ice Hi,j = 0 and land
(bi,j > 0) we set P l+1

i,j = 0, (ii) where the ice is floating we
set P l+1

i,j = (Po)i,j , and (iii) where there is grounded ice
(Hi,j > 0) and no water (W l

i,j = 0) we set P l+1
i,j = (Po)i,j

if there is no basal sliding and P l+1
i,j = 0 if there is

sliding (because of cavitation; see equation ),
:::::
which

:::::::
requires

::::
overt

:::::::::
variational

:::::::::
inequality

:::::::::
treatment

::
to

::::::::
preserve

:::::::
physical

:::::::
pressure

::::::
bounds

::::::::::::::::::
(Schoof et al., 2012) ,

::::
then

::::
the

::::
time

:::::
scales

:::::::::::
∆tW ,∆tCFL:::::::::

addressed
::::
here

:::
are

:::
the

::::
only

:::::::::::
restrictions.

:::
The

::::
time

:::
step

:::::::::
restriction

:::::
∆tW :::::

could
:::
also

:::
be

:::::::
removed

:::
by

::::::
implicit

::::
steps

::::
for

:::
the

::::::::::::::::
mass-conservation

:::::::::
equation,

:::::::
though

:::::
again

:::
this

:::::::
requires

::
a
::::::::::

variational
:::::::::
inequality

::::::::::
formulation

:::::::
because

::
of

:::
the

::::::
lower

::::::
bound

:::::::
W ≥ 0.

::::
Our

:::::::::::
observation

:::::
above

::::
that

:::::::::::::
∆tCFL�∆tW:::

for
::::::::

practical
:::
ice

:::::
sheet

:::::
grids

::::::::
suggests

:::
that

::::::
implicit

::::::::::::
time-stepping

:::
for

:::
the

:::::::::::::::
mass-conservation

:::::::
equation

::
is

:::
not

::::::::
beneficial.

6.5 One time step of the model

Mathematical model (32) evolves
::
the

::::::
fields W , Wtil, and

P . Here we describe one time step of the fully-discretized
evolution. For convenience we treat

::::::
coupled

:::::::::
evolution.

:::
For

::::::::::
convenience

:::::
only

:::
we

::::::
denote

:
the ice geometry

:
,
:::
bed

::::::::
geometry,

:
and sliding speed as fixed, and so hi,j::::

(i.e.
::::
Hi,j ,

bi,j , (Po)i,j , and |vb|i,jare all denoted as
:
)
::
as

::::::
though

::::
they

::::
were

::
all

:
time-independent.

The ice
:::
The geometry may be quite general, with ice-free

landor floating ice ,
:::::::
floating

:::
ice

:::::
shelf,

::
or

:::::::
ice-free

::::::
ocean al-

lowed at any location (xi,yj). The ice geometry
:
In

::::
fact,

:::
the

::::::::
geometry

:::
data

:
determines boolean “masks” for gridcell state

(
::
on

:::
the

::::
grid, based on zero

:
as
:::
the

:
sea level elevation):

:
:

icefreei,j = (hH
: i,j>=

:
0)&(hi,j =bi,j> 0

:::
),

floati,j = (ρi(Hfloat)i,j <−ρsw bi,j).,

Here we take a sea-water density
:::::
where

:
ρsw = 1028.0 and

define Hfloat = hi,j/(1− r) as the thickness of the ice if it is
floating, where r = ρi/ρsw. Note that

:
is

::::::::
sea-water

:::::::
density.

::::
Note floati,j is also true in ice-free ocean

:::
true

::::
both

:::::
where

::::
there

::
is

::::::
floating

:::
ice

::::
shelf

::::
and

:::::
where

:::
the

:::::
ocean

::
is

::::::
ice-free. The

subglacial hydrology model exists only for grounded ice, that
is, only if both

::::
flags

:
icefree and float are false. The

other mask cases provide boundary conditions when they are
neighbors to grounded ice-filled cells.

One time step follows this algorithm:

(i) Start with values W l
i,j , (Wtil)

l
i,j , P

l
i,j which satisfy the

bounds W ≥ 0, 0≤Wtil ≤Wmax
til , and 0≤ P ≤ Po.

(ii) Get (Wtil)
l+1
i,j by (45). Enforce 0≤Wtil ≤Wmax

til . If
icefreei,j or floati,j then set (Wtil)

l+1
i,j = 0.

(iii) Get W values averaged onto the staggered grid from
(39), staggered grid values of the effective conductiv-
ity K from (40), velocity components u, v at staggered
grid locations from (41), and staggered grid values of
the diffusivity D from (42).

(iv) Get time step ∆t= min{∆tCFL,∆tW ,∆tP } using
criteria , , and

::
∆t

::::
from

:
(53).

(v) Using (46) and a particular flux-limiter
::::
ψ(θ), com-

pute the advective fluxes Qe(αe) at all staggered-grid
points (i+ 1/2, j) and Qn(βn) at all staggered-grid
points(i, j+ 1/2).

(vi) Get
:::
flux

::::::::::
divergence approximations Di,j of the flux

divergence from (43). For each direction (i.e. x- and
y-directions), do not compute the divided-difference
contribution to the flux divergence in if either neighbor
is icefree or float.
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(vii) If icefreei,j then set P l+1
i,j = 0. If floati,j then set

P l+1
i,j = (Po)i,j . If W l

i,j = 0and ,
::::

and
::
if
:
icefreei,j

and floati,j are both false, then
::::
either

:
set P l+1

i,j =
(Po)i,j . Then use to compute values for

:::
(no

::::::
sliding)

::
or

::::::::
P l+1
i,j = 0

::::
(any

:::::::
sliding).

:::::::::
Otherwise

:::
use (49)

::
to

:::::::
compute

P l+1
i,j at the remaining locations.

(viii) If P l+1
i,j does not satisfy bounds 0≤ P ≤ Po then reset

(project )
::::::::::::
truncate/project

:
into this range.

(ix) If icefreei,j or floati,j then set W l+1
i,j = 0. Other-

wise use (44) to compute values for W l+1
i,j .

(x) If W l+1
i,j < 0 then reset (project )

::::::::::::
truncate/project

::
to
:::
get

W l+1
i,j = 0.

(xi) Update time tl+1 = tl + ∆t and repeat at (i).

This recipe goes with a reporting scheme for mass conser-
vation. Note that in steps (ii) and (ix) water is lost or gained
at the margin where either the ice thickness goes to zero on
land (margins), or at locations where the ice becomes float-
ing (grounding lines). Because such loss/gain may be the
modeling goal—users want hydrological discharge—these
amounts are reported. This reporting scheme also tracks the
projections in step (x), which represent a mass conserva-
tion error which goes to zero under

::
in the continuum limit

∆t→ 0.

7 PISM options for hydrology models

In this section we document the runtime options for the
PISM hydrology model (PISM authors, 2013) . There are
three choices of model equations, namely distributed,
routing, and null. The first of these is the complete
model described in this paper. The other two are reductions;
we list them in order of decreasing complexity

6.1 Run-time options for hydrology models

::::::
Option

::::::::::::
-hydrology

::::::
NAME

:
,
::::::
where

:::::
NAME

::
is

:::
one

:::
of

:::
the

::::
three

::::::::
headings

:::::
below,

:::::::
chooses

:::
the

::::::
model

::::::::
equations.

6.2 distributed

This most-complete PISM hydrology model is chosen
by runtime option -hydrology distributed. It is

:::::::::::::
distributed

:
:

:::
This

::::::
model

::
is governed by the full set of

equations (32) in section 5; see also Tables A1and A2
:
.
:::
The

:::
full

:::
set

::
of

::::::::::
parameters

:::::
(Table

::::
A1)

::::
and

::::::::
variables

::::::
(Table

:::
A2)

::
are

::::::
active

::
in

:::
this

::::::
model.

6.2 routing

This model is chosen by option -hydrology routing.
It is governed by a subset of equations , with the equation for
evolution of pressure P removed, and with the replacement
P 7→ Po = ρigH in defining K, V, and ψ. Thus the
equations simplify to:

∂W

∂t
+
∂Wtil

∂t
=−∇ · (VW ) +∇ · (D∇W ) +

m

ρw
,

∂Wtil

∂t
=
m

ρw
−Cd,

along with
::::::::
routing

:
:

:
In

::::
this

::::::
reduced

::::::
model

:::
the

:::::::
equation

::
for

::::::::
pressure

::::::::
evolution

:
is
::::::::

replaced
::
by

::::::::
P = Po. :::

The
::::::::
evolution

::::::::
equations

::
for

:::
the

:::::
state

:::::::
variables

:::
W

:::
and

:::::
Wtil,:::

and
:::
the

:
bounds

0≤W and 0≤Wtil ≤Wmax
til . The determination of Ntil and

τc is
:
,
::
are

:
unchanged.

6.2 null

This non-conserving model is chosen by option
-hydrology null. It is the default hydrology
model in PISM

:::::
null

:
:

:::
This

::::::::::::::
further-reduced

:::::::
model

::
is

::::::::::::
non-conserving. It has only the state variable Wtil . The
equations are the same as in except that there is no “W ”
and the first of equations is gone

:::::
which

::
is

::::::
subject

::
to

::::::
bounds

::::::::::::::
0≤Wtil ≤Wmax

til :::
and

:::::::
evolves

::
by

:::::::
equation

:
(16).

6.2 Configurable constants

All of the constants in Table A1 are configurable parameters
in PISM. The correspondence between PISM parameters

names and the symbols
:::
the

::::::::
notation

:
in this paper is

:::
and

:::::::
PISM’s

:::::::::::
configurable

::::::::::
parameters

:::
is

::::::
shown

:
in Table

A3. These parameters can be changed
::
set

:
at runtime by

using the parameter name as an option
:
,
:
or by setting

a pism_overrides variable in a NetCDF file which
is read with the -config_override option . See

::::::::::::::::::
(PISM authors, 2013) .

::::
File

:
src/pism_config.cdl for

:::::::::
determines

:::
the default values and units.

7 Results

7.1 Verification of the coupled model

By using the coupled
:
, steady-stateexact solution constructed

in section ?? we can verify
:
,
:::::::::::

nearly-exact
::::::::

solution

:::::::::
(subsection

::::
5.1)

:::
we

:::::::
verified most of the numerical schemes

described above. (Verification is the process of mea-
suring and analysing the errors made by the numeri-
cal scheme, especially as the numerical grid is refined
(Wesseling, 2001; Bueler et al., 2005) .

We initialize
::::::::::::::::
(Wesseling, 2001) .)

::
To

:::
do

:::
this

:::
we

::::::::
initialized

our time-stepping numerical scheme with the exact
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::::::::::
nearly-exact

:
steady solution and we measure

:::::::
measured

:
the

error relative to the steady exact values after one model-
month. The continuum time-dependent model (32) would
cause no drift away from steady state, so any drift is error.

For the verification runs we use the values in Table ??.
We do

::::::::
numerical

:::::
error.

:::
We

:::
did

:
runs on grids decreasing by

factors of two from 2 km to 125 m. Figure A5 shows the
results based on first-order upwinding for the fluxes.

This convergence evidence suggests that
::
we

:::::
have

::::::::::
implemented

::::
the

:::::::::
numerical

:::::::
schemes

:::
in

::::::
section

:::
6,

:::
for

:
the

coupled advection-diffusion-reaction equations for W and
Phave correctly-implemented numerical schemes,

::::::::
correctly.

The rate of convergence
::
in

::::
this

:::::::::
verification

::::
case

:
is roughly

linear (i.e. about O(∆x1)) because
::
the

:
largest errors arise at

locations of low regularity of the
::::
exact

:
solution, including

the radius r =R1 ::::
r = 5

:::
km

:
where P abruptly

::::::
quickly

:
drops

from Po, and at the ice sheet margin r = L where there is a
jump in the water thickness

:::
W to zero.

The rates of convergence for average errors are nearly
identical for the higher resolution

::::::::::::::
higher-resolution

:
flux-

limited (Koren) scheme and for the first-order upwinding
scheme (not shown). Because our problem is an advection-
diffusion problem in which both the advection velocity and
the diffusivity are solution-dependent, it is difficult to sepa-
rate the errors arising from numerical treatments of advec-
tion and diffusion. The first-order upwinding scheme for the
advection has much larger numerical diffusivity but this dif-
fusivity is masked by the physical diffusivity. Based on our
verification evidence it is reasonable to choose the simpler
first-order upwinding for applications. It also ,

:::
as

:
it
:
requires

less interprocess communicationin a parallel implementation
like ours.

7.2 Application of to the model at Greenland ice sheet
scale

We now apply our mass-conserving hydrology models to the
entire Greenland ice sheet at 2 km grid resolution. This non-
trivial example demonstrates the model at large computa-
tional scale using real ice sheet geometry, with one-way cou-
pling from ice dynamics for a realistic distribution of sliding

:::::
giving

::
a
:::::::
realistic

:::::::::::
distributions

::
of

::::::::::
overburden

::::::::
pressure,

:::
ice

:::::
sliding

::::::
speed, and basal melt rate.

7.2.1 Spun-up initial state

The PISM dynamics and thermodynamics model (Bueler
and Brown, 2009; Winkelmann et al., 2011; Aschwan-
den et al., 2012), using the non-mass-conserving null
hydrology model (section ??

:::::::::
subsection

:::
6.1), was applied

by grid sequencing
::::
used

:
to compute a consistent and

nearly-steady model of the ice sheet, a “spun-up” ini-
tial state. Model choices for ice dynamics, including
enhancement factor, sliding law power, and till friction angle,

follow Aschwanden et al. (2013) . The steady ,
::::::::
following

:::
the

:::::::::
procedures

::
in

:::::::::::::::::::::::
Aschwanden et al. (2013) .

::::
Our

::::::
model

::::
uses

::
no

:::::::::::::::
spatially-variable

::::::::
parameter

:::::::
values,

::::
such

:::
as

::::
basal

:::::
shear

:::::::
stresses,

:::::
found

:::
by

::::::::
inversion

::
of

:::::::
surface

:::::::::
velocities.

::::
The

:::
bed

::::::::
elevations

:::
and

:
present-day climate of the ice sheet, especially

surface mass balance and surface temperature
:::::::::
temperature

:::
and

::::::
surface

::::
mass

:::::::
balance (Ettema et al., 2009), were from the

SeaRISE data set for Greenland (Bindschadler et al., 2013).
The

:::
The

:::::::
spin-up grid sequence was

::
to

:::
run

:
50 ka on a 20 km

grid, 20 ka on a 10 km grid, 2 ka on a 5 km grid, and fi-
nally 200 a on a 2 km grid. All model fields were bilinearly
interpolated

:
,
::::
with

:::::::
bilinear

:::::::::::
interpolation at each refinement

stage. This whole spinup used 2800 processor-hours on 72
processors on a linux cluster with 2.2 GHz AMD Opteron
processors, a small computation for modern supercomputers.

The final 2 km stage, on a horizontal grid of 1.05 million
grid points, used uniform 10 m vertical spacing so that the ice
sheet flow was modelled on a structured 3D grid of 460 mil-
lion grid points(e. g. locations where ice temperature and
velocity were computed)

::::::::::::::::
velocity/temperature

:::::::
points.

::::
This

:::::
whole

:::::::
spin-up

::::
used

:::::
2800

:::::
total

:::::::::::::
processor-hours

:::
on

:::
72

:::
2.2

::::
GHz

:::::
AMD

::::::::
Opteron

::::::::::
processors,

::
a
:::::
small

:::::::::::
computation

:::
for

::::::
modern

::::::::::::::
supercomputers.

:::
The

::::::
results

::
of

::::
this

:::::::
spin-up

::::
were

::::::::
validated

:::
by

:::::::::
comparing

:::::
results

::
to
::::::::::

present-day
:::::::::::

observations. In the last 100 a of the
final stage

:::
this

:::
run

:
the ice sheet volume varied by less than

0.04 percent. Other more active measures showed stability
during the last 100 a at the level of less than one percent
(e.g. the area of temperate base and the maximum ice
velocity over the whole sheet) to at most a few percent (the
floating ice area).

The results of this whole-ice-sheet spinup were validated
by comparing results to present-day observations. (Though

:
,
::
so

:
the model is in nearly steady state,

::::::
though the actual

Greenland ice sheet may not be as close to steady. ) The
spun-up ice sheet volume of 3.094× 106 km3 is close to the
present-day volume of 3.088× 106 km3 computed from the
SeaRISE data on the same grid. However, in describing more
careful validation measures for similar 2 km PISM model
runs, Aschwanden et al. (2013) observe that volume aloneis
inadequate for model validation. A

::::::::
Compared

::
to
:::::::

volume

:::::
alone,

::
a
:
better evaluation of dynamical quality is shown

in Figure ??, which compares
::
to

::::::::
compare

:
the modeled

and observed surface speed. We see that the extent of the
Northeast Greenland ice stream is smaller than observed,
and the distribution of flow in Western Greenland outlet
glaciers differs from the observed pattern. However, our
model uses no spatially-variable parameter values such as
basal shear stresses found by inversion of surface velocities
(Aschwanden et al., 2013)

:::::::::::::::::::::::
(Joughin et al., 2010) surface

:::::
speed,

::::
with

:
a
::::
very

:::::::
similar

::::
result

::
to
:::
the

::::::::::
comparison

::::::::
described

::
in

:::::::::::::::::::::
Aschwanden et al. (2013) .
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The spun-up initial state includes, in particular, modelled
ice thickness H , basal melt rate m, and sliding velocity |vb|;
the latter two fields are shown in Figure A6. We note that
the areas

:::::
Areas

:
of sliding roughly coincide with areas of

basal melt because modeled basal resistance
::::::::::::
heat-producing

::::::::
(modeled)

:::::
basal

::::
drag comes from the yield stress parameter-

ized in section 3.

7.2.2 Experimental setup and model runs

We used fields H , m, |vb| from the spun-up state as
steady data in five model-year runs of our mass-conserving
hydrology

::
the

:
routing and distributed models.

Because these fields were fixed,
::::::::
hydrology

::::::::
models;

:::
see

::::::::
subsection

::::
6.1

:::
for

::::::
model

:::::::::::
descriptions.

::::
Thus

:
only one-way

coupling was tested: a steady ice dynamics model fed its
fields to an evolving subglacial hydrology model. The hy-
drology model was initialized with the Wtil values from the
spun-up state, but with W = 0 initial values and

::
for

::::
both

::::::
models,

::::
and

:::
also

:
P = 0 initial values (for distributed).

These runshad 1.05 million subglacial hydrology grid
points at which

::
In

:::
the

::::
runs,

:
variablesW ,Wtil, and P were re-

computed at each time-stepaccording to the numerical model
described in section 6

:
,
::
at
:::::

each
::
of

:::::
1.05

::::::
million

:::::::::
subglacial

::::::::
hydrology

::::
grid

:::::::
points,

:::::
using

:::::::::
parameter

:::::
values

:::::
from

:::::
Table

::
A1. In both routing and distributed models the
modelled hydrological system became quite steady after the
first three model years.

The adaptively-determined
::::::::::::::::::
Adaptively-determined

:
time-

steps for the hydrology model reached a steady level
of

::::
about

:
4 model hours

::::::::::
model-hours

:
for the routing

model based on maximum subglacial water speeds |V| of
0.05 ms−1 and maximum diffusivity D of 10.6 m2 s−1.
For the distributed model the time steps were ac-
tually slightly longer, primarily because routing con-
centrates large water amounts and fluxes along steepest-
descent paths. The ;

::::
the

:
time steps were about 6 model

hours based on
::::::::::
model-hours

::::::
based

:::
on

:::::::::
maximum

:
speeds

|V| of 0.03 ms−1 and
::::
much

:
smaller maximum diffusivi-

ties D of about 0.25 m2 s−1. (Higher water velocities V
were seen in the 250 m grid resolution case mentioned
in section 6, based on additional simulated surface water
input added to the thermodynamically-generated basal melt
rate (van Pelt, 2013) , and the pressure time steps in that
case were shorter than the mass time steps. )

::::
These

::::::::::::
hydrology-only

:::::
runs

::::
used

:::::
much

::::
less

:::::::::::
computation

::::
than

:::
the

:::::::
spin-up:

:::
14.7

::::::::::::::
processor-hours

::
for

:::
the

:::::::::
routing

:::
run

:::
and

::::
14.2

::
for

::::::::::::::
distributed

:
.

7.2.3 routing results

The final values of Wtil and W for
::::
fields

:::::
from the routing

run are shown in Figure A7. We see that the
:::
The

:
till is fully

saturated (Wtil = 2 m) in essentially all areas where basal
melt occurs. In the outlet glacier areas the transportable wa-

ter W concentrates along curves of steepest descent of the
hydraulic potential; this effect is seen in

::
see

:
detail in Figure

A8. The
::::::
location

:::
of

:::
the

::::::::
pathways

:
is
::::::::::
determined

::::::::
primarily

::
by

::
the

::::::::
bedrock

::::::::
elevation

:::::
detail

::::::::
provided

::
by

:::
the

::::::::
SeaRISE

::::
data

:::
set,

:::::
which

::
is
:::::::

limited.
:::::::::::
Furthermore,

::::
the grid resolution of 2

km, while very high for contemporary ice dynamics
:::::
whole

::
ice

:::::
sheet

:
models, still represents a significant

:::::
causes

:
spa-

tial “smearing” of the flow pathways. Specifically, though
relatively few areas have W > 1 m, the

:::
The

:
continuum limit of the model would be expected to

have W � 1 m in
::::
have concentrated pathways of a few me-

ters to tens of meters width.
This model

:::::
These

:::::::::::
concentrated

:::::::::
pathways

:
could be re-

garded as a minimal “conduit-like” description
::::::
features

of the subglacial flow, because of these concentrated
pathways

::::::::
hydrology. As noted in the introduction, however,

our model has no “R-channel” conduit mechanism, in which
dissipation heating of the flowing water generates wall melt-
back. The location of pathways/conduit here is determined
primarily by the bedrock elevation detail provided by the
SeaRISE data set, which is limited; the results are especially
suspect in the Eastern outlet glaciers in Figure A8.

7.2.4 distributed results

The final values of W and the relative water pressure P/Po
for the five model-year distributed run are shown in
Figure A9. Again the

:::
The

:
till is full (Wtil = 2 m) in essen-

tially all areas where basal melt occurs, and indeed
:::
so,

::
asWtil

is not shown because it is identical to that in
::::::::::::
nearly-identical

::
to the routing model in this one-way coupled case

:::::
result,

:
it
::
is

:::
not

::::::
shown.

Recall that |vb| determines the pressure drop caused by
cavitation

::::::::::::::
sliding-generated

:::::::
cavities. The effect is to spread

out the water W relative to the routing model, as clearly
seen in Figure A9. There is

::::
now

:
no strong concentration

of W along curves of steepest descent of the hydraulic
potential. This result depends, however, on the ,

::::
but

:::
the

::::::::
spreading

:::::::
depends

::
on

:
opening and closing parameters in the

distributedmodel, especially parameters c1, c2,φ0,Wr;
see Tables A1 and A3. Darcy flux model parameters α,β,k
are also important. Parameter identification using observed
surface,

::
in
::::

situ,
:::::::::::::::

basal-reflectivity,
:::::::::
discharge,

:::
and

:::::
other

:
data,

though needed, is beyond our current scope.
We can examine the local relationship between wa-

ter amount
::::
layer

::::::::
thickness

::
W and pressure P in the

distributed results. Though the model is near steady
state, the basal melt rate, sliding speed, and overburden
pressure all show the large spatial variationswhich are
characteristic of a real ice sheet. Figure A10 shows that if

::::::::::::::
realistically-large

::::::
spatial

:::::::::
variations.

::
In

::::::
Figure

::::
A10 we “bin”

pairs (W,P ) by relatively-narrow sliding velocity ranges ,
as shown in each scatter plot, then there is usually a rough

:::::
speed

:::::
ranges

:::::
(each

::::::::
sub-plot)

::::
and

::::
color

:::
the

::::::
points

::
by

:::
the

:::
ice

::::::::
thickness.

:::::
There

:::
is

::
an

:
increasing relationship between W
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and the relative pressure P/Po . At
:
in

:::::
each

:::
bin.

::::::
While

::
in

::
the

:
fast-sliding locations the water amount

::::
case

:::
W is often

comparable to the bed roughness scale Wr. For low sliding
velocities

:
,
:::
for

:::::
slow

::::::
sliding

:
we see generally lower water

amounts (W .Wr/10) but a full range of pressures. In thick
ice the pressure P is close to overburden even if there is
fast sliding. Locations with high sliding, high water amount,
and low pressure also

:::::
always

:
have low ice thickness. Note

Figure A10 would show even more scatter if the run were not
close to steady state, for example if there were time-varying
surface melt input into the subglacier (van Pelt, 2013) .

8 Conclusions

This paper documents additions made to the Parallel Ice
Sheet Model in its 0.6 version released February 2014. It
describes and demonstrates a subglacial hydrology model
which is novel in having these features:

– a 2D parallel implementation of a coupled till-and-
linked-cavities model(sections 2–6),

– an englacial porosityregularization which allows a
practical numerical model in which physical bounds

:
a
::::::::::::::::

pressure-equation
:::::::::::::

regularization,
::::::

using
::::::::

notional

:::::::
englacial

::::::::
porosity,

::::::
which

::::::
eases

:::::::::::::
implementation

::::
and

:::::::
improves

:::::::::
numerical

:::::::::::
performance,

–
:
a
::::::
scheme

:::
for

::::::::::
maintaining

:::::::
physical

:::::::
pressure

::::::
bounds

:
(0≤

P ≤ Pohold
:
) at all times(sections 4 and 6),

– an analysis of steady states (subsection 5.3 and
Appendix A), describing the actual diffusivity of
the advective flux in that case, an exact

:::::::::
verification

::::
using

::
a
:::::::::::

nearly-exact
::

solution of the coupled mass

:::::::::::::::
mass-conservation and pressure equations

:
, in the steady

radial case(section ??), leading to verification (section
7), and

– demonstration at
:::
high

:::::::::
resolution

::::
and

:
whole ice-sheet

scale on a million-point hydrology grid(section 7).

The comprehensive treatment here of certain subjects is also
important. We have clarified the relationship of several

::::::::::
Furthermore,

::::
the

::::::::::::
comprehensive

:::::::::
exposition

::::
here

:::::::
clarifies

::
the

::::::::::::
relationship

::::::::
among

:::::::
several

:::::::::::::::::::
pressure-determining

“closures” which turn morphological ideas about the
subglacial aquifer into concrete pressure equations (sec-
tion 4), and created and implemented

:
it
::::::

allows
::::

us
::
to

:::::::::
understand

:::
our

::::::
model

:::
as

:
a common extension of several

seemly-disparate
::::::::::::::::
seemingly-disparate

::
published models

(section 5). Adeliberate limitation in scope of the current
paper is that we show only

:::::::::
Additional

:::::::
analysis

:::::::::
(Appendix

::
A)

::::::
shows

:::
that

::
in

::::
that

::
in

:::::
steady

::::
state

::
a
::::::::
functional

::::::::::
relationship

:::::::::::
“P = P (W )”

::::::
arises

::::::::
between

::::::::
pressure

::::
and

::::::
water

:::::
layer

::::::::
thickness.

::::
This

::::::::
analysis

::::::
reveals

:::
the

::::::::
diffusive

::::::
nature

::
of

:::
the

:::::::::::::::::
apparently-advective

:::
part

::
of

:::
the

::::::::::
steady-state

::::
flux.

:

:::
The

::::::
current

:::::
paper

::::
only

:::::::::::
demonstrates one-way coupling. In

this paper ,
::
in

::::::
which

:
the PISM ice flow and thermodynam-

ics model feeds basal melt rate and sliding velocities to the
hydrology model. Two-way coupling will appear in future
work.

9 Code availability

:::
The

::::::
source

::::
code

:::
for

::
all

:::::::
versions

::
of

:::::
PISM

::
is
::::::::
available

::::::
through

:::
host

:::::::
website

:
https://github.com/pism/pism.

:::::::::
Extensive

::::
PDF

:::
and

::::::::::
searchable

::::::::
browser

::::::::::::::
documentation

::::
for

::::::
PISM

:::
is

::::::::
contained

::::
both

::
in

:::
the

::::::
source

::::
code

::::
and

:::::
online

:::::::
through

:::::
PISM

::::::::
homepage

::
http://www.pism-docs.org/

:
.
::::::

PISM
::

is
::::::::

licensed

:::::
under

::
the

:::::
GNU

:::::::
General

::::::
Public

::::::
License

::::::::
(version

::
3).

:
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Appendix A

Analysis of steady states

Relative to the time-dependent form
:::::
model

:::::::::
equations

:
(32),

steady-state equations (35)–(38) have separate balances be-
tween the divergence of the flux and the water input(equation
), and the opening and closing processes(equation ).

Equation .
:::

In
::::::::
particular,

::::::::
equation

:
(38) allows us to write

the pressure P = P (W ) in steady state as a continuous func-
tion of the water amount

::::
layer

:::::::
thickness

:
W . Steady

:::::::
However,

:::::
steady

:
state is only possible if a condition holds:

c1|vb|(Wr −W )+ ≤ c2AP 3
oW. (A1)

That is,
:::
This

:::::::::
condition

:::::
says

::::
that

:
the maximum closing

rate C(N,W ), which occurs at zero water pressure, must
match the

:::::
equal

::
or

:::::::
exceed

:::
the

:::::::::::::::
sliding-generated

:
opening

rate O(|vb|,W ), which is pressure-independent. Define the
following

:
.

:::
We

:::::
define

::
a scaled basal sliding speed which has units of

pressure; it is a scale for the pressure drop from cavitation:

sb =

(
c1|vb|
c2A

)1/3

. (A2)

Then (A1) is equivalent to

W ≥Wc :=
s3
b

s3
b +P 3

o

Wr.

If or holds
:::
the

:::::::::::
condition

::::::::::
W ≥Wc,::::::::

where

:::::::::::::::::::
Wc =Wrs

3
b/(s

3
b +P 3

o )
:::

is
::
a
:::::::

critical
:::::
water

::::::::::
thickness.

::
If

:::::::
W ≥Wc:

then

P (W ) = Po− sb
(

(Wr −W )+

W

)1/3

. (A3)

Note that in
:::::::
Formula

:
(A3) we have P (Wc) = 0

::::::
applies

::::
even

:
if
:::::::::
W ≥Wr,::

in
::::::
which

::::
case

:::::::
P = Po. Underpressure (P = 0)

with subcritical water amount (W <Wc) does not occur in
steady state,

:
though it can occur in nonsteady conditions.

Formula may apply even ifW ≥Wr, in which case the water
pressure takes the overburden value P = Po.

:
;
::::
note

::::::::::
P (Wc) = 0. Figure A11 shows the function P (W )

from for different values of sliding speed |vb|, and Fig-
ure A12 shows the function for

:
it

:::
for

::::::::
different

:
values of

overburden pressure Po. We see that as the water amount
reaches the roughness scale (W →Wr) the pressure rises
rapidly to overburden (P (W )→ Po). At the other extreme,
we see that P (W )→ 0 as W →Wc. The curves P (W ) in
Figures A11 and A12 do not include the underpressure cases
0≤W <Wc wherein is violated.

Recall that Flowers and Clarke (2002a) propose function
PFC(W )for

::::
—see

::::::::
equation (28)

:::::
—for both steady and non-

steady circumstances. Both functions P (W ) in and PFC(W )

http://dx.doi.org/10.1142/S0218202510004180
http://dx.doi.org/10.3189/172756501781832449
http://dx.doi.org/10.1029/2012JF002570
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in are increasing. They both relate the water pressure
::
are

:::::::::
increasing,

:::
and

::::
both

:::::
relate

::
P

:
to the overburden pressure Po.

However, while in (A3) the relation
::
of

::
P to Po is additive,

::::
while

:
in (28) it is a multiplicative scaling. The power

:::
they

::
are

:::::::::::
proportional.

::::::
Power

:
law form (28) is not justified by the

physical reasoning which led to equation (A3), even in steady
state. It would appear that any functional relationship P (W )
should also depend on the sliding velocity, as it does here, if
cavitation influences the water pressure. Also, the W >Wcrit
casegives PFC(W )> Po ::

In
:::
any

:::::
case, in , but this condition

does not arise in . In the current paper is that we do not set

::::::
impose a relationship P = P (W ) at all, even though such a
relation emerges in runs with steady stateinputs

:::::
steady

::::
state.

We now consider how the steady state water velocity
V, and the associated flux q, depends on other quantities.
Because V depends on ∇P , according to

::::
First,

::::
from

:
equa-

tions (35) and (A3)
:
, in steady state we have

∂P

∂W
=

sbWr

3W 4/3(Wr −W )2/3
(A4)

if Wc <W <Wr. If W ≤Wc then ∂P/∂W is undefined,
and if W >Wr then ∂P/∂W = 0. Note that the condition
Wc <W <Wr corresponds to the pressure condition
0< P < Po in steady state. Formula (A4) and Figures A11
and A12 agree that ∂P/∂W →∞ as W →Wr. Equations

::::::::
W ↗Wr.:

::::
Now

::::
note

:::
that

::::::::
equations

:
(35), (A3), and (A4) imply a for-

mula for the velocity in steady state:

V =−k
[
∇ψo−

(
Wr −W
W

)1/3

∇sb (A5)

+
sbWr

3W 4/3(Wr −W )2/3
∇W

]
,

where ψo = Po + ρwgb.
Formula helps us understand the advective flux “VW ” in

q. The
::::
Thus

:::
the direction of water velocity V is determined

by a combination of a geometric direction (∇ψo), a direction
derived from spatial variations in the sliding speed (∇sb),
and a diffusive direction (∇W ). Thus

::::::
Indeed, a portion of

::
the

::::::::
advective

:::
flux

:
VW is diffusive in steady state, in addition to

the a priori diffusive flux −D∇W ;
:::::

recall
::::::::

equation
:
(11)

:
in

::::::::
subsection

:::
2.4. In factwe can write the whole flux as a linear

combination of gradients,

q =−kA1∇ψo + kA2∇sb− kA3∇W,

with coefficients

A1 =W,

A2 = (Wr −W )
1/3

W 2/3,

A3 =
sbWr

3(Wr −W )2/3W 1/3
+ ρwgW.

The first two coefficients A1,A2 go to zero as W → 0, but
A3 :

,
:::::::
because

:::
the

:::::::::
coefficient

::
of

:::::
∇W

::
in

:
(A5) remains large

when W → 0,
:

as long as sliding is occurring (sb > 0). Thus

:
,
:::
then

:
for low water amount and sustained sliding we should

think of the water as diffusing in the layer. When
::
On

:::
the

::::
other

:::::
hand,

:::::
when

:
the water thickness is greater, namely if it

is almost
:::::
almost

::
at

:
the roughness scale (W .Wr), then A3

is
::
the

:::::
same

:::::::::
coefficient

::
is

:::
also

:
large in sliding cases (sb > 0);

again the effect is diffusive.
In steady state the water amount W roughly scales with

1/k where k is the hydraulic conductivity. In fact, if we
combine equation with and rearrange slightly then we find

−∇ · (A3∇W ) =
m

kρw
+∇ · (A1∇ψo)−∇ · (A2∇sb) .

One may regard as a non-linear elliptic equation for
W . In fact, in the case where H , b, and |vb| are all
spatially-uniform, so that∇ψo =∇sb = 0, equation is of the
form −∇ · (A3(W )∇W ) =m/(kρw) where A3(W ) =A3

is given in . If W is both bounded away from zero and
bounded away from the roughness scale Wr (i.e. there
is ε > 0 so that ε <W <Wr − ε) then this equation is
uniformly elliptic. Thus a maximum principle applies
(?) . This means that the maximum of W will equal or
exceed the maximum of W along the boundary of that
region, so the graph of W is concave down. Thus the
values of W will scale with 1/k. Indeed, for the simpler
equation−∇ · (D0∇W ) =m0/(kρw), withD0,m0 positive
constants, on a disc of radius L, and zero boundary values,
the solution has maximum value W (0) which precisely
scales as 1/k. As seen in numerical results, the solution W
of will also scale with 1/k if ∇ψo and ∇sb are not too
large. (However, if W ≈ 0 or W .Wr then the diffusivity
coefficientA3(W ) will be large and so the values ofW away
from the boundary will be flattened-out by the resulting fast
diffusion.)

Constants used in constructing the exact solution. Name
Value Units Descriptionα 1 power in flux β 2 power in
flux H0 500 m center thickness k 0.01/(ρwg) m3 skg−1

hydraulic conductivity L 22.5km cliff at r = 0.9R0 m0

0.2ρw kgm−2 a−1 water input rate R0 25 km ideal ice cap
radius R1 5 km sliding starts v0 100 ma−1 sliding speed
scale Wr 1 m roughness scale

To evaluate the result of the 2 km grid spun-up ice
dynamical model we compare modelled ice speed at the ice
surface (left; ma−1) to satellite observations (right; ma−1).
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Table A1. Physical constants and model parameters. All values are configurable in PISM
:
;
::
see

:::::
Table

::
A3.

Name Default Units Description
A 3.1689× 10−24 Pa−3 s−1 ice softness (Huybrechts et al., 1996)
α 5/4 power in flux formula (Schoof et al., 2012)
β 3/2 power in flux formula (Schoof et al., 2012)
c0 0 Pa till cohesion (Tulaczyk et al., 2000a)
c1 0.5 m−1 cavitation coefficient (Schoof et al., 2012)
c2 0.04 creep closure coefficient
Cc 0.12 till compressibility (Tulaczyk et al., 2000a)
Cd 0.001 ma−1 background till drainage rate
δ 0.02 Ntil lower bound, as fraction of overburden pressure
e0 0.69 reference void ratio at N0 (Tulaczyk et al., 2000a)
φ0 0.01 notional (regularizing) englacial porosity
g 9.81 m s−2 acceleration of gravity
k 0.001 m2β−αs2β−3kg1−β conductivity coefficient (Schoof et al., 2012)
N0 1000 Pa reference effective pressure (Tulaczyk et al., 2000a)
ρi 910 kgm−3 ice density (Greve and Blatter, 2009)
ρw 1000 kgm−3 fresh water density (Greve and Blatter, 2009)
Wr 0.1 m roughness scale (Hewitt et al., 2012)

Wmax
til 2 m maximum water in till (Bueler and Brown, 2009)

Table A2. Functions used in subglacial hydrology model (32).

Type Description (symbol, units, meaning)

state
W m transportable water thickness
Wtil m till-stored water thickness
P Pa transportable water pressure

input

b m bedrock elevation
ϕ till friction angle
H m ice thickness
m kgm−2 s−1 total melt water input
|vb| ms−1 ice sliding speed

output
Ntil Pa till effective pressure
τc Pa till yield stress
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Table A3. Correspondence between
:::::
PISM

::::::::
parameter

:::::
names

::::
and

:
symbols in this paper and PISM configuration parameter names.

Alphabetical by parameter name
:::::
(Table

:::
A1). All of these are used in the distributed model, with the indicated subsets also used in

the routing and null models.

PISM configuration
::::::::
parameter name Symbol routing null

fresh_water_density ρw × ×
hydrology_cavitation_opening_coefficient c1
hydrology_creep_closure_coefficient c2
hydrology_gradient_power_in_flux β ×
hydrology_hydraulic_conductivity k ×
hydrology_regularizing_porosity φ0

hydrology_roughness_scale Wr

hydrology_thickness_power_in_flux α ×
hydrology_tillwat_decay_rate Cd × ×
hydrology_tillwat_max Wmax

til × ×
ice_density ρi × ×
ice_softness A
standard_gravity g × ×
till_c_0 c0 × ×
till_compressibility_coefficient Cc × ×
till_effective_fraction_overburden δ × ×
till_reference_effective_pressure N0 × ×
till_reference_void_ratio e0 × ×
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Fig. A1. (a) Equation (19) determines the effective pressure Ntil as
a function of the void ratio e, as shown here. Reference ;

:::::::
reference

values of e0and ,N0 are indicated. (b) The same curve,
::

but withNtil

as a function ofWtil, and bounded
::::
with

:::::
bounds

:
above by overburden

pressure Po and below by a fixed fraction δ of Po(;
:::
the solid curve

), is used in our model. The case shown is for
::
has

:
1000 meters ice

thickness.

O

O

N

U

r  (km)

W
  (

m
)

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Fig. A2. An exact
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A

:::::::::
nearly-exact

:
radial, steady solution for wa-

ter thickness W (r) (dashed). In r-versus-W space the overpres-
sure (O), normal pressure (N), and underpressure (U) regions

::::
(solid

:::::
curves)

:
are determined by ice geometry and sliding velocity(solid

curves; see text),
::::::
because

:::
this

::
is

:::::
steady

::::
state.
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Fig. A3. An exact
:
A
::::::::::
nearly-exact radial, steady solution

::
for pressure

P (r) (dashed) and overburden pressure Po (solid).
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Fig. A4. Numerical schemes (44) and (49) use a grid-point-centered
cell. Velocities, diffusivities, and fluxes are evaluated at stag-
gered grid locations (triangles at centers of cell edges

:
) denoted

:
by

::::::
compass

:::::::
notation e,w,n,s). State functions W,P

::::::::
W,Wtil,P are

located at regular grid points (diamonds).
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Fig. A5. Average water thickness error |W −Wexact| decays as
O(∆x0.91), and average pressure error |P −Pexact| decays as
O(∆x0.92), for grids with spacing 250≤∆x= ∆y ≤ 2000 m.
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Fig. A6. The inputs to the hydrology model are the modeled basal melt rate m/ρw (left; ma−1) and sliding speed |vb| (right; ma−1) from
the spun-up model

::::
state.

Fig. A7. Outputs from the routing hydrology model are the modelled till-stored water layer thickness Wtil (left; m) and modelled trans-
portable water layer thickness W (right; m).
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Fig. A8. Detail of transportable water W plotted in Figure A7, covering Jakobshavn (J), Helheim (H), and Kangerdlugssuaq (K) outlet
glaciers

Fig. A9. Outputs from the distributed hydrology model include the modelled transportable water layer thickness W (left; m), and the
modelled transportable water layer pressure

:
P , shown relative to overburden pressure P/Po (

:::
i.e.

:::::
P/Po; right).
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Fig. A10. Scatter plots of (W,P )
::::::::
(W,P/Po):pairs for all cells at end of a 5 model year steady-input simulation on a 2 km grid for

::::
from

the whole Greenland ice sheet using
::::::::::::
distributed

:::::
model

:::
run,

:::::
which

::::
used roughness scale Wr = 0.1 m. Each scatter plot

::::::
sub-plot

::::
only

shows the pairs for a select
:::
from

:::
the

:::::::
indicated

:
range of ice sliding speeds, as indicated. Points are colored by ice thickness using a common

scale shown beside last figure.
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Fig. A11. The steady state function P (W ) defined by equation
(A3)depends on the sliding speed |vb|. Four cases are shown. All
use ,
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using Wr = 1 m and a uniform ice thickness of H = 1000 m

::::
(solid

::::::
curves). Values of Wc are indicated by black dots at P = 0.

Relation
::
For

:::::::::
comparison,

:::::::::::::::::::::::::::
Flowers and Clarke (2002a) relation (28)

(dashed black) is shown with Wcrit = 1 m for comparison
:::::
(dashed

::::
black).
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Fig. A12. The graph of P (W ) defined by (A3) also depends on
overburden pressure Po = ρigH . We fix ,

:::::
shown

:::::
using |vb|= 100

m/a and Wr = 1 mand consider four cases of uniform thickness H .
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