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Abstract. We describe and test a two-horizontal-dimension
subglacial hydrology model which combines till with a dis-
tributed system of water-filled, linked cavities which open
through sliding and close through ice creep. The addition
of this sub-model to the Parallel Ice Sheet Model accom-5

plishes three specific goals: (1) conservation of the mass of
water, (2) simulation of spatially- and temporally-variable
basal shear stress from physical mechanisms based on a min-
imal number of free parameters, and (3) convergence un-
der grid refinement. The model is a common generalization10

of four others: (i) the undrained plastic bed model of Tu-
laczyk et al. (2000b), (ii) a standard “routing” model used
for identifying locations of subglacial lakes, (iii) the lumped
englacial/subglacial model of Bartholomaus et al. (2011),
and (iv) the elliptic-pressure-equation model of Schoof et al.15

(2012). We preserve physical bounds on the pressure. In
steady state a functional relationship between water amount
and pressure emerges. We construct an exact solution of the
coupled, steady equations and use it for verification of our ex-
plicit time-stepping, parallel numerical implementation. We20

demonstrate the model at scale by five year simulations of
the entire Greenland ice sheet at 2 km horizontal resolution,
with one million nodes in the hydrology grid.

1 Introduction25

Any continuum-physics-based dynamical model of the liq-
uid water underneath and within a glacier or ice sheet has at
least these two elements: the mass of the water is conserved
and the water flows from high to low values of the mod-
eled hydraulic potential. Beyond that there are many varia-30

tions considered in the literature. Modeled aquifer geometry

might be a system of linked cavities (Kamb, 1987), conduits
(Nye, 1976), or a sheet (Creyts and Schoof, 2009). Geome-
try evolution processes might include the opening of cavities
by sliding of the overlying ice past bedrock bumps (Schoof,35

2005), the creation of cavities by interaction of the ice with
deformable sediment (Schoof, 2007), closure of cavities and
conduits by creep (Hewitt, 2011), or melt on the walls of
cavities and conduits which causes them to open (Clarke,
2005). Water could move in a macro-porous englacial sys-40

tem (Bartholomaus et al., 2011) or it could be stored in a
porous till (Tulaczyk et al., 2000a).

Models have combined subsets of these different mor-
phologies and processes (Flowers and Clarke, 2002a; Hewitt,
2013; Hoffman and Price, 2014; van der Wel et al., 2013;45

Werder et al., 2013; de Fleurian et al., 2014). However, the
completeness of the modeled processes must be balanced
against the number of uncertain model parameters and the
ultimate availability of observations with which to constrain
them.50

This paper describes a carefully-selected model for a dis-
tributed system of linked subglacial cavities, with additional
storage of water in the pore spaces of subglacial till. Water
in excess of the capacity of the till passes into the distributed
transport system. In this sense the model could be called a55

“drained-and-conserved” extension of the “undrained” plas-
tic bed model of Tulaczyk et al. (2000b).

The cavities in our modeled distributed system open by
sliding of the ice over bedrock roughness and close by ice
creep. These two physical processes combine to determine60

the relationship between water amount and pressure. Pres-
sure is thereby determined non-locally over each connected
component of the hydrological system. No functional rela-
tion between subglacial water amount and pressure is as-
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sumed (compare Flowers and Clarke, 2002a). The pressure65

solves an equation which is a parabolic regularization of the
distributed pressure equation given in elliptic variational in-
equality form by Schoof et al. (2012).

In cases where boreholes have actually been drilled to
the ice base, till is often observed (Hooke et al., 1997; Tu-70

laczyk et al., 2000a; Truffer et al., 2000; Truffer and Harri-
son, 2006). Laboratory experiments on the rheology of till
(Kamb, 1991; Hooke et al., 1997; Tulaczyk et al., 2000a;
Truffer et al., 2001) generally conclude that its deformation
is well-approximated by a Mohr-Coulomb relation (Schoof,75

2006b). For this reason we adopt a compressible-Coulomb-
plastic till model when determining the effective pressure on
the till as a function of the amount of water stored in it (Tu-
laczyk et al., 2000a). Existing models which combine till
and a mass conservation equation for the subglacial water80

are rather different from ours, as they either have only one-
horizontal dimension (van der Wel et al., 2013) or have a
pressure equation which directly ties water pressure to wa-
ter amount, which generates a porous medium equation form
(Flowers and Clarke, 2002a; de Fleurian et al., 2014).85

The major goals here are to implement, verify, and demon-
strate this two-dimensional subglacial hydrology model. The
model is applicable at a wide variety of spatial and tempo-
ral scales but it has relatively-few parameters. It is paral-
lelized and it exhibits convergence of solutions under grid90

refinement. It is a sub-model of a comprehensive three-
dimensional ice sheet model, the open-source Parallel Ice
Sheet Model (PISM; pism-docs.org); the sub-model can
be added to any PISM run by a simple run-time option.

Conduits are not included. Existing theories of conduits95

apparently require their locations to be fixed a priori (Schoof,
2010b; Hewitt, 2013; Werder et al., 2013). Such lattice mod-
els have no known continuum limit in the map plane. By con-
trast with conduits, linked-cavity models do not put the cavi-
ties at the nodes of a pre-determined lattice, exactly because100

the continuum limit of such a lattice model is known (He-
witt, 2011), namely partial differential equation (PDE) (13)
in the current paper. Regarding lattice models, because all
PISM usage involves a run-time determination of grid res-
olution, all parameters must have grid-spacing-independent105

meaning. Lattice or other input-grid-based models are there-
fore not acceptable as components of PISM.

Wall melt in the linked-cavity system, which is believed to
be small (Kamb, 1987), is not added into the mass conser-
vation equation in our model. (It can be calculated diagnos-110

tically from the modeled flux and hydraulic gradient, how-
ever.) If included in mass conservation, the addition of wall
melt can generate an unstable distributed system (Walder,
1982), though such a system can be stabilized to some de-
gree by bedrock bumps (Creyts and Schoof, 2009).115

The structure of the paper is as follows: Section 2 consid-
ers basic physical principles, culminating with a fundamental
advection-diffusion form of the mass conservation equation.
Section 3 reviews what is known about till mechanical prop-

erties, water in till pore spaces, and shear stress at the base120

of a glacier. In section 4 we compare “closures” which di-
rectly or indirectly determine the subglacial water pressure.
Based on all these elements, in section 5 we summarize the
new model and the role of its major fields. In this section we
also show how the model extends several published models,125

we note properties of its steady states (see also Appendix A),
and we compute a nearly-exact steady solution in the map-
plane, a useful tool for verification. In section 6 we present
the numerical schemes, with particular attention to time step
restrictions and the treatment of advection, and we document130

the PISM options and parameters seen by users. Section 7
shows numerical results from the model, starting with con-
vergence under grid refinement in the verification case. We
then demonstrate the model in five year runs on a 2 km grid
covering the entire Greenland ice sheet.135

2 Elements of subglacial hydrology

2.1 Mass conservation

We assume that liquid water is of constant density ρw; see
Table A1 for constants. Thus the thickness of the layer of
laterally-moving water, denoted byW (t,x,y), determines its140

mass; see Table A2 for variable names and meanings. In ad-
dition there is liquid water stored locally in the pore spaces
of till (Tulaczyk et al., 2000b) which is also described by
an effective thickness Wtil(t,x,y). Such thicknesses are only
meaningful compared to observations if they are regarded145

as averages over a horizontal scale of meters to hundreds of
meters (Flowers and Clarke, 2002a). Thus the total effective
thickness of the water at map-plane location (x,y) and time t
isW+Wtil. This sum is the conserved quantity in our model.
In two map-plane dimensions the mass conservation equation150

is (compare Clarke, 2005)

∂W

∂t
+
∂Wtil

∂t
+∇ ·q =

m

ρw
(1)

where∇·= ∂/∂x+∂/∂y denotes divergence, q is the vector
water flux (m2 s−1), and m is the total input to the subglacial
hydrology (kgm−2 s−1). Note that the water flux q is con-155

centrated within the two-dimensional subglacial layer.
The water source m in equation (1) includes both melt

on the base of the glacier and drainage to the bed from the
glacier surface. In portions of ice sheets with cold surface
conditions, such as Antarctica and the interior of Greenland,160

the basal melt rate part of m is dominated by the energy bal-
ance at the base of the ice (Aschwanden et al., 2012), and the
Greenland results in section 7 use only that basal melt for m.
Drainage from the surface has also been added to m in ap-
plications of our model (van Pelt, 2013), but modelling such165

drainage is outside the scope of this paper.
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2.2 Hydraulic potential and water pressure

The hydraulic potential ψ(t,x,y) combines the pressure
P (t,x,y) of the transportable subglacial water and the grav-
itational potential of the top of the water layer (Goeller et al.,170

2013; Hewitt et al., 2012),

ψ = P + ρwg (b+W ). (2)

Here z = b(x,y) is the bedrock elevation.
We have added the term “ρwgW ” to the standard hydraulic

potential formula ψ = P + ρwgb (Clarke, 2005; Shreve,175

1972) because differences in the potential at the top of the
subglacial water layer determine the driving potential gradi-
ent for a fluid layer. When the water depth becomes substan-
tial (W � 1 m), as it would be in a subglacial lake, this term
keeps the modeled lakes from being singularities of the water180

thickness field (compare Le Brocq et al., 2009).
Ice is a viscous fluid which has a stress field of its own.

The basal value of the downward normal stress, called the
overburden pressure, is denoted by Po. We accept the shal-
low approximation that this stress is hydrostatic (Greve and185

Blatter, 2009),

Po = ρigH, (3)

where H is the ice thickness.
Overpressure P > Po has been observed in ice sheets, but

only for short durations (Das et al., 2008). In our model and190

others (Schoof et al., 2012), however, because the condition
P > Po is presumed to cause the ice to lift and thus reduce
the pressure back to overburden P = Po, the pressure solu-
tion is subject to inequalities

0≤ P ≤ Po. (4)195

2.3 Darcy flow

Subglacial water flows from high to low hydraulic potential.
The simplest expression of this is a Darcy flux model for a
water sheet,

q =−KW∇ψ (5)200

where the hydraulic conductivity K is a constant (Clarke,
2005). More generally Schoof et al. (2012) suggests a power
law form

q =−kWα |∇ψ|β−2∇ψ (6)

for α≥ 1, β > 1, and a coefficient k > 0 with units that de-205

pend on α and β (see Table A1). Clarke (2005) suggests
α= 1 and β = 2, to give (5) above, Creyts and Schoof (2009)
use α= 3/2 and β = 3/2, Hewitt (2011, 2013) uses α= 3
and β = 2, and Hewitt et al. (2012) suggest α= 5/4 and
β = 3/2. The current paper implements law (6) generally but210

uses the Clarke (2005) and Hewitt et al. (2012) exponents in
an exact solution and in numerical experiments, respectively.
We call K = kWα−1 |∇ψ|β−2 the effective hydraulic con-
ductivity, so that equation (5) applies formally throughout.

2.4 Advection-diffusion decomposition215

Combining (2) and (6), and separating the term proportional
to∇W , we get the flux expression

q =−kWα |∇ψ|β−2∇(P + ρwgb) (7)

− ρwgkWα |∇ψ|β−2∇W
220

which suggests a mix of mechanisms. If P scales with the
overburden pressure Po, and if |∇(H + b)| � |∇W |, then
the first flux term in (7) will dominate. The second term with
∇W acts diffusively in the mass conservation equation (1).
We will see that in near-steady-state circumstances where225

there is significant sliding, the first term with∇P is also sig-
nificantly diffusive in the mass conservation equation (sub-
section 5.3). In conditions far from steady state, however, the
direction of ∇P is presumably different from the direction
∇W .230

We will construct our numerical scheme based on decom-
position (7). To simplify the expression slightly, the small
thickness approximation W ≈ 0 is made inside the absolute
value signs in (7), namely

|∇ψ| ≈ |∇(P + ρwgb)| . (8)235

This simplification, which makes no change in the β = 2 case
(see subsection 2.3), lets us redefine the effective hydraulic
conductivity as

K = kWα−1 |∇(P + ρwgb)|β−2
. (9)

In terms of K we define a velocity field and a diffusivity240

coefficient:

V =−K∇(P + ρwgb) , D = ρwgKW, (10)

so that (7) is a clean advection-diffusion decomposition,

q = VW −D∇W. (11)

From equations (1) and (11) we now have an advection-245

diffusion-production equation for the evolution of the con-
served water amount W +Wtil:

∂W

∂t
+
∂Wtil

∂t
=−∇ · (VW ) +∇ · (D∇W ) +

m

ρw
. (12)

There are distinct numerical approximations for the advec-
tion term ∇ · (VW ) and the diffusion term ∇ · (D∇W ),250

with time-step restrictions of different magnitudes (section
6). Equation (12) is often advection-dominated in the sense
that |VW | � |D∇W |, and numerical schemes for advection
and diffusion must be tested in combination (section 7).

2.5 Capacity of a linked-cavity distributed system255

The rate of change of the area-averaged thickness of the cav-
ities in a distributed linked-cavity system is the difference of
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opening and closing rates (Hewitt, 2011). This thickness Y ,
also called “bed separation” (Bartholomaus et al., 2011), has
generic evolution equation260

∂Y

∂t
=O(|vb|,Y )−C(N,Y ) (13)

where vb is the ice base (sliding) velocity andN = Po−P is
the effective pressure on the cavity system. Denoting X+ =
max{0,X}, we choose a nonnegative opening term based on
cavitation only:265

O(|vb|,Y ) = c1|vb|(Wr −Y )+. (14)

Here c1 is a scaling coefficient and Wr is a maximum rough-
ness scale of the basal topography (Schoof et al., 2012); see
Table A1. The closing term models ice creep only (Hewitt,
2011; Schoof et al., 2012):270

C(N,Y ) = c2AN
3Y, (15)

where c2 is a scaling coefficient and A is the softness of the
ice. We have used Glen exponent n= 3 for concreteness and
simplicity. The closing term C in (15) is nonnegative because
our modeled pressure P satisfies bounds 0≤ P ≤ Po.275

3 Till hydrology and mechanics

Till with pressurized liquid water in its pore spaces is ex-
pected to support much of the ice overburden. When present,
such saturated till is central to the complicated relationship
between the amount of subglacial water and the speed of280

sliding. Our model includes storage of subglacial water in
till both because of its role in conserving the mass of liquid
water and its role in determining basal shear stress.

We will assume throughout that liquid water or ice fills
pore spaces in the till, and that there are no air- or vapor-285

filled pore spaces. When Wtil = 0 in the model, the pore
spaces in the till are regarded as filled with ice and the basal
shear stress is correspondingly high. When Wtil attains suffi-
ciently large values, however, the till is regarded as saturated
with liquid, and a drop in effective pressure becomes possible290

(subsection 3.2 below).

3.1 Evolution of till-stored water layer thickness

The water in till pore spaces is much less mobile than that
in the linked-cavity system because of the very low hy-
draulic conductivity of till (Lingle and Brown, 1987; Truffer295

et al., 2001). Therefore we choose an evolution equation for
Wtil without horizontal transport for simplicity (Bueler and
Brown, 2009; Tulaczyk et al., 2000a), namely

∂Wtil

∂t
=
m

ρw
−Cd. (16)

Here Cd ≥ 0 is a fixed rate that makes the till gradually300

drain in the absence of water input; we choose Cd = 1 mm/a,

which is small compared to typical values ofm/ρw. Refreeze
is also allowed, as a negative value for m.

As in (Bueler and Brown, 2009), we constrain the layer
thickness by305

0≤Wtil ≤Wmax
til . (17)

Any water in excess of the capacity of the till, i.e. Wmax
til ,

“overflows” the till and enters the transport system; it is con-
served. Because the source term m in equation (16), or the
whole right side, can be negative, the lower bound in (17)310

must be actively-enforced. The upper bound in (17) also re-
lates to the effective pressure on the till, as we explain next.

3.2 Effective pressure on the till

Deformation of saturated till is well-modeled by a plastic
(Coulomb friction) or nearly-plastic rheology (Hooke et al.,315

1997; Truffer et al., 2000; Tulaczyk et al., 2000a; Schoof,
2006b). Its yield stress τc satisfies the Mohr-Coulomb rela-
tion

τc = c0 + (tanϕ)Ntil (18)

where c0 is the till cohesion, ϕ is the till friction angle, and320

Ntil is the effective pressure of the overlying ice on the satu-
rated till (Cuffey and Paterson, 2010). (Note that the effective
pressure N = Po−P used in section 2.5 for modeling cavity
closure is distinct from Ntil in (18). This distinction is again
explained by the very low hydraulic conductivity of till.)325

Let e= Vw/Vs be the till void ratio, where Vw is the vol-
ume of water in the pore spaces and Vs is the volume of min-
eral solids (Tulaczyk et al., 2000a). From the standard the-
ory of soil mechanics and from laboratory experiments on
till (Hooke et al., 1997; Tulaczyk et al., 2000a), a linear rela-330

tion exists between the logarithm of Ntil and e,

e= e0−Cc log10 (Ntil/N0) . (19)

Figure A1(a) shows a graph of (19). Here e0 is the void ra-
tio at a reference effective pressure N0 and Cc is the coeffi-
cient of compressibility of the till. Equivalently to (19), Ntil335

is an exponential function of e, namelyNtil =N010(e0−e)/Cc

(van der Wel et al., 2013, equation (15)), so Ntil is nonzero
for all finite values of e.

While (19) suggests that the effective pressure could be
any positive number, in fact the area-averaged value of Ntil340

under ice sheets and glaciers has limits. It cannot exceed the
overburden pressure for any sustained period. Furthermore,
once the till is close to its maximum capacity then the excess
water will be “drained” into a transport system. We suppose
this occurs at a small, fixed fraction δ of the overburden pres-345

sure. Thus we assume bounds

δPo ≤Ntil ≤ Po (20)

where δ = 0.02 in the experiments in this paper.
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The void ratio e and the effective water layer thicknessWtil
are describing the same thing, namely the amount of liquid350

water. In fact, if ∆x, ∆y are the horizontal dimensions of
a rectangular patch of till with (mineral-portion) thickness η
then Vw =Wtil ∆x∆y and Vs = η∆x∆y. Thus

e=
Wtil

η
. (21)

On the other hand we specify a maximumWmax
til on the water355

layer thickness, in bounds (17). The minimum Ntil = δPo of
the effective pressure occurs at maximum values of void ra-
tio e and effective thickness Wtil, so equations (19) and (21)
allow us to express the solid-till thickness η in terms of our
preferred parameters Wmax

til , δ, e0, N0, and Cc:360

η =
Wmax

til

e0−Cc log10 (δPo/N0)
. (22)

From (19), (21), and (22), the effective pressure Ntil can
now be written as the following function of Wtil:

N̂til =N0

(
δPo
N0

)s
10(e0/Cc)(1−s) (23)

where s=Wtil/W
max
til . However, as noted above, Ntil is365

bounded:

Ntil = min
{
Po, N̂til

}
. (24)

This function is shown in Figure A1(b).
It follows from equations (18), (23), and (24) that the yield

stress τc is determined by the layer thickness Wtil. Regarding370

the parameters in this relation:

(i) Experiments on till suggest small values for cohesion c0
in (18), 0≤ c0 . 1 kPa (Tulaczyk et al., 2000a), and we
choose c0 = 0 for concreteness.

(ii) Measured till friction angles ϕ are in a 18◦– 40◦ range375

(Cuffey and Paterson, 2010). Simulations of the whole
Antarctic (Martin et al., 2011) and Greenlandic (As-
chwanden et al., 2013) ice sheets have been based on
a hypothesis that the till friction angle ϕ depends on
bed elevation so as to model the submarine history of380

low-elevation sediments.

(iii) The ratio e0/Cc can be determined by laboratory exper-
iments on till samples (e.g. Hooke et al., 1997; Tulaczyk
et al., 2000a). Values for the dimensionless constants e0
and Cc used here (Table A1) are from till samples from385

ice stream B in Antarctica (Tulaczyk et al., 2000a), and
they give e0/Cc = 5.75 in (23).

(iv) The till capacity parameter Wmax
til could be set in a

location-dependent manner from in situ (Tulaczyk et al.,
2000a) or seismic reflection (Rooney et al., 1987) evi-390

dence, but for simplicity we set it to a constant 2 meters.

3.3 Sliding law

Observe that the ice sliding velocity vb is an input into
the subglacial hydrology model we are building, because of
equation (14). On the other hand, the yield stress τc is an395

output of the till-related part of the hydrology model (sub-
section 3.2). In an ice dynamics model like PISM, vb is
determined by solving a stress balance in which the vector
basal shear stress τ b appears either as a boundary condition
(Schoof, 2010a) or as a term in a vertically-integrated bal-400

ance (Schoof, 2006a; Bueler and Brown, 2009). In PISM, τc
and vb combine to determine τ b through a sliding law

τ b =−τc
vb

|vb|1−qvq0
. (25)

where 0≤ q ≤ 1 and v0 is a threshold sliding speed (As-
chwanden et al., 2013).405

Power law (25) generalizes, and includes as the case q = 0,
the purely-plastic (Coulomb) relation τ b =−τcvb/|vb|. At
least in the q� 1 cases, under (25) the till “yields” and the
magnitude of the basal shear stress becomes nearly inde-
pendent of |vb|, when |vb| � v0. Equation (25) could also410

be written in generic power-law form τ b =−β|vb|q−1vb
with coefficient β = τc/v

q
0; in the linear case q = 1 we have

β = τc/v0.

4 Closures to determine pressure

The evolution equations listed so far, namely (12), (13), and415

(16), can be simplified to three equations in the four major
variables W , Wtil, Y , and P . We do not yet know how to
compute the water pressure P or its rate of change ∂P/∂t
given the other variables and data of the problem. A closure
is needed.420

4.1 Simplified closures without cavity evolution

We first consider two simple closures which appear in the lit-
erature but which do not use cavity evolution equation (13)
or similar physics. We list them because the resulting sim-
plified conservation equations emerge as reductions of our425

more complete theory. For simplicity we present them with-
out till storage (Wmax

til = 0) and only in the constant conduc-
tivity case (α= 1 and β = 2).

Setting the pressure equal to the overburden pressure is the
simplest closure (Le Brocq et al., 2009; Shreve, 1972):430

P = Po. (26)

This model is sometimes used for “routing” subglacial wa-
ter under ice sheets so as to identify subglacial lake loca-
tions (Goeller, 2014; Livingstone et al., 2013; Siegert et al.,
2009). Straightforward calculations using equations (1), (6),435

and (26) show that the advection-diffusion form (12) has an
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ice-geometry-determined velocity Ṽ,

∂W

∂t
=−∇ ·

(
ṼW

)
+∇ · (ρwgkW ∇W ) +

m

ρw
, (27)

Ṽ =−ρwgk
[
ρi
ρw
∇H +

(
1− ρi

ρw

)
∇b
]
.

440

Because the approximation W �H is usually accepted,
so that the hydraulic potential is insensitive to the water
layer thickness, i.e. ψ = Po + ρwgb (Le Brocq et al., 2009),
the diffusion term in (27) is usually not included. With this
common simplification, equation (27) becomes an advection445

equation with a source term. It therefore possesses char-
acteristic curves, trajectories of the water flow or “path-
ways” (Livingstone et al., 2013), which are determined by ice
sheet geometry. However, without the diffusion term, equa-
tion (27) exhibits continuum solutions with infinite water450

concentration at every location where the simplified poten-
tial ψ = Po + ρwgb has a minimum. Applications therefore
only compute the characteristic curves themselves. We pre-
fer equation (27) as stated, with the diffusion term, because
it is well-posed for positive initial and boundary values on455

W (compare Hewitt et al., 2012), so that numerical solutions
can converge under sufficient grid refinement.

At an almost opposite extreme, our second simplified clo-
sure makes the water pressure a function of the amount of
water. Specifically, Flowers and Clarke (2002a) propose460

PFC(W ) = Po

(
W

Wcrit

)7/2

, (28)

where, for Trapridge glacier, Flowers and Clarke (2002b) use
Wcrit = 0.1 m. Thus no separate pressure evolution equation
needs to be solved.

One concern with form (28) is that PFC(W ) can be arbi-465

trarily larger than overburden pressure (Schoof et al., 2012).
In any case, (28) is used in equations (1) and (6) to yield
a nonlinear diffusion which generalizes the porous-medium
equation ∂W/∂t=∇2(W γ) (Vázquez, 2007). The main
idea in such a nonlinear diffusion is that the direction of the470

flux is −∇W . However, a Darcy-type model q∼−∇ψ like
(6) normally gives flux directions different from −∇W in
many cases, especially in rapidly-evolving hydrologic sys-
tems, if the pressure is determined by a more physical clo-
sure. We consider such a closure next.475

4.2 Full-cavity closure

Simply requiring the subglacial layer to be full of water is
also a closure (Bartholomaus et al., 2011), which we adopt:

W = Y. (29)

The consequences of this closure are explored at some length480

by Schoof et al. (2012), Hewitt et al. (2012), and Werder et al.
(2013), who describe the full-cavity case as the “normal pres-
sure” condition.

Equation (29) obviously allows us to eliminate either W
or Y as a state variable. We choose to eliminate Y because485

W is part of the conserved mass W +Wtil. In the zero till
storage case, equations (1), (13), and (29) imply

O(|vb|,W )−C(N,W ) +∇ ·q =
m

ρw
. (30)

which is exactly elliptic pressure equation (2.12) of Schoof
et al. (2012). They argue that a model based on (30) should490

accommodate the possibility of partially-empty cavities with
W < Y when P = 0. However, like Werder et al. (2013) who
implement the model in two dimensions, we accept a poten-
tial loss of model completeness by using a full-cavity model.

4.3 Englacial porosity as a pressure regularization495

Englacial systems of cracks, crevasses, and moulins have
been observed in glaciers (Fountain et al., 2005; Bartholo-
maus et al., 2008; Harper et al., 2010, for example), and these
have been included in combined englacial/subglacial hy-
drology models (Flowers and Clarke, 2002a; Bartholomaus500

et al., 2011; Hewitt, 2013; Werder et al., 2013). The englacial
system is generally parameterized as having macroporosity
0≤ φ < 1. If the englacial system is efficiently-connected to
the subglacial water then the amount of englacial water is
equivalent to the subglacial pressure, which is reflected by505

an englacial “water table” in such models.
Bueler (2014) shows that a distributed extension of the

lumped englacial/subglacial model in Bartholomaus et al.
(2011) gives an equation similar to (30). The crucial differ-
ence from (30) is that the equation is parabolic for the pres-510

sure and not elliptic (compare Hewitt et al. (2012)). Based
on this analysis, our model uses a parabolic regularization of
(30) which has constant (notional) englacial porosity φ0:

φ0
ρwg

∂P

∂t
=−∇ ·q+

m

ρw
+ C(N,W ) (31)

−O(|vb|,W )− ∂Wtil

∂t
.515

Compare equations (7) in (Hewitt, 2013) and (24) in (Werder
et al., 2013). Unlike Werder et al. (2013), however, we do
not add an englacial water amount variable to the conserva-
tion equation, and in this sense the porosity only serves to520

regularize the pressure equation.
Using englacial porosity as a regularization, as in (31),

allows a user-adjustable trade-off between temporal detail
in the pressure evolution versus computational effort (van
Pelt, 2013). If the englacial porosity φ0 is small then there525

is a nearly impermeable “cap” on the subglacial system and
equation (31) is stiff (Ascher and Petzold, 1998). Equation
(31) is then similar, in terms of numerical solution, to el-
liptic equation (30). Indeed, if elliptic equation (30) is used
instead of (31) then the coupled hydrological equations sys-530

tem is differential-algebraic (Ascher and Petzold, 1998), and
hardest to solve numerically. By contrast, if φ0 is larger then
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equation (31) causes local changes in subglacial pressure P
to be damped in the speed and range of influence, on other
parts of the connected subglacial hydrologic system, and the535

numerical solution is easier.
Schoof et al. (2012) show that the mathematical problem

encompassing (30), constraints (4), and appropriate pressure
boundary conditions can be written as an elliptic variational
inequality (Kinderlehrer and Stampacchia, 1980). Solving540

this variational inequality problem in two dimensions, at
each time step, is asserted to be “prohibitively expensive”
by Werder et al. (2013). Our adaptive explicit time-stepping
scheme (section 6), by contrast, solves (31), while satis-
fying constraints (4), at demonstrably-reasonable computa-545

tional cost (section 7).
Stiffness in these pressure equations ultimately follows

from the incompressibility of water and the relative non-
distensibility (i.e. hardness) of the ice and bedrock. Clarke
(2003) addresses this in a physically-different manner from550

englacial porosity. He includes a relaxation (damping) pa-
rameter “β” which is based on the small compressibility of
water, but which is more than two orders of magnitude larger
than the physical value. Clarke’s parameter β appears in his
equation exactly as φ0 appears in equation (31), multiplying555

the pressure time derivative.

5 The new subglacial hydrology model in PISM

5.1 Summary of the model

The major evolution equations for the model are mass con-
servation (12), till-stored water layer thickness evolution560

(16), and pressure evolution (31). Collected here for clarity
they are:

∂W

∂t
+
∂Wtil

∂t
=−∇ · (VW ) +∇ · (D∇W ) +

m

ρw
, (32)

∂Wtil

∂t
=
m

ρw
−Cd,

φ0
ρwg

∂P

∂t
+
∂Wtil

∂t
=−∇ · (VW ) +∇ · (D∇W ) +

m

ρw
565

+ c2A(Po−P )3W − c1|vb|(Wr −W )+.

Also recall these definitions:

D = ρwgKW diffusivity,

K = kWα−1 |∇(P + ρwgb)|β−2 effective conductivity,570

Po = ρigH overburden pressure, and
V =−K∇(P + ρwgb) velocity.

Equations (32) are coupled to ice dynamics by Mohr-
Coulomb equation (18) and till effective pressure equations575

(23), (24).
The model includes these bounds on major variables:

0≤W, 0≤Wtil ≤Wmax
til , 0≤ P ≤ Po. (33)

As a result of inequalities (33), free boundaries arise in the
domain at locations where, in particular, m is sufficiently580

negative to drive W to zero or where the pressure P goes
to zero or overburden.

A coupled weak formulation of equations (32) and con-
straints (33) would be a mathematically-rigorous unified de-
scription of the free boundary conditions, but this paper takes585

a more pragmatic approach, as follows. First, PISM uses a
periodic domain for whole ice sheet computations (section
7), so the computational domain has no classical boundary.
Second, inequalities (33) are enforced in our coupled ex-
plicit scheme by truncation/projection (section 6). Third, at590

ice-free land and ocean (i.e. ice shelf or ice-free ocean) grid
locations, pressure P is determined by atmospheric or ocean
pressure, respectively. Fourth and finally, at ice-free land and
ocean grid locations the mass conservation equation effec-
tively have m sufficiently negative so that water which flows595

or diffuses into that grid location during a time step is fully
removed and thus W = 0 and Wtil = 0; see the “mask” vari-
ables in section 6.

As in Table A2, the functions in the model can be cate-
gorized into state functions, which must be provided with600

initial values, input functions, which are either supplied by
observations or by other components of an ice sheet model,
and output functions which are supplied to other components
of the ice sheet model. In two-way coupling the ice dynam-
ics model passes H , m, and |vb| to the subglacial hydrology605

model, and τc is returned.

5.2 Reduction to existing models

Four reductions (limiting cases) of model (32) can now be
stated precisely:

(i) The zero till storage (Wmax
til = 0) and zero englacial610

porosity (φ0 = 0) case of (32) is essentially the model
described by Schoof et al. (2012). Recalling that q =
−KW∇ψ, the equations are

∂W

∂t
=−∇ · (KW∇ψ) +

m

ρw
, (34)

0 =∇ · (KW∇ψ) +
m

ρw
615

+ c2A(Po−P )3W − c1|vb|(Wr −W )+.

The bounds W ≥ 0 and 0≤ P ≤ Po are unchanged.
Model (32) is a parabolic version of (34), regularized
using a notional connection to porous englacial storage,620

and with coupling to till storage.

(ii) The P = Po limit of (32), in which the evolution equa-
tion for pressure is ignored, is essentially the model
for “routing” water to subglacial lakes under cold ice
sheets used by Siegert et al. (2009) and Livingstone625

et al. (2013). As noted in section 4, the Wmax
til = 0 and

α= 1 case of this model routes water with a velocity
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which is determined entirely by ice and bedrock geom-
etry.

(iii) The non-distributed “lumped” form of (32), in which, in630

particular,∇·q = (qout− qin)/L where L is the length
of the glacier and qout, qin are given by observations,
is the model of Bartholomaus et al. (2011); see Bueler
(2014).

(iv) The undrained plastic bed (UPB) model of Tulaczyk635

et al. (2000b) arises as the W = 0,q = 0,φ0 = 0 reduc-
tion of (32). This model depends on friction-heating
feedback to keep Wtil bounded, which is not effective if
local friction heating is a non-local function of changes
in till strength. Bueler and Brown (2009) therefore en-640

force Wtil ≤Wmax
til by removing water above the ca-

pacity Wmax
til , giving a minimal non-conservative, but

“drained,” version of the UPB model.

The above list does not imply that all possible subglacial
hydrology models are reductions of ours. For example, the645

subglacial hydrology model of Johnson and Fastook (2002)
is a variation on idea (ii) above but it is not a reduction. The
Flowers and Clarke (2002a) model mentioned in subsection
4.1 is also not a reduction, though a significant connection is
explained in the Appendix.650

Two-dimensional models which include conduits (Schoof,
2010b) are not reductions of our model. Conduit evolu-
tion is numerically-straightforward to implement in one-
dimensional hydrology models (Hewitt et al., 2012; van der
Wel et al., 2013), but when extended to two-horizontal di-655

mensions all existing models (Schoof, 2010b; Hewitt, 2013;
Werder et al., 2013) become “lattice” models without a
known continuum limit. Our model has no conduit-like evo-
lution equations at all, though the gradient-descent locations
of characteristic curves from models using idea (ii) may cor-660

respond to the locations of conduits in some cases.

5.3 Steady states

The steady form of model (32), stated using α= 1, β = 2,
and Wmax

til = 0 for simplicity, can be written as follows in
terms of V,q,W,P :665

V =−k∇(P + ρwgb) , (35)
q = VW − ρwgkW∇W, (36)

0 =−∇ ·q+
m

ρw
, (37)

0 = c2A(Po−P )3W − c1|vb|(Wr −W )+. (38)
670

These steady state equations are also stated in the one-
dimensional case by Schoof et al. (2012), where traveling-
wave exact solutions are also found. Observe that the equa-
tions describing mass conservation (37) and cavity open-
ing/closing processes (38) have become decoupled.675

We make three observations about solutions to (35)–(38):

(i) from (38) there is a functional relationship P = P (W ),

(ii) by (35) and (38), the apparently advective flux “VW ”
in (36) actually acts diffusively, and

(iii) radial nearly-exact solutions can be constructed.680

In Appendix A we detail points (i) and (ii). Observation (iii)
is addressed next.

5.4 A nearly-exact steady state solution

For the purpose of verifying numerical schemes we have built
a two-dimensional, nearly-exact solution for W and P , in685

a case with nontrivial overburden pressure and ice sliding.
It depends on the numerical solution of a scalar first-order
ordinary differential equation (ODE) initial value problem,
something we can do with high accuracy.

We solve the flat bed (b= 0) angularly-symmetric case of690

coupled equations (35)–(38). By assuming spatially-constant
water input (m=m0), a parabolic ice thickness profile in
the radial coordinate r, and a particular profile of sliding—
namely a function |vb(r)| with onset of sliding at location
r = 5 km, about one-fourth of the ice cap radius r = 22.5695

km—the equations reduce to a single first-order ODE in r for
the water thickness W (r). The pressure P (r) is then deter-
mined from W (r) by the functional relationship (A3) which
arises in steady state (Appendix A).

To compute the nearly-exact solution we use adaptive nu-700

merical ODE solvers, both a Runge-Kutta method and a
variable-order stiff solver, with relative tolerance 10−12 and
absolute tolerance 10−9. The two solvers gave identical re-
sults to more than six digits. The result W (r) is shown in
Figure A2, which also shows the regions of the r,W plane705

which correspond to overpressure (P = Po in our model),
normal pressure (0< P < Po), and underpressure (P = 0).
Figure A3 shows the corresponding pressure solution P (r).
Starting at the margin, we see that the solution is in the nor-
mal pressure region as r decreases, until the onset of sliding710

(r = 5 km). At that location it switches into the overpressure
case because there is no sliding.

Verification results using the nearly-exact solution appear
in section 7. The numerical methods (next section) use a
cartesian (x,y) grid unrelated to the radial nearly-exact solu-715

tion. Thus numerical error comes from generic relationships
between exact solution features and the grid.

6 Numerical schemes

The equations in model (32) are discretized by explicit fi-
nite difference methods (Morton and Mayers, 2005). A cen-720

tered, second-order scheme is applied to the diffusion part of
the mass conservation equation in (32), but two upwind-type
schemes for the advection part are compared, namely first-
order “donor cell” upwinding (LeVeque, 2002) and a higher-
order flux-limited upwind-biased method (Hundsdorfer and725
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Verwer, 2010). All the numerical schemes are implemented
in parallel using the PETSc library (Balay et al., 2011).

6.1 Discretization of the mass conservation equation

To set notation, suppose the rectangular computational do-
main has Mx×My gridpoints (xi,yj) with uniform spacing730

∆x,∆y. Let W l
i,j ≈W (tl,xi,yj), (Wtil)

l
ij ≈Wtil(tl,xi,yj),

and P li,j ≈ P (tl,xi,yj) denote the numerical approxima-
tions.

We compute velocity components and flux components
at the staggered (cell-face-centered) points, shown in Fig-735

ure A4, from centered finite difference approximations of
equations (10) and (11). We use “compass” indices for such
staggered values, so that, for example, the “east” and “north”
staggered water layer thicknesses are computed by averaging
regular grid values:740

We = (W l
i,j+W l

i+1,j)/2, Wn = (W l
i,j+W l

i,j+1)/2. (39)

The nonlinear effective conductivity K from (9) is also
needed at staggered locations. As a notational convenience
define R= P + ρwgb and define these staggered-grid values
(compare Mahaffy, 1976):745

Πe =

∣∣∣∣Ri+1,j −Ri,j
∆x

∣∣∣∣2
+

∣∣∣∣Ri+1,j+1 +Ri,j+1−Ri+1,j−1−Ri,j−1

4∆y

∣∣∣∣2 ,
Πn =

∣∣∣∣Ri+1,j+1 +Ri+1,j −Ri−1,j+1−Ri−1,j

4∆x

∣∣∣∣2
+

∣∣∣∣Ri,j+1−Ri,j
∆y

∣∣∣∣2 .
750

Thereby define

Ke = kWα−1
e Π(β−2)/2

e , Kn = kWα−1
n Π(β−2)/2

n . (40)

The velocity components (u,v) of the water velocity V are
then found by differencing:

ue =−Ke
Ri+1,j −Ri,j

∆x
, vn =−Kn

Ri,j+1−Ri,j
∆y

. (41)755

For diffusivity we simply have

De = ρwgKeWe, Dn = ρwgKnWn. (42)

We get the remaining staggered-grid quantities by shifting
indices.

DefineQe(ue),Qw(uw),Qn(vn), andQs(vs) as the face-760

centered (staggered-grid) normal components of the advec-
tive flux VW ; more detail is given in the next subsection.
The grid values of D =∇·q =∇· (VW )−∇· (D∇W ) us-

ing (41) and (42) now become:

Di,j =
Qe(ue)−Qw(uw)

∆x
+
Qn(vn)−Qs(vs)

∆y
(43)765

−
De(W

l
i+1,j −W l

i,j)−Dw(W l
i,j −W l

i−1,j)

∆x2

−
Dn(W l

i,j+1−W l
i,j)−Ds(W

l
i,j −W l

i,j−1)

∆y2
.

Local conservation is ensured by using Qe(ue) in computing
Di,j equal to Qw(uw) used in Di+1,j , and so on.770

Our scheme for approximating mass conservation equa-
tion (12) is

W l+1
i,j −W l

i,j

∆t
+

(Wtil)
l+1
i,j − (Wtil)

l
i,j

∆t
=−Di,j +

mij

ρw
. (44)

The updated value of Wtil, which appears on the left side of
(44), is computed by trivial integration of equation (16),775

(Wtil)
l+1
i,j = (Wtil)

l
i,j + ∆t

(
mij

ρw
−Cd

)
. (45)

The given value W l+1
til is used if it is in the closed interval

[0,Wmax
til ], but otherwise the bounds 0≤Wtil ≤Wmax

til are en-
forced. Once W l+1

til is computed, the value of W l+1 can be
updated by (44) in a mass-conserving way.780

Assuming no error in the flux components Q, the local
truncation error (Morton and Mayers, 2005) of scheme (44)
would beO(∆t1+∆x2+∆y2) as an approximation of (12).
The actual truncation error depends on the approximation of
the discrete fluxes, addressed next.785

6.2 Discrete advective fluxes

We test two flux-discretization schemes, namely a first-
order upwind scheme and the Koren flux-limited third-order
scheme (Hundsdorfer and Verwer, 2010). Both schemes
achieve non-oscillation and positivity, but with different lo-790

cal truncation error and complexity of implementation. The
third-order scheme is best explained as a modification of our
conservative (“donor cell”; LeVeque (2002)) first-order up-
wind scheme.

For a flux-limited scheme, the following formulas apply in795

the cases ue ≥ 0, ue < 0, vn ≥ 0, and vn < 0, respectively:

Qe(ue) = ue [Wi,j + Ψ(θi)(Wi+1,j −Wi,j)] , (46)

Qe(ue) = ue
[
Wi+1,j + Ψ

(
(θi+1)−1

)
(Wi,j −Wi+1,j)

]
,

Qn(vn) = vn [Wi,j + Ψ(θj)(Wi,j+1−Wi,j)] ,

Qn(vn) = vn
[
Wi,j+1 + Ψ

(
(θj+1)−1

)
(Wi,j −Wi,j+1)

]
,800

where the subscripted θ quotients are

θi =
Wi,j −Wi−1,j

Wi+1,j −Wi,j
, θj =

Wi,j −Wi,j−1

Wi,j+1−Wi,j
.
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The first-order upwind scheme simply sets Ψ(θ) = 0 in
formulas (46). The Koren scheme limits its third-order and805

positive-coefficient correction to the upwind scheme by us-
ing this formula (Hundsdorfer and Verwer, 2010):

Ψ(θ) = max

{
0,min

{
1,θ,

1

3
+

1

6
θ
}}

. (47)

When using the Koren flux-limiter the stencil in Figure
A4 is extended because regular grid neighbors Wi+2,j ,810

Wi−2,j , Wi,j+2, Wi,j−2 are also involved in updating Wi,j .
The flux-correction-limited Koren third-order scheme by-
passes the first-order limitation of positive linear finite dif-
ference/volume schemes imposed by Godunov’s barrier the-
orem (Hundsdorfer and Verwer, 2010, section I.7.1) by using815

a nonlinear correction formula. Though the Koren scheme is
third-order where smoothness allows, it reverts to first-order
at extrema and jumps where θ� 1 or θ� 1.

For either scheme, if the water input m is negative then
we must actively enforce, by truncation, the positivity of820

the water thickness W . In fact, positivity of the source-free
advection-diffusion scheme, a desirable property which we
can show by standard methods (Hundsdorfer and Verwer,
2010), does not ensure positivity of the solution if there is
water removal, i.e. if m/ρw − ∂Wtil/∂t < 0.825

6.3 Discretization of the pressure equation

Pressure evolution equation (31) is a nonlinear diffusion with
“reaction” terms from the opening and closing of cavities.
However, our numerical scheme for this equation is similar
to the scheme for the mass conservation equation (section830

6.1) because the spatial derivatives are actually the same in
each equation, namely∇·q. Thus we reuse the computation
of those derivatives, namely scheme (43), which gives Di,j .

Let Oij , Cij be the gridded values of the zeroth-order
(i.e. without spatial derivatives) opening and closing rates;835

see equations (14), (15). Define the sum of all zeroth-order
terms:

Zij = Cij −Oij +
mij

ρw
−

(Wtil)
l+1
ij − (Wtil)

l
ij

∆t
. (48)

Using (43) for the flux divergence, the scheme for pressure
equation (31) is840

φ0
ρwg

P l+1
i,j −P li,j

∆t
=−Di,j +Zij . (49)

Because equation (48) uses the updated value (Wtil)
l+1
ij ,

equation (45) must be applied before (49) can be used to up-
date P . There are also special cases at the boundaries of the
region where W > 0; see subsection 6.5.845

6.4 Stability of time-stepping

A sufficient condition for stability of mass-conservation
scheme (44) comes from combining sufficient conditions for

stability of the advection and diffusion parts. For the advec-
tion part we first define ∆tCFL, after the well-known Courant-850

Friedrichs-Lewy restriction for advection schemes (Morton
and Mayers, 2005), by

∆tCFL

(
max |u|

∆x
+

max |v|
∆y

)
=

1

2
, (50)

where V = (u,v) is the velocity of the water in the dis-
tributed system. For the diffusion part we define ∆tW by855

∆tW maxD

(
1

∆x2
+

1

∆y2

)
=

1

4
. (51)

The condition ∆t≤min{∆tCFL,∆tW } is sufficient for sta-
bility and convergence of scheme (44) if V, D, and m were
all externally-provided functions, i.e. in the case where the
equations of (32) are decoupled. We can show this by maxi-860

mum principle arguments for the first-order upwind advec-
tion choice (Morton and Mayers, 2005), but standard the-
ory at least suggests the same conclusion for the higher-
order flux-limited advection scheme (Hundsdorfer and Ver-
wer, 2010).865

These time-step restrictions can be understood by consid-
ering an example. We ran the model on a ∆x= ∆y = 250 m
grid to approximate steady state for the subglacial hydrology
of Nordenskiöldbreen (van Pelt, 2013). We used realistic in-
puts for H , b, and m, but a spatially-constant ice sliding rate870

of |vb|= 50 m a−1; other parameter values were from Table
A1. The result is that the maximum computed water speed
|V| is about 0.2 m s−1 so (50) gives ∆tCFL ≈ 300s. Com-
puted diffusivity D = ρwgKW has a maximum value that
varies significantly in time, 0.1≤maxD ≤ 5m2 s−1. Us-875

ing a typical value maxD = 1m2 s−1 in (51) gives ∆tW ≈
8000s. Thus in this simulation ∆tW ≈ 25∆tCFL. This ex-
ample suggests that, unless both the maximum speed |V|
is unusually low, and deep subglacial lakes develop so that
maxD is large, the diffusive time scale is significantly longer880

than the CFL time scale. The scaling ∆tW =O(∆x2) versus
∆tCFL =O(∆x1) makes it clear that under sufficient spa-
tial grid refinement ∆tW is controlling, but we suspect that
∆tCFL is controlling for ∆x > 100 m.

However, the time step restriction from the pressure equa-885

tion scheme is typically shorter than either ∆tW or ∆tCFL.
The time step restriction for scheme (49) is comparable
to ∆tW , though the proof above for the stability of the
mass conservation scheme does not suffice to prove stabil-
ity. Nonetheless we define ∆tP by890

∆tP

(
2maxD

φ0

)(
1

∆x2
+

1

∆y2

)
= 1. (52)

If the time step is set by

∆t= min{∆tCFL,∆tW ,∆tP }. (53)

then we observe in practice that the coupled scheme consist-
ing of (44), (45), and (49) is stable.895
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Recalling (51), however, ∆tP is actually a fraction of
∆tW , namely ∆tP = 2φ0 ∆tW . If we return to the above
example for Nordenskiöldbreen, with φ0 = 0.01 we have
∆tW ≈ 8000 s, ∆tCFL ≈ 300 s, and ∆tP ≈ 160 s. In this
case the pressure scheme has the shortest time step, but it is900

comparable to CFL. Because ∆tP is O(∆x2), the pressure
scheme restriction is certainly controlling for sufficiently-
fine grids. However, the time step ∆tP also scales with
porosity φ0, so we can make it more or less severe by ad-
justing that parameter.905

If implicit time-stepping were instead used for the pressure
equation, which requires overt variational inequality treat-
ment to preserve physical pressure bounds (Schoof et al.,
2012), then the time scales ∆tW ,∆tCFL addressed here are
the only restrictions. The time step restriction ∆tW could910

also be removed by implicit steps for the mass-conservation
equation, though again this requires a variational inequal-
ity formulation because of the lower bound W ≥ 0. Our
observation above that ∆tCFL�∆tW for practical ice
sheet grids suggests that implicit time-stepping for the mass-915

conservation equation is not beneficial.

6.5 One time step of the model

Mathematical model (32) evolves the fields W , Wtil, and P .
Here we describe one time step of the fully-discretized cou-
pled evolution.920

For convenience only we denote the ice geometry, bed ge-
ometry, and sliding speed (i.e. Hi,j , bi,j , (Po)i,j , and |vb|i,j)
as though they were all time-independent. The geometry may
be quite general, with ice-free land, floating ice shelf, or ice-
free ocean allowed at any location (xi,yj). In fact, the geom-925

etry data determines boolean “masks” on the grid, based on
zero as the sea level elevation:

icefreei,j = (Hi,j = 0)&(bi,j > 0),

floati,j = (ρiHi,j <−ρsw bi,j),930

where ρsw = 1028.0 is sea-water density. Note floati,j is
true both where there is floating ice shelf and where the
ocean is ice-free. The subglacial hydrology model exists only
for grounded ice, that is, only if both flags icefree and
float are false.935

One time step follows this algorithm:

(i) Start with values W l
i,j , (Wtil)

l
i,j , P

l
i,j which satisfy

bounds W ≥ 0, 0≤Wtil ≤Wmax
til , and 0≤ P ≤ Po.

(ii) Get (Wtil)
l+1
i,j by (45). Enforce 0≤Wtil ≤Wmax

til . If
icefreei,j or floati,j then set (Wtil)

l+1
i,j = 0.940

(iii) Get W values averaged onto the staggered grid from
(39), staggered grid values of the effective conductiv-
ity K from (40), velocity components u, v at staggered
grid locations from (41), and staggered grid values of
the diffusivity D from (42).945

(iv) Get time step ∆t from (53).

(v) Using (46) and a flux-limiter ψ(θ), compute the ad-
vective fluxes Qe(αe) and Qn(βn) at all staggered-grid
points.

(vi) Get flux divergence approximations Di,j from (43).950

(vii) If icefreei,j then set P l+1
i,j = 0. If floati,j then set

P l+1
i,j = (Po)i,j . If W l

i,j = 0, and if icefreei,j and
floati,j are both false, then either set P l+1

i,j = (Po)i,j

(no sliding) or P l+1
i,j = 0 (any sliding). Otherwise use

(49) to compute P l+1
i,j .955

(viii) If P l+1
i,j does not satisfy bounds 0≤ P ≤ Po then trun-

cate/project into this range.

(ix) If icefreei,j or floati,j then set W l+1
i,j = 0. Other-

wise use (44) to compute values for W l+1
i,j .

(x) If W l+1
i,j < 0 then truncate/project to get W l+1

i,j = 0.960

(xi) Update time tl+1 = tl + ∆t and repeat at (i).

This recipe goes with a reporting scheme for mass conser-
vation. Note that in steps (ii) and (ix) water is lost or gained
at the margin where either the ice thickness goes to zero on
land (margins), or at locations where the ice becomes float-965

ing (grounding lines). Because such loss/gain may be the
modeling goal—users want hydrological discharge—these
amounts are reported. This reporting scheme also tracks the
projections in step (x), which represent a mass conservation
error which goes to zero in the continuum limit ∆t→ 0.970

6.6 Run-time options for hydrology models

Option -hydrology NAME, where NAME is one of the
three headings below, chooses the model equations.

distributed: This model is governed by the full set of
equations (32) in section 5. The full set of parameters (Table975

A1) and variables (Table A2) are active in this model.

routing: In this reduced model the equation for pressure
evolution is replaced by P = Po. The evolution equations for
the state variables W and Wtil, and the bounds 0≤W and
0≤Wtil ≤Wmax

til , are unchanged.980

null: This further-reduced model is non-conserving. It
has only the state variable Wtil which is subject to bounds
0≤Wtil ≤Wmax

til and evolves by equation (16).

The correspondence between the notation in this pa-
per and PISM’s configurable parameters is shown in Ta-985

ble A3. These parameters can be set at runtime by us-
ing the parameter name as an option, or by setting a
pism_overrides variable in a NetCDF file which is read
with the -config_override option (PISM authors,
2013). File src/pism_config.cdl determines the de-990

fault values and units.



12 Bueler and van Pelt: Subglacial hydrology in PISM

7 Results

7.1 Verification of the coupled model

By using the coupled, steady-state, nearly-exact solution
(subsection 5.4) we verified most of the numerical schemes995

described above. (Verification is the process of measuring
and analysing the errors made by the numerical scheme, es-
pecially as the numerical grid is refined (Wesseling, 2001).)
To do this we initialized our time-stepping numerical scheme
with the nearly-exact steady solution and we measured the1000

error relative to the exact values after one model-month. The
continuum time-dependent model (32) would cause no drift
away from steady state, so any drift is numerical error. We
did runs on grids decreasing by factors of two from 2 km
to 125 m. Figure A5 shows the results based on first-order1005

upwinding for the fluxes.
This convergence evidence suggests that we have imple-

mented the numerical schemes in section 6, for the coupled
advection-diffusion-reaction equations for W and P , cor-
rectly. The rate of convergence in this verification case is1010

roughly linear (i.e. about O(∆x1)) because the largest er-
rors arise at locations of low regularity of the exact solution,
including the radius r = 5 km where P quickly drops from
Po, and at the ice sheet margin where there is a jump in W
to zero.1015

The rates of convergence for average errors are nearly
identical for the higher-resolution flux-limited scheme and
for the first-order upwinding scheme (not shown). Because
our problem is an advection-diffusion problem in which
both the advection velocity and the diffusivity are solution-1020

dependent, it is difficult to separate the errors arising from
numerical treatments of advection and diffusion. The first-
order upwinding scheme for the advection has much larger
numerical diffusivity but this diffusivity is masked by the
physical diffusivity. Based on our verification evidence it is1025

reasonable to choose the simpler first-order upwinding for
applications, as it requires less interprocess communication.

7.2 Application to the Greenland ice sheet

We now apply our hydrology models to the entire Green-
land ice sheet at 2 km grid resolution. This nontrivial exam-1030

ple demonstrates the model at large computational scale us-
ing real ice sheet geometry, with one-way coupling from ice
dynamics giving a realistic distributions of overburden pres-
sure, ice sliding speed, and basal melt rate.

7.2.1 Spun-up initial state1035

The PISM dynamics and thermodynamics model (Bueler
and Brown, 2009; Winkelmann et al., 2011; Aschwanden
et al., 2012), using the non-mass-conserving null hydrol-
ogy model (subsection 6.6), was used to compute a consistent
and nearly-steady model of the ice sheet, a “spun-up” initial1040

state, following the procedures in Aschwanden et al. (2013).

Our model uses no spatially-variable parameter values, such
as basal shear stresses, found by inversion of surface veloc-
ities. The bed elevations and present-day climate of the ice
sheet, especially surface temperature and surface mass bal-1045

ance (Ettema et al., 2009), were from the SeaRISE data set
for Greenland (Bindschadler et al., 2013).

The spin-up grid sequence was to run 50 ka on a 20 km
grid, 20 ka on a 10 km grid, 2 ka on a 5 km grid, and finally
200 a on a 2 km grid, with bilinear interpolation at each re-1050

finement stage. The final 2 km stage, on a horizontal grid of
1.05 million grid points, used uniform 10 m vertical spacing
so that the ice sheet flow was modelled on a structured 3D
grid of 460 million velocity/temperature points. This whole
spin-up used 2800 total processor-hours on 72 2.2 GHz AMD1055

Opteron processors, a small computation for modern super-
computers.

The results of this spin-up were validated by comparing
results to present-day observations. In the last 100 a of this
run the ice sheet volume varied by less than 0.04 percent, so1060

the model is in nearly steady state, though the actual Green-
land ice sheet may not be as close to steady. The spun-up ice
sheet volume of 3.094× 106 km3 is close to the present-day
volume of 3.088×106 km3 computed from the SeaRISE data
on the same grid. Compared to volume alone, a better eval-1065

uation of dynamical quality is to compare the modeled and
observed (Joughin et al., 2010) surface speed, with a very
similar result to the comparison described in Aschwanden
et al. (2013).

The spun-up initial state includes, in particular, modelled1070

ice thickness H , basal melt rate m, and sliding velocity |vb|;
the latter two fields are shown in Figure A6. Areas of slid-
ing roughly coincide with areas of basal melt because heat-
producing (modeled) basal drag comes from the yield stress
parameterized in section 3.1075

7.2.2 Experimental setup and model runs

We used fields H , m, |vb| from the spun-up state as
steady data in five model-year runs of the routing and
distributed hydrology models; see subsection 6.6 for
model descriptions. Thus only one-way coupling was tested:1080

a steady ice dynamics model fed its fields to an evolving sub-
glacial hydrology model. The hydrology model was initial-
ized with the Wtil values from the spun-up state, but with
W = 0 initial values for both models, and also P = 0 initial
values for distributed.1085

In the runs, variables W , Wtil, and P were recomputed
at each time-step, at each of 1.05 million subglacial hydrol-
ogy grid points, using parameter values from Table A1. In
both routing and distributed models the hydrologi-
cal system became steady after the first three model years.1090

Adaptively-determined time-steps reached a steady level
of about 4 model-hours for the routing model based
on maximum subglacial water speeds |V| of 0.05 ms−1

and maximum diffusivity D of 10.6 m2 s−1. For the
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distributed model the time steps were actually slightly1095

longer, primarily because routing concentrates large wa-
ter amounts and fluxes along steepest-descent paths; the time
steps were about 6 model-hours based on maximum speeds
|V| of 0.03 ms−1 and much smaller maximum diffusivities
D of about 0.25 m2 s−1. These hydrology-only runs used1100

much less computation than the spin-up: 14.7 processor-
hours for the routing run and 14.2 for distributed.

7.2.3 routing results

The final Wtil and W fields from the routing run are
shown in Figure A7. The till is fully saturated (Wtil = 2 m)1105

in essentially all areas where basal melt occurs. In the outlet
glacier areas the transportable water W concentrates along
curves of steepest descent of the hydraulic potential; see de-
tail in Figure A8. The location of the pathways is determined
primarily by the bedrock elevation detail provided by the1110

SeaRISE data set, which is limited. Furthermore, the grid res-
olution of 2 km, while very high for whole ice sheet models,
still causes spatial “smearing” of the flow pathways.

The continuum limit of the model would have concen-
trated pathways of a few meters to tens of meters width.1115

These concentrated pathways could be regarded as minimal
“conduit-like” features of the subglacial hydrology. As noted
in the introduction, however, our model has no “R-channel”
conduit mechanism, in which dissipation heating of the flow-
ing water generates wall melt-back.1120

7.2.4 distributed results

The final values of W and the relative water pressure P/Po
for the five model-year distributed run are shown in
Figure A9. The till is full (Wtil = 2 m) in essentially all areas
where basal melt occurs, so, as Wtil is nearly-identical to the1125

routing result, it is not shown.
Recall that |vb| determines the pressure drop caused by

sliding-generated cavities. The effect is to spread out the wa-
terW relative to the routing model, as clearly seen in Fig-
ure A9. There is now no strong concentration of W along1130

curves of steepest descent of the hydraulic potential, but the
spreading depends on opening and closing parameters in the
distributedmodel, especially parameters c1, c2,φ0,Wr.
Darcy flux model parameters α,β,k are also important. Pa-
rameter identification using observed surface, in situ, basal-1135

reflectivity, discharge, and other data, though needed, is be-
yond our current scope.

We can examine the local relationship between water layer
thickness W and pressure P in the distributed results.
Though the model is near steady state, the basal melt rate,1140

sliding speed, and overburden pressure all show realistically-
large spatial variations. In Figure A10 we “bin” pairs (W,P )
by relatively-narrow sliding speed ranges (each sub-plot) and
color the points by the ice thickness. There is an increas-
ing relationship between W and the relative pressure P/Po1145

in each bin. While in the fast-sliding case W is often com-
parable to the bed roughness scale Wr, for slow sliding we
see generally lower water amounts (W .Wr/10) but a full
range of pressures. In thick ice the pressure P is close to
overburden even if there is fast sliding. Locations with high1150

sliding, high water amount, and low pressure always have
low ice thickness.

8 Conclusions

This paper documents additions made to the Parallel Ice
Sheet Model in its 0.6 version released February 2014. It1155

describes and demonstrates a subglacial hydrology model
which is novel in having these features:

– a 2D parallel implementation of a coupled till-and-
linked-cavities model,

– a pressure-equation regularization, using notional1160

englacial porosity, which eases implementation and im-
proves numerical performance,

– a scheme for maintaining physical pressure bounds (0≤
P ≤ Po) at all times,

– verification using a nearly-exact solution of the coupled1165

mass-conservation and pressure equations, in the steady
radial case, and

– demonstration at high resolution and whole ice-sheet
scale on a million-point hydrology grid.

Furthermore, the comprehensive exposition here clarifies1170

the relationship among several pressure-determining “clo-
sures” (section 4), and it allows us to understand our model
as a common extension of several seemingly-disparate pub-
lished models (section 5). Additional analysis (Appendix
A) shows that in that in steady state a functional relation-1175

ship “P = P (W )” arises between pressure and water layer
thickness. This analysis reveals the diffusive nature of the
apparently-advective part of the steady-state flux.

The current paper only demonstrates one-way coupling, in
which the PISM ice flow and thermodynamics model feeds1180

basal melt rate and sliding velocities to the hydrology model.
Two-way coupling will appear in future work.

9 Code availability

The source code for all versions of PISM is available through
host website https://github.com/pism/pism. Extensive PDF1185

and searchable browser documentation for PISM is con-
tained both in the source code and online through PISM
homepage http://www.pism-docs.org/. PISM is licensed un-
der the GNU General Public License (version 3).

https://github.com/pism/pism
http://www.pism-docs.org/
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Appendix A

Analysis of steady states

Relative to the time-dependent model equations (32), steady-
state equations (35)–(38) have separate balances between the
divergence of the flux and the water input, and the opening1395

and closing processes. In particular, equation (38) allows us
to write the pressure P = P (W ) in steady state as a continu-
ous function of the layer thickness W . However, steady state
is only possible if a condition holds:

c1|vb|(Wr −W )+ ≤ c2AP 3
oW. (A1)1400

This condition says that the maximum closing rate C(N,W ),
which occurs at zero water pressure, must equal or exceed
the sliding-generated opening rate O(|vb|,W ).

We define a scaled basal sliding speed which has units of
pressure; it is a scale for the pressure drop from cavitation:1405

sb =

(
c1|vb|
c2A

)1/3

. (A2)

Then (A1) is equivalent to the condition W ≥Wc, where
Wc =Wrs

3
b/(s

3
b +P 3

o ) is a critical water thickness. If W ≥
Wc then

P (W ) = Po− sb
(

(Wr −W )+
W

)1/3

. (A3)1410

http://dx.doi.org/10.3189/002214309790152564
http://dx.doi.org/10.5194/tc-7-1721-2013
http://www.pism-docs.org
http://dx.doi.org/10.1098/rspa.2004.1350
http://dx.doi.org/10.1142/S0218202510004180
http://dx.doi.org/10.3189/172756501781832449
http://dx.doi.org/10.1029/2012JF002570
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Formula (A3) applies even if W ≥Wr, in which case P =
Po. Underpressure (P = 0) with subcritical water amount
(W <Wc) does not occur in steady state, though it can occur
in nonsteady conditions; note P (Wc) = 0. Figure A11 shows
the function P (W ) for different values of sliding speed |vb|,1415

and Figure A12 shows it for different values of overburden
pressure Po.

Flowers and Clarke (2002a) propose function PFC(W )—
see equation (28)—for both steady and nonsteady circum-
stances. Both functions P (W ) and PFC(W ) are increasing,1420

and both relate P to the overburden pressure Po. However,
in (A3) the relation of P to Po is additive, while in (28) they
are proportional. Power law form (28) is not justified by the
physical reasoning which led to equation (A3), even in steady
state. It would appear that any functional relationship P (W )1425

should also depend on the sliding velocity, as it does here, if
cavitation influences the water pressure. In any case, in the
current paper we do not impose a relationship P = P (W ) at
all, though such a relation emerges in steady state.

We now consider how the steady state water velocity V,1430

and the associated flux q, depends on other quantities. First,
from equations (35) and (A3), in steady state we have

∂P

∂W
=

sbWr

3W 4/3(Wr −W )2/3
(A4)

if Wc <W <Wr. If W ≤Wc then ∂P/∂W is undefined,
and ifW >Wr then ∂P/∂W = 0. Formula (A4) and Figures1435

A11 and A12 agree that ∂P/∂W →∞ as W ↗Wr.
Now note that equations (35), (A3), and (A4) imply a for-

mula for the velocity in steady state:

V =−k
[
∇ψo−

(
Wr −W
W

)1/3

∇sb (A5)

+
sbWr

3W 4/3(Wr −W )2/3
∇W

]
,1440

where ψo = Po + ρwgb. Thus the direction of water velocity
V is determined by a combination of a geometric direction
(∇ψo), a direction derived from spatial variations in the slid-
ing speed (∇sb), and a diffusive direction (∇W ). Indeed, a1445

portion of the advective flux VW is diffusive in steady state,
in addition to the a priori diffusive flux−D∇W ; recall equa-
tion (11) in subsection 2.4. In fact, because the coefficient of
∇W in (A5) remains large whenW → 0, as long as sliding is
occurring (sb > 0), then for low water amount and sustained1450

sliding we should think of the water as diffusing in the layer.
On the other hand, when the water thickness is almost at the
roughness scale (W .Wr), then the same coefficient is also
large in sliding cases (sb > 0); again the effect is diffusive.
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Fig. A1. (a) Equation (19) determines the effective pressure Ntil as
a function of the void ratio e; reference values e0,N0 are indicated.
(b) The same curve, but with Ntil as a function of Wtil, with bounds
above by overburden pressure Po and below by a fixed fraction δ of
Po; the solid curve is used in our model. The case shown has 1000
meters ice thickness.
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Fig. A2. A nearly-exact radial, steady solution for water thickness
W (r) (dashed). In r-versus-W space the overpressure (O), normal
pressure (N), and underpressure (U) regions (solid curves) are deter-
mined by ice geometry and sliding velocity, because this is steady
state.
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Table A1. Physical constants and model parameters. All values are configurable in PISM; see Table A3.

Name Default Units Description
A 3.1689× 10−24 Pa−3 s−1 ice softness (Huybrechts et al., 1996)
α 5/4 power in flux formula (Schoof et al., 2012)
β 3/2 power in flux formula (Schoof et al., 2012)
c0 0 Pa till cohesion (Tulaczyk et al., 2000a)
c1 0.5 m−1 cavitation coefficient (Schoof et al., 2012)
c2 0.04 creep closure coefficient
Cc 0.12 till compressibility (Tulaczyk et al., 2000a)
Cd 0.001 ma−1 background till drainage rate
δ 0.02 Ntil lower bound, as fraction of overburden pressure
e0 0.69 reference void ratio at N0 (Tulaczyk et al., 2000a)
φ0 0.01 notional (regularizing) englacial porosity
g 9.81 m s−2 acceleration of gravity
k 0.001 m2β−αs2β−3kg1−β conductivity coefficient (Schoof et al., 2012)
N0 1000 Pa reference effective pressure (Tulaczyk et al., 2000a)
ρi 910 kgm−3 ice density (Greve and Blatter, 2009)
ρw 1000 kgm−3 fresh water density (Greve and Blatter, 2009)
Wr 0.1 m roughness scale (Hewitt et al., 2012)

Wmax
til 2 m maximum water in till (Bueler and Brown, 2009)

Table A2. Functions used in subglacial hydrology model (32).

Type Description (symbol, units, meaning)

state
W m transportable water thickness
Wtil m till-stored water thickness
P Pa transportable water pressure

input

b m bedrock elevation
ϕ till friction angle
H m ice thickness
m kgm−2 s−1 total melt water input
|vb| ms−1 ice sliding speed

output
Ntil Pa till effective pressure
τc Pa till yield stress
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Fig. A3. A nearly-exact radial, steady solution for pressure P (r)
(dashed) and overburden pressure Po (solid).
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Fig. A4. Numerical schemes (44) and (49) use a grid-point-centered
cell. Velocities, diffusivities, and fluxes are evaluated at staggered
grid locations (triangles at centers of cell edges) denoted by com-
pass notation e,w,n,s. State functions W,Wtil,P are located at
regular grid points (diamonds).
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Table A3. Correspondence between PISM parameter names and symbols in this paper (Table A1). All are used in the distributedmodel,
with indicated subsets used in the routing and null models.

PISM parameter name Symbol routing null

fresh_water_density ρw × ×
hydrology_cavitation_opening_coefficient c1
hydrology_creep_closure_coefficient c2
hydrology_gradient_power_in_flux β ×
hydrology_hydraulic_conductivity k ×
hydrology_regularizing_porosity φ0

hydrology_roughness_scale Wr

hydrology_thickness_power_in_flux α ×
hydrology_tillwat_decay_rate Cd × ×
hydrology_tillwat_max Wmax

til × ×
ice_density ρi × ×
ice_softness A
standard_gravity g × ×
till_c_0 c0 × ×
till_compressibility_coefficient Cc × ×
till_effective_fraction_overburden δ × ×
till_reference_effective_pressure N0 × ×
till_reference_void_ratio e0 × ×
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Fig. A5. Average water thickness error |W −Wexact| decays as
O(∆x0.91), and average pressure error |P −Pexact| decays as
O(∆x0.92), for grids with spacing 250≤∆x= ∆y ≤ 2000 m.
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Fig. A6. The inputs to the hydrology model are the modeled basal melt rate m/ρw (left; ma−1) and sliding speed |vb| (right; ma−1) from
the spun-up state.

Fig. A7. Outputs from the routing hydrology model are the modelled till-stored water layer thickness Wtil (left; m) and modelled trans-
portable water layer thickness W (right; m).
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Fig. A8. Detail of transportable water W plotted in Figure A7, covering Jakobshavn (J), Helheim (H), and Kangerdlugssuaq (K) outlet
glaciers

Fig. A9. Outputs from the distributed hydrology model include the modelled transportable water layer thickness W (left; m), and the
modelled transportable water layer pressure P , shown relative to overburden pressure (i.e. P/Po; right).
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Fig. A10. Scatter plots of (W,P/Po) pairs for all cells from the distributed model run, which used roughness scale Wr = 0.1 m. Each
sub-plot only shows pairs from the indicated range of ice sliding speeds. Points are colored by ice thickness using a common scale shown
beside last figure.
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Fig. A11. The steady state function P (W ) defined by equation
(A3), using Wr = 1 m and H = 1000 m (solid curves). Values of
Wc are indicated by black dots at P = 0. For comparison, Flowers
and Clarke (2002a) relation (28) is shown with Wcrit = 1 m (dashed
black).
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Fig. A12. The graph of P (W ) defined by (A3) also depends on
overburden pressure Po = ρigH , shown using |vb|= 100 m/a and
Wr = 1 m.
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