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Abstract. I present a method for developing extensible and
modular computational models without sacrificing serial or
parallel performance or source code readability. By using a
generic simulation cell method I show that it is possible to
combine several distinct computational models to run in the5

same computational grid without requiring modification of
existing code. This is an advantage for the development and
testing of e.g. geoscientific software as each submodel can be
developed and tested independently and subsequently used
without modification in a more complex coupled program.10

An implementation of the generic simulation cell method
presented here, generic simulation cell class (gensimcell),
also includes support for parallel programming by allow-
ing model developers to select which simulation variables of
e.g. a domain-decomposed model to transfer between pro-15

cesses via a Message Passing Interface library. This allows
the communication strategy of a program to be formalized
by explicitly stating which variables must be transferred be-
tween processes for the correct functionality of each sub-
model and the entire program. The generic simulation cell20

class requires a C++ compiler that supports a version of the
languge standardized in 2011 (C++11). The code is available
at https://github.com/nasailja/gensimcell for everyone to use,
study, modify and redistribute; those that do are kindly re-
quested to acknowledge and cite this work.25

1 Introduction

Computational modeling has become one of the cornerstones
of many scientific disciplines, helping to understand obser-
vations and to form and test new hypotheses. Here a com-30

putational model is defined as numerically solving a set of
mathematical equations with one or more variables using
a discrete representation of time and the modeled volume.

Today the bottleneck of computational modeling is shifting
from hardware performance towards that of software devel-35

opment, more specifically to the ability to develop more com-
plex models and to verify and validate them in a timely and
cost-efficient manner (Post and Votta, 2005). The importance
of verification and validation is highlighted by the fact that
even a trivial bug can have devastating consequences not only40

for users of the affected software but for others who try to
publish contradicting results (Miller, 2006).

Modular software can be (re)used with minimal modifi-
cation and is advantageous not only for reducing develop-
ment effort but also for verifying and validating a new pro-45

gram. For example the number of errors in software com-
ponents that are reused without modification can be an or-
der of magnitude lower than in components which are ei-
ther developed from scratch or modified extensively before
use (Thomas et al., 1997). The verification and validation50

(V&V) of a program consisting of several modules should
start from V&V of each module separately before proceed-
ing to combinations of modules and finally the entire pro-
gram (Oberkampf and Trucano, 2002). Modules that have
been V&V’d and are used without modification increase the55

confidence in the functionality of the larger program and de-
crease the effort required for final V&V.

Reusable software that does not depend on any specific
type of data can be written by using, for example, generic
programming (Musser and Stepanov, 1989). Waligora et al.60

(1995) reported that the use of object-oriented design and
generics of the Ada programming language at Flight Dynam-
ics Division of NASA’s Goddard Space Flight Center had in-
creased sofware reuse by a factor of three and, in addition
to other benefits, reduced the error rates and costs substan-65

tially. With C++ generic software can be developed with-
out sacrificing computational performance through the use
of compile-time template parameters for which the compiler

https://github.com/nasailja/gensimcell
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can perform optimizations that would not be possible other-
wise (e.g. Veldhuizen and Gannon, 1998; Stroustrup, 1999).70

1.1 Model coupling

Generic and modular software is especially useful for de-
veloping complex computational models that couple to-
gether several different and possibly independently devel-
oped codes. From a software development point of view75

code coupling can be defined as simply making the variables
stored by different codes available to each other. In this sense
even a model for the flow of incompressible, homogeneous
and non-viscous fluid without external forcing

∂v

∂t
=−v · (∇v)−∇p; ∇2p=−∇ · (v · (∇v))80

where v is velocity and p is pressure, can be viewed as a
coupled model as there are two equations that can be solved
by different solvers. If a separate solver is written for each
equation and both solvers are simulating the same volume
with identical discretization, coupling is only a matter of data85

exchange. In this work the term solver will be used when
referring to any code/function/module/library which takes as
input the data of a cell and its N neighbors and produces the
next state of the cell (next step, iteration, temporal substep,
etc.).90

The methods of communicating data between solvers can
vary widely depending on the available development effort,
the programming language(s) involved and details of the spe-
cific codes. Probably the easiest coupling method to develop
is to transfer data through the filesystem, i.e. at every step95

each solver writes the data needed by other solvers into a file
and reads the data produced by other solvers from other files.
This method is especially suitable as a first version of cou-
pling when the codes have been written in different program-
ming languages and use non-interoperable data structures.100

Performance-wise a more optimal way to communicate
between solvers in a coupled program is to use shared mem-
ory, as is done for example in Hill et al. (2004), Jöckel et al.
(2005), Larson et al. (2005), Toth et al. (2005), Zhang and
Parashar (2006), Redler et al. (2010), but this technique still105

has shortcomings. Perhaps the most important one is the fact
that the data types used by solvers are not visible to outside,
thus making intrusive modifications (i.e. modifications to ex-
isting code or data structures) necessary in order to transfer
data between solvers. The data must be converted to an in-110

termediate format by the solver "sending" the data and sub-
sequently converted to the internal format by the solver "re-
ceiving" the data. The probability of bugs is also increased as
the code doing the end-to-end conversion is scattered in two
different places and the compiler cannot perform static type115

checking for the final coupled program. These problems can
be alleviated by e.g. writing the conversion code in another
language and outputting the final code of both submodels
automatically (Eller et al., 2009). Interpolation between dif-

ferent grids and coordinate systems that many of the frame-120

works mentioned previously perform can also be viewed as
part of the data transfer problem but is outside the scope of
this work.

A distributed memory parallel program can require signif-
icant amounts of code for arranging the transfers of different125

variables between processes, for example, if the amount of
data required by some variable(s) changes as a function of
both space and time. The problem is even harder if a program
consists of several coupled models with different time step-
ping strategies and/or variables whose memory requirements130

change at run time. Futhermore, modifying an existing time
stepping strategy or adding another model into the program
can require substatial changes to existing code in order to
accomodate additional model variables and/or temporal sub-
steps.135

1.2 Generic simulation cell method

A generic simulation cell class is presented that provides an
abstraction for the storage of simulation variables and the
transfer of variables between processes in a distributed mem-
ory parallel program. Each variable to be stored in the generic140

cell class is given as a template parameter to the class. The
variables of each cell instance are grouped together in mem-
ory so if several cell instances are stored contiguously in
memory (e.g. in an std::vector) a variable will be interleaved
with other variables in memory but see Section 8 for a dis-145

cussion on how this might affect application performance.
The type of each variable is not restricted in any way by
the cell class or solvers developed using this abstraction, en-
abling generic programming in simulation development from
the top down to a very low level. By using variadic templates150

of the 2011 version of the C++ standard (C++11), the total
number of variables is only limited by the compiler imple-
mentation. A minimum of 1024 template arguments is rec-
ommended by C++11 (see e.g. Annex B in Du Toit, 2012)
and the cell class presented here can itself also be used as a155

variable thereby grouping related variables together and re-
ducing the total number of template arguments given to the
cell class.

By using the generic cell abstraction it is possible to de-
velop distributed memory parallel computational models in160

a way that easily allows one to combine an arbitrary num-
ber of separate models without modifying existing code. This
is demonstrated by combining parallel models for Conway’s
Game of Life (Gardner, 1970), scalar advection and La-
grangian transport of particles in an external velocity field.165

In order to keep the presented programs succinct, combining
computational models is defined here as running each model
on the same grid structure with identical domain decomposi-
tion accross processes. This is not mandatory for the generic
cell approach and, for example, the case of different domain170

decomposition of submodels is discussed in Section 4.
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Section 2 introduces the generic simulation cell class con-
cept via a serial implementation and Section 3 extends it to
distributed memory parallel programs. Section 4 shows that it
is possible to combine three different computational models175

without modifying existing code by using the generic simu-
lation cell method. Section 6 shows that the generic cell im-
plementation developed here does not seem to have an ad-
verse effect on either serial or parallel computational perfor-
mance. The code is available at https://github.com/nasailja/180

gensimcell for everyone to use, study, modify and redis-
tribute; users are kindly requested to cite this work. The rela-
tive paths to source code files given in the rest of the text re-
fer to the version of the generic simulation cell tagged as 1.0
in the git repository and is available at: https://github.com/185

nasailja/gensimcell/tree/1.0/. The presented generic simula-
tion cell class requires a standard C++11 compiler and paral-
lel functionality additionally requires a C implementation of
MPI and the header-only Boost libraries MPL, Tribool and
TTI.190

2 Serial implementation

Lines 1..30 in Figure 1 show a serial implementation of the
generic simulation cell class that does not provide support
for MPI applications, is not const-correct and does not hide
implementation details from the user but is otherwise com-195

plete. The cell class takes as input an arbitrary number of
template parameters that correspond to variables to be stored
in the cell. Variables have to only define their type through
the name data_type. When the cell class is given one vari-
able as a template argument the code on lines 3..11 is used.200

The variable given to the cell class as a template parameter
is stored as a member of the cell class on line 4 and access
to it is provided by the cell’s [] operator overloaded for the
variable’s class on lines 6..101. When given multiple vari-
ables as template arguments the code on lines 13..30 is used205

which similarly stores the first variable as a private mem-
ber and provides access to it via the [] operator. Addition-
ally the cell class derives from itself with one less variable
on line 19. This recursion is stopped by eventually inherit-
ing the one variable version of the cell class. Access to the210

private data members representing all variables are provided
by the respective [] operators which are made available to
outside of the cell class on line 23. The memory layout of
variables in an instance of the cell class depends on the com-
piler implementation and can include, for example, padding215

between variables given as consecutive template parameters.
This also applies to variables stored in "ordinary" structures
and in both cases if, for example, several values must be
stored contiguously in memory a container guaranteeing this
should be used such as std::array or std::vector.220

1Future versions might implement a multi argument () operator
returning a tuple of references to several variables’ data

1 template <c l a s s . . . Var iab les> s t r u c t Ce l l ;
2
3 template <c l a s s Variable> s t r u c t Cel l<Variable> {
4 typename Var iab le : : data_type data ;
5
6 typename Var iab le : : data_type& operator [ ] (
7 const Var iab le&
8 ) {
9 re turn th i s−>data ;

10 }
11 } ;
12
13 template <
14 c l a s s Current_Variable ,
15 c l a s s . . . Rest_Of_Variables
16 > s t ru c t Cel l<
17 Current_Variable ,
18 Rest_Of_Variables . . .
19 > : pub l i c Cel l<Rest_Of_Variables . . . > {
20
21 typename Current_Variable : : data_type data ;
22
23 us ing Cel l<Rest_Of_Variables . . . > : : operator [ ] ;
24
25 typename Current_Variable : : data_type& operator [ ] (
26 const Current_Variable&
27 ) {
28 re turn th i s−>data ;
29 }
30 } ;
31
32 s t r u c t Mass_Density { us ing data_type = double ; } ;
33 s t r u c t Momentum_Density { us ing data_type = double [ 3 ] ; } ;
34 s t r u c t Total_Energy_Density { us ing data_type = double ; } ;
35 us ing HD_Conservative = Cel l<
36 Mass_Density , Momentum_Density , Total_Energy_Density
37 >;
38
39 s t r u c t HD_State { us ing data_type = HD_Conservative ; } ;
40 s t r u c t HD_Flux { us ing data_type = HD_Conservative ; } ;
41 us ing Cell_T = Cel l<HD_State , HD_Flux>;
42
43 i n t main ( ) {
44 Cell_T c e l l ;
45 c e l l [HD_Flux ( ) ] [ Mass_Density ( ) ]
46 = c e l l [ HD_State ( ) ] [ Momentum_Density ( ) ] [ 0 ] ;
47 }

Listing 1. Brief serial implementation of the generic simulation
cell class (lines 1..30) and an example definition of a cell type used
in a hydrodynamic simulation (lines 32..47).

Lines 32..47 in Figure 1 define a cell type for a hydro-
dynamic simulation and a program assigning a value from
one variable of a cell to another variable of the same cell.
The variables of hydrodynamic equations are defined on lines
32..34 and a cell type consisting of those variables is defined225

on lines 35..37. In order to store both the current state of the
simulation and the change in state variables from one time
step to the next, two variables are defined on lines 39 and
40 representing the current state and fluxes into and out of
each cell. The final type stored in each cell of the simulation230

grid consists of the state and flux variables defined on lines
39..41.

https://github.com/nasailja/gensimcell
https://github.com/nasailja/gensimcell
https://github.com/nasailja/gensimcell
https://github.com/nasailja/gensimcell/tree/1.0/
https://github.com/nasailja/gensimcell/tree/1.0/
https://github.com/nasailja/gensimcell/tree/1.0/
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3 Parallel implementation

In a parallel computational model variables in neighboring
cells must be transferred between processes in order to cal-235

culate the solution at the next time step or iteration. On the
other hand it might not be necessary to transfer all variables
in each communication as one solver could be using higher
order time stepping than others and require more iterations
for each time step. Or, for example, when modeling an in-240

compressible fluid the Poisson’s equation for pressure must
be solved at each time step, i.e. iterated in parallel until some
norm of the residual becomes small enough, during which
time other variables need not be transferred. Model variables
can also be used for debugging and need not be transferred245

between processes by default.
The generic cell class provides support for parallel pro-

grams via its get_mpi_datatype() member function which re-
turns the information required to transfer one more variables
stored in the cell via a library implementing the Message250

Passing Interface (MPI) standard. An implementation of MPI
is not required to use the generic simulation cell class, in that
case (if the preprocessor macro MPI_VERSION is not de-
fined when compiling) support for all MPI functionality will
not be enabled and the class will behave as shown in Section255

2. Transferring variables of a standard type (e.g. float, long
int) or a container (of container of . . . ) of standard types (ar-
ray, vector, tuple) is supported out of the box. The transfer of
one or more variables can be switched on or off via a function
overloaded for each variable on a cell-by-cell basis or for all260

cells of a particular cell type at once. This allows the commu-
nication strategy of a program to be formalized by explicitly
stating which variables in what part of the simulated volume
must be transferred between processes at different stages of
execution for the correct functionality of each solver and the265

entire program.
The transfer of variables in all instances of a particular

type of cell can be toggled with its set_transfer_all() function
and the set_transfer() member can be used to toggle the trans-
fer of variables in each instance of a cell type separately. The270

former function takes as arguments a boost::tribool value and
the affected variables. If the triboolean value is determined
(true of false) then all instances behave identically for the af-
fected variables, otherwise (a value of boost::indeterminate)
the decision to transfer the affected variables is controlled275

on a cell-by-cell basis by the latter function. The functions
are implemented recursively using variadic templates in or-
der to allow the user to switch on/off the transfer of arbi-
trary combinations of variables in the same function call.
The get_mpi_datatype() member function iterates through all280

variables stored in the cell at compile-time and only add vari-
ables which should be transferred to the final MPI_Datatype
at run-time.

Figure 2 shows a parallel implementation of Conway’s
Game of Life (GoL) using the generic simulation cell285

class. To simplify the implementation the game grid is 1-

dimensional, periodic in that dimension and with one cell
per process. A version of this example with console output
is available at examples/game_of_life/parallel/no_dccrg.cpp.
When run with 11 processes the program prints:290

.0000000000
0.00000000.
.0.000000.0
0.0.0000.0.
.0.0.00.0.0295

0.0.0..0.0.
.0.0....0.0
0.0......0.
.0........0
0..........300

...........

Lines 6..10 define the model’s variables and the cell type
used in the model grid. The first parameter given to the cell
class on line 9 is the transfer policy of that cell type with
three possibilities: 1) All variables are always transferred, 2)305

None of the variables are transferred and 3) Transfer of each
variable can be switched on and off as described previously.
In the first two cases all variables of a cell instance are laid
out contiguously in memory while in the last case a boolean
value is added for each variable that records whether the vari-310

able should be transferred from that cell instance. Lines 13
and 14 provide a shorthand notation for referring to simu-
lation variables. Lines 16..23 initialize MPI and the game.
The [] operator is used to obtain a reference to variables’
data e.g. on line 22. Line 25 switches on the transfer of the315

Is_Alive variable whose information will now be returned by
each cells’ get_mpi_datatype() method on lines 28..30. Lines
27..58 of the time stepping loop transfer variables’ data based
on the MPI transfer information provided by instances of the
generic simulation cell class. In this case only one variable320

is transferred by each cell hence all cells return the address
of that variable (e.g. line 4 in Figure 1), a count of 1 and the
equivalent MPI data type MPI_CXX_BOOL.

Figure 3 shows a program otherwise identical to the one
in Figure 2 but which does not use the generic simulation325

cell class. Calls to the MPI library (Init, Isend, Irecv, etc.)
are identical in both programs but there is also a fundamen-
tal difference: In Figure 3 the names of variables used in the
program cannot be changed without affecting all parts of the
program in which those variables are used, whereas in Figure330

2 only lines 13 and 14 of the main function would be affected.
This holds true even if the solver logic is separated into a
function as shown in Figure 4. If the names of the one or
more simulation variables are changed the function on lines
1..9 would not have to be changed, instead only the function335

call on lines 18..22 would be affected. In contrast all vari-
able names in the function on lines 11..16 would have to be
changed to match the names defined elsewhere. It should be
noted that the serial functionality of generic cell class is avail-
able for std::tuple in the newest C++ standard approved on340

https://github.com/nasailja/gensimcell/blob/1.0/examples/game_of_life/parallel/no_dccrg.cpp
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1 #inc lude <tuple>
2 #inc lude <vector>
3 #inc lude <mpi . h>
4 #inc lude <gen s imce l l . hpp>
5
6 s t r u c t Is_Alive { us ing data_type = bool ; } ;
7 s t r u c t Live_Neighbors { us ing data_type = in t ; } ;
8 us ing Cell_T = gens imce l l : : Ce l l<
9 gen s imce l l : : Optional_Transfer , Is_Alive , Live_Neighbors

10 >;
11
12 i n t main ( i n t argc , char ∗ argv [ ] ) {
13 constexpr Is_Alive i s_a l i v e {} ;
14 constexpr Live_Neighbors l i ve_ne ighbor s {} ;
15
16 MPI_Init(&argc , &argv ) ;
17 i n t rank = 0 , comm_size = 0 ;
18 MPI_Comm_rank(MPI_COMM_WORLD, &rank ) ;
19 MPI_Comm_size(MPI_COMM_WORLD, &comm_size ) ;
20
21 Cell_T c e l l , neg_neigh , pos_neigh ;
22 c e l l [ i s_a l i v e ] = true ; c e l l [ l i v e_ne ighbor s ] = 0 ;
23 i f ( rank == 0) c e l l [ i s_a l i v e ] = f a l s e ;
24
25 Cell_T : : s e t_t ran s f e r_a l l ( true , i s_a l i v e ) ;
26 f o r ( s i ze_t turn = 0 ; turn < 10 ; turn++) {
27 std : : tuple<void ∗ , int , MPI_Datatype>
28 c e l l_ i n f o = c e l l . get_mpi_datatype ( ) ,
29 neg_info = neg_neigh . get_mpi_datatype ( ) ,
30 pos_info = pos_neigh . get_mpi_datatype ( ) ;
31
32 us ing std : : get ;
33 MPI_Request neg_send , pos_send , neg_recv , pos_recv ;
34 MPI_Irecv (
35 get <0>(neg_info ) , get <1>(neg_info ) , get <2>(neg_info ) ,
36 i n t ( unsigned ( rank + comm_size − 1) % comm_size ) ,
37 i n t ( unsigned ( rank + comm_size − 1) % comm_size ) ,
38 MPI_COMM_WORLD, &neg_recv
39 ) ;
40 MPI_Irecv (
41 get <0>(pos_info ) , get <1>(pos_info ) , get <2>(pos_info ) ,
42 i n t ( unsigned ( rank + 1) % comm_size ) ,
43 i n t ( unsigned ( rank + 1) % comm_size ) ,
44 MPI_COMM_WORLD, &pos_recv
45 ) ;
46 MPI_Isend (
47 get <0>( c e l l_ i n f o ) , get <1>( c e l l_ i n f o ) , get <2>( c e l l_ i n f o ) ,
48 i n t ( unsigned ( rank + comm_size − 1) % comm_size ) , rank ,
49 MPI_COMM_WORLD, &neg_send
50 ) ;
51 MPI_Isend (
52 get <0>( c e l l_ i n f o ) , get <1>( c e l l_ i n f o ) , get <2>( c e l l_ i n f o ) ,
53 i n t ( unsigned ( rank + 1) % comm_size ) , rank ,
54 MPI_COMM_WORLD, &pos_send
55 ) ;
56
57 MPI_Wait(&neg_recv , MPI_STATUS_IGNORE) ;
58 MPI_Wait(&pos_recv , MPI_STATUS_IGNORE) ;
59 i f ( neg_neigh [ i s_a l i v e ] ) c e l l [ l i v e_ne ighbor s ]++;
60 i f ( pos_neigh [ i s_a l i v e ] ) c e l l [ l i v e_ne ighbor s ]++;
61 MPI_Wait(&neg_send , MPI_STATUS_IGNORE) ;
62 MPI_Wait(&pos_send , MPI_STATUS_IGNORE) ;
63
64 i f ( c e l l [ l i v e_ne ighbor s ] == 2) c e l l [ i s_a l i v e ] = true ;
65 e l s e c e l l [ i s_a l i v e ] = f a l s e ;
66 c e l l [ l i v e_ne ighbor s ] = 0 ;
67 }
68 MPI_Finalize ( ) ;
69 }

Listing 2. Parallel implementation of Conway’s Game of Life using
the generic simulation cell class.

2014, but it requires a bit of extra code and is more verbose to
use (e.g. std::get<Mass_Density>(get<HD_Flux>(cell)) in-
stead of line 45 in Figure 1) than the generic cell class pre-
sented here. Also support for distributed memory parallel
programs, which makes up bulk of the code of generic simu-345

lation cell class, is not available.

1 #inc lude <tuple>
2 #inc lude <vector>
3 #inc lude <mpi . h>
4
5 s t r u c t Cell_T {
6 bool i s_a l i v e ; i n t l i ve_ne ighbor s ;
7 std : : tuple<void ∗ , int , MPI_Datatype> get_mpi_datatype ( ) {
8 re turn std : : make_tuple(&th i s−>is_a l i v e , 1 , MPI_CXX_BOOL) ;
9 }

10 } ;
11
12 i n t main ( i n t argc , char ∗ argv [ ] ) {
13 MPI_Init(&argc , &argv ) ;
14 i n t rank = 0 , comm_size = 0 ;
15 MPI_Comm_rank(MPI_COMM_WORLD, &rank ) ;
16 MPI_Comm_size(MPI_COMM_WORLD, &comm_size ) ;
17
18 Cell_T c e l l , neg_neigh , pos_neigh ;
19
20 c e l l . i s_a l i v e = true ; c e l l . l i v e_ne ighbor s = 0 ;
21 i f ( rank == 0) c e l l . i s_a l i v e = f a l s e ;
22
23 f o r ( s i ze_t turn = 0 ; turn < 10 ; turn++) {
24 . . .
25
26 MPI_Wait(&neg_recv , MPI_STATUS_IGNORE) ;
27 MPI_Wait(&pos_recv , MPI_STATUS_IGNORE) ;
28 i f ( neg_neigh . i s_a l i v e ) c e l l . l i v e_ne ighbor s++;
29 i f ( pos_neigh . i s_a l i v e ) c e l l . l i v e_ne ighbor s++;
30 MPI_Wait(&neg_send , MPI_STATUS_IGNORE) ;
31 MPI_Wait(&pos_send , MPI_STATUS_IGNORE) ;
32
33 i f ( c e l l . l i v e_ne ighbor s == 2) c e l l . i s_a l i v e = true ;
34 e l s e c e l l . i s_a l i v e = f a l s e ;
35 c e l l . l i v e_ne ighbor s = 0 ;
36 }
37 MPI_Finalize ( ) ;
38 }

Listing 3. Parallel implementation of Conway’s Game of Life not
using the generic simulation cell class. Line 24 marked with . . . is
identical to lines 27..55 in Figure 2.

Subsequent examples use the DCCRG library (Honko-
nen et al., 2013) for abstracting away the logic of trans-
ferring neighboring cells’ data between processes, i.e. lines
27..58 and 61..62 in Figure 2. DCCRG queries the data to be350

transferred from each cells’ get_mpi_datatype() function as
needed, i.e. when a cell considers the cell of another process
as a neighbor or vice versa, and passes on that information to
the MPI transfer functions.

Figure 5 shows the variables and time stepping loop of a355

parallel advection program using the generic simulation cell
class and DCCRG library, the full program is available at ex-
amples/advection/parallel/main.cpp. The solver function(s)
use a first order donor cell algorithm and are implemented
similarly to lines 1..9 in Figure 4, i.e. each function takes the360

required data as arguments and as template arguments the
variables to use when calculating the solution. Internally the
functions call the [] operator of each cell with instances of
the variables given as template arguments to access the re-
quired data. Computation is overlapped with communication365

by solving cells without neighbors on other processes (lines
16..21) while data transfers are ongoing (lines 14 and 23).

https://github.com/nasailja/gensimcell/tree/1.0/examples/advection/parallel/main.cpp
https://github.com/nasailja/gensimcell/tree/1.0/examples/advection/parallel/main.cpp
https://github.com/nasailja/gensimcell/tree/1.0/examples/advection/parallel/main.cpp


6 Honkonen: Generic simulation cell method

1 template<c l a s s IA , c l a s s LN, c l a s s C> void s o l v e (
2 C& c e l l , const C& neg , const C& pos
3 ) {
4 constexpr IA i s_a l i v e {} ;
5 constexpr LN l ive_ne ighbor s {} ;
6
7 i f ( neg [ i s_a l i v e ] ) c e l l [ l i ve_ne ighbor s ]++;
8 i f ( pos [ i s_a l i v e ] ) c e l l [ l i ve_ne ighbor s ]++;
9 }

10
11 template<c l a s s C> void solve_no_gensimcel l (
12 C& c e l l , const C& neg , const C& pos
13 ) {
14 i f ( neg . i s_a l i v e ) c e l l . l i v e_ne ighbor s++;
15 i f ( pos . i s_a l i v e ) c e l l . l i v e_ne ighbor s++;
16 }
17
18 so lve<
19 Is_Alive , Live_Neighbors
20 >(
21 c e l l , neg_neigh , pos_neigh
22 ) ;
23
24 so lve_no_gensimcel l (
25 c e l l , neg_neigh , pos_neigh
26 ) ;

Listing 4. Functions for calculating the number of live neighbors
for the program shown in Figure 2 on lines 1..9 and the program
in Figure 3 on lines 11..16. Lines 18..26 show the function calls as
they would appear in the respective main programs.

4 Combination of three simulations

Parallel models implemented using the generic simulation
cell class can be combined without modification into one370

model by incorporating relevant parts from the main.cpp file
of each model. This is enabled by the use of distinct types, or
metavariables, for describing simulation variables and for ac-
cessing their data as well as by allowing one to easily switch
on and off the transfer of variables’ data between processes375

in a distributed memory parallel program. The time stepping
loop of a program playing Conway’s Game of Life, solving
the advection equation and propagating particles in an ex-
ternal velocity field is shown in Figure 6 and the full pro-
gram is available at examples/combined/parallel.cpp. Sepa-380

rate namespaces are used for the variables and solvers of
each submodel as e.g. two have a variable named Velocity
and all have a function named solve. Variables of the parallel
particle propagation model are shown on lines 1..11. In or-
der not to lose particles between processes each particle that385

moves from one cell to another in the simulated volume is
moved from the originating cell’s internal particle list (lines
7..8) to its external particle list which includes the receiving
cell’s id (lines 9..11) and later incorporated into the receiving
cell’s internal particle list. For this reason the particle propa-390

gator solves the outer cells of a simulation first (lines 14..15)
so that the number of particles moving between cells on dif-

1 s t r u c t Density { us ing data_type = double ; } ;
2 s t r u c t Density_Flux { us ing data_type = double ; } ;
3 s t r u c t Ve loc i ty {
4 us ing data_type = std : : array<double , 2>; } ;
5 . . .
6 whi le ( s imulat ion_time <= M_PI) {
7
8 Ce l l : : s e t_t ran s f e r_a l l ( true ,
9 advect ion : : Density ( ) , advect ion : : Ve loc i ty ( )

10 ) ;
11 g r id . start_remote_neighbor_copy_updates ( ) ;
12
13 advect ion : : so lve<
14 Cel l ,
15 advect ion : : Density ,
16 advect ion : : Density_Flux ,
17 advect ion : : Ve l oc i ty
18 >(time_step , i nne r_ce l l s , g r i d ) ;
19
20 g r id . wait_remote_neighbor_copy_update_receives ( ) ;
21
22 advect ion : : so lve<
23 Cel l ,
24 advect ion : : Density ,
25 advect ion : : Density_Flux ,
26 advect ion : : Ve l oc i ty
27 >(time_step , oute r_ce l l s , g r i d ) ;
28
29 advect ion : : apply_solut ion<
30 Cel l ,
31 advect ion : : Density ,
32 advect ion : : Density_Flux
33 >( inne r_ce l l s , g r i d ) ;
34
35 g r id . wait_remote_neighbor_copy_update_sends ( ) ;
36 Ce l l : : s e t_t ran s f e r_a l l ( f a l s e ,
37 advect ion : : Density ( ) , advect ion : : Ve loc i ty ( )
38 ) ;
39
40 advect ion : : apply_solut ion<
41 Cel l ,
42 advect ion : : Density ,
43 advect ion : : Density_Flux
44 >(oute r_ce l l s , g r i d ) ;
45
46 s imulat ion_time += time_step ;
47 }

Listing 5. Variables and time stepping loop of a parallel advection
program that uses the generic simulation cell class and DCCRG
(Honkonen et al., 2013).

ferent processes can be updated (lines 17..19) while the inner
simulation cells are solved (lines 21..22). After the amount of
incoming particle data is known (line 24) space for that data395

is allocated (line 25) and eventually received (lines 31..33
and 41). Lines 35..59 solve the parallel game of life and ad-
vection problems while finishing up the particle solution for
that time step.

All submodels of the combined model run in the same dis-400

cretized volume and with identical domain decomposition.
This is not mandatory though as the cell id list given to each
solver need not be identical but in this case the memory for
all variables in all cells is always allocated when using vari-
ables shown e.g. in Figure 2. If submodels always run in405

https://github.com/nasailja/gensimcell/blob/1.0/examples/combined/parallel.cpp
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Table 1. Summary of application programming interface of generic
simulation cell class. Listed functions are members of the cell class
unless noted otherwise.

Code Explanation Usage example on
line # of Listing 2

template <class
TP, class... Vari-
ables>

Transfer policy
and arbitrary
number of vari-
ables to be stored
in a cell type
given as template
arguments

9

operator[] (const
Variable& v)

Returns a ref-
erence to given
variable’s data

22

get_mpi_datatype() Returns MPI trans-
fer information for
variables selected
for transfer

28

set_transfer(const
bool b, const
Variables&... vs)

Switches on or off
transfer of given
variables in a cell

n/a

set_transfer_all(const
boost::tribool b,
const Variables&...
vs)

Static class func-
tion for switching
the transfer of
given variables in
all cell instances
on, off or to be
decided on a cell-
by-cell basis by
set_transfer()

25

Member operators
+=, -=, *=, /= and
free operators +, -,
* and /

Operations for two
cells of the same
type or a cell and
standard types, the
operator is applied
to each variable
stored in given
cell(s)

n/a

non-overlapping or slightly overlapping regions of the simu-
lated volume, and/or a method other than domain decompo-
sition is used for parallelization, the memory required for the
variables can be allocated at run time in regions/processes
where the variables are used. This can potentially be accom-410

plished easily by wrapping the type of each variable in the
boost::optional2 type, for example.

2http://www.boost.org/doc/libs/1_57_0/libs/optional/doc/html/
index.html

1 s t r u c t Number_Of_Internal_Particles {
2 us ing data_type = unsigned long long i n t ; } ;
3 s t r u c t Number_Of_External_Particles {
4 us ing data_type = unsigned long long i n t ; } ;
5 s t r u c t Ve loc i ty {
6 us ing data_type = std : : array<double , 2>; } ;
7 s t r u c t I n t e rna l_Pa r t i c l e s { us ing data_type
8 = std : : vector<std : : array<double , 3>>; } ;
9 s t r u c t Exte rna l_Part i c l e s { us ing data_type

10 = std : : vector<std : : pair<
11 std : : array<double , 3>, unsigned long long int >>;};
12 . . .
13 whi le ( s imulat ion_time <= M_PI) {
14 p a r t i c l e : : so lve <.. . >(
15 time_step , oute r_ce l l s , g r i d )
16
17 Ce l l : : s e t_t ran s f e r_a l l ( true ,
18 p a r t i c l e : : Number_Of_External_Particles ( ) ) ;
19 g r id . start_remote_neighbor_copy_updates ( ) ;
20
21 p a r t i c l e : : so lve <.. . >(
22 time_step , i nne r_ce l l s , g r i d )
23
24 g r id . wait_remote_neighbor_copy_update_receives ( ) ;
25 p a r t i c l e : : r e s i z e_rece i v ing_conta ine r s <.. . >( g r id ) ;
26
27 g r id . wait_remote_neighbor_copy_update_sends ( ) ;
28
29 Ce l l : : s e t_t ran s f e r_a l l ( true , go l : : I s_Alive ( ) ) ;
30 . . .
31 Ce l l : : s e t_t ran s f e r_a l l ( true , p a r t i c l e : : Ve loc i ty ( ) ,
32 p a r t i c l e : : Exte rna l_Part i c l e s ( ) ) ;
33 g r id . start_remote_neighbor_copy_updates ( ) ;
34
35 go l : : so lve <.. . >( inne r_ce l l s , g r i d ) ;
36 advect ion : : so lve <.. . >(
37 time_step , i nne r_ce l l s , g r i d )
38 p a r t i c l e : : i n co rpo ra t e_exte rna l_par t i c l e s <.. . >(
39 i nne r_ce l l s , g r i d ) ;
40
41 g r id . wait_remote_neighbor_copy_update_receives ( ) ;
42
43 go l : : so lve <.. . >( oute r_ce l l s , g r i d ) ;
44 advect ion : : so lve <.. . >(
45 time_step , oute r_ce l l s , g r i d )
46 go l : : apply_solut ion <.. . >( inne r_ce l l s , g r i d ) ;
47 advect ion : : apply_solut ion <.. . >(
48 i nne r_ce l l s , g r i d ) ;
49 p a r t i c l e : : i n co rpo ra t e_exte rna l_par t i c l e s <.. . >(
50 oute r_ce l l s , g r i d ) ;
51 p a r t i c l e : : remove_external_part ic les <.. . >(
52 i nne r_ce l l s , g r i d ) ;
53
54 g r id . wait_remote_neighbor_copy_update_sends ( ) ;
55
56 go l : : apply_solut ion <.. . >( oute r_ce l l s , g r i d ) ;
57 advect ion : : apply_solut ion <.. . >( oute r_ce l l s , g r i d ) ;
58 p a r t i c l e : : remove_external_part ic les <.. . >(
59 oute r_ce l l s , g r i d ) ;
60
61 s imulat ion_time += time_step ;
62 }

Listing 6. Illustration of the time stepping loop of a parallel
program playing Conway’s Game of Life, solving the advection
equation and propagating particles in an external velocity field.
Code from parallel advection simulation (Figure 5) did not have
to be changed. Variables of the particle propagation model are also
shown.

http://www.boost.org/doc/libs/1_57_0/libs/optional/doc/html/index.html
http://www.boost.org/doc/libs/1_57_0/libs/optional/doc/html/index.html


8 Honkonen: Generic simulation cell method

1 i f ( s td : : fmod ( simulation_time , 1) < 0 . 5 ) {
2 p a r t i c l e : : so lve<
3 Cel l ,
4 p a r t i c l e : : Number_Of_Internal_Particles ,
5 p a r t i c l e : : Number_Of_External_Particles ,
6 advect ion : : Ve loc i ty , // c lock−wise
7 p a r t i c l e : : I n t e rna l_Par t i c l e s ,
8 p a r t i c l e : : Exte rna l_Part i c l e s
9 >(time_step , oute r_ce l l s , g r i d )

10 } e l s e {
11 p a r t i c l e : : so lve<
12 Cel l ,
13 p a r t i c l e : : Number_Of_Internal_Particles ,
14 p a r t i c l e : : Number_Of_External_Particles ,
15 p a r t i c l e : : Ve loc i ty , // counter c lock−wise
16 p a r t i c l e : : I n t e rna l_Par t i c l e s ,
17 p a r t i c l e : : Exte rna l_Part i c l e s
18 >(time_step , oute r_ce l l s , g r i d )
19 }

Listing 7. Example of one way coupling between the parallel ad-
vection and particle propagation models. The clock-wise rotating
velocity field of the advection model (line 6) is periodically used
by the particle propagation model instead of the counter clock-wise
rotating velocity field of the particle propagation model (line 15).

5 Coupling models that use generic simulation cell
method

In the combined model shown in previous section the sub-415

models cannot affect each other as they all use different vari-
ables and are thus unable to modify each other’s data. In or-
der to couple any two or more submodels new code must be
written or existing code must be modified. The complexity
of this task depends solely on the nature of the coupling. In420

simple cases where the variables used by one solver are only
switched to variables of another solver, only the template pa-
rameters given to the solver have to be switched.

Figure 7 shows an example of a one way coupling of
the parallel particle propagation model with the advection425

model by periodically using the velocity field of the advec-
tion model in the particle propagation model. A similar ap-
proach could be relevant e.g. in modeling atmospheric trans-
port of volcanic ash in velocity fields of a weather predic-
tion model (Kerminen et al., 2011). On line 6 the particle430

solver is called with the velocity field of the advection model
while on line 15 the particle model’s regular velocity field is
used. More complex cases of coupling, which require e.g. ad-
ditional variables or transferring variable data between pro-
cesses, are also simple to accomplish from the software de-435

velopment point of view. Additional variables can be freely
inserted into the generic cell class and used by new couplers
without affecting other submodels and the transfer of new
variables can be activated by inserting calls to e.g. the generic
cell’s set_transfer_all() function as needed.440

6 Effect on serial and parallel performance

In order to be usable in practice the generic cell class should
not slow down a computational model too much and ideally
neither serial nor parallel performance should be affected
when compared to hand-written code with identical func-445

tionality. I test this using two programs: a serial GoL model
and a parallel particle propagation model. The tests are con-
ducted on a four core 2.6 GHz Intel Core i7 CPU with 256
kB L2 cache per core, 16 GB of 1600 MHz DDR3 RAM
and the following software: OS X 10.9.2, GCC 4.8.4_0 from450

MacPorts, Open MPI 1.8.4, Boost 1.56.0 and dccrg com-
mit 7d5580a30 dated 2014-01-12 from the c++11 branch at
https://gitorious.org/dccrg/dccrg. The programs are compiled
with -O3 -std=c++0x. Where available/supported the options
-march=native and -mtune=native were found to increase455

program speed by about 0.2 % with GCC on another ma-
chine and 3 % with Clang on the hardware described above.

6.1 Serial performance

Serial performance of the generic cell is tested by
playing GoL for 30 000 steps on a 100 by 100460

grid with periodic boundaries and allocated at compile
time. Performance is compared against an implemen-
tation using struct { bool; int; }; as the cell
type. Both implementations are available in the directory
tests/serial/game_of_life. Each timing is obtained by execut-465

ing 5 runs, discarding the slowest and fastest runs and averag-
ing the remaining 3 runs. As shown in Table 6.1 serial perfor-
mance is not affected by the generic cell class, but the mem-
ory layout of variables regardless of the cell type used af-
fects performance by over 10 %. Column 2 specifies whether470

is_alive or live_neighbors is stored at a lower memory ad-
dress in each cell. By default the memory alignment of the
variables is implementation defined but on the last two rows
of Table 6.1 alignas(8) is used to obtain 8 byte alignment
for both variables. The order of the variables in memory in475

a generic cell consisting of more than one variable is not de-
fined by the standard. On the tested system the variables are
laid out in memory by GCC in reverse order with respect to
the order of the template arguments. Other compilers do not
show as large differences between different ordering of vari-480

ables, with ICC 14.0.2 all run times are about 6 s using either
-O3 or -fast (alignas is not yet supported) and with Clang 3.4
from MacPorts all run times are about 3.5 s (about 3.6 s using
alignas).

6.2 Parallel performance485

Parallel performance of the generic cell class is evaluated
with a particle propagation test which uses more complex
variable types than the GoL test in order to emphasize the
computational cost of setting up MPI transfer information
in the generic cell class and a manually written reference490

https://gitorious.org/dccrg/dccrg
https://github.com/nasailja/gensimcell/tree/1.0/tests/serial/game_of_life/
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Table 2. Run times of serial GoL programs using different cell
types and memory layouts for their variables compiled with GCC
4.8.4.

Cell type Memory layout Run time (s)

generic bool first 1.422

generic int first 1.601

struct bool first 1.424

struct int first 1.603

struct bool first, both aligned to 8 B 1.552

struct int first, both aligned to 8 B 1.522

cell class. Both implementations are available in the di-
rectory tests/parallel/particle_propagation. Parallel tests are
compiled with GCC and are run using 3 processes and the
final time is the average of the times reported by each pro-
cess. Similarly to the serial case each test is executed 5 times,495

outliers are discarded and the final result averaged over the
remaining 3 runs. The tests are run on a 203 grid without pe-
riodic boundaries and RANDOM load balancing is used to
emphasize the cost of MPI transfers. The runtime of generic
cell class version is 2.2 s and of reference program is 3.1 s.500

The extra time in reference program is spent in MPI regions
but more detailed profiling was not done as the point is only
to show that the generic simulation cell class does not slow
down the parallel program. The output files of the different
versions are bit identical if the same number of processes is505

used. When using recursive coordinate bisection load balanc-
ing the run times of both are about 0.5 s with the reference
program being 10 % slower. A similar result is expected for
a larger number of processes as the bottleneck will likely be
in the actual transfer of data instead of the logic for setting510

up the transfers.

7 Converting existing software

Existing software can be gradually converted to use a generic
cell syntax but the details depend heavily on the modularity
of said software and especially on the way data in transferred515

between processes. If a grid library decides what to transfer
and where and the cells provide this information via an MPI
datatype, conversion will likely require only small changes.

Figure 8 shows an example of converting a Conway’s
Game of Life program using cell-based storage (after Figure520

4 of Honkonen et al., 2013) to the application programming
interface used by the generic cell class. In this case the under-
lying grid library handles data transfers between processes
so the only additions required are empty classes for denoting
simulation variables and the corresponding [] operators for525

1 s t r u c t game_of_l i fe_cel l {
2 i n t data [ 2 ] ;
3
4 std : : tuple<
5 void ∗ ,
6 int ,
7 MPI_Datatype
8 > get_mpi_datatype ( ) const {
9 re turn std : : make_tuple (

10 ( void ∗) &( th i s−>data [ 0 ] ) ,
11 1 ,
12 MPI_INT
13 ) ;
14 }
15 } ;
16
17 s t r u c t Is_Alive {} ;
18 s t r u c t Live_Neighbors {} ;
19
20 s t r u c t game_of_life_cell_compat {
21 . . .
22 i n t& operator [ ] ( const Is_Alive&) {
23 re turn th i s−>data [ 0 ] ;
24 }
25
26 i n t& operator [ ] ( const Live_Neighbors&) {
27 re turn th i s−>data [ 1 ] ;
28 }
29 } ;

Listing 8. An example of converting existing software to use an ap-
plication programming interface (API) identical to the generic cell
class. API conversion consists of adding empty classes for denoting
simulation variables on lines 17 and 18, and adding [] operators for
accessing the variables’ data on lines 22..28. Line 21 is identical to
lines 2..14.

accessing the variables’ data. With these additions the pro-
gram can be converted step-by-step to use the generic cell
class API and once complete the cell implementation shown
in Figure 8 can be swapped with the generic cell.

8 Discussion530

The presented generic simulation cell method has several ad-
vantages over implementations using less generic program-
ming methods:

1. The changes required for combining and coupling mod-
els that use the generic simulation cell class are minimal535

and in the presented examples no changes to existing
code are required for combining models. This is advan-
tageous for program development as submodels can be
tested and verified independently and also subsequently
used without modification which decreases the possibil-540

https://github.com/nasailja/gensimcell/tree/1.0/tests/parallel/particle_propagation/
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ity of bugs and increases confidense in the correct func-
tioning of the larger program.

2. The generic simulation cell method enables zero-copy
code coupling as an intermediate representation for
model variables is not necessary due to the data types545

of simulation variables being visible outside of each
model. Thus if coupled models use a compatible repre-
sentation for data, such as IEEE floating point, the vari-
ables of one model can be used directly by another one
without the first model having to export the data to an in-550

termediate format. This again decreases the chance for
bugs by reducing the required development effort and
by allowing the compiler to perform type checking for
the entire program and warn in cases of e.g. undefined
behavior (Wang et al., 2012).555

3. Arguably code readability is also improved by making
simulation variables separate classes and making mod-
els a composition of such variables. Shorthand notation
for accessing variables’ data is also possible if the re-
duction in verbosity is deemed acceptable:560

constexpr Mass_Density Rho{};
constexpr Velocity V{};
cell_data[Rho] = ...;
cell_data[V][0] = ...;
cell_data[V][1] = ...;565

...

For many intents and purposes the presented cell class acts
identically to the standard heterogeneous container std::tuple
(see also Section 3 on using tuple as a substitute in serial
code) while providing additional syntactical sugar for serial570

programs and helpful functionality for distributed memory
parallel programs.

For example the question of memory layout of simulation
variables, whether each simulation variable should be stored
contiguously in memory or interleaved with other variables575

at the same location in the simulated volume, also applies
not only when using standard C++ containers but to other
programming languages as well. The key factor in this case
seems to be the locality principle (Denning, 2005), i.e. that
all hierarchies of computer (registers, caches, etc.) storage580

are reused as efficiently as possible while processing. For
simulations modeling systems of multiple coupled equations
it could well be that storing related variables, representing
the same location of the simulated volume, contiguously in
memory leads to faster execution than storing each variable585

separately from others. This is because e.g. the smallest unit
a CPU cache operates on is of the order of 100 bytes3 so
fetching variables of one neighbor cell could lead to many

3Cache Hierarchy in http://www.intel.com/
content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-optimization-manual.pdf

more reads from memory if each variable is stored in a sepa-
rate array instead of being stored close to the neighbor’s other590

variables. It should be quite simple to add the functionality
of the cell class presented here to an existing grid library that
would store all variables in separate contiguous arrays but
this might not result in faster program execution and would
violate at least rules 5 and 33 of Sutter and Alexandrescu595

(2011), namely "Give one entity one cohesive responsibil-
ity." and "Prefer minimal classes to monolithic classes". If
such functionality is absolutely necessary one could store e.g.
one DCCRG grid (which itself stores only one type such as
double in each of its own cells) in each variable given to the600

generic simulation cell class.
Other methods of speeding up a program, such as vec-

torization and threading, do not seem to be affected by us-
ing the generic simulation cell class. For example the run
time of a threaded version of the combined parallel pro-605

gram (available in examples/combined/parallel_async.cpp),
that uses std::async to (potentially) launch each solver in a
new thread at each time step, is reduced to less than 75 %
of the original program on the system described in Section
6.1 when using a 100 by 100 grid without I/O. As different610

solvers cannot access each other’s data they can be run si-
multaneously in different threads. If submodels are coupled,
e.g. as in Figure 7, standard concurrency mechanisms can be
used such as std::atomic or std::mutex. Access to entire sim-
ulation cells can be serialized with a mutex or it can guard a615

group of related variables (e.g. one for each of lines 39 and
40 in Figure 1) or single variables.

The possibility of using a generic simulation cell approach
in the traditional high-performance language of choice -
Fortran - seems unlikely as it currently lacks support for620

compile-time generic programming (McCormack, 2005).
For example a recently presented computational fluid dy-
namics package implemented in Fortran, using an object ori-
ented approach and following good software development
practices (Zaghi, 2014), uses hard-coded names for variables625

throughout the application. Thus if the names of any vari-
ables had to be changed for some reason, e.g. coupling to
another model using identical variable names, all code using
those variables would have to be modified and tested to make
sure no bugs have been introduced.630

9 Conclusions

I present a generic simulation cell method which allows one
to write generic and modular computational models without
sacrificing serial or parallel performance or code readability.
I show that by using this method it is possible to combine635

several computational models without modifying any exist-
ing code and only write new code for coupling models. This
is a significant advantage for model development which re-
duces the probability of bugs and eases development, testing
and validation of computational models. Performance tests640

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://github.com/nasailja/gensimcell/blob/1.0/examples/combined/parallel_async.cpp
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indicate that the effect of the presented generic simulation
cell class on serial performance is negligible and parallel per-
formance may even improve noticeably when compared to
hand-written MPI logic.
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