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Abstract

In this work, the fully compressible, three-dimensional, nonhydrostatic atmospheric model
called All Scale Atmospheric Model (ASAM) is presented. A cut cell approach is used to in-
clude obstacles and orography into the Cartesian grid. Discretization is realized by a mixture
of finite differences and finite volumes and a state limiting is applied. Necessary shifting and5

interpolation techniques are outlined. The method can be generalized to any other orthog-
onal grids, e.g. lat-lon grid. A linear implicit Rosenbrock time integration scheme ensures
numerical stability in the presence of fast sound waves and around small cells. Analyses of
five two-dimensional benchmark test cases from the literature are carried out to show that
the described method produces meaningful results with respect to conservation properties10

and model accuracy. The test cases are partly modified in a way that the flow field or scalars
interact with cut cells. To make the model applicable for atmospheric problems, physical pa-
rameterizations like a Smagorinsky subgrid scale model, a two-moment bulk microphysics
scheme, precipitation and surface fluxes using a sophisticated multi-layer soil model are im-
plemented and described. Results of an idealized three-dimensional simulation are shown,15

where the flow field around an idealized mountain with subsequent gravity wave generation,
latent heat release, orographic clouds and precipitation are modeled.

1 Introduction

In this paper we present the numerical solver ASAM (All Scale Atmospheric Model) that
has been developed at the Leibniz Institute for Tropospheric Research (TROPOS), Leipzig.20

ASAM was initially designed for CFD (Computational Fluid Dynamics) simulations around
buildings. The model can also be used with spherical or cylindrical grids. Stability problems
with grid convergence in special points (the pole problem) in both grids are handled through
the implicit time integration both for advection and the yet faster gravity and acoustic waves.
For simulating the flow around obstacles, buildings or orography, the cut (or shaved) cell ap-25

proach is used. With this attempt one remains within the Cartesian grid and the numerical
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pressure derivative in the vicinity a structure is zero if the cut cell geometry is not taken into
account, which is not the case in terrain-following coordinate systems due to the slope of
the lowest cells (Lock et al., 2012). Since this skewness is also reproduced in upper levels,
a cut cell model produces reduced or greatly reduced errors in comparison models with
terrain-following coordinates (Good et al., 2014). Several techniques have been developed5

to overcome these non-physical errors associated with terrain-following grids, especially
when spatial scales of three-dimensional models become finer (which leads to a steepening
of the model orography). Tripoli and Smith (2014a) introduced a Variable-Step Topography
(VST) surface coordinate system within a nonhydrostatic host model. Unlike the traditional
discrete-step approach, the depth of a grid box intersecting with a topographical structure is10

adjusted to its height, which leads to straight cut cells. Numerical tests show that this tech-
nique produces better results than conventional approaches for different topography (severe
and smooth) types (Tripoli and Smith, 2014b). In their cases, also the computational costs
with the VST approach are reduced because there is no need of extra functional trans-
form calculations due to metric terms. Steppeler et al. (2002) derived approximations for15

z coordinate nonhydrostatic atmospheric models by using the shaved-element finite-volume
method. There, the dynamics are computed in the cut cell system, whereas the physics
computation remains in the terrain-following system. Using a z-coordinate system can also
improve the prediction of meteorological parameters like clouds and rainfall due to a better
representation of the atmospheric flow near mountains in a numerical weather prediction20

(NWP) model (Steppeler et al., 2006, 2013). The cut cell method is also used in the Ocean–
Land–Atmosphere Model (OLAM) (Walko and Avissar, 2008a), which extends the Regional
Atmospheric Modeling System (RAMS) to a global model domain. In OLAM, the shaved-cell
method is applied to an icosahedral mesh (Walko and Avissar, 2008b). Yamazaki and Sato-
mura (2008) simulated a two-dimensional flow over different mountain slopes and compared25

the results of their cut cell model with a model using terrain-following coordinates. Especially
for steep slopes, significant errors were reported in the terrain-following model. A drawback
is the generation of low-volume cells when a cut cell method is used. To avoid instability
problems around these small cells, the time integration scheme has to be adapted. This can
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be achieved by using semi-implicit or semi-Langrangian methods, for example. In ASAM, a
linear-implicit Rosenbrock time integration scheme is used (Hairer and Wanner, 1996). An-
other option to handle the small cells problem is to merge small cut cells with neighboring
cells in either horizontal or vertical direction (Yamazaki and Satomura, 2010). However, this
approach becomes more complicated when applying it to three spatial dimensions, since5

a lot of special cases have to be considered. To achieve reasonable vertical solutions near
the ground, the usage of local mesh refinement techniques becomes interesting for large
scale models (Yamazaki and Satomura, 2012).

The here presented model is a developing research code with different options to choose
like different numerical methods (e.g. split-explicit Runge–Kutta or partially implicit peer10

schemes), number of prognostic variables, physical parameterizations or the change to
a spherical grid type. Parallelization is realized by using the Message Passing Interface
(MPI) and the domain decomposition method. The code is easily portable between different
platforms like Linux, IBM or Mac OS. With these features, large eddy simulations (LES) with
spatial resolutions of O(1-100 m) can be performed with respect to a sufficiently resolved15

terrain structure. In previous studies, the model was used to demonstrate the volume-of-
fluid (VOF) method for non-dissipative cloud transport (Hinneburg and Knoth, 2005). ASAM
also took part at an intercomparison study of mountain-wave simulations for idealized and
real terrain profiles, where altogether 11 different nonhydrostatic numerical models were
compared (Doyle et al., 2011). A partially implicit peer method is presented in Jebens et al.20

(2011) in order to overcome the small cell problem around orography when using cut cells.
The model was recently used for a study of dynamic flow structures in a turbulent urban
environment of a building-resolving resolution (König, 2013). There, the implementation of a
dynamic Smagorinsky subgrid scale model is tested for a convective atmospheric boundary
layer and an inflow generation approach that produces a turbulent flow field is presented.25

A separately developed LES model at TROPOS is called ASAMgpu (Horn, 2012). It
includes some basic features of the ASAM code and runs on graphics processing units
(GPUs), which enables very time-efficient computations and post-processing. However, this
model is not as adjustable as the original ASAM code and the inclusion of three-dimensional
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orographical structures is not implemented so far. ASAMgpu was applied for a study of heat
island effects on vertical mixing of aerosols by comparing the results of large eddy simula-
tions with wind and aerosol lidar observations (Engelmann et al., 2011).

This paper is structured as follows. The next section deals with a general description of
the model. It includes the basic equations that are solved numerically and the used energy5

variable. Also, the cut cell approach and spatial discretization as well as the time integra-
tion scheme are described. This approach can be extended to other orthogonal grids like
the lat-lon grid. Section 3 deals with the model physics, including a subgrid scale model,
a two-moment microphysics scheme and surface flux parameterization. Results of differ-
ent idealized test cases are shown in Section 4. The first one is a dry rising heat bubble10

described by Wicker and Skamarock (1998) followed by a flow past an idealized moun-
tain ridge from Schaer et al. (2002). Two other "classical" test examples have been chosen
and modified so that cut cells are included and interaction within these cells are guaran-
teed. The first one is a falling cold bubble with a developing density current (Straka et al.,
1993) but with a 1 km high mountain on the left part of the domain. The second case is15

the moist bubble benchmark case reported by Bryan and Fritsch (2002). The bubble will
rise and interact with a zeppelin-shaped cut area in the center of the domain. For both test
cases, energy conservation tests are carried out. Another two-dimensional case by Berger
and Helzel (2012) is presented to test the accuracy of the cut cell method by advecting a
smooth bump in a radial wind field in an annulus. For the last test case, a three-dimensional20

mountain overflow with subsequent orographic cloud generation and precipitation is simu-
lated (Kunz and Wassermann, 2011). Concluding remarks and future work are in the final
section.
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2 Description of the All Scale Atmospheric Model

2.1 Governing equations

The flux-form compressible Euler equations for the atmosphere are

∂ρ

∂t
+∇ · (ρv) = 0 (1)

∂(ρv)

∂t
+∇ · (ρvv) =−∇ · τ −∇p− ρg− 2Ω× (ρv) (2)5

∂(ρφ)

∂t
+∇ · (ρvφ) =−∇ · qφ +Sφ (3)

where ρ is the total air density, v = (u,v,w)T the three-dimensional velocity vector, p the
air pressure, g the gravitational acceleration, Ω the angular velocity vector of the earth,
φ a scalar quantity and Sφ the sum of its corresponding source terms. The subgrid scale10

terms are τ for momentum and qφ for a given scalar.
The energy equation in the form of Eq. (3) is represented by the (dry) potential temper-

ature θ. In the presence of water vapor and cloud water, this quantity is replaced by the
density potential temperature θρ (Emanuel, 1994) as a more generalized form of the virtual
potential temperature θv:15

θρ = θ

(
1 + qv

[
Rv

Rd
− 1

]
− qc

)
(4)

where the equation of state can be expressed as follows:

p= ρRdθρ

(
p

p0

)κm

(5)
20

In the above two equations θ = T (p0/p)κm is the potential temperature, qv = ρv/ρ is the
mass ratio of water vapor in the air (specific humidity), qc = ρc/ρ is the mass ratio of cloud
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water in the air, p0 a reference pressure and κm = (qdRd +qvRv)/(qdcpd +qvcpv +qccpl) the
Poisson constant for the air mixture (dry air, water vapor, cloud water) with qd = ρd/ρ. Rd

and Rv are the gas constants for dry air and water vapor, respectively.
The number of additional equations like Eq. (3) depends on the complexity of the used

microphysical scheme. Furthermore, tracer variables can also be included. The values of5

all relevant physical constants are listed in Table 1.

2.2 Cut cells and spatial discretization

2.2.1 Definition of cut cells

The spatial discretization is done on a Cartesian grid with grid intervals of lengths
∆xi,∆yj ,∆zk and can easily be extended to any orthogonal, logically rectangular struc-10

tured grid (i.e. it has the same logical structure as a regular Cartesian grid) like spherical or
cylindrical coordinates. First, it is described for the Cartesian case. Generalizations are dis-
cussed afterwards. Orography and other obstacles like buildings are presented by cut cells,
which are the result of the intersection of the obstacle with the underlying Cartesian grid. In
Fig. 1 different possible and excluded configurations are shown for the three-dimensional15

case. For the spatial discretization only the six partial face areas and the partial cell volume
and the grid sizes of the underlying Cartesian mesh are used. For a proper representa-
tion the orography is smoothed in such a way that the intersection of a grid cell and the
orography can be described by a single possible non-planar polygon. Or in other words, a
Cartesian cell is divided in at most two parts, a free part and a solid part. For each Carte-20

sian cell, the free face area of the six faces and the free volume area of the cell are stored,
which is the part outside of the obstacle. These values are denoted for the grid cell i, j,k
by FUi−1/2,j,k, FUi+1/2,j,k, FVi,j−1/2,k, FVi,j+1/2,k, FWi,j,k−1/2, FWi,j,k+1/2 and V i,j,k, re-
spectively. In the following, the relative notations FUL and FUR are used, e.g. as shown in
Fig. 3.25

7



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

2.2.2 Spatial discretization

The spatial discretization is formulated in terms of the grid interval length and the face
and volume areas. The variables are arranged on a staggered grid with momentum
V = (U,V,W ) = (ρu,ρv,ρw) at the cell faces and all other variables at the cell center. The
discretization is a mixture of finite volumes and finite differences. In the finite volume context5

the main task is the reconstruction of values and gradients at cell faces from cell centered
values.

The discretization of the advection operator is performed for a generic cell centered scalar
variable φ. In the context of a finite volume discretization point values of the scalar value φ
are needed at the faces of this grid cell. Knowing these face values, the advection operator10

in x-direction is discretized by (FURUFRφR−FULUFLφL)/VC where UF is the discretized
momentum at the corresponding faces. To approximate these values at the faces, a biased
upwind third-order procedure with additional limiting is used (Van Leer, 1994).

Assuming a positive flow in the x-direction, the third order approximation at xi+1/2 is ob-
tained by quadratic interpolation from the three values as shown in Fig. 2. The interpolation15

condition is that the three cell-averaged values are fitted:

φFR = φC +
hC(hL +hC)

(hC +hR)(hL +hC +hR)
(φR−φC) +

hChR

(hL +hC)(hL +hC +hR)
(φC−φL)

= φC +α1(φR−φC) +α2(φC−φL). (6)

To achieve positivity in Eq. (6), we apply state limiting. For this task, Eq. (6) is rewritten in20

slope-ratio formulation

φFR = φC +K(φC−φL) , (7)

where

K = α1
φR−φC

φC−φL
+α2. (8)25
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Then K is replaced by limiter function Ψ and (7) is rewritten as

φFR = φC + Ψ

(
φR−φC

φC−φL

)
(φC−φL) (9)

Ψ(r) = max(0,min[r,min(δ,α1r+α2)]) , δ = 2 (10)5

as proposed by Sweby (1984). This limiter has the property that the unlimited higher order
scheme (Eq. 6) is used as much as possible and it is utilized only then when it is needed. In
the case of Ψ = 0, the scheme degenerates to the simple first-order upwind scheme. The
coefficients α1 and α2 can be computed in advance to minimize the overhead for a non-10

uniform grid. In the case of a uniform grid the coefficients are constant, i.e. they are equal
to 1/3 and 1/6. For a detailed discussion of the benefits of this approach and numerical
experiments also see Hundsdorfer et al. (1995). This procedure is applied in all three grid
directions, where the virtual grid sizes h are defined by

hL = VL/FL (11)15

hC = 0.5VC/(FL + FR) (12)

hR = VR/FR (13)

2.2.3 Momentum

To solve the momentum equation, the non-linear advection term is needed on the face.20

This is achieved by a shifting technique introduced by Hicken et al. (2005) for the incom-
pressible Navier–Stokes-Equation. For each cell two cell-centered values of each of the
three components of the Cartesian velocity vector are computed and transported with the
above advection scheme for a cell-centered scalar value. The obtained tendencies are then
interpolated back to the faces. This approach avoids separate advection routines for the25

momentum components. For a normal cell the shifted values are obtained from the six mo-
mentum face values, whereas for a cut cell the shift operation takes into account the weights

9
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of the faces of the two opposite sides, compare Fig. 3 for the used notation.

ULC =

{
UFL if FUL ≥ FUR

(UFLFUL +UFR(FUR−FUL))/FUR else.
(14)

The interpolation of the cell tendencies TULC, TURC back to a face tendency TUF is ob-
tained by the arithmetic mean of the two tendencies of the two shifted cell components5

originated from the same face. For a cut face the interpolation takes the form (see Fig. 4):

TUF =

(
TURCVL

FUL + FUC
+

TULCVR

FUR + FUC

)
/

(
VL

FUL + FUC
+

VR

FUR + FUC

)
, (15)

The pressure gradient and the Buoyancy term are computed for all faces with standard
difference and interpolation formulas with the grid sizes taken from the underlying Carte-10

sian grid. To approximate the pressure gradient at the interface of two grid cells with only
the pressure values of the two grid cells there is some freedom in choosing the grid size.
Whereas in Adcroft et al. (1997) the grid size is chosen to preserve energy in their model,
we follow Ng et al. (2009) and do not take in to account the cut cell structure. Both versions
are implemented in the ASAM code and it became apparent that the second one is more15

suitable to simulate flows in hydrostatic balance.

2.2.4 Boundary flux distribution near cut cells

Due to small cell volumes around cut cells, boundary fluxes such as sensible and latent
surface heat fluxes (cf. Sec. 3.4) have to be distributed to the surrounding cells to avoid
instability problems because of sharp gradients in the respective scalar fields. For simplicity20

we consider a two-dimensional case in x- and z-direction. An example configuration is
displayed in Fig. 5. The common partial face area of two neighboring cells is greater than
the opposite face (i.e. left vs. right in x- and y-direction, bottom vs. top), e.g. in our case
FUL > FUR and FWT > FWB. For the flux distribution we first define a virtual volume over
the cut cell face FC through25

Vvirt = FChvirt , (16)
10
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where

hvirt = ∆x|nx|+ ∆z|nz| . (17)

Here, (nx,nz)T is the normal unit vector of the cut cell face FC. Then the flux fraction with a
weight of VC/Vvirt is added to the cut cell (cell 2 in Fig. 5). The remaining part that has to be
distributed is weighted by the face values |FUL−FUR|/Fsurf ·VC/(∆x∆y∆z) to the neigh-5

bored cells in x-direction (cell 1 in the example) and |FWB−FWT|/Fsurf ·VC/(∆x∆y∆z)
in z-direction (cell 4 in the example), where Fsurf = |FUL−FUR|+ |FWB−FWT|. With this
approach, only the available information of the considered cut cell (volume and common
face areas with neighboring cells) and not of its surrounding cells is needed. The extension
of this method to the third spatial dimension is done analogously.10

2.3 Time integration

After spatial discretization an ordinary differential equation

y′(t) = F (y(t)) (18)

is obtained that has to be integrated in time (method of lines). To tackle the small time15

step problem connected with tiny cut cells, linear implicit Rosenbrock-W-methods are used
(Knoth, 2006; Jebens et al., 2011; John and Rang, 2010).

A Rosenbrock method has the form

(I− τγJ)ki = τF (yn +
i−1∑

j=1

αijuj) +
i−1∑

j=1

γijkj , i= 1, . . . ,s (19)

yn+1 = yn +
s∑

j=1

αs+1jkj ,20

where yn is a given approximation at y(t) at time tn and subsequently yn+1 at time
tn+1 = tn + τ . In addition, J is an approximation to the Jacobian matrix ∂F/∂y. A Rosen-

11
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brock method is therefore fully described by the two matrices A = (αij), Γ = (γij) and the
parameter γ.

Among the available methods are a second order two stage method after Lanser et al.
(2001).

Sk1 = τF (yn) , (20)5

Sk2 = τF

(
yn +

2

3
k1

)
− 4

3
k1 , (21)

yn+1 = yn +
5

4
k1 +

3

4
k2 , (22)

S = I− γτJ, J≈ F ′(yn) . (23)

with γ = 1
2 + 1

6

√
3 or in matrix form in Table 2.10

Moreover, a new Rosenbrock method was constructed from a low storage three stage
second-order Runge–Kutta method, which is used in split-explicit time integration methods
in the Weather Research and Forecasting (WRF) Model (Skamarock et al., 2008) or in the
Consortium for Small-scale Modeling (COSMO) model (Doms et al., 2011). Its coeffcients
are given in Table 3.15

The above described Rosenbrock-W-methods allow a simplified solution of the linear
systems without losing the order. When J = JA + JB the matrix S can be replaced by
S = (I− γτJA)(I− γτJB). Further simplification can be reached by omitting some parts
of the Jacobian or by replacing of the derivatives by the same derivatives of a simplified op-
erator F̃ (wn). For instance higher-order interpolation formula are replaced by the first-order20

upwind method. The structure of the Jacobian is

J =




∂F ρ
∂ρ

∂F ρ
∂V 0

∂FV
∂ρ

∂FV
∂V

∂FV
∂Θ

0 ∂FΘ
∂V

∂FΘ
∂Θ


 . (24)

A zero block 0 indicates that this block is not included in the Jacobian or is absent. The
derivative with respect to ρ is only taken for the buoyancy term in the vertical momentum25

12
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equation. Note that this type of approximation is the standard approach in the derivation of
the Boussinesq approximation starting from the compressible Euler equations. The matrix
J can be decomposed as

J = JT + JP =




∂F ρ
∂ρ 0 0
∂FV
∂ρ

∂FV
∂V 0

0 0 ∂FΘ
∂Θ


+




0
∂F ρ
∂V 0

0 0 ∂FV
∂Θ

0 ∂FΘ
∂V 0


 (25)

5

or

J = JT + JP =



∂F ρ
∂ρ 0 0

0 ∂FV
∂V 0

0 0 ∂FΘ
∂Θ


+




0
∂F ρ
∂V 0

∂FV
∂ρ 0 ∂FV

∂Θ

0 ∂FΘ
∂V 0


 . (26)

The first part of the splitting JT is called the transport/source part and contains the advec-
tion, diffusion and source terms like Coriolis, curvature, Buoyancy, latent heat, and so on.10

The second matrix JP is called the pressure part and involves the derivatives of the pressure
gradient with respect to the density weighted potential temperature and of the divergence
with respect to momentum of the density and potential temperature equation. The differ-
ence between the two splitting approaches is the insertion of the derivative of the gravity
term in the transport or pressure matrix. The first splitting (Eq. 25) damps sound waves.15

For this splitting the second linear system with the pressure part of the Jacobian can be
reduced to a Poisson-like equation. The second splitting (Eq. 26) damps sound and gravity
waves but the dimension of the pressure system is doubled. Both systems are solved by
preconditioned conjugate gradient (CG)-like methods (Dongarra et al., 1998).

For the transport/source system the Jacobian can be further split into20

JT = JAD + JS (27)

where the matrix JAD is the derivative of the advection and diffusion operator where the
unknowns are coupled between grid cells. The matrix JS assembles the source terms. Here

13
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the coupling is between the unknowns of different components in each grid cell. With this
additional splitting the linear equation

(I− γτJAD− γτJS)∆w =R (28)

is preconditioned from the right with the matrix5

Pr = (I− γτJAD)−1 (29)

and from the left with the matrix

Pl = (I− γτJS)−1. (30)
10

The matrix

Pl(I− γτJAD− γτJS)Pr (31)

can be written in the following form by using the Eisenstat trick (Eisenstat, 1981):

(I− γτPlJAD)Pr = (I+Pl((I− γτJAD) + I))Pr. (32)15

Therefore only the LU-decomposition of the matrix (I− γτJS) has to be stored. The matrix
(I− γτJAD) is inverted by a fixed number of Gauss–Seidel iterations.

The second matrix of the splitting approach writes in case of the first splitting (Eq. 25) as
follows:20

(I− γτJP) =

(
I γτGRADDΘ

γτDIVDV I

)
, (33)

where DV and DΘ are diagonal matrices. GRAD and DIV are matrix representations of the
discrete gradient resp. divergence operator. The entries of the matrix DV are the potential
temperature at cell faces and the entries of the matrix DΘ are the derivative of the pressure25

in the cell center with respect to the density weighted potential temperature. Elimination
14
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of the momentum part gives a Helmholtz equation for the increment of the potential tem-
perature. This equation is solved by a CG-method with a multigrid as a preconditioner. For
the second splitting (Eq. 26) the resulting matrix is twice in dimension and not symmetric
anymore.

As basic iterative solvers BiCGStab is applied for the transport/source system and GM-5

RES for the pressure part (Dongarra et al., 1998). The number of iterations for the two
iterative methods are problem dependent. They increase with increasing time step and are
usually in the range of 2 to 5 iterations.

3 Physical parameterizations

3.1 Smagorinsky subgrid-scale model10

The set of coupled differential equations can be solved for a given flow problem. For sim-
ulating turbulent flows with large eddy simulations, the Euler equations mentioned at the
beginning have to be modified. Within the technique of LES it is necessary to characterize
the unresolved motion. By solving Eqs. (1)–(3) numerically with a grid size, which is above
the size of the smallest turbulent scales, the equations have to be filtered. Large eddy simu-15

lation employs a spatial filter to separate the large scale motion from the small scales. Large
eddies are resolved explicitly by the prognostic Euler equations down to a pre-defined filter-
scale ∆, while smaller scales have to be modeled. Due to the filtering operation, additional
terms that cannot be derived trivially occur in the set of Euler equation.

Nevertheless, to solve the filtered set of equations, it is necessary to parameterize the20

additional subgrid-scale stress terms τij = uiuj−uiuj for momentum and qij = uiqj−uiqj
for potential. Note that τij expresses the effect of subgrid-scale motion on the resolved large
scales and is often represented as an additional viscosity νt with the following formulation:

τij =−2νtSij , (34)
25

15



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

where Sij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
is the strain rate tensor and νt the turbulent eddy viscosity. To

determine the additional eddy viscosity, the standard Smagorinsky subgrid-scale model
(Smagorinsky, 1963) is used:

νt = (Cs∆)2|S| , (35)
5

where ∆ is a length scale, Cs the Smagorinsky coefficient, and using the Einstein summa-

tion notation for standardization |S|=
√

2SijSij . The grid spacing is used as a measure
for the length scale. This standard Smagorinsky subgrid-scale model is widely used in at-
mospheric and engineering applications. The Smagorinsky coefficient Cs has a theoretical
value of about 0.2, as estimated by Lilly (1967). Applying this value to a turbulence-driven10

flow with thermal convection fields results in a good agreement with observations as shown
by Deardorff (1972).

To take stratification effects into account, Lilly (1962) modified the standard Smagorinsky
formulation by changing the eddy viscosity to

νt = (Cs∆)2max
[

0,

(
|S|2

(
1− Ri

Pr

))]1/2

(36)15

with

Ri =

g
θρ

∂θρ
∂z

|S|2
. (37)

Here Ri is the Richardson number and Pr is the turbulent Prandtl number. In a stable20

boundary layer the vertical gradient of the potential temperature is greater than zero (pos-
itive), which leads to a positive Richardson number and, thus, the additional term Ri/Pr
reduces the square of the strain rate tensor and decreases the turbulent eddy viscosity.
Therefore, less turbulent vertical mixing takes place.

The implementation in the ASAM code is accomplished in the main diffusion routine of the25

model. It develops the whole term of ∂/∂xj [ρDSij ] for every time step. The coefficient D
16
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represents Dmom for the momentum and Dpot for the potential subgrid-scale stress. Further
routines describe the computation of Dmom and Dpot the following way:

Dmom = (Cs∆)2|S| . (38)

The potential subgrid-scale stress is related to the Prandtl similarity and can be developed5

by dividing the subgrid-scale stress tensor for momentum by the turbulent Prandtl number
Pr that typically has a value of 1/3 (Deardorff, 1972). The length scale ∆ in the Standard
Smagorinsky formulation is set to the value of grid spacing. However, the cut cell approach
makes it difficult because of tiny and/or anisotrope cells. To overcome this deficit the value
is defined after Scotti et al. (1993):10

∆ = (∆1∆2∆3)1/3f(a1,a2) . (39)

∆ is the grid spacing in orthogonal directions, and a correction function f is applied as
follows:

f(a1,a2) = cosh

[
4

27

(
ln2a1− lna1 lna2 + ln2a2

)]1/2

15

with a1 =
∆1

∆3
, a2 =

∆2

∆3
. (40)

Here a1 and a2 are the ratios of grid spacing in different directions with the assumption, that
∆1 ≤∆2 ≤∆3. For an isotropic grid f = 1.

3.2 Two-moment warm cloud microphysics scheme20

The implemented microphysics scheme is based on the work of Seifert and Beheng (2006).
This scheme explicitly represents two moments (mass and number density) of the hy-
drometeor classes cloud droplets and rain drops. Ice phase hydrometeors are currently
not implemented in the model. Altogether, seven microphysical processes are included:
condensation/evaporation (“COND”), cloud condensation nuclei (CCN) activation to cloud25
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droplets at supersaturated conditions (“ACT”), autoconversion (“AUTO”), self-collection of
cloud droplets (“SCC”), self-collection of rain drops (“SCR”), accretion (“ACC”) and evapo-
ration of rain (“EVAP”):

∂(ρqv)

∂t
+∇ · (ρvqv) =−SCOND−SACT +SEVAP , (41)

∂(ρqc)

∂t
+∇ · (ρvqc) = +SCOND +SACT−SAUTO−SACC , (42)5

∂(ρqr)

∂t
+∇ · (ρvqr) = +SAUTO +SACC−SEVAP , (43)

∂NCCN

∂t
+∇ · (vNCCN) =−SCONDN

−SACTN
+SEVAPN

, (44)

∂Nc

∂t
+∇ · (vNc) = +SCONDN

+SACTN
−SAUTON

−SACCN
−SSCC , (45)

∂Nr

∂t
+∇ · (vNr) = +SAUTON

+SACCN
−SEVAPN

−SSCR . (46)
10

Details on the conversion rates can be found in Seifert and Beheng (2006). Additionally,
a limiter function is used to ensure numerical stability and avoid non-physical negative val-
ues (Horn, 2012). Since there is no saturation adjustment technique in ASAM, the conden-
sation process is taken as an example to demonstrate the physical meaning of the limiter
functions. Considering the available water vapor density ρv and the cloud water density ρc,15

the process of condensation (or evaporation of cloud water, respectively) is forced by the
water vapor density deficit and limited by the available cloud water.

FOR = ρv− (pvsT/Rv) (47)

LIM = ρc (48)

SCOND =
FOR− LIM + (FOR2 + LIM2)1/2

τCOND
(49)20

Here, pvs is the saturation vapor pressure and the relaxation time is set to τCOND = 1 s.
The numerator term is called Fischer–Burmeister function and has originally been used in
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optimization of complementary problems (cf. Kong et al., 2010). A simple model after Horn
(2012) is applied to determine the corresponding changes in the number concentrations
and to ensure a reduction of the cloud droplet number density to zero if there is no cloud
water present. This means that Nc reduces when droplets are getting too small

SCONDN
= min

(
0,C

[
ρc

xmin
−Nc

])
(50)5

and increases when droplets are getting too large

SCONDN
= max

(
0,C

[
ρc

xmax
−Nc

])
, (51)

where xmin and xmax are limiting parameters for cloud water. This ensures that the cloud10

droplet number concentration is within a certain range defined by distribution parameters
in Seifert and Beheng (2006) if condensate is present. A time scale factor of C = 0.01 s−1

controls the speed of this correction and appears to be reasonable for this particular pro-
cess.

3.3 Precipitation15

The sedimentation velocity of raindrops is derived as in the operationally used COSMO
model from the German Weather Service (Doms et al., 2011), There, the following as-
sumptions are made. The precipitation particles are exponentially distributed with respect
to their drop diameter (Marshall–Palmer distribution):

fr(D) =N r
0 exp−λrD (52)20

Here, λr is the slope parameter of the distribution function and N r
0 = 8× 106 m−4 is an

empirically determined distribution parameter. The terminal fall velocity of raindrops is then
assumed to be uniquely related to drop size, which is expressed by the following empirical
function:25

Wf(D) = crD
1/2 (53)
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with cr = 130m1/2 s−1. Finally, the precipitation flux of rainwater can be calculated by

Pr = ρrWf(ρr) =

∞∫

0

m(D)Wf(D)fr(D)dD. (54)

with the raindrop mass5

m(D) = πρWD
3/6 , (55)

where ρW = 1000kg m−3 is the mass density of water. This leads to an expression for the
terminal fall velocity of raindrops in dependence on their density:

Wf(ρr) =−cr
Γ(4,5)

6

(
ρr

πρWN0r

)1/8

. (56)10

This takes place at the tendency equation for the rain water density:

∂(ρqr)

∂t
+∇h · (ρvhqr) +

∂

∂z
(ρqr [w+Wf ]) = Sqr . (57)

3.4 Surface fluxes15

A simple way to parameterize surface heat fluxes is the usage of a constant flux layer.
There, the energy flux is directly given and does not depend on other variables. With the
density potential temperature formulation (Eq. 3), the source term for this quantity has to be
calculated:

∂(ρθρ)

∂t
+

∂

∂xj
(ρθρuj) = ρ

∂θρ
∂t

+ θρ
∂ρ

∂t
+ θρ

∂ρuj
∂xj

+ ρuj
∂θρ
∂xj

20

= ρ

(
∂θρ
∂t

+uj
∂θρ
∂xj

)
+ θρ

(
∂ρ

∂t
+
∂ρuj
∂xj

)

20
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= ρ
dθρ
dt

+ θρSv . (58)

Sv is the source term of water vapor in units of [kg m−3 s−1]. Considering Eq. (A33), adding
the sensible heat flux and neglecting phase changes leads to

∂(ρθρ)

∂t
+

∂

∂xj
(ρθρuj) = Sθρ (59)5

with

Sθρ = ρθρ

(
Sh

T
+
Sv

ρd

[
Rv

Rm
− lnπ

(
Rv

Rm
− cpv

cpml

)])
(60)

where Sh is the heat source in units of [K s−1], Rm =Rd +rvRv and cpml = cpd +rvcpv +rlcpl10

are the gas constant and the specific heat capacity for the air mixture, respectively. The
corresponding surface fluxes in [W m−2] are:

Ssens = Sh
ρdcpml

ρA
, (61)

Slat = SvLv(T )
V

A
. (62)

15

Here, Lv = L00 + (cpv− cpl)T is the latent heat of vaporization, A is the cell surface at the
bottom boundary and V the cell volume.

3.5 Soil model

In order to account for the interaction between land and atmosphere and the high diurnal
variability of the meteorological variables in the surface layer, a soil model has been im-20

plemented into ASAM. In contrast to the constant flux layer model, the computation of the
heat and moisture fluxes are now dependent on radiation, evaporation and the transpira-
tion of vegetated area. Phase changes are not covered yet and intercepted water is only
considered in liquid state.
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The implemented surface flux scheme follows the description of Jiménez et al., 2012,
which is the revised flux scheme used in the WRF model. The surface fluxes of momentum,
heat and moisture are parameterized in the following way, respectively:

τzx = ρCm|vh|u(h) , (63a)

− ρcpw′θ′ = ρcpCh|vh|(θ(h)− θ(z0T )) , (63b)5

− ρLw′q′ = ρLCq|vh|(q(h)− q(z0q)) . (63c)

Cm, Ch and Cq are the bulk transfer coefficients and it is considered that Ch = Cq. In
Jiménez et al. (2012) the bulk transfer coefficients are defined as follows

Cm, h =
k2

ΨMΨM, H
(64)10

with

ΨM ,H = ln

(
z+ z0

z0

)
−φm, h

(
z+ z0

L

)
+φm, h

(z0

L

)
(65)

and φm, h representing the integrated similarity functions. L stands for the Obukhov length15

and k is the von-Kármán-constant. In neutral to highly stable conditions φm, h follows Cheng
and Brutsaert (2005) and in unstable situations the φ-functions follow Fairall et al. (1996).
For further details concerning limitations and restrictions see Jiménez et al. (2012).

The transport of the soil water as a result of hydraulic pressure due to diffusion and
gravity within the soil layers is described by Richard’s equation:20

∂Wsoil,k

∂t
=

∂

∂z

(
Diff

∂Wsoil,k

∂z
+κsoil,k

)
(66)

with the diffusion coefficient

Diff = κsoil,k
∂Ψsoil,k

∂Wsoil,k
. (67)
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Wsoil,k is the volumetric water content in the kth soil layer. Ψsoil stands for the matric po-
tential and κsoil is the hydraulic conductivity. Ψsoil and κsoil are parameterized based on
Van Genuchten (1980):

κsoil = κsat
√
Weff

(
1−

[
1− (Weff)

1
m

]m)2
(68)5

Ψsoil = Ψsat

[
(Weff)

− 1
m − 1

] 1
n (69)

Weff describes the effective soil wetness, which takes a residual water content Wres into
account, restricting the soil from complete desiccation. κsat and Ψsat are the hydraulic con-
ductivity and the matric potential at saturated conditions, respectively. The parameters m10

and n describe the pore distribution (Braun, 2002) with m= 1− 1/n (also see Tables A1
and A2).

Further addition/extraction of soil water is controlled by the percolation of intercepted
water into the ground and the evaporation and transpiration of water from bare soil and
vegetation. The mechanisms implemented are based on the Multi-Layer Soil and Vegetation15

Model TERRA_ML as described in Doms et al. (2011). The evaporation of bare soil is
adjusted to the parameterization proposed by Noilhan and Planton (1989). The variation of
the soil temperature is a result of heat conductivity depending on the soil texture and the
soil water content of the respective soil layer:

∂Tsoil

∂t
=

1

ρc

∂

∂z

[
λ
∂Tsoil

∂z
+EqρwcwT soil

]
. (70)20

Tsoil is the absolute temperature in the kth soil layer in [K], T soil is the mean soil temperature
of two neighboring soil layers. The change in internal energy due to changes in moisture
by the inner soil water flux, evapotranspiration and evaporation from the upper soil layer
and the interception reservoir is treated by the second term in square brackets. The heat25

conductivity λ and the volumetric heat capacity ρc are variables that depend on the soil
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texture. The heat capacity of the soil ρc formulated by Chen and Dudhia (2001) is the sum
of the heat capacity of dry soil (ρ0c0, see Tables A1 and A2), the heat capacity of wet soil
(ρwcw) and the heat capacity of the air within the soil pores (ρaca).

ρc=Wsoilρwcw + (1−Wpv)ρ0c0 + (Wpv−Wsoil)ρaca (71)
5

with Wpv corresponding to the soil pores and ρwcw = 4.18× 106 J m−3 K−1 and ρaca =
1298 J m−3 K−1. The heat conductivity λ is defined after Pielke (1984):

λ=

{
418exp{−Ψlog− 2.7} if Ψlog ≤ 5.1

0.172 if Ψlog > 5.1
(72)

with Ψlog = log10 |100Ψsoil|.10

The topmost layer is exposed to the incoming radiation and thus has the strongest variation
in temperature in comparison to the other soil layers within the ground. The temperature
equation of the first layer is, in addition to the incoming radiation, determined by the latent
and sensible heat flux.

∂Tsoil,1

∂t
=

1

ρc

∂

∂z

[(
λ
∂Tsoil,1

∂z

)
+ ∆Q

]
(73)15

with

∆Q=Qdir +Qdif−σT 4
sfc− cpQSH−LvQLH (74)

Here QLH is the latent heat flux, describing the moisture flux between soil and atmosphere20

as the sum of evaporation and transpiration and QSH is the sensible heat flux. Qdir and Qdif

represents the direct and diffusive irradiation, respectively.

4 Test cases

In this section, we present six example test cases. In five of these cases, orography or ob-
stacles are included to test conservation properties and model accuracy. The first test case25
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is rising heat bubble prescribed in Wicker and Skamarock (1998). The bubble is initially
defined by a radial temperature perturbation, which leads to rising motion due to buoy-
ant forces. Results of a two-dimensional gravity wave simulation (Schaer et al., 2002) are
shown in the second test case. There, the gravity waves are induced by an idealized moun-
tain ridge. Two sub-cases with different atmospheric stabilities and reference temperatures5

are examined. The third case is a sinking cold bubble in a dry environment, from which
a density current develops (Straka et al., 1993). A 1 km tall hill is added at the left side of
the domain so that the resulting current overflows over the mountain. Considering moisture
effects and phase changes, the moist bubble case by Bryan and Fritsch (2002) with the
addition of a mid-air zeppelin (Klein et al., 2009; Jebens et al., 2011) is performed. Besides10

analyzing the flow field in the vicinity of the obstacles, conservation studies regarding total
energy are performed for both cases. Another idealized benchmark case is carried out to
analyze the accuracy of the presented discretization method for cut cells. There, a scalar
field is advected by a radial wind field in an annulus (Berger and Helzel, 2012). This is
also a suitable test for convergence studies by calculating L1 and L∞ error norms since an15

analytical solution can be used for comparison. The last test case is a three-dimensional
simulation study regarding flow dynamics around an idealized mountain and orographic
precipitation by Kunz and Wassermann (2011).

4.1 Dry bubble

A two-dimensional simulation of a rising thermal is presented in Wicker and Skamarock20

(1998). This test case is also used as dry reference case for the moist bubble simulation in
Bryan and Fritsch (2002). The domain is 20 km in horizontal direction and 10 km in vertical
direction with a uniform grid spacing of 125 m. A mean flow of U = 20 m s−1 is applied.
After 1000 s the bubble has been transported through the lateral periodic boundaries and is
again located at the center of the domain. The perturbation field takes the following form:25

θ′ = 2cos2

(
πL

2

)
(75)

25



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

with

L=

√(
x−xc

xr

)2

+

(
z− zc

zr

)2

≤ 1 . (76)

The parameters xc = 10 km, zc = 2 km and xr = zr = 2 km determine the position and ra-
dius of the heat bubble. The atmosphere is in hydrostatic balance and neutrally stable with5

a surface pressure p0 = 1000 hPa and a constant potential temperature θ = 300 K. Results
of this simulation are displayed in Fig. 7. The overall shape is reproduced and comparable
to the reference solution. Slight asymmetries are observed due to lateral transport. How-
ever, it becomes apparent that third-order Runde–Kutta time integration together with a
fifth-order advection scheme produces better results in terms of minimum/maximum values10

and symmetry (cf. Bryan and Fritsch, 2002) than the third-order advection scheme that is
used here.

4.2 2-D mountain gravity waves

In this test case, a flow over a mountain ridge is simulated (Schaer et al., 2002). Skamarock
et al. (2012) A dry stable atmosphere is defined by a constant Brunt–Väisälä frequency15

N , upstream surface temperature T0, surface pressure p0 and a uniform inflow velocity
U . The domain extends 200 km horizontally and 19.5 km vertically with grid spacings of
∆x= 500 m and ∆z = 300 m. The structure of the mountain ridge is represented by a bell
curve shape with superposed variations:

h(x) = h0 exp
(
−[x/a]2

)
cos2 (πx/λ) (77)20

with h0 = 250 m, a= 5 km and λ= 4 km. The simulation result for the steady state is shown
in Fig. 8. There are no non-physical distorted wave patterns and the result agrees well with
the analytical and reference solutions shown in Schaer et al. (2002).
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4.3 Cold bubble with orography interaction

A non-linear test problem is the density current simulation study documented in Straka
et al. (1993). In this case, the computational domain extends from −18 to 18 km in hor-
izontal direction and from 0 to 6.4 km in vertical direction with isotropic grid spacing of
∆x= ∆z = 100 m. Boundary conditions are periodic in x-direction and the free-slip con-5

dition is applied for the top and bottom model boundary. The total integration time is
t= 1800 s. The initial atmosphere is in a dry and hydrostatically balanced state and there
is a horizontally homogeneous environment with θ = 300 K (i.e. neutrally statified). The per-
turbation (cold bubble with negative buoyancy) is defined by a temperature perturbation
of10

T ′ =

{
0.0◦C if L > 1.0,

−15.0◦C(cos[πL] + 1.0)/2 if L≤ 1.0
(78)

where

L=
([

(x−xc)x−1
r

]2
+
[
(z− zc)z−1

r

]2)0.5
(79)

15

and xc = 0.0 km, xr = 4.0 km, zc = 3.0 km and zr = 2.0 km. At first, there is no fixed physical
viscosity turned on like in the original test case (with ν = 75 m2 s−1) since a conservation
test regarding total energy is carried out. For this test, two simulation runs are performed
with a) the above described standard setup and b) a modificated setup where a mountain
is added at the left part of the domain. The mountain follows the ’Witch of Agnesi’ curve:20

h(x) =

{
H/(1 + [(x−xM )/a1]2) if x < xM ,

H/(1 + [(x−xM )/a2]2) if x≥ xM
(80)

with half-width lengths a1 = a2 = 1 km, mountain peak center position xM =−6 km and
mountain height H = 1 km. Fig. 9 shows the temporal evolution of the total energy error for
both simulations. In a dry atmosphere, the total energy is25

Ed = ρ(qdcvdT + gz+ 0.5|v|2) (81)
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Since exact energy conservation is not expected due to the model design, there is some
kind of energy loss for both simulations in the order of 10−3 % at the end of the integration
time. However, this is still acceptable due to the fact that in the test case there are very
sharp gradients in potential temperature and wind speeds. Also, the difference of the total
energy error between the two cases is very small (10−4 %). This means that in this case,5

cut cells do not affect the conservation properties in the model at all. Total mass is always
conserved within machine precision.

Another analysis is carried out by switching on the physical viscosity of ν = 75 m2 s−1

like in Straka et al. (1993). Four simulations are performed with different isotropic grid spac-
ings of 200 m, 100 m, 50 m and 25 m, respectively. The potential temperature field after10

900 s integration time for these spatial resolutions is shown in Fig. 10. Table 4 shows mini-
mum/maximum values of horizontal wind speed and potential temperature at this time. Ska-
marock et al. (2012) pointed out that their solutions show convergence at the 50 m spacing
for this test case (without hill) with a fully compressible nonhydrostatic model. The same
behavior can be observed with ASAM simulations (not shown here), which does also not15

change when the mountain is added to the domain. Despite there is a slight change in max-
imum wind speed, the potential temperature field for the 25 and 50 m resolutions are nearly
identical. Some notable differences in the field can be observed for the 100 m resolution,
which is even more pronounced for the 200 m simulation.

4.4 Moist bubble with mid-air zeppelin20

The moist bubble benchmark case after Bryan and Fritsch (2002) is based on its dry coun-
terpart described in Wicker and Skamarock (1998). There, a hydrostatic and neutrally bal-
anced initial state is realized by a constant potential temperature. A warm perturbation in the
center of the domain leads to the rising thermal. For the present test case, a moist neutral
state can be expressed with the equivalent potential temperature θe and two assumptions:25

the total water mixing ratio rt = rv + rl remains constant and phase changes between wa-
ter vapor and liquid water are exactly reversible. The perturbation field is identical to the
dry bubble test case (Eq. (75) and (76)) The domain is 20 km long in x direction and the
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vertical extent is 10 km. Grid spacing is again isotropic with ∆x= ∆z = 100 m. Periodic
boundary conditions are applied in lateral direction, whereas free-slip conditions are used
for the top and bottom boundary. Again, a total energy test is performed by comparing two
modifications of the present test case: a) A uniform horizontal wind speed of U = 20 m s−1

is applied. With that, the center of the bubble is again located at x= 0 m at t= 1000 s after5

passing through the periodic boundaries. b) In the center of the domain, a zeppelin-shaped
region is cut out and acts as an obstacle for the rising bubble. A similar test like this was
already introduced in Klein et al. (2009) and Jebens et al. (2011). However, their tests were
carried out with the dry bubble, which was also shifted 1 km to the left. The result for the
first case is shown in Fig. 11. The equivalent potential temperature field is very close to the10

benchmark simulation, despite the maximum value of θe is a little bit lower in our case com-
pared to the literature values and there is a slight asymmetry at the top of the thermal due
to lateral transport. The position of the rising thermal for the zeppelin case after t= 1250 s
is shown in Fig. 12. Because of the centered obstacle, the bubble is split up into two parts
and deformed, but still two typical rotors are formed by each bubble and the result remains15

symmetric. When moisture and liquid water are present, the total energy takes the form

Et = ρ
(
[qdcvd + qvcvv + qlcpl]T + qvL00 + gz+ 0.5|v|2

)
(82)

Again, energy is not fully conserved, but the total relative energy error after 2000 s sim-
ulation time (there, in both cases, the bubbles reach the top boundary resulting in zonal
divergence) stays in an acceptable range of 10−4 % (Fig. 13), which is one order of mag-20

nitude smaller than in the cold bubble test case. The difference of the error in total energy
between the zeppelin and the classical case is again very small. So even with very small
cut cells (≈ 1 % of full cell volume) and microphysical conversions there is no indication that
conservation properties are deteriorated. For all cases, total mass is conserved within the
numerical accuracy. After Bryan and Fritsch (2002), both mass and energy conservation25

are required to obtain the benchmark result.
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4.5 Annulus advection test

The test problem reported in Berger and Helzel (2012) describes the advection of a smooth
bump by a radial wind field in an annulus. It is described by the radius of the inner circleR1 =
0.75 and the radius of the outer circle R2 = 1.25 within a rectangular domain [−1.5, 1.5]×
[−1.5, 1.5]. The initial scalar field takes the following form:5

φ= 0.5(erf [5{ϑ−π/3}] + erf [5{2π/3−ϑ}]) , (83)

where ϑ= arctan(y/x). Deriving the velocity field from the stream function ψ(x,y) =
π(R2

2−r2)/5 with r = (x2 +y2)1/2, one full rotation is reached at t= 5 s. Figs. (14a-e) show
the difference fields between the analytical and numerical solution (∆φ) for different mesh
sizes, where N is the amount of grid cells in each spatial direction. Fig. (14f) shows the10

final field after 5 s integration time for N = 400. With greater N , the order of magnitude of
the error reduces for the inner and outer boundary and the intermediate part of the annulus
is less affected. Table 5 shows the results of the convergence study, including error norms,
experimental orders of convergence (EOC) as well as minimum and maximum values of the
tracer field for different mesh sizes. For a fixed time step (0.01, 0.005, 0.0025 and 0.00125 s,15

respectively) the advection scheme used in ASAM together with the Koren limiter shows al-
most second order convergence in the L1 norm, whereas the L∞ norm is nearly first order
accurate (see Fig. 15).

4.6 3-D mountain flow in a moist atmosphere

In this section, a test case described in Kunz and Wassermann (2011) is chosen. It includes20

forced lifting around a 1 km high mountain (see Fig. 16), latent heat release and orographic
precipitation. Compared to the first three test cases, this case is now three-dimensional
and uses a more realistic initial profile, which mimic atmospheric conditions when it comes
to orographically-dominated precipitation in the mountainous area of southwest Germany.
In their work, they used the three-dimensional, non-hydrostatic weather prediction model25

COSMO with terrain-following coordinates to describe the orography of the idealized moun-
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tain. The model setup for the ASAM simulations is as follows: the domain extends 553 km
× 553 km with a horizontal grid spacing of 2.765 km and 70 vertical layers with uniform
spacing of ∆z = 200 m. A Bell-shaped mountain is located at the center of the domain:

h(x,y) =
H

(
x2+y2

a2 + 1
)1.5

(84)

with the mountain peak height H = 1 ,km and the half-width length a= 11 km. Inflow and5

outflow boundary conditions are set according to the initial conditions. A Rayleigh damping
layer above 11 km is applied to suppress gravity wave reflections from the top boundary.
Surface heat fluxes and Coriolis force are turned off. For turbulence parameterization, the
standard Smagorinsky subgrid-scale model is used. Microphysics are parameterized by
the warm (i.e. no ice phase present) two-moment scheme described in section 3.2. Initial10

profiles are obtained by assuming hydrostatic equilibrium, a near-surface temperature Ts =
283.15 K, a constant mean flow U = 10 m s−1, a constant dry static stability Nd = 11×10−3

s−1 and a relative humidity profile, which is constant up to zm = 5 km and rapidly decreases
above this level according to

RH(z) = RHS

[
0.5 +π−1 arctan

(
z− zm

500

)]
(85)15

with the near-surface humidity RHS = 95 % (RH95 case). To compare the results with its dry
counterpart, another simulation with RHS = 50 % is performed (RH50 case). Fig. 17 shows
the wind field at 200 m height around the mountain for both cases. In the nearly saturated
atmosphere, there is a more direct overflow over the mountain, which is caused by the re-
duced stability due to high moisture. These different flow characteristics also affect gravity20

wave structure (Fig. 18). The resulting waves are steeper and have a greater wave length,
which is in agreement with gravity wave theory and the results from Kunz and Wasser-
mann (2011). Most notable differences in the numerical results are discrepancies in vertical
wind strength in the lowest model layer at the windward side the mountain (w ≈ 0.6 m s−1
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in ASAM vs. w ≈ 0.2 m s−1 in COSMO), which can be explained by the different surface
coordinate systems of the models (Cartesian grid with cut cells in ASAM and generalized
terrain-following coordinates in COSMO). Overall, the amplitude of vertical wind is higher
for the resulting gravity waves. Typical patterns of orographic clouds (one cloud upstream of
the mountain and a larger cloud with a high amount of liquid water content (LWC) and pre-5

cipitation that reaches the ground in the lee of the mountain) are also reproduced (Fig. 19).
In this particular case the resulting patterns as well as the cloud and rain water contents are
comparable to the literature results, despite using different coordinate systems and cloud
microphysical schemes.

5 Conclusions and future work10

A detailed description of the three-dimensional, fully compressible, nonhydrostatic All Scale
Atmospheric Model (ASAM) was presented. Main focus of this work was the description of
the cut cell method within a Cartesian grid structure. With this method there is no accuracy
loss near steep slopes, which can occur around mountains using a high spatial resolution or
when obstacles or buildings are embedded. The concept of the spatial discretization of the15

advection operator and a non-linear term in the momentum equation were outlined. A tech-
nique to distribute surface fluxes around cut cells was described. An implicit Rosenbrock
time integration scheme with two splitting approaches of the Jacobian were presented,
which is particularly useful to bypass the small cell problem. With the described scheme,
relatively large time steps are possible. Physical parameterizations (Smagorinsky subgrid20

scale model, two-moment warm microphysics scheme, multi-layer soil model), which are
necessary for performing particular atmospheric simulations, e.g. large eddy simulations
of marine boundary layers, are implemented in ASAM. The model produces good results
when comparing scalar and velocity fields for typical benchmark test cases from the liter-
ature. It was shown that energy conservation is not affected when it comes to interaction25

with the flow in the vicinity of cut cells. However, perfect energy conservation can not be ex-
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pected by design. Accuracy tests show that the EOC is almost second order for the annulus
advection test.

Other model features that could not be presented in the framework of this paper are local
mesh refinement and parallel usage of the model. They will be part of future studies. There,
performance tests for highly parallel computing with a large number of processors will be5

conducted. Furthermore, high-frequency output is desired for statistical data analysis. For
this reason, efficient techniques like adaption of the output on modern parallel visualization
software will be developed. There are no operator splitting techniques used, which leads to
a consistent treatment of new processes with respect to time and to a simple programming
style for the most part.10

Another focus on future model development lies on the model physics, which includes
further testing of current implementations as well as adding new parameterizations, e.g. an
ice microphysics scheme. For the description of turbulence, other (dynamic) Smagorinsky
models (e.g. Kleissl et al., 2006; Porté-Agel et al., 2000) might be better suited for par-
ticular simulations compared to the present model version. Also, a so-called implicit LES15

will be tested and verified. There, no turbulence model is used and the numerics of the
discretization generate unresolved turbulent motions themselves. In this type of LES, the
sensitivity of the thermodynamical formulation (especially in the energy equation) on the
resulting motions has to be analyzed.

ASAM already was and will further be applied for large eddy simulations of urban and20

marine boundary layers. Another ongoing study deals with island effects on boundary layer
modification in the trade wind area exemplified by the island of Barbados, where the island
topography plays a significant role and can be well described by the cut cell method.

Appendix A: Derivation of tendency equations

In this section, a straightforward derivation of the density potential temperature tendency25

equation is given to get the necessary source terms for microphysics, surface fluxes and
precipitation. Therefore, phase changes are allowed and a water vapor source term Sv and
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sedimentation velocity Wf for rain drops are added to the system.

dρ

dt
=−ρ∇ ·v+Sv−Sfall , (A1)

dρv

dt
=−ρv∇ ·v+Sv +Sph , (A2)

dρl

dt
=−ρc∇ ·v−Sph−Sfall , (A3)

dρd

dt
=−ρd∇ ·v . (A4)5

The precipitation term is Sfall = ∂/∂z(ρrWf) with the sedimentation velocity Wf after
Eq. (56). One can rewrite the Eqs. (A2) and (A3) with the mixing ratios rv = ρv/ρd and
rl = ρl/ρd:

drv

dt
=

1

ρd
(Sv +Sph) , (A5)10

drl

dt
=− 1

ρd
(Sph +Sfall) . (A6)

For the sake of simplicity (regarding the following derivations) the liquid water density and
mixing ratio are used with ρl = ρc + ρr or rl = rc + rr. The model however solves the prog-
nostic equations for the cloud water density ρc and rain water density ρr separately.15

A1 Internal energy and absolute temperature

A prognostic equation for the internal energy e is derived from the first law of thermodynam-
ics, cf. Bott (2008, Eq. 31) and Satoh et al. (2008, Eq. B.13):

∂(ρe)

∂t
+∇ · (ρev) =−p∇ ·v+Se−

∂

∂z
(ρrWfel)− ρrWfg , (A7)

20
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and alternatively with the specific enthalpy h in the advection part:

∂(ρe)

∂t
+∇ · (ρhv) = v · ∇p+Se−

∂

∂z
(ρrWfel)− ρrWfg . (A8)

There, the total specific internal energy is

e= h− p
ρ

= (qdcvd + qvcvv + qlcpl)T + qvL00 , (A9)5

and the specific internal energy for liquid water

el = hl = cplT . (A10)

The term Se is related to the water vapor source term:10

Se = hvSv . (A11)

Transforming Eq. (A7) into a tendency equation for the absolute temperature:

e

(
∂ρ

∂t
+∇ · (ρv)

)
+ ρ

(
∂e

∂t
+v · ∇e

)
= RHS(A7)

e(Sv−Sfall) + ρ
de

dt
= RHS(A7)15

e(Sv−Sfall) +
d(ρe)

dt
− edρ

dt
= RHS(A7) (A12)

With Eq. (A9), this leads to

d(ρe)

dt
=

d

dt
([ρdcvd + ρvcvv + ρlcpl]T + ρvL00)

= T

(
cvd

dρd

dt
+ cvv

dρv

dt
+ cpl

dρl

dt

)
+ (ρdcvd + ρvcvv + ρlcpl)

dT

dt
+L00

dρv

dt
20
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− (ρdcvd + ρvcvv + ρlcpl)T∇ ·v+Tcvv(Sv +Sph)−Tcpl(Sph +Sfall)

+ (ρdcvd + ρvcvv + ρlcpl)
dT

dt
−L00(ρv∇ ·v−Sv−Sph)

= − eρ∇ ·v+ (ρdcvd + ρvcvv + ρlcpl)
dT

dt
+T (cvv[Sv +Sph]− cpl[Sph +Sfall])

+L00(Sv +Sph) , (A13)

e
dρ

dt
= e(Sv−Sfall)− eρ∇ ·v . (A14)5

Inserting Eqs. (A13) and (A14) in Eq. (A12):

ρdcvml
dT

dt
= −T (cvv[Sv +Sph]− cpl[Sph +Sfall])−L00(Sv +Sph)− p∇ ·v+Svhv

− ∂

∂z
(ρrWfel)− ρrWfg

= − p∇ ·v+ (hv− cvvT −L00)Sv + (cplT − cvvT −L00)Sph10

− ∂

∂z
(ρrWfel)− ρrWfg . (A15)

Here we define

cvml ≡ cvd + rvcvv + rlcpl . (A16)
15

Rewriting the pressure and elimination of the velocity divergence:

−p∇ ·v = − (ρdRd + ρvRv)T

(
− 1

ρd

dρd

dt

)
= (Rd + rvRv)T

dρd

dt
, (A17)

dρd

dt
=

1

RdT
(
1 + rv

ε

) dp

dt
− pRdT

ε
(
RdT

[
1 + rv

ε

])2

drv

dt
− p

RdT 2
(
1 + rv

ε

) dT

dt

=
ρd

p

dp

dt
− ρd

ε+ rv

drv

dt
− ρd

T

dT

dt
(A18)
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⇒−p∇ ·v =
dp

dt
− ρdRvT

drv

dt
− (ρdRd + ρvRv)

dT

dt

=
dp

dt
−RvT (Sv +Sph)− (ρdRd + ρvRv)

dT

dt
. (A19)

Now this leads to the temperature equation:

ρd(cvml +Rm)
dT

dt
= ρdcpml

dT

dt
=

dp

dt
−RvT (Sv +Sph) + (hv− cvvT −L00)Sv5

+ (cplT − cvvT −L00)Sph−
∂

∂z
(ρrWfel)− ρrWfg , (A20)

With cpv− cvv =Rv, the water vapor source term disappears:

(hv− cvvT −L00−RvT )Sv = (cpvT +L00− cvvT −L00−RvT )Sv = 0 . (A21)
10

Further simplifying:

(cplT − cvvT −RvT −L00)Sph = (cplT − cvvT −RvT −Lv + (cpv− cpl)T )Sph

= −LvSph . (A22)

Rearranging finally leads to the temperature equation15

ρdcpml
dT

dt
=

dp

dt
−LvSph−

∂

∂z
(ρrWfel)− ρrWfg . (A23)

and its logarithmic derivative

dlnT

dt
=
Rm

cpml

dlnp

dt
− Lv

ρdcpmlT
Sph−

1

ρdcpmlT

∂

∂z
(ρrWfel)−

ρrWfg

ρdcpmlT
. (A24)

20
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A2 Potential temperature

A prognostic equation for the (moist) potential temperature is derived here. This is neces-
sary because it appears in the density potential temperature equation later on. Quantities
that contain water vapor and liquid water are marked with a tilde to distinguish them from
their dry equivalents (e.g. dry potential temperature θ).5

The moist potential temperature is

θ̃ =
T

π̃
with π̃ =

(
p

p0

) Rm
cpml

. (A25)

Taking the logarithm of the Exner function π̃ leads to

ln π̃ =
Rm

cpml
ln

(
p

p0

)
. (A26)10

The time derivative is

dln π̃

dt
=
Rv

Rm
ln π̃

drv

dt
− ln π̃

cpml

(
cpv

drv

dt
+ cpl

drl

dt

)
+
Rm

cpml

dlnp

dt

=
Rv

Rm
ln π̃

Sv +Sph

ρd
− ln π̃

(
cpv

cpml

Sv +Sph

ρd
− cpl

cpml

Sph +Sfall

ρd

)
+
Rm

cpml

dlnp

dt

= ln π̃

([
Rv

Rm
− cpv

cpml

]
Sv +Sph

ρd
+

cpl

cpml

Sph +Sfall

ρd

)
+
Rm

cpml

dlnp

dt
15

=
ln π̃

ρd

(
Rv

Rm
− cpv

cpml

)
Sv +

ln π̃

ρd

(
Rv

Rm
+
cpl− cpv

cpml

)
Sph

+
ln π̃

ρd

cpl

cpml
Sfall +

Rm

cpml

dlnp

dt
, (A27)

which leads us to the moist potential temperature equation:

dln θ̃

dt
=

dlnT

dt
− dln π̃

dt
20
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=
Rm

cpml

dlnp

dt
− Lv

ρdcpmlT
Sph−

1

ρdcpmlT

∂

∂z
(ρrWfel)−

ρrWfg

ρdcpmlT

− ln π̃

ρd

(
Rv

Rm
− cpv

cpml

)
Sv−

ln π̃

ρd

(
Rv

Rm
+
cpl− cpv

cpml

)
Sph−

ln π̃

ρd

cpl

cpml
Sfall−

Rm

cpml

dlnp

dt

= − ln π̃

ρd

(
Rv

Rm
− cpv

cpml

)
Sv−

1

ρd

(
Lv

cpmlT
+ ln π̃

[
Rv

Rm
+
cpl− cpv

cpml

])
Sph

− ln π̃

ρd

cpl

cpml
Sfall−

1

ρdcpmlT

∂

∂z
(ρrWfel)−

ρrWfg

ρdcpmlT
. (A28)

5

A3 Density potential temperature

With the definition of the density potential temperature

θρ = θ̃
1 + rv/ε

1 + rv + rl
(A29)

and by using the product rule:10

dθρ
dt

=
1 + rv/ε

1 + rv + rl

dθ̃

dt
+

θ̃

1 + rv + rl

1

ε

drv

dt
− θ̃ 1 + rv/ε

(1 + rv + rl)2

(
drv

dt
+

drl

dt

)

=
θρ

θ̃

dθ̃

dt
+ θρ

(
1

ε+ rv
− 1

1 + rv + rl

)
drv

dt
− θρ

1 + rv + rl

drl

dt
. (A30)

Inserting Eqs. (A28), (A5) and (A6) in Eq. (A30):

dlnθρ
dt

=
dln θ̃

dt
+

(
1

ε+ rv
− 1

1 + rv + rl

)
drv

dt
− 1

1 + rv + rl

drl

dt
15

= − ln π̃

ρd

(
Rv

Rm
− cpv

cpml

)
Sv−

1

ρd

(
Lv

cpmlT
+ ln π̃

[
Rv

Rm
+
cpl− cpv

cpml

])
Sph

− ln π̃

ρd

cpl

cpml
Sfall−

1

ρdcpmlT

∂

∂z
(ρrWfel)−

ρrWfg

ρdcpmlT
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+

(
1

ε+ rv
− 1

1 + rv + rl

)
Sv +Sph

ρd
+

1

1 + rv + rl

Sph +Sfall

ρd
. (A31)

With the relation
1

ε+ rv
=

1
Rd
Rv

+ rv

=
Rv

Rd + rvRv
=
Rv

Rm
(A32)

5

we get the density potential temperature equation sort by source terms:

dθρ
dt

=
θρ
ρd

(
Rv

Rm
− ρd

ρ
− ln π̃

[
Rv

Rm
− cpv

cpml

])
Sv

+
θρ
ρd

(
Rv

Rm
− ln π̃

[
Rv

Rm
+
cpl− cpv

cpml

]
− Lv

cpmlT

)
Sph

+
θρ
ρd

(
ρd

ρ
− cpl

cpml
ln π̃

)
Sfall−

θρ
ρdcpmlT

∂

∂z
(ρrWfel)−

θρρrWfg

ρdcpmlT
. (A33)

10

Appendix B: Soil and land use parameters

Varying ratios of silt, clay and sand significantly change the properties of soil and thus
determine the heat and moisture fluxes of the surface. Accordingly, these different ratios
are referred to specifically defined soil types. In the following Tables A1 and A2 parameters
describing the physical properties of the appropiate soil type are listed. Wpv stands for the15

pore volume of the soil, Wfc is the field capacity describing a threshold value for runoff in
the soil layers. κsat and Ψsat defines the hydraulic conductivity and the matric potential at
saturation, respectively (Eqs. 68 and 69). ρ0c0 is the heat capacity of dry soil as used in
Eq. (71) and b∗ is a parameter for the soil porosity.

Code availability and visualization20

The ASAM code is managed with Git, a distributed revision control and source code
management (SCM) system. To get access to the source code and additional scripts
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for pre- and postprocessing, a registration at the TROPOS Git hosting website https:
//gitorious.tropos.de/ is mandatory. Additional information can be found at the ASAM web-
page (http://asam.tropos.de).

As visualization tool, the free and open source software VisIt (https://wci.llnl.gov/codes/
visit/) is used. VisIt can read over 120 scientific file formats and offers opportunity to include5

own scripts, if necessary. It is available for Unix, Windows and Mac workstations.
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Table 1. Physical constants.

Symbol Quantity Value

p0 Reference pressure 105 Pa
Rd Gas constant for dry air 287 J kg−1 K−1

Rv Gas constant for water vapor 461 J kg−1 K−1

cpd Specific heat capacity at constant pressure for dry air 1004 J kg−1 K−1

cpv Specific heat capacity at constant pressure for water vapor 1885 J kg−1 K−1

cpl Specific heat capacity at constant pressure for liquid water 4186 J kg−1 K−1

cvd Specific heat capacity at constant volume for dry air 717 J kg−1 K−1

cvv Specific heat capacity at constant volume for water vapor 1424 J kg−1 K−1

L00 Latent heat at 0 K 3.148× 106 J kg−1

g Gravitational acceleration 9.81 m s−2

Cs Smagorinsky coefficient 0.2
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Table 2. Coefficient table for ROS2.

0
2/3

−5/4 3/4 −4/3 1
2 + 1
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√
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A-Matrix Γ-Matrix γ
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Table 3. Coefficient table for ROSRK3

0 0
1/3 −11/27 1

11/54 1/2 17/27 −11/4

−17/27 11/4 1
A-Matrix Γ-Matrix γ
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Table 4. Convergence study for the density current test case with a 1 km tall hill. Minimum/maximum
values of horizontal velocity and potential temperature for different grid spacings.

∆x umin (m s−1) umax (m s−1) θmin (K) θmax (K)

200 −25.93 35.64 291.89 300.01
100 −28.87 38.52 290.85 300.01
50 −28.90 38.31 290.71 300.00
25 −28.91 37.89 290.70 300.00
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Table 5. Convergence study for the annulus advection test. L1 error norm (full domain), experimental
order of convergence (EOC), L∞ error norm, minimum and maximum tracer values for different
meshes.

N Domain L1 error EOC L∞ error φmin φmax

50 1.6377× 10−2 – 1.9176× 10−1 −2.0022× 10−3 1.00048
100 4.9439× 10−3 1.73 1.1860× 10−1 −8.3884× 10−4 1.00066
200 1.3653× 10−3 1.86 6.3112× 10−2 −8.5424× 10−13 0.99977
400 3.7196× 10−4 1.88 3.1822× 10−2 −2.6209× 10−16 0.99977
800 9.7302× 10−5 1.93 1.9877× 10−2 −1.0274× 10−12 0.99978
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Table A1. Soil parameters from Doms et al. (2011).

Soil type Wpv [m3 m−3] Wfc [m3 m−3] κsat [m s−1] ρ0c0 [W (m3 K)−1] b∗ a

Sand 0.364 0.196 4970× 10−8 1.28× 106 3.5
Sandy loam 0.445 0.260 943× 10−8 1.35× 106 4.8
Loam 0.455 0.340 531× 10−8 1.42× 106 6.1
Clay loam 0.475 0.370 764× 10−8 1.50× 106 8.6
Clay 0.507 0.463 1.7× 10−8 1.63× 106 10.0
Peat 0.863 0.763 5.8× 10−8 0.58× 106 9.0

a with n= 1/b∗ + 1, see Eqs. (68) and (69).
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Table A2. Soil parameters as used in Pielke (1984) (adapted from McCumber, 1980).

Soil type Wpv [m3 m−3] Ψsat [m] κsat [m s−1] ρ0c0 [W (m3 K)−1] b∗ a

Sand 0.395 −0.121 1760× 10−8 1.47× 106 4.05
Sandy Loam 0.435 −0.218 341× 10−8 1.34× 106 4.90
Loam 0.451 −0.478 70× 10−8 1.21× 106 5.39
Clay loam 0.476 −0.630 25× 10−8 1.23× 106 8.52
Clay 0.482 −0.405 13× 10−8 1.09× 106 11.40
Peat 0.863 −0.356 80× 10−8 0.84× 106 7.75

a with n= 1/b∗ + 1, see Eqs. (68) and (69).
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Fig. 1. Possible configurations for cut cell intersection. The last two cases are excluded.
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Fig. 2. Cut cell with face and volume area information (left) and arrangement of face and cell centered momentum (right).
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Fig. 3. Stencil for third-order approximation.

2.3 Time integration

After spatial discretization an ordinary differential equation

y(t)′ = F (y(t)) (15)

is obtained that has to be integrated in time (method of lines).
To tackle the small time step problem connected with tiny230

cut cells, linear implicit Rosenbrock-W-methods are used
(Jebens et al., 2011).

A Rosenbrock method has the form

(I − τγJ)ki =τF (yn +
i−1∑

j=1

αijuj) +
i−1∑

j=1

βijkj , i= 1, ...,s

(16)

yn+1 =yn +
s∑

j=1

αs+1jkj ,235

where yn is a given approximation at y(t) at time tn and
subsequently yn+1 at time tn+1 = tn+ τ . In addition J is an
approximation to the Jacobian matrix ∂F/∂y. A Rosenbrock
method is therefore fully described by the two matrices A=240

(αij), Γ = (γij) and the parameter γ.
Among the available methods are a second order two stage

method after Lanser et al. (2001).

Sk1 =τF (yn) , (17)

Sk2 =τF

(
yn +

2

3
k1

)
− 4

3
k1 , (18)245

yn+1 =yn +
5

4
k1 +

3

4
k2 , (19)

S =I − γτJ, J ≈ F ′(yn) . (20)

with γ =
1

2
+

1

6

√
3 or in matrix form in Table (2).

0
2/3

−5/4 3/4
−4/3

1
2

+ 1
6

√
3

A-Matrix Γ-Matrix γ

Table 2. Coefficient table for ROS2.

A second method was constructed from a low stor-250

age three stage second-order Runge-Kutta method, which
is used in split-explicit time integration methods in the
Weather Research and Forecasting (WRF) Model (Ska-
marock et al., 2008) or in the Consortium for Small-scale

Figure 1. Possible configurations for cut cell intersection (cases 1–3) for different numbers of face
intersection points (markers). The last two cases are excluded.
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Fig. 1. Possible configurations for cut cell intersection. The last two cases are excluded.
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After spatial discretization an ordinary differential equation

y(t)′ = F (y(t)) (15)

is obtained that has to be integrated in time (method of lines).
To tackle the small time step problem connected with tiny230

cut cells, linear implicit Rosenbrock-W-methods are used
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subsequently yn+1 at time tn+1 = tn+ τ . In addition J is an
approximation to the Jacobian matrix ∂F/∂y. A Rosenbrock
method is therefore fully described by the two matrices A=240
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age three stage second-order Runge-Kutta method, which
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Weather Research and Forecasting (WRF) Model (Ska-
marock et al., 2008) or in the Consortium for Small-scale

Figure 2. Stencil for third-order approximation.
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Figure 3. Cut cell with face and volume area information (left) and arrangement of face and cell
centered momentum (right).
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Figure 4. Two neighbored cut cells with face and volume area information (left) and arrangement of
face and cell centered tendency of momentum (right).
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Figure 5. Example configuration for surface flux distribution around a cut cell. Green shading repre-
sents the solid part of the cells, whereas blue shading is the "virtual volume" normal to the cut cell
face. The total surface flux Qsurf is distributed within the dotted area.
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8 M. Jähn: ASAM v2.7
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Fig. 4. Terminal fall velocity of raindrops after Eq. (52).

Sv is the source term of water vapor in units of [kg m−3 s−1].
Considering Eq. (A33), adding the sensible heat flux and ne-490

glecting phase changes leads to

∂(ρθρ)

∂t
+

∂

∂xj
(ρθρuj) = Sθρ (55)

with

Sθρ = ρθρ

(
Sh
T

+
Sv
ρd

[
Rv
Rm
− lnπ

(
Rv
Rm
− cpv
cpml

)])
(56)

where Sh is the heat source in units of [K s−1], Rm =Rd +495

rvRv and cpml = cpd+rvcpv+rlcpl are the gas constant and
the specific heat capacity for the air mixture, respectively.
The corresponding surface fluxes in [W m−2] are:

Ssens = Sh
ρdcpml
ρA

, (57)

Slat = SvLv(T )
V

A
. (58)500

Here, Lv = L00 +(cpv− cpl)T is the latent heat of vaporiza-
tion, A is the cell surface at the bottom boundary and V the
cell volume.

For the computation of the surface fluxes around cut cells,505

an interpolation technique is used:

∂(ρθρ)

∂t
+

∂

∂xj
(ρθρuj) = Sθρ min

(
V

Vmax
, 1

)
(59)

with the maximum cell volume Vmax = ∆x∆y∆z. For sur-
rounding cells, the missing flux fraction is distributed de-
pending on the left and right cut faces AL and AR in all510

spatial directions:

∂(ρθρ)

∂t
+

∂

∂xLj
(ρθρu

L
j ) = Sθρ

max

(
ALj −ARj
Vmax

, 0

)

Asurf

Vmax−V
Vmax

,

(60)

∂(ρθρ)

∂t
+

∂

∂xRj
(ρθρu

R
j ) = Sθρ

max

(
ARj −ALj
Vmax

, 0

)

Asurf

Vmax−V
Vmax

,

(61)

where the superscripts L and R correspond to the left and515

right neighbor cell, respectively. The total surface is com-
puted by

Asurf = Σ|ALj −ARj | . (62)

3.5 Soil model

In order to account for the interaction between land and at-520

mosphere and the high diurnal variability of the meteorolog-
ical variables in the surface layer, a soil model has been im-
plemented into ASAM. In contrast to the constant flux layer
model, the computation of the heat and moisture fluxes are
now dependent on radiation, evaporation and the transpira-525

tion of vegetated area. Phase changes are not covered yet and
intercepted water is only considered in liquid state.

Two different surface flux schemes are implemented,
following the revised Louis scheme as integrated in the
COSMO model (Doms et al., 2011) and the revised flux530

scheme as used in the WRF model (Jiménez et al., 2012).
The surface fluxes of momentum, heat and moisture are pa-
rameterized in the following way, respectively:

τzx = ρCm|vh|u(h) , (63a)

−ρcpw′θ′ = ρcpCh|vh|(θ(h)− θ(z0T )) , (63b)535

−ρLw′q′ = ρLCq|vh|(q(h)− q(z0q)) . (63c)

Cm,Ch andCq are the bulk transfer coefficients and it is con-
sidered that Ch = Cq . As described in (Doms et al., 2011),
the bulk transfer coefficients are defined as the product of the540

transfer coefficients under neutral conditions Cnm,h and the
stability functions Fm,h depending on the Bulk-Richardson-
Number RiB and roughness length z0.

Cm,h = Cnm,hFm,h (RiB ,z/z0) . (64)

In Jiménez et al. (2012) the bulk transfer coefficients are de-545

fined as follows

Cm,h =
k2

ΨMΨM,H
(65)

with

ΨM,H = ln

(
z+ z0

z0

)
−φm,h

(
z+ z0

L

)
+φm,h

(z0

L

)
(66)

and φm,h representing the integrated similarity functions. L550

stands for the Obukhov length and k is the von-Kármán-
constant. In neutral to highly stable conditions φm,h follows

Figure 6. Terminal fall velocity of raindrops after Eq. (56).
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Figure 7. Results for the dry bubble simulation after Wicker and Skamarock (1998) at t= 1000 s:
contours of perturbation potential temperature (left panel) and vertical velocity (right panel). Solid
(dashed) lines indicate positive (negative) values. Contour intervals are 0.25 K (zero contour omitted)
and 2 m s−1, respectively.
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Figure 8. Steady-state solution for the simulation of the Schaer et al. (2002) test case: contours of
vertical velocity for a) N = 0.01 s−1 and b) N = 0.01871 s−1. Solid (dashed) lines indicate positive
(negative) values. Contour intervals are a) 0.05 m s−1 and b) 0.09355 m s−1, respectively.
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Figure 9. Time series of total energy error for the density current test case with and without the hill.
The error is expressed as 10−4 % of the total energy at the beginning of the simulation.
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Figure 10. Potential temperature field at t = 900 s for the density current test case with an ’Agnesi’
hill on the left side of the domain and for different grid spacings ∆x= ∆z = 200, 100, 50, 25 m (top
to bottom).
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Figure 11. Equivalent potential temperature field for the moist rising bubble test case with back-
ground wind of U = 20 m s−1. Snapshot taken at t= 1000 s simulation time.
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Figure 12. Equivalent potential temperature field for the moist rising bubble test including a zeppelin-
shaped cut area in the center of the domain. Snapshot taken at t= 1250 s simulation time.
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Figure 13. Same as Fig. 9, but for the zeppelin and the lateral transported moist bubble test cases.
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1

Figure 14. Computational meshes and difference scalar fields of φ for a) N = 50, b) N = 100, c)
N = 200, d) N = 400, e) N = 800, f) scalar field for N = 400 after one rotation.
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Figure 15. Convergence study for the annulus advection test. L1 (red) and L-infinity (green) error
norms for the full domain and reference line (blue dotted) for "perfect" 2nd order convergence.
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Figure 16. Computational grid around the mountain for an x-z cut plane at y =1.38 km (cell center).
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Figure 17. Horizontal cross-section of horizontal wind vectors at z = 200 m height for the RH95
case (black) and the RH50 case (grey). Surface grid cells around the mountain in green, circle lines
represent 200 m orography intervals.
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Figure 18. Vertical cross-section (x-z plane) of vertical wind speed for the RH95 case (black) and the
RH50 case (grey). Updrafts in solid lines (0.2 m s−1 contour interval, zero line included), downdrafts
in dashed lines (0.2 m s−1 contour interval, zero line excluded).
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Figure 19. Vertical cross-section (x-z plane) of microphysical properties for the RH95 case. Liquid
water content (shaded), contours of specific cloud water content qc (red-yellow) and specific rain
water content qr (blue).
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