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Abstract

In this work, the fully compressible, three-dimensional, nonhydrostatic atmospheric model
called All Scale Atmospheric Model (ASAM) is presented. A cut cell approach is used to in-
clude obstacles and orography into the Cartesian grid. Discretization is realized by a mixture
of finite differences and finite volumes and a state limiting is applied. Necessary shifting and
interpolation techniques are outlined. The method can be generalized to any other orthog-
onal grids, e.g. lat-lon grid. A linear implicit Rosenbrock time integration scheme ensures
numerical stability around small cells. Analyses of three two-dimensional benchmark test
cases from the literature are carried out to show that the described method produces mean-
ingful results with respect to conservation properties and model accuracy. The test cases
are partly modified in a way that the flow field or scalars interact with cut cells. To make the
model applicable for atmospheric problems, physical parameterizations like a Smagorinsky
subgrid scale model, a two-moment bulk microphysics scheme, precipitation and vertical
surface fluxes by a constant flux layer or a sophisticated soil model are implemented and
described. Results of a three-dimensional simulation are shown, where the flow field around
an idealized mountain with subsequent gravity wave generation, latent heat release, oro-
graphic clouds and precipitation are modeled.

1 Introduction

In this paper we present the numerical solver ASAM (All Scale Atmospheric Model) that
has been developed at the Leibniz Institute for Tropospheric Research (TROPOS), Leipzig.
ASAM was initially designed for CFD (Computational Fluid Dynamics) simulations around
buildings. The model can also be used with spherical or cylindrical grids. Stability problems
with grid convergence in special points (the pole problem) in both grids are handled through
the implicit time integration both for advection and the yet faster gravity and acoustic waves.
For simulating the flow around obstacles, buildings or orography, the cut (or shaved) cell ap-
proach is used. With this attempt one remains within the Cartesian grid and the numerical
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pressure derivative in the vicinity a structure is zero, which is not the case in terrain-following
coordinate systems due to the slope of the lowest cells (Lock et al., 2012). Since this skew-
ness is also reproduced in upper levels, a cut cell model produces reduced or greatly re-
duced errors in comparison models with terrain-following coordinates (Good et al., 2014).
Several techniques have been developed to overcome these non-physical errors associated
with terrain-following grids, especially when spatial scales of three-dimensional models be-
come finer (which leads to a steepening of the model orography). Tripoli and Smith (2014a)
introduced a Variable-Step Topography (VST) surface coordinate system within a nonhy-
drostatic host model. Unlike the traditional discrete-step approach, the depth of a grid box
intersecting with a topographical structure is adjusted to its height, which leads to straight
cut cells. Numerical tests show that this technique produces better results than conventional
approaches for different topography (severe and smooth) types (Tripoli and Smith, 2014b).
In their cases, also the computational costs with the VST approach are reduced because
there is no need of extra functional transform calculations due to metric terms. Steppeler
et al. (2002) derived approximations for z coordinate nonhydrostatic atmospheric models by
using the shaved-element finite-volume method. There, the dynamics are computed in the
cut cell system, whereas the physics computation remains in the terrain-following system.
Using a z-coordinate system also improves the prediction of meteorological parameters like
clouds and rainfall due to a better representation of the atmospheric flow near mountains in
a numerical weather prediction (NWP) model (Steppeler et al., 2006). The cut cell method
is also used in the Ocean–Land–Atmosphere Model (OLAM) (Walko and Avissar, 2008a),
which extends the Regional Atmospheric Modeling System (RAMS) to a global model do-
main. In OLAM, the shaved-cell method is applied to an icosahedral mesh (Walko and
Avissar, 2008b). Yamazaki and Satomura (2008) simulated a two-dimensional flow over dif-
ferent mountain slopes and compared the results of their cut cell model with a model using
terrain-following coordinates. Especially for steep slopes, significant errors were reported
in the terrain-following model. When using cut cells, low-volume cells will be generated. To
avoid instability problems around these small cells, the time integration scheme has to be
adapted. This can be achieved by using semi-implicit or semi-Langrangian methods, for
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example. In ASAM, a linear-implicit Rosenbrock time integration scheme is used (Hairer
and Wanner, 1996). Another option the handle the small cells problem is to merge small
cut cells with neighboring cells in either horizontal or vertical direction (Yamazaki and Sato-
mura, 2010). However, this approach becomes more complicated when applying it to three
spatial dimensions, since a lot of special cases have to be considered. An additional advan-
tage of cut cell methods is the possibility of local mesh refinement around the orography to
reach high near-ground resolutions (Yamazaki and Satomura, 2012).

The here presented model is a developing research code and has a lot of different op-
tions to choose like different numerical methods (e.g. split-explicit Runge–Kutta or partially
implicit peer schemes), number of prognostic variables, physical parameterizations or the
change to spherical grid types. ASAM is a fully parallelized software using the Message
Passing Interface (MPI) and the domain decomposition method. The code is easily portable
between different platforms like Linux, IBM or Mac OS. With these features, large eddy sim-
ulations (LES) with spatial resolutions ofO(1-100 m) can be performed with respect to a suf-
ficiently resolved terrain structure. In previous studies, the model was used to demonstrate
the volume-of-fluid (VOF) method for non-dissipative cloud transport (Hinneburg and Knoth,
2005). ASAM also took part at an intercomparison study of mountain-wave simulations for
idealized and real terrain profiles, where altogether 11 different nonhydrostatic numerical
models were compared (Doyle et al., 2011). A partially implicit peer method is presented in
Jebens et al. (2011) in order to overcome the small cell problem around orography when
using cut cells. The model was recently used for a study of dynamic flow structures in
a turbulent urban environment of a building-resolving resolution (König, 2013). There, the
implementation of a dynamic Smagorinsky subgrid scale model is tested for a convective
atmospheric boundary layer and an inflow generation approach that produces a turbulent
flow field is presented.

A separately developed LES model at TROPOS is called ASAMgpu (Horn, 2012). It
includes some basic features of the ASAM code and runs on graphics processing units
(GPUs), which enables very time-efficient computations and post-processing. However, this
model is not as adjustable as the original ASAM code and the inclusion of three-dimensional
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orographical structures is not implemented so far. ASAMgpu was applied for a study of heat
island effects on vertical mixing of aerosols by comparing the results of large eddy simula-
tions with wind and aerosol lidar observations (Engelmann et al., 2011).

This paper is structured as follows. The next section deals with a general description
of the model. It includes the basic equations that are solved numerically and the used
energy variable. Also, the cut cell approach and spatial discretization as well as the time
integration scheme are described. This approach can be extended to other orthogonal grids
like the lat-lon grid, which is also prescribed in this section. Section 3 deals with the model
physics, including a subgrid scale model, a two-moment microphysics scheme and surface
flux parameterizations. Results of different 2D and 3D benchmark test cases are shown in
Section 4. Two "classical" test examples have been chosen and modified so that cut cells
are included and interaction within these cells are guaranteed. The first one is a falling
cold bubble with a developing density current (Straka et al., 1993) but with a 1 km high
mountain on the left part of the domain. The second case is the moist bubble benchmark
case reported by Bryan and Fritsch (2002). The bubble will rise and interact with a zeppelin-
shaped cut area in the center of the domain. For both test cases, energy conservation tests
are carried out. Another two-dimensional case by Berger and Helzel (2012) is presented to
test the accuracy of the cut cell method by advecting a smooth bump in a radial wind field in
an annulus. For the last test case, a three-dimensional mountain overflow with subsequent
orographic cloud generation and precipitation is simulated (Kunz and Wassermann, 2011).
Concluding remarks and future work are in the final section.

2 Description of the All Scale Atmospheric Model

2.1 Governing equations

The flux-form compressible Euler equations for the atmosphere are

∂ρ

∂t
+∇ · (ρv) = 0 (1)
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∂(ρv)

∂t
+∇ · (ρvv) =−∇ · τ −∇p− ρg− 2Ω× (ρv) (2)

∂(ρφ)

∂t
+∇ · (ρvφ) =−∇ · qφ +Sφ (3)

where ρ is the total air density, v = (u,v,w)T the three-dimensional velocity vector, p the
air pressure, g the gravitational acceleration, Ω the angular velocity vector of the earth,
φ a scalar quantity and Sφ the sum of its corresponding source terms. The subgrid scale
terms are τ for momentum and qφ for a given scalar.

The energy equation in the form of Eq. (3) is represented by the (dry) potential temper-
ature θ. In the presence of water vapor and cloud water, this quantity is replaced by the
density potential temperature θρ (Emanuel, 1994) as a more generalized form of the virtual
potential temperature θv:

θρ = θ

(
1 + qv

[
Rv

Rd
− 1

]
− qc

)
(4)

where the equation of state can be expressed as follows:

p= ρRdθρ

(
p

p0

)κm

(5)

In the above two equations θ = T (p0/p)κm is the potential temperature, qv = ρv/ρ is the
mass ratio of water vapor in the air (specific humidity), qc = ρc/ρ is the mass ratio of cloud
water in the air, p0 a reference pressure and κm = (qdRd +qvRv)/(qdcpd +qvcpv +qccpl) the
Poisson constant for the air mixture (dry air, water vapor, cloud water) with qd = ρd/ρ. Rd

and Rv are the gas constants for dry air and water vapor, respectively.
The number of additional equations like Eq. (3) depends on the complexity of the used

microphysical scheme. Furthermore, tracer variables can also be included. The values of
all relevant physical constants are listed in Table 1.

6



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

2.2 Cut cells and spatial discretization

2.2.1 Definition of cut cells

The spatial discretization is done on a Cartesian grid with grid intervals of lengths
∆xi,∆yj ,∆zk and can easily be extended to any logically orthogonal rectangular grid (i.e.
it has the same logical structure as a regular Cartesian grid) like spherical or cylindrical
coordinates (see Section 2.4). First, it is described for the Cartesian case. Generaliza-
tions are discussed afterwards. Orography and other obstacles like buildings are presented
by cut cells, which are the result of the intersection of the obstacle with the underlying
Cartesian grid. In Fig. 1 different possible and excluded configurations are shown for the
three-dimensional case. For the spatial discretization only the six partial face areas and
the partial cell volume and the grid sizes of the underlying Cartesian mesh are used. For
a proper representation the orography is smoothed in such a way that the intersection of a
grid cell and the orography can be described by a single possible non-planar polygon. Or
in other words, a Cartesian cell is divided in at most two parts, a free part and a solid part.
For each Cartesian cell, the free face area of the six faces and the free volume area of the
cell are stored, which is the part outside of the obstacle. These values are denoted for the
grid cell i, j,k by FUi−1/2,j,k, FUi+1/2,j,k, FVi,j−1/2,k, FVi,j+1/2,k, FWi,j,k−1/2, FWi,j,k+1/2

and V i,j,k, respectively. In the following, the relative notations FUL and FUR are used, e.g.
as shown in Fig. 3.

2.2.2 Spatial discretization

The spatial discretization is formulated in terms of the grid interval length and the face
and volume areas. The variables are arranged on a staggered grid with momentum
V = (U,V,W ) = (ρu,ρv,ρw) at the cell faces and all other variables at the cell center. The
discretization is a mixture of finite volumes and finite differences. In the finite volume context
the main task is the reconstruction of values and gradients at cell faces from cell centered
values.
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The discretization of the advection operator is performed for a generic cell centered scalar
variable φ. In the context of a finite volume discretization point values of the scalar value φ
are needed at the faces of this grid cell. Knowing these face values, the advection operator
in x-direction is discretized by (FURUFRφR−FULUFLφL)/VC where UF is the discretized
momentum at the corresponding faces. To approximate these values at the faces, a biased
upwind third-order procedure with additional limiting is used (Van Leer, 1994).

Assuming a positive flow in the x-direction, the third order approximation at xi+1/2 is ob-
tained by quadratic interpolation from the three values as shown in Fig. 2. The interpolation
condition is that the three cell-averaged values are fitted:

φFR = φC +
hC(hL +hC)

(hC +hR)(hL +hC +hR)
(φR−φC) +

hChR

(hL +hC)(hL +hC +hR)
(φC−φL)

= φC +α1(φR−φC) +α2(φC−φL). (6)

To achieve positivity in Eq. (6), we apply state limiting. For this task, Eq. (6) is rewritten in
slope-ratio formulation

φFR = φC +K(φC−φL) , (7)

where

K = α1
φR−φC

φC−φL
+α2. (8)

Then K is replaced by limiter function Ψ and (7) is rewritten as

φFR = φC + Ψ(
φR−φC

φC−φL
)(φC−φL) (9)

Ψ(r) = max(0,min[r,min(δ,α1r+α2)]) , δ = 2 (10)
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as proposed by Sweby (1984). This limiter has the property that the unlimited higher order
scheme (Eq. 6) is used as much as possible and it is utilized only then when it is needed. In
the case of Ψ = 0, the scheme degenerates to the simple first-order upwind scheme. The
coefficients α1 and α2 can be computed in advance to minimize the overhead for a non-
uniform grid. In the case of a uniform grid the coefficients are constant, i.e. they are equal
to 1/3 and 1/6. For a detailed discussion of the benefits of this approach and numerical
experiments also see Hundsdorfer et al. (1995). This procedure is applied in all three grid
directions, where the virtual grid sizes h are defined by

hL = VL/FL (11)

hC = 0.5VC/(FL + FR) (12)

hR = VR/FR (13)

2.2.3 Momentum

To solve the momentum equation, the non-linear advection term is needed on the face.
This is achieved by a shifting technique introduced by Hicken et al. (2005) for the incom-
pressible Navier–Stokes-Equation. For each cell two cell-centered values of each of the
three components of the Cartesian velocity vector are computed and transported with the
above advection scheme for a cell-centered scalar value. The obtained tendencies are then
interpolated back to the faces. This approach avoids separate advection routines for the
momentum components. A version with only cell centered velocity components for advec-
tion and back interpolation has also been implemented but seems to be more diffusive.
Thus, the presented approach is more favorable. For a normal cell the shifted values are
obtained from the six momentum face values, whereas for a cut cell the shift operation takes
into account the weights of the faces of the two opposite sides, compare Fig. 3 for the used
notation.

ULC =

{
UFL if FUL ≥ FUR

(UFLFUL +UFR(FUR−FUL))/FUR else.
(14)
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The interpolation of the cell tendencies TULC, TURC back to a face tendency TUF is ob-
tained by the arithmetic mean of the two tendencies of the two shifted cell components
originated from the same face. For a cut face the interpolation takes the form (see Fig. 4):

TUF =

(
TURCVL

FUL + FUC
+

TULCVR

FUR + FUC

)
/

(
VL

FUL + FUC
+

VR

FUR + FUC

)
, (15)

The pressure gradient and the Buoyancy term are computed for all faces with standard
difference and interpolation formulas with the grid sizes taken from the underlying Carte-
sian grid. To approximate the pressure gradient at the interface of two grid cells with only
the pressure values of the two grid cells there is some freedom in choosing the grid size.
Whereas in Adcroft et al. (1997) the grid size is chosen to preserve energy in their model,
we follow Ng et al. (2009) and do not take in to account the cut cell structure. Both versions
are impelemted in the ASAM code and it became apparent that the second one is more
suitable to simulate flows in hydrostatic balance.

2.2.4 Flux distribution

For a cut cell a computed boundary flux is distributed to the surrounding cells whose com-
mon partial face area is greater than the opposite face (left vs. right, bottom vs. top), see Fig.
5 for the used abbreviation in the following. First we define a virtual volume over the cut cell
face FC through VVirt = FChV irt , where hV irt = ∆x|nx|+∆x|ny|+∆z|nz| and (nx,ny,nz)T

is the unit normal of the cut face. Then the fraction VC/VVirt is added to the cut cell. The
remaining part is distributed according to the values |FUL−FUR| and |FWB−FWT| to the
neighbored cells.

2.3 Time integration

After spatial discretization an ordinary differential equation

y′(t) = F (y(t)) (16)
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is obtained that has to be integrated in time (method of lines). To tackle the small time
step problem connected with tiny cut cells, linear implicit Rosenbrock-W-methods are used
(Knoth, 2006; Jebens et al., 2011; John and Rang, 2010).

A Rosenbrock method has the form

(I− τγJ)ki = τF (yn +
i−1∑

j=1

αijuj) +
i−1∑

j=1

γijkj , i= 1, . . . ,s (17)

yn+1 = yn +
s∑

j=1

αs+1jkj ,

where yn is a given approximation at y(t) at time tn and subsequently yn+1 at time
tn+1 = tn + τ . In addition, J is an approximation to the Jacobian matrix ∂F/∂y. A Rosen-
brock method is therefore fully described by the two matrices A = (αij), Γ = (γij) and the
parameter γ.

Among the available methods are a second order two stage method after Lanser et al.
(2001).

Sk1 = τF (yn) , (18)

Sk2 = τF

(
yn +

2

3
k1

)
− 4

3
k1 , (19)

yn+1 = yn +
5

4
k1 +

3

4
k2 , (20)

S = I− γτJ, J≈ F ′(yn) . (21)

with γ = 1
2 + 1

6

√
3 or in matrix form in Table 2.

Moreover, a new method was constructed from a low storage three stage second-order
Runge–Kutta method, which is used in split-explicit time integration methods in the Weather
Research and Forecasting (WRF) Model (Skamarock et al., 2008) or in the Consortium for
Small-scale Modeling (COSMO) model (Doms et al., 2011). Its coeffcients are given in
Table 3.
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The above described Rosenbrock-W-methods allow a simplified solution of the linear
systems without losing the order. When J = JA + JB the matrix S can be replaced by
S = (I− γτJA)(I− γτJB). Further simplification can be reached by omitting some parts
of the Jacobian or by replacing of the derivatives by the same derivatives of a simplified op-
erator F̃ (wn). For instance higher-order interpolation formula are replaced by the first-order
upwind method. The structure of the Jacobian is

J =




∂F ρ
∂ρ

∂F ρ
∂V 0

∂FV
∂ρ

∂FV
∂V

∂FV
∂Θ

0 ∂FΘ
∂V

∂FΘ
∂Θ


 . (22)

A zero block 0 indicates that this block is not included in the Jacobian or is absent. The
derivative with respect to ρ is only taken for the buoyancy term in the vertical momentum
equation. Note that this type of approximation is the standard approach in the derivation of
the Boussinesq approximation starting from the compressible Euler equations. The matrix
J can be decomposed as

J = JT + JP =




∂F ρ
∂ρ 0 0
∂FV
∂ρ

∂FV
∂V 0

0 0 ∂FΘ
∂Θ


+




0
∂F ρ
∂V 0

0 0 ∂FV
∂Θ

0 ∂FΘ
∂V 0


 (23)

or

J = JT + JP =



∂F ρ
∂ρ 0 0

0 ∂FV
∂V 0

0 0 ∂FΘ
∂Θ


+




0
∂F ρ
∂V 0

∂FV
∂ρ 0 ∂FV

∂Θ

0 ∂FΘ
∂V 0


 . (24)

The first part of the splitting JT is called the transport/source part and contains the advec-
tion, diffusion and source terms like Coriolis, curvature, Buoyancy, latent heat, and so on.
The second matrix JP is called the pressure part and involves the derivatives of the pressure
gradient with respect to the density weighted potential temperature and of the divergence
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with respect to momentum of the density and potential temperature equation. The differ-
ence between the two splitting approaches is the insertion of the derivative of the gravity
term in the transport or pressure matrix. The first splitting (Eq. 23) damps sound waves.
For this splitting the second linear system with the pressure part of the Jacobian can be
reduced to a Poisson-like equation. The second splitting (Eq. 24) damps sound and gravity
waves but the dimension of the pressure system is doubled. Both systems are solved by
preconditioned conjugate gradient (CG)-like methods.

For the transport/source system the Jacobian can be further split into

JT = JAD + JS (25)

where the matrix JAD is the derivative of the advection and diffusion operator where the
unknowns are coupled between grid cells. The matrix JS assembles the source terms. Here
the coupling is between the unknowns of different components in each grid cell. With this
additional splitting the linear equation

(I− γτJAD− γτJS)∆w =R (26)

is preconditioned from the right with the matrix

Pr = (I− γτJAD)−1 (27)

and from the left with the matrix

Pl = (I− γτJS)−1. (28)

The matrix

Pl(I− γτJAD− γτJS)Pr (29)

can be written in the following form by using the Eisenstat trick (Eisenstat, 1981):

(I− γτPlJAD)Pr = (I+Pl((I− γτJAD) + I))Pr. (30)
13
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Therefore only the LU-decomposition of the matrix (I− γτJS) has to be stored. The matrix
(I− γτJAD) is inverted by a fixed number of Gauss–Seidel iterations.

The second matrix of the splitting approach writes in case of the first splitting (Eq. 23) as
follows:

(I− γτJP) =

(
I γτGRADDΘ

γτDIVDV I

)
, (31)

where DV and DΘ are diagonal matrices. GRAD and DIV are matrix representations of the
discrete gradient resp. divergence operator. The entries of the matrix DV are the potential
temperature at cell faces and the entries of the matrix DΘ are the derivative of the pressure
in the cell center with respect to the density weighted potential temperature. Elimination
of the momentum part gives a Helmholtz equation for the increment of the potential tem-
perature. This equation is solved by a CG-method with a multigrid as a preconditioner. For
the second splitting (Eq. 24) the resulting matrix is twice in dimension and not symmetric
anymore.

As basic iterative solvers BiCGStab is applied for the transport/source system and GM-
RES for the pressure part (Dongarra et al., 1998). The number of iterations for the two
iterative methods are problem dependent. They increase with increasing time step and are
usually in the range of 2 to 5 iterations.

Furthermore, different types of split-explicit time integration methods are available, which
are especially suitable for simulations without orography methods like large eddy simula-
tions over flat water surfaces (Wensch et al., 2009; Knoth and Wensch, 2014).

2.4 Further grids

The discretization is also valid for grids described by cylindrical and spherical coordinates
with a suitable choice for the computation of the face and volume area. For a lat-lon grid on
the sphere the weights have to be computed through

FW = rC∆ϕ∆z (32a)
14
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FE = rC∆ϕ∆z (32b)

FS = rC∆λcosϕS∆z (32c)

FN = rC∆λcosϕN∆z (32d)

FB = r2
B∆λ∆ϕcosϕC (32e)

FT = r2
T∆λ∆ϕcosϕC (32f)

VC = r2
C∆λ∆ϕcosϕC∆z. (32g)

In the formulas above ∆ϕ, ∆λ, and ∆z are the grid increments, rB , rC , and rT are the
radi of the bottom, central and top layer of a grid cell, the same for ϕS , ϕC and ϕS of the
latitude in the south north direction. In addition a curvature term has to be discretized for the
momentum components. No further changes are necessary in the algorithm. The stability
problems near the poles are circumvented again through the implicit time integration.

3 Physical parameterizations

3.1 Smagorinsky subgrid-scale model

The set of coupled differential equations can be solved for a given flow problem by using
mathematical methods. For simulating turbulent flows with large eddy simulation, the Euler
equations mentioned above have to be modified. The main purpose for LES is to reduce
the computational simulation costs. For that, it is necessary to characterize the unresolved
motion. By solving Eqs. (1)–(3) numerically with a grid size, which is above the size of the
smallest turbulent scales, the equations have to be filtered. Large eddy simulation employs
a spatial filter to separate the large scale motion from the small scales. Large eddies are
resolved explicitly by the prognostic Euler equations down to a pre-defined filter-scale ∆,
while smaller scales have to be modeled. Due to the filtering operation, additional terms
that cannot be derived trivially occur in the set of Euler equation.
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Nevertheless, to solve the filtered set of equations, it is necessary to parameterize the
additional subgrid-scale stress terms τij = uiuj−uiuj for momentum and qij = uiqj−uiqj
for potential. Note that τij expresses the effect of subgrid-scale motion on the resolved large
scales and is often represented as an additional viscosity νt with the following formulation:

τij =−2νtSij , (33)

where Sij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
is the strain rate tensor and νt the turbulent eddy viscosity. To

determine the additional eddy viscosity, the standard Smagorinsky subgrid-scale model
(Smagorinsky, 1963) is used:

νt = (Cs∆)2|S| , (34)

where ∆ is a length scale, Cs the Smagorinsky coefficient, and using the Einstein summa-

tion notation for standardization |S|=
√

2SijSij . The grid spacing is used as a measure
for the length scale. This standard Smagorinsky subgrid-scale model is widely used in at-
mospheric and engineering applications. The Smagorinsky coefficient Cs has a theoretical
value of about 0.2, as estimated by Lilly (1967). Applying this value to a turbulence-driven
flow with thermal convection fields results in a good agreement with observations as shown
by Deardorff (1972).

To take stratification effects into account, the standard Smagorinsky formulation is modi-
fied by changing the eddy viscosity to

νt = (Cs∆)2max
[

0,

(
|S|2

(
1− Ri

Pr

))]1/2

(35)

with

Ri =

g
θρ

∂θρ
∂z

|S|2
. (36)

16



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Here Ri is the Richardson number and Pr is the turbulent Prandtl number. In a stable
boundary layer the vertical gradient of the potential temperature is greater than zero (pos-
itive), which leads to a positive Richardson number and, thus, the additional term Ri/Pr
reduces the square of the strain rate tensor and decreases the turbulent eddy viscosity.
Therefore, less turbulent vertical mixing takes place.

The implementation in the ASAM code is accomplished in the main diffusion routine of the
model. It develops the whole term of ∂/∂xj [ρDSij ] for every time step. The coefficient D
represents Dmom for the momentum and Dpot for the potential subgrid-scale stress. Further
routines describe the computation of Dmom and Dpot the following way:

Dmom = (Cs∆)2|S| . (37)

The potential subgrid-scale stress is related to the Prandtl similarity and can be developed
by dividing the subgrid-scale stress tensor for momentum by the turbulent Prandtl number
Pr that typically has a value of 1/3 (Deardorff, 1972). The length scale ∆ in the Standard
Smagorinsky formulation is set to the value of grid spacing. However, the cut cell approach
makes it difficult because of tiny and/or anisotrope cells. To overcome this deficit the value
is defined after Scotti et al. (1993):

∆ = (∆1∆2∆3)1/3f(a1,a2) . (38)

∆ is the grid spacing in orthogonal directions, and a correction function f is applied as
follows:

f(a1,a2) = cosh

[
4

27

(
ln2a1− lna1 lna2 + ln2a2

)]1/2

with a1 =
∆1

∆3
, a2 =

∆2

∆3
. (39)

Here a1 and a2 are the ratios of grid spacing in different directions with the assumption, that
∆1 ≤∆2 ≤∆3. For an isotropic grid f = 1.
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3.2 Two-moment warm cloud microphysics scheme

The implemented microphysics scheme is based on the work of Seifert and Beheng (2006).
This scheme explicitly represents two moments (mass and number density) of the hy-
drometeor classes cloud droplets and rain drops. Ice phase hydrometeors are currently
not implemented in the model. Altogether, seven microphysical processes are included:
condensation/evaporation (“COND”), cloud condensation nuclei (CCN) activation to cloud
droplets at supersaturated conditions (“ACT”), autoconversion (“AUTO”), self-collection of
cloud droplets (“SCC”), self-collection of rain drops (“SCR”), accretion (“ACC”) and evapo-
ration of rain (“EVAP”):

∂(ρqv)

∂t
+∇ · (ρvqv) =−SCOND−SACT +SEVAP , (40)

∂(ρqc)

∂t
+∇ · (ρvqc) = +SCOND +SACT−SAUTO−SACC , (41)

∂(ρqr)

∂t
+∇ · (ρvqr) = +SAUTO +SACC−SEVAP , (42)

∂NCCN

∂t
+∇ · (vNCCN) =−SCONDN

−SACTN
+SEVAPN

, (43)

∂Nc

∂t
+∇ · (vNc) = +SCONDN

+SACTN
−SAUTON

−SACCN
−SSCC , (44)

∂Nr

∂t
+∇ · (vNr) = +SAUTON

+SACCN
−SEVAPN

−SSCR . (45)

Details on the conversion rates can be found in Seifert and Beheng (2006). Additionally,
a limiter function is used to ensure numerical stability and avoid non-physical negative val-
ues (Horn, 2012). Since there is no saturation adjustment technique in ASAM, the conden-
sation process is taken as an example to demonstrate the physical meaning of the limiter
functions. Considering the available water vapor density ρv and the cloud water density ρc,
the process of condensation (or evaporation of cloud water, respectively) is forced by the
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water vapor density deficit and limited by the available cloud water.

FOR = ρv− (pvsT/Rv) (46)

LIM = ρc (47)

SCOND =
FOR− LIM + (FOR2 + LIM2)1/2

τCOND
(48)

Here, pvs is the saturation vapor pressure and the relaxation time is set to τCOND = 1 s.
The numerator term is called Fischer–Burmeister function and has originally been used in
optimization of complementary problems (cf. Kong et al., 2010). A simple model after Horn
(2012) is applied to determine the corresponding changes in the number concentrations
and to ensure a reduction of the cloud droplet number density to zero if there is no cloud
water present. This means that Nc reduces when droplets are getting too small

SCONDN
= min

(
0,C

[
ρc

xmin
−Nc

])
(49)

and increases when droplets are getting too large

SCONDN
= max

(
0,C

[
ρc

xmax
−Nc

])
, (50)

where xmin and xmax are limiting parameters for cloud water. This ensures that the cloud
droplet number concentration is within a certain range defined by distribution parameters
in Seifert and Beheng (2006) if condensate is present. A time scale factor of C = 0.01 s−1

controls the speed of this correction and appears to be reasonable for this particular pro-
cess.

3.3 Precipitation

The sedimentation velocity of raindrops is derived as in the operationally used COSMO
model from the German Weather Service (Doms et al., 2011), There, the following as-
sumptions are made. The precipitation particles are exponentially distributed with respect
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to their drop diameter (Marshall–Palmer distribution):

fr(D) =N r
0 exp−λrD (51)

Here, λr is the slope parameter of the distribution function and N r
0 = 8× 106 m−4 is an

empirically determined distribution parameter. The terminal fall velocity of raindrops is then
assumed to be uniquely related to drop size, which is expressed by the following empirical
function:

Wf(D) = crD
1/2 (52)

with cr = 130m1/2 s−1. Finally, the precipitation flux of rainwater can be calculated by

Pr = ρrWf(ρr) =

∞∫

0

m(D)Wf(D)fr(D)dD. (53)

with the raindrop mass

m(D) = πρWD
3/6 , (54)

where ρW = 1000kg m−3 is the mass density of water. This leads to an expression for the
terminal fall velocity of raindrops in dependence on their density:

Wf(ρr) =−cr
Γ(4,5)

6

(
ρr

πρWN0r

)1/8

. (55)

This takes place at the tendency equation for the rain water density:

∂(ρqr)

∂t
+∇h · (ρvhqr) +

∂

∂z
(ρqr [w+Wf ]) = Sqr . (56)
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3.4 Surface fluxes

A simple way to parameterize surface heat fluxes is the usage of a constant flux layer.
There, the energy flux is directly given and does not depend on other variables. With the
density potential temperature formulation (Eq. 3), the source term for this quantity has to be
calculated:

∂(ρθρ)

∂t
+

∂

∂xj
(ρθρuj) = ρ

∂θρ
∂t

+ θρ
∂ρ

∂t
+ θρ

∂ρuj
∂xj

+ ρuj
∂θρ
∂xj

= ρ

(
∂θρ
∂t

+uj
∂θρ
∂xj

)
+ θρ

(
∂ρ

∂t
+
∂ρuj
∂xj

)

= ρ
dθρ
dt

+ θρSv . (57)

Sv is the source term of water vapor in units of [kg m−3 s−1]. Considering Eq. (A33), adding
the sensible heat flux and neglecting phase changes leads to

∂(ρθρ)

∂t
+

∂

∂xj
(ρθρuj) = Sθρ (58)

with

Sθρ = ρθρ

(
Sh

T
+
Sv

ρd

[
Rv

Rm
− lnπ

(
Rv

Rm
− cpv

cpml

)])
(59)

where Sh is the heat source in units of [K s−1], Rm =Rd +rvRv and cpml = cpd +rvcpv +rlcpl

are the gas constant and the specific heat capacity for the air mixture, respectively. The
corresponding surface fluxes in [W m−2] are:

Ssens = Sh
ρdcpml

ρA
, (60)

Slat = SvLv(T )
V

A
. (61)
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Here, Lv = L00 + (cpv− cpl)T is the latent heat of vaporization, A is the cell surface at the
bottom boundary and V the cell volume.

3.5 Soil model

In order to account for the interaction between land and atmosphere and the high diurnal
variability of the meteorological variables in the surface layer, a soil model has been im-
plemented into ASAM. In contrast to the constant flux layer model, the computation of the
heat and moisture fluxes are now dependent on radiation, evaporation and the transpira-
tion of vegetated area. Phase changes are not covered yet and intercepted water is only
considered in liquid state.

Two different surface flux schemes are implemented, following the revised Louis scheme
as integrated in the COSMO model (Doms et al., 2011) and the revised flux scheme as
used in the WRF model (Jiménez et al., 2012). The surface fluxes of momentum, heat and
moisture are parameterized in the following way, respectively:

τzx = ρCm|vh|u(h) , (62a)

− ρcpw′θ′ = ρcpCh|vh|(θ(h)− θ(z0T )) , (62b)

− ρLw′q′ = ρLCq|vh|(q(h)− q(z0q)) . (62c)

Cm, Ch and Cq are the bulk transfer coefficients and it is considered that Ch = Cq. As
described in (Doms et al., 2011), the bulk transfer coefficients are defined as the product
of the transfer coefficients under neutral conditions Cnm, h and the stability functions Fm, h

depending on the Bulk-Richardson-Number RiB and roughness length z0.

Cm, h = Cnm, hFm, h (RiB,z/z0) . (63)

In Jiménez et al. (2012) the bulk transfer coefficients are defined as follows

Cm, h =
k2

ΨMΨM, H
(64)
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with

ΨM ,H = ln

(
z+ z0

z0

)
−φm, h

(
z+ z0

L

)
+φm, h

(z0

L

)
(65)

and φm, h representing the integrated similarity functions. L stands for the Obukhov length
and k is the von-Kármán-constant. In neutral to highly stable conditions φm, h follows Cheng
and Brutsaert (2005) and in unstable situations the φ-functions follow Fairall et al. (1996).
For further details concerning limitations and restrictions see Jiménez et al. (2012). Test
cases for validation indicate that the surface fluxes are better reproduced by Jiménez et al.
(2012) than for Doms et al. (2011).

The transport of the soil water as a result of hydraulic pressure due to diffusion and
gravity within the soil layers is described by Richard’s equation:

∂Wsoil,k

∂t
=

∂

∂z

(
Diff

∂Wsoil,k

∂z
+κsoil,k

)
(66)

with the diffusion coefficient

Diff = κsoil,k
∂Ψsoil,k

∂Wsoil,k
. (67)

Wsoil,k is the volumetric water content in the kth soil layer. Ψsoil stands for the matric po-
tential and κsoil is the hydraulic conductivity. Ψsoil and κsoil are parameterized based on
Van Genuchten (1980):

κsoil = κsat
√
Weff

(
1−

[
1− (Weff)

1
m

]m)2
(68)

Ψsoil = Ψsat

[
(Weff)

− 1
m − 1

] 1
n (69)

Weff describes the effective soil wetness, which takes a residual water content Wres into
account, restricting the soil from complete desiccation. κsat and Ψsat are the hydraulic con-
ductivity and the matric potential at saturated conditions, respectively. The parameters m
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and n describe the pore distribution (Braun, 2002) with m= 1− 1/n (also see Tables A1
and A2).

Further addition/extraction of soil water is controlled by the percolation of intercepted
water into the ground and the evaporation and transpiration of water from bare soil and
vegetation. The mechanisms implemented are based on the Multi-Layer Soil and Vegetation
Model TERRA_ML as described in Doms et al. (2011). The evaporation of bare soil is
adjusted to the parameterization proposed by Noilhan and Planton (1989). It is defined
as the difference between the specific humidity qair and the surface saturation humidity
qsat (Tsfc) in dependence of the soil water content Wsoil,1 and the field capacity Wfc, which
is expressed by the near-surface relative humidity hu. The evaporation of bare soil writes
as

Ebare = (1− fplant)ρairLvCh|vh|(huqsat (Tsfc)− qair) (70)

with

hu =

{
0.5
[
1− cos

(
π

1.6
Wsoil,1
Wfc

)]
, if Wsoil,1 <Wfc

1.0, if Wsoil,1 ≥Wfc

. (71)

and fplant being the seasonally quantified vegetation cover based on Braun (2002)
and Lv standing for the latent heat of vaporization. For (qsat (Tsurf)≥ qair) and
(huqsat (Tsurf)− qair)≤ 0, Ebare = 0.
The variation of the soil temperature is a result of heat conductivity depending on the soil
texture and the soil water content of the respective soil layer:

∂Tsoil

∂t
=

1

ρc

∂

∂z

[
λ
∂Tsoil

∂z
+EqρwcwT soil

]
. (72)

Tsoil is the absolute temperature in the kth soil layer in [K], T soil is the mean soil temperature
of two neighboring soil layers. The change in internal energy due to changes in moisture
by the inner soil water flux, evapotranspiration and evaporation from the upper soil layer
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and the interception reservoir is treated by the second term in square brackets. The heat
conductivity λ and the volumetric heat capacity ρc are variables that depend on the soil
texture. The heat capacity of the soil ρc formulated by Chen and Dudhia (2001) is the sum
of the heat capacity of dry soil (ρ0c0, see Tables A1 and A2), the heat capacity of wet soil
(ρwcw) and the heat capacity of the air within the soil pores (ρaca).

ρc=Wsoilρwcw + (1−Wpv)ρ0c0 + (Wpv−Wsoil)ρaca (73)

with Wpv corresponding to the soil pores and ρwcw = 4.18× 106 J m−3 K−1 and ρaca =
1298 J m−3 K−1. The heat conductivity λ is defined after Pielke (1984):

λ=

{
418exp{−Ψlog− 2.7} if Ψlog ≤ 5.1

0.172 if Ψlog > 5.1
(74)

with Ψlog = log10 |100Ψsoil|.
The topmost layer is exposed to the incoming radiation and thus has the strongest variation
in temperature in comparison to the other soil layers within the ground. The temperature
equation of the first layer is, in addition to the incoming radiation, determined by the latent
and sensible heat flux.

∂Tsoil,1

∂t
=

1

ρc

∂

∂z

[(
λ
∂Tsoil,1

∂z

)
+ ∆Q

]
(75)

with

∆Q=Qdir +Qdif−σT 4
sfc− cpQSH−LvQLH (76)

Here QLH is the latent heat flux, describing the moisture flux between soil and atmosphere
as the sum of evaporation and transpiration and QSH is the sensible heat flux. Qdir and Qdif

represents the direct and diffusive irradiation, respectively.
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4 Test cases

In this section, we present four example test cases where orography or obstacles are in-
cluded to test conservation properties and model accuracy. The first case is a sinking cold
bubble in a dry environment, from which a density current develops (Straka et al., 1993).
A 1 km tall hill is added at the left side of the domain so that the resulting current overflows
over the mountain. Considering moisture effects and phase changes, the moist bubble case
by Bryan and Fritsch (2002) with the addition of a mid-air zeppelin (Klein et al., 2009; Jebens
et al., 2011) is performed. Besides analyzing the flow field in the vicinity of the obstacles,
conservation studies regarding total energy are performed for both cases. Another ideal-
ized benchmark case is carried out to analyze the accuracy of the presented discretization
method for cut cells. There, a scalar field is advected by a radial wind field in an annulus
(Berger and Helzel, 2012). This is also a suitable test for convergence studies by calculat-
ing the L1 error norm since an analytical solution can be used for comparison. The last test
case is a three-dimensional simulation study regarding flow dynamics around an idealized
mountain and orographic precipitation by Kunz and Wassermann (2011).

4.1 Cold bubble with orography interaction

A first non-linear test problem is the density current simulation study documented in Straka
et al. (1993). In this case, the computational domain extends from −18 to 18 km in hor-
izontal direction and from 0 to 6.4 km in vertical direction with isotropic grid spacing of
∆x= ∆z = 100 m. Boundary conditions are periodic in x-direction and the free-slip con-
dition is applied for the top and bottom model boundary. The total integration time is
t= 1800 s. The initial atmosphere is in a dry and hydrostatically balanced state and there
is a horizontally homogeneous environment with θ = 300 K (i.e. neutrally statified). The per-
turbation (cold bubble with negative buoyancy) is defined by a temperature perturbation
of

T ′ =

{
0.0◦C if L > 1.0,

−15.0◦C(cos[πL] + 1.0)/2 if L≤ 1.0
(77)
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where

L=
([

(x−xc)x−1
r

]2
+
[
(z− zc)z−1

r

]2)0.5
(78)

and xc = 0.0 km, xr = 4.0 km, zc = 3.0 km and zr = 2.0 km. At first, there is no fixed physical
viscosity turned on like in the original test case (with ν = 75 m2 s−1) since a conservation
test regarding total energy is carried out. For this test, two simulation runs are performed
with a) the above described standard setup and b) a modificated setup where a mountain
is added at the left part of the domain. The mountain follows the ’Witch of Agnesi’ curve:

h(x) =

{
H/(1 + [(x−xM )/a1]2) if x < xM ,

H/(1 + [(x−xM )/a2]2) if x≥ xM
(79)

with half-width lengths a1 = a2 = 1 km, mountain peak center position xM =−6 km and
mountain height H = 1 km. Fig. 7 shows the temporal evolution of the total energy error for
both simulations. In a dry atmosphere, the total energy is

Ed = ρ(qdcvdT + gz+ 0.5|v|2) (80)

Since exact energy conservation is not expected due to the model design, there is some
kind of energy loss for both simulations in the order of 10−3 % at the end of the integration
time. However, this is still acceptable due to the fact that in the test case there are very
sharp gradients in potential temperature and wind speeds. Also, the difference of the total
energy error between the two cases is very small (10−4 %). This means that in this case,
cut cells do not affect the conservation properties in the model at all. A check for total mass
results in a relative error of 10−6 %, which is negligible small.

Another analysis is carried out by switching on the physical viscosity of ν = 75 m2 s−1

like in Straka et al. (1993). Four simulations are performed with different isotropic grid spac-
ings of 200 m, 100 m, 50 m and 25 m, respectively. The potential temperature field after
900 s integration time for these spatial resolutions is shown in Fig. 8. Table 4 shows mini-
mum/maximum values of horizontal wind speed and potential temperature at this time. Ska-
marock et al. (2012) pointed out that their solutions show convergence at the 50 m spacing
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for this test case (without hill) with a fully compressible nonhydrostatic model. The same
behavior can be observed with ASAM simulations (not shown here), which does also not
change when the mountain is added to the domain. Despite there is a slight change in max-
imum wind speed, the potential temperature field for the 25 and 50 m resolutions are nearly
identical. Some notable differences in the field can be observed for the 100 m resolution,
which is even more pronounced for the 200 m simulation.

4.2 Moist bubble with mid-air zeppelin

The moist bubble benchmark case after Bryan and Fritsch (2002) is based on its dry coun-
terpart described in Wicker and Skamarock (1998). There, a hydrostatic and neutrally bal-
anced initial state is realized by a constant potential temperature. A warm perturbation in the
center of the domain leads to the rising thermal. For the present test case, a moist neutral
state can be expressed with the equivalent potential temperature θe and two assumptions:
the total water mixing ratio rt = rv +rl remains constant and phase changes between water
vapor and liquid water are exactly reversible. The perturbation field takes the following form:

θ′e = 2cos2

(
πL

2

)
(81)

with

L=

√(
x−xc

xr

)2

+

(
z− zc

zr

)2

≤ 1 . (82)

The parameters xc = 10 km, zc = 2 km and xr = zr = 2 km determine the position and ra-
dius of the moist heat bubble. The domain is 20 km long in x direction and the vertical extent
is 10 km. Grid spacing is again isotropic with ∆x= ∆z = 100 m. Periodic boundary condi-
tions are applied in lateral direction, whereas free-slip conditions are used for the top and
bottom boundary. Again, a total energy test is performed by comparing two modifications of
the present test case: a) A uniform horizontal wind speed of U = 20 m s−1 is applied. With
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that, the center of the bubble is again located at x= 0 m at t= 1000 s after passing through
the periodic boundaries. b) In the center of the domain, a zeppelin-shaped region is cut out
and acts as an obstacle for the rising bubble. A similar test like this was already introduced
in Klein et al. (2009) and Jebens et al. (2011). However, their tests were carried out with the
dry bubble, which was also shifted 1 km to the left. The result for the first case is shown in
Fig. 9. The equivalent potential temperature field is very close to the benchmark simulation,
despite the maximum value of θe is a little bit lower in our case compared to the literature
values and there is a slight asymmetry at the top of the thermal due to lateral transport.
The position of the rising thermal for the zeppelin case after t= 1250 s is shown in Fig. 10.
Because of the centered obstacle, the bubble is split up into two parts and deformed, but
still two typical rotors are formed by each bubble and the result remains symmetric. When
moisture and liquid water are present, the total energy takes the form

Et = ρ
(
[qdcvd + qvcvv + qlcpl]T + qvL00 + gz+ 0.5|v|2

)
(83)

Again, energy is not fully conserved, but the total relative energy error after 2000 s sim-
ulation time (there, in both cases, the bubbles reach the top boundary resulting in zonal
divergence) stays in an acceptable range of 10−4 % (Fig. 11), which is one order of mag-
nitude smaller than in the cold bubble test case. The difference of the error in total energy
between the zeppelin and the classical case is again very small. So even with very small
cut cells (≈ 1 % of full cell volume) and microphysical conversions there is no indication that
conservation properties are deteriorated. For all cases, total mass is conserved within the
numerical accuracy. After Bryan and Fritsch (2002), both mass and energy conservation
are required to obtain the benchmark result.

4.3 Annulus advection test

The test problem reported in Berger and Helzel (2012) describes the advection of a smooth
bump by a radial wind field in an annulus. It is described by the radius of the inner circleR1 =
0.75 and the radius of the outer circle R2 = 1.25 within a rectangular domain [−1.5, 1.5]×
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[−1.5, 1.5]. The initial scalar field takes the following form:

φ= 0.5(erf [5{ϑ−π/3}] + erf [5{2π/3−ϑ}]) , (84)

where ϑ= arctan(y/x). Deriving the velocity field from the stream function ψ(x,y) =
π(R2

2−r2)/5 with r = (x2 +y2)1/2, one full rotation is reached at t= 5 s. Figs. (12a-e) show
the difference fields between the analytical and numerical solution (∆φ) for different mesh
sizes, where N is the amount of grid cells in each spatial direction. Fig.(12f) shows the final
field after 5 s integration time for N = 400. With greater N , the order of magnitude of the
error reduces for the inner and outer boundary and the intermediate part of the annulus is
less affected. For a fixed time step (0.01, 0.005, 0.0025 and 0.00125 s, respectively) the ad-
vection scheme used in ASAM together with the Koren limiter shows almost second order
convergence in the L1 norm, see Fig. 13. Values for the experimental order of convergence
(EOC) are given in Table 5.

4.4 3-D mountain flow in a moist atmosphere

In this section, a test case described in Kunz and Wassermann (2011) is chosen. It includes
forced lifting around a 1 km high mountain (see Fig. 14), latent heat release and orographic
precipitation. Compared to the first three test cases, this case is now three-dimensional
and uses a more realistic initial profile, which mimic atmospheric conditions when it comes
to orographically-dominated precipitation in the mountainous area of southwest Germany.
In their work, they used the three-dimensional, non-hydrostatic weather prediction model
COSMO with terrain-following coordinates to describe the orography of the idealized moun-
tain. The model setup for the ASAM simulations is as follows: the domain extends 553 km
× 553 km with a horizontal grid spacing of 2.765 km and 70 vertical layers with uniform
spacing of ∆z = 200 m. A Bell-shaped mountain is located at the center of the domain:

h(x,y) =
H

(
x2+y2

a2 + 1
)1.5

(85)
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with the mountain peak height H = 1 ,km and the half-width length a= 11 km. Inflow and
outflow boundary conditions are set according to the initial conditions. A Rayleigh damping
layer above 11 km is applied to suppress gravity wave reflections from the top boundary.
Surface heat fluxes and Coriolis force are turned off. For turbulence parameterization, the
standard Smagorinsky subgrid-scale model is used. Microphysics are parameterized by
the warm (i.e. no ice phase present) two-moment scheme described in section 3.2. Initial
profiles are obtained by assuming hydrostatic equilibrium, a near-surface temperature Ts =
283.15 K, a constant mean flow U = 10 m s−1, a constant dry static stability Nd = 11×10−3

s−1 and a relative humidity profile, which is constant up to zm = 5 km and rapidly decreases
above this level according to

RH(z) = RHS

[
0.5 +π−1 arctan

(
z− zm

500

)]
(86)

with the near-surface humidity RHS = 95 % (RH95 case). To compare the results with its dry
counterpart, another simulation with RHS = 50 % is performed (RH50 case). Fig. 15 shows
the wind field at 200 m height around the mountain for both cases. In the nearly saturated
atmosphere, there is a more direct overflow over the mountain, which is caused by the re-
duced stability due to high moisture. These different flow characteristics also affect gravity
wave structure (Fig. 16). The resulting waves are steeper and have a greater wave length,
which is in agreement with gravity wave theory and the results from Kunz and Wasser-
mann (2011). Most notable differences in the numerical results are discrepancies in vertical
wind strength in the lowest model layer at the windward side the mountain (w ≈ 0.6 m s−1

in ASAM vs. w ≈ 0.2 m s−1 in COSMO), which can be explained by the different surface
coordinate systems of the models (Cartesian grid with cut cells in ASAM and generalized
terrain-following coordinates in COSMO). Overall, the amplitude of vertical wind is higher
for the resulting gravity waves. Typical patterns of orographic clouds (one cloud upstream of
the mountain and a larger cloud with a high amount of liquid water content (LWC) and pre-
cipitation that reaches the ground in the lee of the mountain) are also reproduced (Fig. 17).
In this particular case the resulting patterns as well as the cloud and rain water contents are
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comparable to the literature results, despite using different coordinate systems and cloud
microphysic schemes.

5 Conclusions and future work

A detailed description of the three-dimensional, fully compressible, nonhydrostatic All Scale
Atmospheric Model (ASAM) was presented. Since the cut cell method is used within
a Cartesian grid to represent orographical structures, the concept of the spatial discretiza-
tion of the advection operator and a non-linear term in the momentum equation were out-
lined. A technique to distribute surface fluxes around cut cells was described. An implicit
Rosenbrock time integration scheme with two splitting approaches of the Jacobian were
presented, which is particularly useful to bypass the small cell problem. Sophisticated phys-
ical parameterizations (Smagorinsky subgrid scale model, two-moment warm microphysics
scheme, multilayer soil model), which also find application in different existing models, are
implemented in ASAM. The model produces good results for typical benchmark test cases
from the literature with respect to energy conservation and model accuracy when it comes
to interaction with the flow and scalar fields in the vicinity of cut cells.

Other model features that could not be presented in the framework of this paper are local
mesh refinement and parallel usage of the model. They will be part of future studies. There,
performance tests for highly parallel computing with a large number of processors will be
conducted. Furthermore, high-frequency output is desired for statistical data analysis. For
this reason, efficient techniques like adaption of the output on modern parallel visualization
software will be developed.

Another focus on future model development lies on the model physics, which includes
further testing of current implementations as well as adding new parameterizations, e.g. an
ice microphysics scheme. For the description of turbulence, other (dynamic) Smagorinsky
models (e.g. Kleissl et al., 2006; Porté-Agel et al., 2000) might be better suited for par-
ticular simulations compared to the present model version. Also, a so-called implicit LES
will be tested and verified. There, no turbulence model is used and the numerics of the
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discretization generate unresolved turbulent motions themselves. In this type of LES, the
sensitivity of the thermodynamical formulation (especially in the energy equation) on the
resulting motions has to be analyzed.

ASAM already was and will further be applied for large eddy simulations of urban and
marine boundary layers. Another ongoing study deals with island effects on boundary layer
modification in the trade wind area exemplified by the island of Barbados, where the island
topography plays a significant role and can be well described by the cut cell method.

Appendix A: Derivation of tendency equations

In this section, a straightforward derivation of the density potential temperature tendency
equation is given to get the necessary source terms for microphysics, surface fluxes and
precipitation. Therefore, phase changes are allowed and a water vapor source term Sv and
sedimentation velocity Wf for rain drops are added to the system.

dρ

dt
=−ρ∇ ·v+Sv−Sfall , (A1)

dρv

dt
=−ρv∇ ·v+Sv +Sph , (A2)

dρl

dt
=−ρc∇ ·v−Sph−Sfall , (A3)

dρd

dt
=−ρd∇ ·v . (A4)

The precipitation term is Sfall = ∂/∂z(ρrWf) with the sedimentation velocity Wf after
Eq. (55). One can rewrite the Eqs. (A2) and (A3) with the mixing ratios rv = ρv/ρd and
rl = ρl/ρd:

drv

dt
=

1

ρd
(Sv +Sph) , (A5)
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drl

dt
=− 1

ρd
(Sph +Sfall) . (A6)

For the sake of simplicity (regarding the following derivations) the liquid water density and
mixing ratio are used with ρl = ρc + ρr or rl = rc + rr. The model however solves the prog-
nostic equations for the cloud water density ρc and rain water density ρr separately.

A1 Internal energy and absolute temperature

A prognostic equation for the internal energy e is derived from the first law of thermodynam-
ics, cf. Bott (2008, Eq. 31) and Satoh et al. (2008, Eq. B.13):

∂(ρe)

∂t
+∇ · (ρev) =−p∇ ·v+Se−

∂

∂z
(ρrWfel)− ρrWfg , (A7)

and alternatively with the specific enthalpy h in the advection part:

∂(ρe)

∂t
+∇ · (ρhv) = v · ∇p+Se−

∂

∂z
(ρrWfel)− ρrWfg . (A8)

There, the total specific internal energy is

e= h− p
ρ

= (qdcvd + qvcvv + qlcpl)T + qvL00 , (A9)

and the specific internal energy for liquid water

el = hl = cplT . (A10)

The term Se is related to the water vapor source term:

Se = hvSv . (A11)

Transforming Eq. (A7) into a tendency equation for the absolute temperature:

e

(
∂ρ

∂t
+∇ · (ρv)

)
+ ρ

(
∂e

∂t
+v · ∇e

)
= RHS(A7)
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e(Sv−Sfall) + ρ
de

dt
= RHS(A7)

e(Sv−Sfall) +
d(ρe)

dt
− edρ

dt
= RHS(A7) (A12)

With Eq. (A9), this leads to

d(ρe)

dt
=

d

dt
([ρdcvd + ρvcvv + ρlcpl]T + ρvL00)

= T

(
cvd

dρd

dt
+ cvv

dρv

dt
+ cpl

dρl

dt

)
+ (ρdcvd + ρvcvv + ρlcpl)

dT

dt
+L00

dρv

dt

− (ρdcvd + ρvcvv + ρlcpl)T∇ ·v+Tcvv(Sv +Sph)−Tcpl(Sph +Sfall)

+ (ρdcvd + ρvcvv + ρlcpl)
dT

dt
−L00(ρv∇ ·v−Sv−Sph)

= − eρ∇ ·v+ (ρdcvd + ρvcvv + ρlcpl)
dT

dt
+T (cvv[Sv +Sph]− cpl[Sph +Sfall])

+L00(Sv +Sph) , (A13)

e
dρ

dt
= e(Sv−Sfall)− eρ∇ ·v . (A14)

Inserting Eqs. (A13) and (A14) in Eq. (A12):

ρdcvml
dT

dt
= −T (cvv[Sv +Sph]− cpl[Sph +Sfall])−L00(Sv +Sph)− p∇ ·v+Svhv

− ∂

∂z
(ρrWfel)− ρrWfg

= − p∇ ·v+ (hv− cvvT −L00)Sv + (cplT − cvvT −L00)Sph

− ∂

∂z
(ρrWfel)− ρrWfg . (A15)

Here we define

cvml ≡ cvd + rvcvv + rlcpl . (A16)
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Rewriting the pressure and elimination of the velocity divergence:

−p∇ ·v = − (ρdRd + ρvRv)T

(
− 1

ρd

dρd

dt

)
= (Rd + rvRv)T

dρd

dt
, (A17)

dρd

dt
=

1

RdT
(
1 + rv

ε

) dp

dt
− pRdT

ε
(
RdT

[
1 + rv

ε

])2

drv

dt
− p

RdT 2
(
1 + rv

ε

) dT

dt

=
ρd

p

dp

dt
− ρd

ε+ rv

drv

dt
− ρd

T

dT

dt
(A18)

⇒−p∇ ·v =
dp

dt
− ρdRvT

drv

dt
− (ρdRd + ρvRv)

dT

dt

=
dp

dt
−RvT (Sv +Sph)− (ρdRd + ρvRv)

dT

dt
. (A19)

Now this leads to the temperature equation:

ρd(cvml +Rm)
dT

dt
= ρdcpml

dT

dt
=

dp

dt
−RvT (Sv +Sph) + (hv− cvvT −L00)Sv

+ (cplT − cvvT −L00)Sph−
∂

∂z
(ρrWfel)− ρrWfg , (A20)

With cpv− cvv =Rv, the water vapor source term disappears:

(hv− cvvT −L00−RvT )Sv = (cpvT +L00− cvvT −L00−RvT )Sv = 0 . (A21)

Further simplifying:

(cplT − cvvT −RvT −L00)Sph = (cplT − cvvT −RvT −Lv + (cpv− cpl)T )Sph

= −LvSph . (A22)

Rearranging finally leads to the temperature equation

ρdcpml
dT

dt
=

dp

dt
−LvSph−

∂

∂z
(ρrWfel)− ρrWfg . (A23)
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and its logarithmic derivative

dlnT

dt
=
Rm

cpml

dlnp

dt
− Lv

ρdcpmlT
Sph−

1

ρdcpmlT

∂

∂z
(ρrWfel)−

ρrWfg

ρdcpmlT
. (A24)

A2 Potential temperature

A prognostic equation for the (moist) potential temperature is derived here. This is neces-
sary because it appears in the density potential temperature equation later on. Quantities
that contain water vapor and liquid water are marked with a tilde to distinguish them from
their dry equivalents (e.g. dry potential temperature θ).

The moist potential temperature is

θ̃ =
T

π̃
with π̃ =

(
p

p0

) Rm
cpml

. (A25)

Taking the logarithm of the Exner function π̃ leads to

ln π̃ =
Rm

cpml
ln

(
p

p0

)
. (A26)

The time derivative is

dln π̃

dt
=
Rv

Rm
ln π̃

drv

dt
− ln π̃

cpml

(
cpv

drv

dt
+ cpl

drl

dt

)
+
Rm

cpml

dlnp

dt

=
Rv

Rm
ln π̃

Sv +Sph

ρd
− ln π̃

(
cpv

cpml

Sv +Sph

ρd
− cpl

cpml

Sph +Sfall

ρd

)
+
Rm

cpml

dlnp

dt

= ln π̃

([
Rv

Rm
− cpv

cpml

]
Sv +Sph

ρd
+

cpl

cpml

Sph +Sfall

ρd

)
+
Rm

cpml

dlnp

dt

=
ln π̃

ρd

(
Rv

Rm
− cpv

cpml

)
Sv +

ln π̃

ρd

(
Rv

Rm
+
cpl− cpv

cpml

)
Sph
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+
ln π̃

ρd

cpl

cpml
Sfall +

Rm

cpml

dlnp

dt
, (A27)

which leads us to the moist potential temperature equation:

dln θ̃

dt
=

dlnT

dt
− dln π̃

dt

=
Rm

cpml

dlnp

dt
− Lv

ρdcpmlT
Sph−

1

ρdcpmlT

∂

∂z
(ρrWfel)−

ρrWfg

ρdcpmlT

− ln π̃

ρd

(
Rv

Rm
− cpv

cpml

)
Sv−

ln π̃

ρd

(
Rv

Rm
+
cpl− cpv

cpml

)
Sph−

ln π̃

ρd

cpl

cpml
Sfall−

Rm

cpml

dlnp

dt

= − ln π̃

ρd

(
Rv

Rm
− cpv

cpml

)
Sv−

1

ρd

(
Lv

cpmlT
+ ln π̃

[
Rv

Rm
+
cpl− cpv

cpml

])
Sph

− ln π̃

ρd

cpl

cpml
Sfall−

1

ρdcpmlT

∂

∂z
(ρrWfel)−

ρrWfg

ρdcpmlT
. (A28)

A3 Density potential temperature

With the definition of the density potential temperature

θρ = θ̃
1 + rv/ε

1 + rv + rl
(A29)

and by using the product rule:

dθρ
dt

=
1 + rv/ε

1 + rv + rl

dθ̃

dt
+

θ̃

1 + rv + rl

1

ε

drv

dt
− θ̃ 1 + rv/ε

(1 + rv + rl)2

(
drv

dt
+

drl

dt

)

=
θρ

θ̃

dθ̃

dt
+ θρ

(
1

ε+ rv
− 1

1 + rv + rl

)
drv

dt
− θρ

1 + rv + rl

drl

dt
. (A30)

Inserting Eqs. (A28), (A5) and (A6) in Eq. (A30):

dlnθρ
dt

=
dln θ̃

dt
+

(
1

ε+ rv
− 1

1 + rv + rl

)
drv

dt
− 1

1 + rv + rl

drl

dt
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= − ln π̃

ρd

(
Rv

Rm
− cpv

cpml

)
Sv−

1

ρd

(
Lv

cpmlT
+ ln π̃

[
Rv

Rm
+
cpl− cpv

cpml

])
Sph

− ln π̃

ρd

cpl

cpml
Sfall−

1

ρdcpmlT

∂

∂z
(ρrWfel)−

ρrWfg

ρdcpmlT

+

(
1

ε+ rv
− 1

1 + rv + rl

)
Sv +Sph

ρd
+

1

1 + rv + rl

Sph +Sfall

ρd
. (A31)

With the relation
1

ε+ rv
=

1
Rd
Rv

+ rv

=
Rv

Rd + rvRv
=
Rv

Rm
(A32)

we get the density potential temperature equation sort by source terms:

dθρ
dt

=
θρ
ρd

(
Rv

Rm
− ρd

ρ
− ln π̃

[
Rv

Rm
− cpv

cpml

])
Sv

+
θρ
ρd

(
Rv

Rm
− ln π̃

[
Rv

Rm
+
cpl− cpv

cpml

]
− Lv

cpmlT

)
Sph

+
θρ
ρd

(
ρd

ρ
− cpl

cpml
ln π̃

)
Sfall−

θρ
ρdcpmlT

∂

∂z
(ρrWfel)−

θρρrWfg

ρdcpmlT
. (A33)

Appendix B: Soil and land use parameters

Varying ratios of silt, clay and sand significantly change the properties of soil and thus
determine the heat and moisture fluxes of the surface. Accordingly, these different ratios
are referred to specifically defined soil types. In the following Tables A1 and A2 parameters
describing the physical properties of the appropiate soil type are listed. Wpv stands for
the pore volume of the soil, Wfc is the field capacity (Eq. 71) describing a threshold value
for runoff in the soil layers. κsat and Ψsat defines the hydraulic conductivity and the matric
potential at saturation, respectively (Eqs. 68 and 69). ρ0c0 is the heat capacity of dry soil as
used in Eq. (73) and b∗ is a parameter for the soil porosity.
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Code availability and visualization

The ASAM code is managed with Git, a distributed revision control and source code
management (SCM) system. To get access to the source code and additional scripts
for pre- and postprocessing, a registration at the TROPOS Git hosting website https:
//gitorious.tropos.de/ is mandatory. Additional information can be found at the ASAM web-
page (http://asam.tropos.de).

As visualization tool, the free and open source software VisIt (https://wci.llnl.gov/codes/
visit/) is used. VisIt can read over 120 scientific file formats and offers opportunity to include
own scripts, if necessary. It is available for Unix, Windows and Mac workstations.

Acknowledgements. This work is internally funded by TROPOS. The authors like to thank Luca
Bonaventura and the anonymous reviewer for their constructive comments to improve the quality
of the paper. We are also grateful to our technical employees Sabine Reutgen and Birgit Heinrich
for developing and maintaining the grid generator as well as data maintenance and converting,
respectively.
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bišić, V., Knoth, O., Koch, S., Schmidli, J., Stiperski, I., Vosper, S. and Zhong, S.: An Intercom-
parison of T-REX Mountain-Wave Simulations and Implications for Mesoscale Predictability, Mon.
Wea. Rev., 139, 2811–2831, 2011.

Eisenstat, S.: Efficient implementation of a class of CG methods, SIAM J. Sci. Stat. Comput., 2:1–4,
1981.

Emanuel, K. A.: Atmospheric Convection, Oxford University Press, 1994.
Engelmann, R., Ansmann, A., Horn, S., Seifert, P., Althausen, D., Tesche, M., Esselborn, M., Frun-

tke, J., Lieke, K., Freudenthaler, V., and Gross, S.: Doppler lidar studies of heat island effects on
vertical mixing of aerosols during SAMUM-2, Tellus B, 63, 448–458, 2011.

Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., and Young, G. S.: Bulk parameterization
of air-sea fluxes for Tropical Ocean Global Atmosphere Coupled-Ocean Atmosphere Response
Experiment, J. Geophys. Res., 101, 3747–3764, 1996.

Good, B., Gadian, A., Lock, S. J., and Ross, A.: Performance of the cut-cell method of representing
orography in idealized simulations, Atmos. Sci. Let., 15, 44–49, 2014.

Hairer, E. and Wanner, G.: Solving Ordinary Differential Equations II, Springer, 1996.
Hicken, J., Ham, F., Militzer, J., and Koksal, M.: A shift transformation for fully conservative methods:

turbulence simulation on complex, unstructured grids, J. Comput. Phys., 208, 704–714, 2005.
Hinneburg, D., and Knoth, O.: Non-dissipative cloud transport in Eulerian grid models by the volume-

of-fluid (VOF) method, Atm. Env., 39, 4321–4330, 2005.
Horn, S.: ASAMgpu V1.0 – a moist fully compressible atmospheric model using graphics processing

units (GPUs), Geosci. Model Dev., 5, 345–353, doi:10.5194/gmd-5-345-2012, 2012.
Hundsdorfer, W., Koren, B., Loon, M. V., and Verwer, J. G.: A positive finite-difference advection

scheme, J. Comput. Phys., 117, 35–46, 1995.

41

http://dx.doi.org/10.5194/gmd-5-345-2012


D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Jebens, S., Knoth, O., and Weiner, R.: Partially implicit peer methods for the compressible Euler
equations, J. Comput. Phys., 230, 4955–4974, 2011.

Jiménez, P. A., Dudhia, J., González-Rouco, J. F., Navarro, J., Montávez, J. P., and García-
Bustamante, E.: A revised scheme for the WRF surface layer formulation, Mon. Weather Rev.,
140, 898–918, 2012.

John, V. and Rang, J.: Adaptive time step control for the incompressible Navier-Stokes equations,
Comput. Methods Appl. Mech. Engrg., 199, 514–524, 2010.

Klein, R., Bates, K. R., and Nikiforakis, N.,: Well Balanced Compressible Cut-Cell Simulation of
Atmospheric Flow, Phil. Trans. R. Soc. B, 367(1907). 4559–4575, 2009.

Kleissl, J., Kumar, V., Meneveau, C., and Parlange, M. B.: Numerical study of dynamic Smagorin-
sky models in large-eddy simulation of the atmospheric boundary layer: validation in stable and
unstable conditions, Water Resour. Res., 42, W06D10, doi:10.1029/2005WR004685, 2006.

König, M.: Large-eddy simulation modelling for urban Scale, Ph.D. thesis, University of Leipzig,
2013.

Knoth, O.: Compressible atmospheric modeling at all scales, in Oberwolfach Reports 3, Workshop:
Mathematical Theory and Modelling in Atmosphere-Ocean Science, 2374–2377, 2006.

Knoth, O. and Wensch, J.: Generalized split-explicit Runge–Kutta methods for the compressible
Euler equations, Mon. Weather Rev., 142, 2067–2081, 2014.

Kong, L. C., Tunçel, L., and Xiu, N. H.: The Fischer–Burmeister complementarity function on Eu-
clidean Jordan algebras, Pac. J. Optim., 6, 423–440, 2010.

Kunz, M. and Wassermann, S.: Sensitivity of flow dynamics and orographic precipitation to changing
ambient conditions in idealised model simulations, Meteor. Z., 20, 199–215, doi:10.1127/0941-
2948/2011/0221, 2011.

Lanser, D., Blom, J. G., and Verwer, J. G.: Time integration of the shallow water equations in spher-
ical geometry, J. Comput. Phys., 171, 373–393, 2001.

Lilly, D. K.: The representation of small scale turbulence in numerical simulation experiments, IBM
Scientific Computing Symposium on environmental sciences, 195–210, 1967.

Lock, S.-J., Bitzer, H.-W., Coals, A., Gadian, A., and Mobbs, S.: Demonstration of a cut-cell repre-
sentation of 3D orography for studies of atmospheric flows over very steep hills, Mon. Weather
Rev., 140, 411–424, 2012.

McCumber, M. D.: A numerical simulation of the influence of heat and moisture fluxes upon
mesoscale circulation, Ph.D. thesis, Dept. of Environmental Science, University of Virginia, Char-
lottesville, VA, 1980.

42

http://dx.doi.org/10.1029/2005WR004685
http://dx.doi.org/10.1127/0941-2948/2011/0221
http://dx.doi.org/10.1127/0941-2948/2011/0221


D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Ng, Y.-T., Chen, H., Min, C., and Gibou, F.: Guidelines for Poisson Solvers on Irregular Domains
with Dirichlet Boundary Conditions Using the Ghost Fluid Method, J. Sci. Comput. , 41, 300–320,
2009.

Noilhan, J. and Planton, S.: A simple parameterization of land surface processes for meteorological
models, Mon. Weather Rev., 117, 536–549, 1989.

Pielke, R. A.: Mesoscale Meteorological Modeling, 2nd Edn., Academic Press, 1984.
Porté-Agel, F., Meneveau, C., and Parlange, M. B.: A scale-dependent dynamic model for large-eddy

simulation: application to a neutral atmospheric boundary layer, J. Fluid Mech., 415, 261–284,
2000.

Satoh, M., Matsuno, T., Tomita, H., Miura, H., Nasuno, T., and Iga, S.: Nonhydrostatic icosahedral
atmospheric model (NICAM) for global cloud resolving simulations, J. Comput. Phys., 227, 3486–
3514, 2008.

Skamarock, W. C., Klemp, J. B., Duda, M. G., Fowler, L. D., Park, S.-H., and Ringler, T. D.: A multi-
scale nonhydrostatic atmospheric model using centroidal voronoi tesselations and c-grid stagger-
ing, Mon. Wea. Rev., 140, 3090–3105, 2012.

Scotti, A., Meneveau, C., and Lilly, D. K.: Generalized Smagorinsky model for anisotropic grids, Phys.
Fluids A-Fluid, 5, 2306–2308, 1993.

Seifert, A. and Beheng, K. D.: A two-moment cloud microphysics parameterization for mixed-phase
clouds, Meteorol. Atmos. Phys., 92, 45–66, 2006.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, M., Duda, K. G., Huang, X. Y.,
Wang, W., and Powers, J. G.: A description of the Advanced Research WRF Version 3, Tech.
rep., National Center for Atmospheric Research, 2008.

Smagorinsky, J.: General circulation experiments with the primitive equations, Mon. Weather Rev.,
164, 91–99, 1963.

Steppeler, J., Bitzer, H.-W., Minotte, M., and Bonaventura, L.: Nonhydrostatic atmospheric modeling
using a z-coordinate representation, Mon. Weather Rev., 130, 2143–2149, 2002.

Steppeler, J., Bitzer, H.-W., Janjic, Z., Schättler, U., Prohl, P., Gjertsen, U., Torrisi, L., Parfinievicz, J.,
Avgoustoglou, E ., and Damrath, U: Prediction of Clouds and Rain Using a z-Coordinate Nonhy-
drostatic Model, Mon. Weather Rev., 134, 3625–3643, 2006.

Straka, J. M., Wilhelmson, R. B., Wicker, L. J., Anderson, J. R., and Droegemeier, K. K.: Numerical
solutions of a non-linear density current: a benchmark solution and comparisons, Int. J. Numer.
Meth. Fl., 17, 1–22, 1993.

43



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Sweby, P. K.: High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J.
Numer. Anal., 21, 995–1011, 1984.

Tripoli, G. J. and Smith, E. A.: Introducing Variable-Step Topography (VST) coordinates within dy-
namically constrained Nonhydrostatic Modeling System (NMS). Part 1: VST formulation within
NMS host model framework, Dynam. Atmos. Oceans, 66, 28–57, 2014a.

Tripoli, G. J. and Smith, E. A.: Introducing Variable-Step Topography (VST) coordinates within dy-
namically constrained Nonhydrostatic Modeling System (NMS). Part 2: VST performance on or-
thodox obstacle flows, Dynam. Atmos. Oceans, 66, 10–27, 2014b.

Van Genuchten, M. T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated
soils, Soil Sci. Soc. Am. J., 44, 892–898, 1980.

Van Leer, B.: Upwind-difference methods for aerodynamic problems governed by the Euler equa-
tions, in: Lectures in Applied Mathematics, 327–336, 1994.

Walko, R. L. and Avissar, R.: The Ocean–Land–Atmosphere Model (OLAM). Part I: Shallow-water
tests, Mon. Weather Rev., 136, 4033–4044, 2008a.

Walko, R. L. and Avissar, R.: The Ocean–Land–Atmosphere Model (OLAM). Part II: Formulation and
tests of the nonhydrostatic dynamic core, Mon. Weather Rev., 136, 4045–4062, 2008b.

Wensch, J., Knoth, O., and Galant, A.: Multirate infinitesimal step methods for atmospheric flow
simulation, BIT Numerical Mathematics, 49, 449–473, 2009.

Wicker, L. J. and Skamarock, W. C.: A time-splitting scheme for the elastic equations incorporating
second-order Runge–Kutta time differencing, Mon. Weather Rev., 126, 1992–1999, 1998.

Yamazaki, H. and Satomura, T.: Vertically combined shaved cell method in a z-coordinate nonhydro-
static atmospheric model, Atmos. Sci. Lett., 9(4), 171–175, 2008.

Yamazaki, H. and Satomura, T.: Nonhydrostatic Atmospheric Modeling Using a Combined Cartesian
Grid, Mon. Weather Rev., 138, 3932–3945, 2010.

Yamazaki, H. and Satomura, T.: Non-hydrostatic atmospheric cut cell model on a block-structured
mesh, Atmos. Sci. Lett., 13, 29–35, 2012.

44



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Table 1. Physical constants.

Symbol Quantity Value

p0 Reference pressure 105 Pa
Rd Gas constant for dry air 287 J kg−1 K−1

Rv Gas constant for water vapor 461 J kg−1 K−1

cpd Specific heat capacity at constant pressure for dry air 1004 J kg−1 K−1

cpv Specific heat capacity at constant pressure for water vapor 1885 J kg−1 K−1

cpl Specific heat capacity at constant pressure for liquid water 4186 J kg−1 K−1

cvd Specific heat capacity at constant volume for dry air 717 J kg−1 K−1

cvv Specific heat capacity at constant volume for water vapor 1424 J kg−1 K−1

L00 Latent heat at 0 K 3.148× 106 J kg−1

g Gravitational acceleration 9.81 m s−2

Cs Smagorinsky coefficient 0.2
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Table 2. Coefficient table for ROS2.

0
2/3

−5/4 3/4 −4/3 1
2 + 1

6

√
3

A-Matrix Γ-Matrix γ
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Table 3. Coefficient table for ROSRK3

0 0
1/3 −11/27 1

11/54 1/2 17/27 −11/4

−17/27 11/4 1
A-Matrix Γ-Matrix γ
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Table 4. Convergence study for the density current test case with a 1 km tall hill. Minimum/maximum
values of horizontal velocity and potential temperature for different grid spacings.

∆x umin (m s−1) umax (m s−1) θmin (K) θmax (K)

200 −25.93 35.64 291.89 300.01
100 −28.87 38.52 290.85 300.01
50 −28.90 38.31 290.71 300.00
25 −28.91 37.89 290.70 300.00
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Table 5. Convergence study for the annulus advection test. L1 error norm (full domain), experimental
order of convergence (EOC), minimum and maximum error values for different meshes.

N Domain L1 error EOC ∆φmin ∆φmax

50 1.6377× 10−2 – −0.1918 0.1677
100 4.9439× 10−3 1.73 −0.1186 0.1045
200 1.3653× 10−3 1.86 −0.0560 0.0631
400 3.7196× 10−4 1.88 −0.0318 0.0318
800 9.7302× 10−5 1.93 −0.0158 0.0199
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Table A1. Soil parameters from Doms et al. (2011).

Soil type Wpv [m3 m−3] Wfc [m3 m−3] κsat [m s−1] ρ0c0 [W (m3 K)−1] b∗ a

Sand 0.364 0.196 4970× 10−8 1.28× 106 3.5
Sandy loam 0.445 0.260 943× 10−8 1.35× 106 4.8
Loam 0.455 0.340 531× 10−8 1.42× 106 6.1
Clay loam 0.475 0.370 764× 10−8 1.50× 106 8.6
Clay 0.507 0.463 1.7× 10−8 1.63× 106 10.0
Peat 0.863 0.763 5.8× 10−8 0.58× 106 9.0

a with n= 1/b∗ + 1, see Eqs. (68) and (69).
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Table A2. Soil parameters as used in Pielke (1984) (adapted from McCumber, 1980).

Soil type Wpv [m3 m−3] Ψsat [m] κsat [m s−1] ρ0c0 [W (m3 K)−1] b∗ a

Sand 0.395 −0.121 1760× 10−8 1.47× 106 4.05
Sandy Loam 0.435 −0.218 341× 10−8 1.34× 106 4.90
Loam 0.451 −0.478 70× 10−8 1.21× 106 5.39
Clay loam 0.476 −0.630 25× 10−8 1.23× 106 8.52
Clay 0.482 −0.405 13× 10−8 1.09× 106 11.40
Peat 0.863 −0.356 80× 10−8 0.84× 106 7.75

a with n= 1/b∗ + 1, see Eqs. (68) and (69).
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Fig. 1. Possible configurations for cut cell intersection. The last two cases are excluded.
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Fig. 2. Cut cell with face and volume area information (left) and arrangement of face and cell centered momentum (right).
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Fig. 3. Stencil for third-order approximation.

2.3 Time integration

After spatial discretization an ordinary differential equation

y(t)′ = F (y(t)) (15)

is obtained that has to be integrated in time (method of lines).
To tackle the small time step problem connected with tiny230

cut cells, linear implicit Rosenbrock-W-methods are used
(Jebens et al., 2011).

A Rosenbrock method has the form

(I − τγJ)ki =τF (yn +
i−1∑

j=1

αijuj) +
i−1∑

j=1

βijkj , i= 1, ...,s

(16)

yn+1 =yn +
s∑

j=1

αs+1jkj ,235

where yn is a given approximation at y(t) at time tn and
subsequently yn+1 at time tn+1 = tn+ τ . In addition J is an
approximation to the Jacobian matrix ∂F/∂y. A Rosenbrock
method is therefore fully described by the two matrices A=240

(αij), Γ = (γij) and the parameter γ.
Among the available methods are a second order two stage

method after Lanser et al. (2001).

Sk1 =τF (yn) , (17)

Sk2 =τF

(
yn +

2

3
k1

)
− 4

3
k1 , (18)245

yn+1 =yn +
5

4
k1 +

3

4
k2 , (19)

S =I − γτJ, J ≈ F ′(yn) . (20)

with γ =
1

2
+

1

6

√
3 or in matrix form in Table (2).

0
2/3

−5/4 3/4
−4/3

1
2

+ 1
6

√
3

A-Matrix Γ-Matrix γ

Table 2. Coefficient table for ROS2.

A second method was constructed from a low stor-250

age three stage second-order Runge-Kutta method, which
is used in split-explicit time integration methods in the
Weather Research and Forecasting (WRF) Model (Ska-
marock et al., 2008) or in the Consortium for Small-scale

Figure 1. Possible configurations for cut cell intersection (cases 1–4) for different numbers of face
intersection points (markers). The last two cases are excluded.
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Fig. 1. Possible configurations for cut cell intersection. The last two cases are excluded.
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Fig. 2. Cut cell with face and volume area information (left) and arrangement of face and cell centered momentum (right).
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Fig. 3. Stencil for third-order approximation.

2.3 Time integration

After spatial discretization an ordinary differential equation

y(t)′ = F (y(t)) (15)

is obtained that has to be integrated in time (method of lines).
To tackle the small time step problem connected with tiny230

cut cells, linear implicit Rosenbrock-W-methods are used
(Jebens et al., 2011).

A Rosenbrock method has the form

(I − τγJ)ki =τF (yn +
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βijkj , i= 1, ...,s
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where yn is a given approximation at y(t) at time tn and
subsequently yn+1 at time tn+1 = tn+ τ . In addition J is an
approximation to the Jacobian matrix ∂F/∂y. A Rosenbrock
method is therefore fully described by the two matrices A=240

(αij), Γ = (γij) and the parameter γ.
Among the available methods are a second order two stage

method after Lanser et al. (2001).
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A second method was constructed from a low stor-250

age three stage second-order Runge-Kutta method, which
is used in split-explicit time integration methods in the
Weather Research and Forecasting (WRF) Model (Ska-
marock et al., 2008) or in the Consortium for Small-scale

Figure 2. Stencil for third-order approximation.
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Figure 3. Cut cell with face and volume area information (left) and arrangement of face and cell
centered momentum (right).
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Figure 4. Two neighbored cut cells with face and volume area information (left) and arrangement of
face and cell centered tendency of momentum (right).
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Figure 5. Cut cell with two neighbored cells (left and top) for flux distribution.
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8 M. Jähn: ASAM v2.7
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Fig. 4. Terminal fall velocity of raindrops after Eq. (52).

Sv is the source term of water vapor in units of [kg m−3 s−1].
Considering Eq. (A33), adding the sensible heat flux and ne-490

glecting phase changes leads to

∂(ρθρ)

∂t
+

∂

∂xj
(ρθρuj) = Sθρ (55)

with

Sθρ = ρθρ

(
Sh
T

+
Sv
ρd

[
Rv
Rm
− lnπ

(
Rv
Rm
− cpv
cpml

)])
(56)

where Sh is the heat source in units of [K s−1], Rm =Rd +495

rvRv and cpml = cpd+rvcpv+rlcpl are the gas constant and
the specific heat capacity for the air mixture, respectively.
The corresponding surface fluxes in [W m−2] are:

Ssens = Sh
ρdcpml
ρA

, (57)

Slat = SvLv(T )
V

A
. (58)500

Here, Lv = L00 +(cpv− cpl)T is the latent heat of vaporiza-
tion, A is the cell surface at the bottom boundary and V the
cell volume.

For the computation of the surface fluxes around cut cells,505

an interpolation technique is used:

∂(ρθρ)

∂t
+

∂

∂xj
(ρθρuj) = Sθρ min

(
V

Vmax
, 1

)
(59)

with the maximum cell volume Vmax = ∆x∆y∆z. For sur-
rounding cells, the missing flux fraction is distributed de-
pending on the left and right cut faces AL and AR in all510

spatial directions:

∂(ρθρ)

∂t
+

∂

∂xLj
(ρθρu

L
j ) = Sθρ

max

(
ALj −ARj
Vmax

, 0

)

Asurf

Vmax−V
Vmax

,

(60)

∂(ρθρ)

∂t
+

∂

∂xRj
(ρθρu

R
j ) = Sθρ

max

(
ARj −ALj
Vmax

, 0

)

Asurf

Vmax−V
Vmax

,

(61)

where the superscripts L and R correspond to the left and515

right neighbor cell, respectively. The total surface is com-
puted by

Asurf = Σ|ALj −ARj | . (62)

3.5 Soil model

In order to account for the interaction between land and at-520

mosphere and the high diurnal variability of the meteorolog-
ical variables in the surface layer, a soil model has been im-
plemented into ASAM. In contrast to the constant flux layer
model, the computation of the heat and moisture fluxes are
now dependent on radiation, evaporation and the transpira-525

tion of vegetated area. Phase changes are not covered yet and
intercepted water is only considered in liquid state.

Two different surface flux schemes are implemented,
following the revised Louis scheme as integrated in the
COSMO model (Doms et al., 2011) and the revised flux530

scheme as used in the WRF model (Jiménez et al., 2012).
The surface fluxes of momentum, heat and moisture are pa-
rameterized in the following way, respectively:

τzx = ρCm|vh|u(h) , (63a)

−ρcpw′θ′ = ρcpCh|vh|(θ(h)− θ(z0T )) , (63b)535

−ρLw′q′ = ρLCq|vh|(q(h)− q(z0q)) . (63c)

Cm,Ch andCq are the bulk transfer coefficients and it is con-
sidered that Ch = Cq . As described in (Doms et al., 2011),
the bulk transfer coefficients are defined as the product of the540

transfer coefficients under neutral conditions Cnm,h and the
stability functions Fm,h depending on the Bulk-Richardson-
Number RiB and roughness length z0.

Cm,h = Cnm,hFm,h (RiB ,z/z0) . (64)

In Jiménez et al. (2012) the bulk transfer coefficients are de-545

fined as follows

Cm,h =
k2

ΨMΨM,H
(65)

with

ΨM,H = ln

(
z+ z0

z0

)
−φm,h

(
z+ z0

L

)
+φm,h

(z0

L

)
(66)

and φm,h representing the integrated similarity functions. L550

stands for the Obukhov length and k is the von-Kármán-
constant. In neutral to highly stable conditions φm,h follows

Figure 6. Terminal fall velocity of raindrops after Eq. (55).
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Figure 7. Time series of total energy error for the density current test case with and without the hill.
The error is expressed as 10−4 % of the total energy at the beginning of the simulation.
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Figure 8. Potential temperature field at t = 900 s for the density current test case with an ’Agnesi’
hill on the left side of the domain and for different grid spacings ∆x= ∆z = 200, 100, 50, 25 m (top
to bottom).
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Figure 9. Equivalent potential temperature field for the moist rising bubble test case with background
wind of U = 20 m s−1. Snapshot taken at t= 1000 s simulation time.
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Figure 10. Equivalent potential temperature field for the moist rising bubble test including a zeppelin-
shaped cut area in the center of the domain. Snapshot taken at t= 1250 s simulation time.

61



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

R
el

at
iv

e 
to

ta
l e

ne
rg

y 
er

ro
r (

10
-4

 %
)

Time (s)

Zeppelin
U = 20 m s-1

Difference

Figure 11. Same as Fig. 7, but for the zeppelin and the lateral transported moist bubble test cases.
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1

Figure 12. Computational meshes and difference scalar fields of φ for a) N = 50, b) N = 100, c)
N = 200, d) N = 400, e) N = 800, f) scalar field for N = 400 after one rotation.
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Figure 13. Convergence study for the annulus advection test. L1 error norm for the full domain (red
line) and reference line (blue dotted) for "perfect" 2nd order convergence.
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Figure 14. Computational grid around the mountain for an x-z cut plane at y =1.38 km (cell center).
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Figure 15. Horizontal cross-section of horizontal wind vectors at z = 200 m height for the RH95
case (black) and the RH50 case (grey). Surface grid cells around the mountain in green, circle lines
represent 200 m orography intervals.
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Figure 16. Vertical cross-section (x-z plane) of vertical wind speed for the RH95 case (black) and the
RH50 case (grey). Updrafts in solid lines (0.2 m s−1 contour interval, zero line included), downdrafts
in dashed lines (0.2 m s−1 contour interval, zero line excluded).
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Figure 17. Vertical cross-section (x-z plane) of microphysical properties for the RH95 case. Liquid
water content (shaded), contours of specific cloud water content qc (red-yellow) and specific rain
water content qr (blue).

68


