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Abstract

The specification of state background error statistics is a key component of data as-
similation since it affects the impact observations will have on the analysis. In the vari-
ational data assimilation approach, applied in geophysical sciences, the dimensions of
the background error covariance matrix (B) are usually too large to be explicitly de-
termined and B needs to be modeled. Recent efforts to include new variables in the
analysis such as cloud parameters and chemical species have required the develop-
ment of the code to GENerate the Background Errors (GEN_BE) version 2.0 for the
Weather Research and Forecasting (WRF) community model to allow for a simpler,
flexible, robust, and community-oriented framework that gathers methods used by me-
teorological operational centers and researchers.

We present the advantages of this new design for the data assimilation community
by performing benchmarks and showing some of the new features on data assimilation
test cases. As data assimilation for clouds remains a challenge, we present a multivari-
ate approach that includes hydrometeors in the control variables and new correlated
errors. In addition, the GEN_BE v2.0 code is employed to diagnose error parameter
statistics for chemical species, which shows that it is a tool flexible enough to involve
new control variables. While the generation of the background errors statistics code
has been first developed for atmospheric research, the new version (GEN_BE v2.0)
can be easily extended to other domains of science and be chosen as a testbed for
diagnostic and new modeling of B. Initially developed for variational data assimilation,
the model of the B matrix may be useful for variational ensemble hybrid methods as
well.

1 Introduction

Since improvements in data assimilation cannot be done without the best estimate
of background error covariances (B), various meteorological operational centers such
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as the European Centre for Medium-Range Weather Forecast (ECMWF), the National
Centers for Environmental Prediction (NCEP), or the UK Met office, continue to develop
new algorithms, techniques and tools (Bannister, 2008a, b) to model B within a vari-
ational framework assuming that the underlaying probability errors are normally dis-
tributed. Statistics of the background error covariance matrix B are usually determined
for a limited set of variables, called control variables that minimize the error covariance
between variables. Then, several parameters need to be diagnosed to drive the series
of operators that model B.

However, as more and more dataset observations coming from satellites, airplanes
and ground stations become available in real time, there is a tendency to general-
ize data assimilation to a large set of sensors that involves more variables, which
are present in geophysical numerical models. Necessities for cloud data assimila-
tion (Auligné et al., 2011) have required to redesign the GEN_BE code by extend-
ing its capabilities to investigate and to estimate new error covariances. Originally, the
GEN_BE code was developed by Barker et al. (2004, 2012) as a component of a three-
dimentional variational data assimilation (3DVAR) method to estimate the background
error of MM5 for a limited-area system. Since this initial version, various branches of
code have been developed at NCAR and at the UK Met Office to address specific
needs using different models such as (WRF) and the Unified Model (UM) on different
data assimilation platforms such as the Weather Research Forecast Data Assimilation
system (WRFDA) and the Gridpoint Statistical Interpolation system (GSI, Kleist et al.,
2009). The framework of the GEN_BE code version 2.0 has been designed to merge
this different efforts, to read input from different models and to provide output for differ-
ent data assimilation platforms. The possibility to define the set of control variables and
their covariance errors as an input should reduce considerably future developments of
the code and unite them.

This document is organized as follows: the two first sections present the role of the
background error covariance and how a series of different operators can model B. The
third section describes the general structure of the code and gives key information to
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model B for a specific application. The estimation of the different parameters and their
role in the data assimilation processes are discussed. It contains technical information
that explains how to modify and extend the control variables and their error covari-
ances. Section 4 presents results of a benchmark performed on two different systems
of data assimilation (WRFDA and GSI) using different transforms involving the same
set of five control variables (CV5) as defined for real time at NCEP on the rapid refresh
domain. Finally, Sect. 5 presents an expansion of the control variable set on a test
case that includes cloud hydrometeors in a multivariate approach (CV9). All the re-
sults presented in the differents sections were obtained from a numerical experiment
with the WRF model involving an ensemble of 50 members over the CONUS domain
at 15km resolution. Figure 1 shows the extension of the WRF computational domain.
Each member is a six hour forecast valid at 12:00z on 3 June 2012. The community
system Data Assimilation Research Test (DART) was used to generate the ensemble
(Romine et al., 2012). Appendix A contains results coming from a different dataset and
it illustrates an application to chemical species.

2 Role of the background error covariance matrix in the variational data
assimilation method
2.1 The variational method

The solution of three-dimensional variational data assimilation (3DVAR) is sought as
the minimum of the following cost function (Courtier et al., 1994):

J0X) = 50 = XTB(Xy = X) + 31¥ ~ TR Ty, ~ H(x) (1)

Where x is the state vector composed of the model variables to analyse, at every grid
point of the 3-dimensional (3-D) model computational grid. x,, is the background state
vector, and usually provided by a previous forecast. y,, is the vector of observations
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and H called the observation operator, is a mapper from the gridded model variables to
the irregularly distributed observation locations. R is the observational error covariance
matrix. B is the background error covariance matrix. Note that exact knowledge of R
and B would theoretically require the knowledge of the true state of the atmosphere
at all times and everywhere on the model computational grid. This is not possible, and
both matrices have to be estimated in practice. In general, the R matrix is assumed
to be diagonal, i.e. uncorrelated observations, with empirically prescribed variances.
Notice also that the dimension of the B matrix is the square of the 3-D model grid
multiplied by the number of analyzed variables. For typical geophysical applications as
in meteorology, the size of the B matrix, comprised of nearly 10® x 10® = 10'® entries,
is too large to be calculate explicitly nor be stored in present computer memories. As
a result, the B matrix needs to be parameterized.

2.2 Modelling of the background error covariance matrix
2.2.1 Control variable transform

The cost function as defined in Eq. (1) is usually minimized after applying the change
of a variable:

&x = B2y, 2)

as it improves the conditioning and therefore accelerates the convergence. B'/2is the
square root of the background error covariance matrix. The variable u is called the
control variable and the cost function becomes:

1 1
J(u) = EuTu +50d - HB'/2u)TR~(d - HB'/2u) 3)
Where d is the innovation vector defined as d = (y, — H(xp)) and it represents the dif-
ference between observations and their modeled values using a non-linear observation
operator. H is the tangent linear operator.
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2.2.2 Background errors covariance matrix modelled by a succession of
operators

The square root of the B matrix as defined in Eq. (2) is decomposed to a series of
sub-matrices, each corresponding to an elemental transform that can be individually
modeled:

6x =SU,U,U,u (4)
where:

— the matrix S is diagonal and composed of the standard deviations of the back-
ground errors,

— the U, matrix defines the cross-correlations between different control variables.
In practice the unbalanced variables are obtained by removing the balance parts
through linear regressions. The idea is that those new variables are less corre-
lated with each other and so the corresponding cross-correlations entries in the
matrix vanish,

— the matrix U,, defines the horizontal auto-correlations for the u control variables.
It is modeled through successive applications of recursive filters (Purser et al.,
2003a and 2003b), which are affordable approximations of horizontal diffusion,

— the matrix U, defines the vertical auto-correlations for each of the u control
variables. It is modeled by either homogeneous Empirical Orthogonal Functions
(EOFs) or the applications of recursive filter.

Wu et al. (2002), Barker et al. (2004), and Michel and Auligné (2010) explain in more
detail the methods used to construct these operators.
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2.2.3 Motivation for an updated background error covariance model

The addition of new control variables in data assimilation systems requires the estima-
tion of the error variances for each field, the calculation of the regression coefficients
to derive uncorrelated (and unbalanced) control variables, and the estimation of the
parameters to model vertical and horizontal correlated errors.

The structure of the GEN_BE code version 2.0 has been designed to perform those
operations efficiently, to gather different methods to model B and make to additional
developments easier. The new version of the code allows modeling a real time config-
uration of B like NCEP does using five control variables (CV5, e.g. Sect. 4), as well as,
diagnosing and implementing a new model of B. The set of control variables has been
expanded to include hydrometeors (CV9, e.g. Sect. 5) in order to assimilate cloudy ra-
diances. An analysis increment for cloud hydrometeors cannot exist without any control
variables representing them. The multivariate approach is used to balance them along
other variables. Finally, statitics of chemisty species to model B have been evaluated
in Appendix A. These different experiments show the possibility to use the GEN_BE
code as a diagnostic tool, or to implement new modelling of background errors.

3 GEN_BE code version 2.0

The general structure of the code has been designed to split the input, output, and
algorithms in independent stages. In the version 2.0 of the code, the five steps, from
stage 0 to 4, that lead to modeling of the error covariance matrix become independent
of the choice of control variables and model input (Fig. 2). The namelist input file,
defined by the user, drives these different stages to determine the parameters of the
physicals transforms U, U, and U, as shown in Sect. 2.2.2. The version 2.0 of the code
includes more physics options and flexibility has been added making all the algorithms
in the different stages independent of the choice of control variables and model input.
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The new features of the code help to experiment and implement new modeling of B on
different data assimilation systems.

3.1 Five stages to generate the background error covariance statistics

Stages 0 and 1 compute the raw model perturbations of the analysis variables that
are used as a proxi of modeled background error. Stage 2 calculates the covariance
between the control variables by estimating their regression coefficients. Stages 3 and
4 estimate the necessary parameters to spread out the information in data assimilation
processes using Empirical Orthogonal Functions (EOFs) and recursive filters.

3.1.1 Sampling and binning (stage 0 and stage 1)

Since the background error covariance matrix is a statistical entity, samples of model
forecasts are required to estimate the associated variances and correlations. Tradition-
ally, two distinct techniques are used and available in stage 0 to compute the perturba-
tions:

— Differences between two forecasts valid at the same time but initiated at different
dates (time lagged forecast, e.g. 24-minus 12 h forecasts), can be used to repre-
sent a sample of model background errors. This is an ad hoc technique, called the
NMC (named for the National Meteorological Center) method (Parish and Derber,
1992), which has been widely used in operational centers where large databases
of historical forecasts are available.

— Background error statistics can be evaluated from an ensemble of previous fore-
casts valid at the same time. This method tends to be more accurate because
it better represents the background error of the day, rather than a climatologi-
cal error, as with the NMC method. However, more computational resources are
required to run an ensemble simulation.
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Pereira and Berre (2006) highlight the consequences of the evaluation of perturba-
tions using the NMC method vs. an ensemble approach (called ensemble of the day,
D-ensemble). The authors point out that the NMC method tends to underestimate the
background errors in data-sparse areas (when the forecast comes from cycling analy-
sis). They show that correlation length scales as described by Daley (1991) are smaller
in D-ensemble methods compared to NMC. Table 1 summarizes the different options
to compute these raw perturbations.

Some kind of spatial averaging needs to be performed to increase the number of
samples as the number of perturbations available are limited and to reduce the dimen-
sional of statistical output parameter. The different options available for this technique,
referred as binning, are described in the Table 2 and can be setup in the namelist input
file (Table 3). Their goals are to add heterogenity and anisotropy in the application of
the operators U,,, U, and S to specify natural phenomena more accourately. Options
bin_type =2, 3, 4 compute statitics across the zonally averaged ensemble perturba-
tions, to create a latitude-dependent correlation function usually used for large and
global domains where latitude flow dependency occurs. Morever, binning can become
tricky when it is applied to represent meteorological events at small scales. For exam-
ple, the statistics of hydrometeors, as cloud liquid water, which are characterized by
a high spatial and temporal variability can be skewed if, at a given grid point, only few
members of the D-ensemble indicate the presence of clouds. For that reason, it may
be preferable to use a cloud mask in the hydrometeor cloud calculations, which is re-
ferred as “geographical binning”. Montmerle and Berre (2010) and Michel et al. (2011)
show improvements using rain mask (option 7) with the vorticity and divergence control
variables to characterize convection events.

For this reason, the GEN_BE code has been modified to facilitate the introduction of
new binning options for specific applications. All the algorithms of the different stages
from 1 to 4 do not make any specific assumption on the binning option used. Stage
1 creates the NetCDF file bin.nc that contains all the information to define the binning
option. The bin_type variable encapsulates this information and makes it available for
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all the different programs. This modification simplifies the introduction of a new binning
option, as it needs to be defined just once in the da_create_bins FORTRAN routine.
In case of a new dynamical or geographical mask, the developer has to introduce the
method to update the mask of binning in the routine update_dynamical_mask of the
module io_input.f90. The binning definition is an important component in the model of
B as it is applied in the following stages, especially in stage 2 for the balance operator.

3.1.2 Balance through linear regressions (stage 2)

The estimation error for one analysis variable may affect the value of another if they
are correlated. The simplest way to model them is to use linear regression. Firstly,
the regression coefficients between variables can be calculated in stage 2 using two
differents methods. The original GEN_BE code first inverts the variance matrix and
then directly calculates the regression coefficient as a product. The NCEP method,
that uses a Choleski decomposition for the GSI system, has been merged into version
2.0. A broad set of options for binning, described in Table 2, can be applied to specify
and differentiate statistical covariance errors.

Secondly, linear regressions are performed to derive uncorrelated control variables
and then remove the balanced part for each other variable as shown in Sect. 3.2.2.
This part achieves the U, transform: it models correlations between variables and al-
lows to transform the matrix as a diagonal bloc in the control (uncorrelated) space.
The structure of the code, and specially stage 2, have changed significantly. One of
the goals is to have a code flexible enough to diagnose model background errors for
a large set of different control variables, shown in Table 4, that models specific covari-
ance errors by using a namelist input file. Adding new control variables or defining new
error covariances is straight forward, as all the algorithms do not depend of the control
variables.

Stage 2, which removes the linear cross-covariances between control variables (the
balanced part), is the preliminary step before estimating the vertical and horizontal
auto-correlation parameters for each control variable.
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3.1.3 Estimation of the vertical correlation and the variance (stage3)

After calculating the vertical auto-covariance matrix (VACM), two techniques are cur-
rently available in stage 3 to compute the parameters useful to model the mean vertical
auto-correlation transform (U,). The first method diagonalizes the VACM, computing
eigenvectors (aka. EOFs) and eigenvalues. The variable is re-written in this new base
for each EOF. Stage 4 will later evaluate a length scale for each EOF mode. The ver-
tical transform occurs with the change of base EOF-physical space and the variances
are represented by the eigenvalues. The second method estimates, a vertical length
scale from the vertical auto-correlation matrix directly in the physical space, to propa-
gate the increment via recursive filters. The diagnostic of the vertical length scale (L)
comes from the Daley’s formula (1991, p. 110) for a one dimension homogeneous and
isotropic case:

1
=\ ¥200) ©

with p(0) the correlation taken at the origin.
Doing a Taylor development of p(6x) at the second order and subsisting p(0) in
Eq. (5), it results in:
ox
Lyp= —— (6)

P V2 - p(6X)]

We named L, the vertical length scale with the parabolic approximation. If the corre-
lation can be approximated at the origin by a Gaussian function as following,

p(x)=exp | - ox”
2L,
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the length scale expression for the Gaussian approximation can be deduced from
Eq. (6):
ox
Lyg=—= (7)
-2Inp(6x)

Pannekoucke et al. (2008) studied the sensitivity of sampling errors of these formu-
lae and shows that the Gaussian and the parabolic approximation give close results.
Furthermore, the vertical length scale can be binned and be handled by inhomoge-
neous recursive filters, which is not the case with the vertical transform defined by the
EOF decomposition. The local eigenvectors and eigenvalues computed by bins are
mostly useful as a diagnostic, but not for data assimilation. Finally, the user can decide,
through the namelist described in Table 5, to utilize the same binning as defined by
bin_type for the regression coefficient if the flag global_bin is set to false. In the re-
verse case, the global binning is applied by vertical level (equivalent to bin_type = 5).
Stage 3 can be applied independently and simultaneously to each variable as well as
stage 4 to determine the parameters of the Uy, transform.

3.1.4 Estimation of the horizontal correlation (stage 4)

Horizontal auto-correlations can be computed for each control variable at each grib
point. Figure 3 shows a diagnostic of correlation for a few selected points of the WRF
computational domain at level 5 (~ 500m above the ground). The stream function
(Fig. 3a) and potential velocity control variables have larger and more isotropic spatial
correlations while the temperature (Fig. 3b) and the humidity (Fig. 3c) control variables
show smaller and anisotropic correlations at different locations. Hydrometeors mixing
ratio show even more local structures due to their sparse repartition on the horizontal
and the vertical (Fig. 3d).

In stage 4, we estimate length scales averaged by vertical level or EOF mode for
a field analysis in a 2-D plan. It represents the radius of influence, calculated in grid

4302

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/4291/2014/gmdd-7-4291-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/4291/2014/gmdd-7-4291-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

point, around the position of an observation and is an input parameter for recursive
filters to spread out horizontally the increment (U,,). The different options available, as
described below, are also contained in Table 5.

The first method (/s_method = 1) employs a distribution function to fit the correlation
for a 2-D field by EOF mode or by vertical level as explained in Sect. 3.1.2. If the
parameter horizfunc = “gauss” is selected, the length scale L is determined by solving
the Eq. (8):

f2
p(r) = p(0)-exp <——> (8)

where p is the correlation.

If the parameter horizfunc = “SOAR” is selected, the length scale is modeled by fit-
ting the pseudo correlation of a field through a soar function. The length scale L is
determined by solving the Eq. (9):

2
p(1) = p(0)- (1+7)-exp <—%> (9)

However, as this procedure proved both computationally expensive and prone to sam-
pling errors, a second option (/s_method = 2) based on the ratio of the variance of
a field (@) and the variance of its laplacian, has been added:

- 8- Variance(¢)

~ Variance(V2¢) (19)

The formula Eq. (10) was used by Wu et al. (2002) and is similar to the diagnosic of
Peireira and Berre (2006), which was analyzed in Panckoucke et al. (2008).

Usually, the horizontal length scale is uniform over a vertical model level; at best it can
be statistically binned. Inhomogeneous recursive filters, as implemented in the GSI, are
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able to handle the binned length scale generated with the flag global_bin set to false. In
this case, the increment is spreaded out with a length scale according to the bin class of
each grid point. Morever, inhomogeneous recursive filters could produce poor results
if the binned length scale is not smooth enough. This last criterion is hard to define
as it depends directly on the length scale values themselves over the different bins
(Pannekoucke et al., 2008; Michel and Auligné, 2010). Otherwise, if the flag global_bin
is set to true (equivalent to bin_type = 5), homogeneous recursive filters are able to
handle a unique length scale defined by model vertical level, or EOF mode.

3.2 Framework of GEN_BE code version 2.0

The framework of the GEN_BE version 2.0 code generalizes the use of the five stages
to a larger set of potential control variables. Input and output format have been chosen
to allow flexibility for input coming from different numerical models and for output that
is potentially useful for different data assimilation systems.

3.2.1 FORTRAN code and input/output

New FORTRAN modules have been developed to generalize the calculation of the
error covariance matrix from different input models and for new controls variables.
Table B1 contains a complete list of these modules and their contents. All the algo-
rithms from stage 1 to stage 4 are now independent of the choice of control variables
and driven by a unique namelist file, called namelist.input, and read by the FORTRAN
module configure.f90. Flexibility has been added for future experiments. Only few mod-
ifications are needed in stage 0 to add new control variables. The FORTRAN module
io_input_models.f90 converts the standard variables from a given model to the analy-
sis variables. The interface is already made with the WRF model. Only the FORTRAN
module io_input_model.f90 needs to be updated to implement new model input and to
run the different stages.
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The NetCDF format has been chosen to improve robustness and flexibility in the in-
put and output of the different stages as shown in Table B2. The final NetCDF output
file be.nc contains all the information needed for variational a data assimilation sys-
tem, as shown in Table B3. Several converters from NetCDF format to binary have
been developed to ensure backward compatibility to another data assimilation system.
A binary file be.dat can be generated for the WRFDA application using the program
gen_be_diags.f90 and a binary file be_gsi.dat can be created for GSI using the con-
verter gen_be_nc2gsi.f90.

3.2.2 Generalized control variables and error covariances

The framework of the GEN_BE code version 2.0 allows to use a broad set of control
variables, as shown in Table 4, and the Up transform is fully driven by the namelist
file. For example, NCEP operates for its real time operations a physical transformation
along with pressure, temperature, water vapor mixing ratio and wind components are
converted into stream function, unbalanced velocity potential, unbalanced temperature,
unbalanced surface pressure and relative humidity (univariate). The part of the namelist
file presented in Table 6 summarizes the content of this transform precising through the
parameters covar that the unbalanced part of the velocity potential, the temperature,
and the surface pressure are calculated removing their balanced part with the stream
function. This model of U, is referenced as CV5 in this document and benchmark
results are shown Sect. 4, as the same U, transform can be combined with different
other series of operators to model B.

Recent studies that propose a new definition for a multivariate humidity balance ap-
proach show potential improvements for cloud data assimilation. Diagnostics such as
vertical cross-covariance or vertical cross-correlation can be done by using stage 2.
Figure 4 displays the correlated errors between temperature with specific humidity
(Fig. 4a) and relative humidity (Fig. 4b). While the errors between temperature and
specific humidity are highly correlated close to saturation, they become anti-correlated
for a drier and mixed atmosphere (Ménétrier and Montmerle, 2011). At saturation,
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these statistics probably rely on processes of condensation or precipitation when the
released latent flux warms the atmosphere. For a winter test-case where stratiform-
type precipitation is predominant, Carron and Fillon (2010) use psi regression in addi-
tion of mass field temperature () and ps to characterize balance operator of specific
humidity in the precipitating area. They explain that imbalance in precipitating areas
comes from condensation processes and probably from dynamical processes that devi-
ate from geostrophic balance. The balance applied for specific humidity is represented
by Eq. (11):

Ny
qsu(iajyk) = qS(/,j,k) - z aqs,psi(b’kal)pSi(i1j,/)

/=1
" (11)

= > gs, (b, K D1, ], 1) = Qs ps, (0, K)PS, (0, /)
/=1

where the a regression coefficients are estimated to minimize the correlations with
other variables, the triplet (/, /, k) are the indexes of the grid point, the index b defines
the binning class for this position and N, is the total number of vertical levels. The
variable gs,, is called the unbalanced part of gs.

Ménétrier and Montmerle (2011) show the benefit of balancing the specific humidity
control variable only with the mass fields of temperature and surface pressure for fog
data assimilation purposes. As the dynamic control variable of vorticity and divergence
do not explain statically the presence of fog, they are not involved in the balance hu-
midity operator. The geographical mask used is based on the diagnositc of nebulosity.
While the balance of the specific humidity and temperature highly depend on the rel-
ative humidity rate, the correlation of relative humidity itself and temperature remains
mainly negative for a dry and humid atmosphere. A univariate version of the relative
humidity balance would not be able to handle increments of cloud hydrometeors from
data assimilation of satellite cloudy radiances. Thus, the NCEP U, transform used in
real time, is modified. In a first approach, relative humidity is balanced with the mass
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fields and does not include dynamic variables such as the stream function and potential
velocity as in the following Eq. (12a):

Ny

rhu(i,j’k) = rh(l,j,k) - Z arh,fu(b’kJ)tu(i’j’/) _arh,psu(b’k)psu(iij) (123)
/=1

This multivariate U, transform can be defined using the same code without any new
development. In this case, the line describing covariances with the humidity becomes:
covar5=0,0,1,1,0,0,0, 0, 0, 0. In the meantime, the control variables are expanded
to include the mixing ratios of cloud water condensate (g ouq): 2N (Grain)s i€ (Gice) and
SNOW (Ggnow)- The hydrometeors g ,,q @nd gic are balanced with respect to relative
humidity as their presence or absence is directly related to the humidity rate. The re-
gression coefficients can be computed directly, without any assumptions (Fig. 5a and
b), or filtered to take into account only the perturbations that represent the transition of
a non-cloudy to a cloudy area (Fig. 5¢ and d). This choice is made to intensify the sta-
tistical relationship of the statistical balance to be able to remove misplaced clouds, or
to create clouds. However, such filter may overestimate the vertical correlation around
a given vertical model level. For this reason, the line covar6 =0, 0,0,0,1,0,0,0, 0, 0
represented by Eq. (12b) can be replaced by the line covar6=0, 0, 0, 0, 2, 0, 0, O, O,
0 represented by the Eq. (12c¢). In this case, only the diagonal terms of the regression
coefficient are calculated and the increment is spreaded out by the recursive filters.

N,
Qoioud, (71, K) = Gaioudli , K) - Z s, (05K (1) (12b)

Qotoud, 1/ K) = Qeioud(/s /, K) = Qg (05 KITNY(F, /, K) (12c)

Similar balance is applied to g;,,. Table 7 summarizes the definition of this balance
operator called CV9 and Sect. 5 contains the result of experiments.
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3.2.3 Installation, compilation, set up and vizualization

The GEN_BE code version 2.0 is a standalone package that can be installed on differ-
ent UNIX/LINUX systems. It has been tested with Intel FORTRAN compiler, Portland
Group FORTRAN compiler, and GNU FORTRAN compiler. It requires compilation of
NetCDF libraries. First, a configuration file needs to be created using the command
configure in the main directory of the code. Then, the compilation, is launched by the
command compile gen_be. Once successfuly completed, the executables are created
in the src directory.

Korn-shell scripts available in the scripts directory allow to setup the experiment.
The wrapper script, named gen_be_wrapper.ksh, sets up some global variables and
launches the main script gen_be.ksh. The user needs to setup most of the other op-
tions that determine the way to model the B matrix in the namelist.template file. The
gen_be.ksh script fills out the initial date and the final dates, the frequency of date
available (interval) coming from the global variables setup in the wrapper script and
in the gen_be_set_defaults.ksh script, and generates a namelist.input file in the work-
ing directory during the first stage. The namelist.input file contains four main parts
presented Tables 1, 3, 5, and 6. Each stage can then be run successively by set-
ting the environmental variable RUN_GEN_BE_STAGE [0, 1, 2, 3, 4] to true in the
gen_be_set_defaults.ksh script. The output of the stages 0, 1, 2, 3 and the be.nc file
can be easily visualized with existing tools (Ncview, NCL, Python, MatLab).

4 Comparison of different modelling of B for two data assimilation systems

The real time configuration of B used at NCEP, that includes the set of five control vari-
ables (CV5) and their covariance errors (Table 6), can be used in both GSI and WRFDA
data assimilation systems. In the following, we present first the different parameters that
define the vertical transform U, by using EOF decomposition for WRFDA (B;) and by
using recursive filter for GSI (B,;). Finally, the results of data assimilation obtained with
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B.or and B,, determined for the CONUS domain at 15 km of resolution, are compared
with the background error B,,,,, that operates in real time on the rapid refresh domain
using GSI. B,,,,, statistics are based on NAM forecast at 0.1° of resolution and using
the NMC method.

4.1 Statistics of the background error covariance matrix for different transforms
4.1.1 Decomposition by EOF and length scale

If the EOF decomposition is used, the eigenvectors model the vertical transform (U,)
and the associated eigenvalues represent the variance. The length scale is estimated
in the EOF space and represents the horizontal transform (U,,). In the data assimilation
process, the eigenvalues weight the analysis increment and the recursive filter first
spreads out the information in the EOF space according to length scale value. Then, the
transformation from EOF mode to physical space spreads out the information vertically.
The first five eigenvectors are shown Fig. 6 for the control variables (CV5) and Fig. 7
shows the associated eigenvalues. 99 % of the variance of the stream function and the
potential velocity are represented by the first ten and twenty modes respectively, while
more than 30 modes are useful for temperature and relative humidity.

The horizontal length scales, estimated by Eq. (10), are presented in Fig. 8. The
stream function and the potential velocity have the largest length scale value reach-
ing 39 grid points for the first EOF mode, i.e. close to 600 km. While, the unbalanced
temperature length scale has a strong variation for the three first EOF passing approx-
imately from 9 to 2 grid points and from there, slightly decreases from 30 km to reach
15 km for the last EOF mode. Relative humidity is decreasing more monotonically from
approximately 30 km to 15km as a function of the EOF mode. The unbalanced tem-
perature and the relative humidity have a small length scale, which means that they
have more local features represented by a small radius of influence. Thus, the analysis
increment from these variables will remain closer to the observation.
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4.1.2 Horizontal and vertical length scales defined in physical space

The horizontal correlation is modeled by the application of recursive filters based on the
estimation of the horizontal length scale solving Eq. (10), applied by vertical model level
for each variable, as shown in Fig. 9. The diagnostic of horizontal length scale shows
similar characteristics to the one presented on the precedent paragraph performed
by EOF modes. The length scales of the stream function and the potential velocity
control variables have the largest values above 150 km for all the vertical model levels,
while the length scales of temperature and relative humidity remain in a range of one
to two grid points under 200 hPa, (i.e. 15km and 30 km). Temperature and humidity,
which have more local structures, are modeled with smaller length scales. Globally, the
horizontal length scales of different variables increase from the bottom to the top of the
model as they represent more synoptic events at high altitude.

The vertical correlation is modeled by the application of recursive filters based on the
estimation of the vertical length scale coming from the formula of Daley (1991, p. 110)
and using the parabolic approximation Eq. (6). The stream function and the velocity po-
tential in Fig. 10 that represent large scale horizontal flow have a bigger vertical length
scale than those of temperature and humidity. The vertical gradients of temperature
and humidity can vary strongly locally, lowering down the vertical correlation.

4.2 Pseudo single observation test on WRFDA and GSI data assimilation
systems

The single pseudo-observation is a powerful way to make a benchmark as it allows
visualizing the increment of an isolated observation and its impact on other variables.
Thus, the following are a series of plots for a pseudo observation test of tempera-
ture with an innovation and the observation error of 1 K. The position of the pseudo-
observation is arbitrarily taken at the center of the domain at 500 hPa.

As expected, the horizontal slice done at the 500 hPa for the temperature shows
an isotropic response to the pseudo observation of 1 K. The maximum of intensity
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simulated with this pseudo observation depends on the variance value coming from
the B matrix. When the operator (U,) employed the EOF decomposition, the J,, term of
the cost function is computed by the variance that comes from the eigenvalues of B
(Fig. 11). While the operator (U,)) is modeled by the estimation of a length scale and the
recursive filters applied on the vertical in B,, the analysis is weighted by the variance
computed directly on the model's mesh grid binned by vertical level as in this case the
domain is a limited area (Fig. 12). For data assimilation of global models, the variance
is classically binned by vertical level and latitude band, which is the case for the Bnam
matrix coming from NAM (Fig. 13). Figures 11-13 show close results regarding the
intensity on the horizontal slice and the differences are mainly due to the length scale
value. The temperature innovation is spreaded out by the recursive filter over a larger
area in Fig. 11 because the length scale computed in the EOF mode is larger.

On the vertical slice XZ, the temperature innovation has a larger impact on the ver-
tical using By, and B, than B,,,,. These differences come from the dataset used to
model these B matrices. By construction, the statistics from B,,,,, are more climatolog-
ical as they are averaged over time and they are interpolated on the mesh grid domain
of our test case during the data assimilation process. In addition, they are computed
from the background of another model. The statistics coming from B, and B, repre-
sent the statistics coming from an ensemble of the day directly related to the meteoro-
logical events and using the same model. This kind of background error statistics has
potentially more skills to estimate correlated errors.

The horizontal cross-section (XY) plotted for U and VV showed dipole lobes, which
can be explained by the geostrophic balance adjustement that the covariances statis-
tics reproduce. The X Z plan follows the isocontour of 0 m s~ for U while more complex
structures can be observed on the slices for V.

Finally, the temperature pseudo observation test performed using the B, and B,
under the GSI system, and B, under WRFDA system show comparable results and
differences that can be explained. The data assimilation of real observations performed
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on this domain using B,y and B, may provide better results than the one using B, 5,
as the statistics of the background error have been specifically determined.

5 Generation of a multivariate background error covariance for hydrometeors

Modifications code have been done to in WRFDA to add a multivariate balance oper-
ator for the hydrometeor variables: cloud liquid water mixing ratio (gqquq), rain mixing
ratio (g4in), ice mixing ratio (g;c), SNOW mixing ratio (ggnow), SO that the WRFDA mini-
mization is now performed over nine 3-D fields instead of the five previously included.
The main scientific issue in this task is to define a proper B matrix and particularly, the
cross-correlation terms that will ensure that the analysis is multivariate (Table 7), i.e. the
observed and unobserved model fields are modified simultaneously and consistently
during the analysis. The question of the estimation of the forecast error covariance ma-
trix is the focus of this section. Figure 14 provides the conversion from vertical model
level to pressure level.

5.1 Statistics of the background error covariance matrix for hydrometeors

The vertical and horizontal transforms retained are the recursive filters making the
analysis of the length scale parameter easier. The four main hydrometeors have been
added in this study, as they could be useful for data assimilation in remote sensing
such as satellite cloudy radiances.

The horizontal length scale values of the different hydrometeors shown in Fig. 15a
do not overpass two grid points, i.e. 30 km, which is smaller than that of other control
variables. Significant values of length scale, that overpass one grid point (15km), are
related to the presence of hydrometeors: it occurs under 150 hPa for g;;, and g, @and
under 400 hPa for q 5,9 @Nd Gice- The maximum of q,,q length scale, located around
950 hPa, can be associated to the presence of low maritime clouds above the Pacific
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ocean remarkable by the high standard deviation in Fig. 18a and b. In the lower levels
of the model, the length scale of g, vanishes as expected.

The vertical correlation maxima of the precipitating hydrometeors are higher com-
pared to that of cloud water, or cloud ice hydrometeors as they can drop freely through
multiple levels (Fig. 16a). The vertical length scale of g, increases regularly from
around 500 hPa (level 18) until reaching a maximum at the ground. As the length scale
increases fast after 800 hPa, where the highest density of the lower levels occurs, an
arbitrary cut-off equal to one third of the total vertical grid point value is applied in order
to avoid spreading out increment information outside the area of potential presence of
rain with the recursive filter. The length scale of g, has two local maxima. The first
one happens where the precipitating hydrometeors have the highest density at around
400 hPa. A steep increase occurs from 950 hPa until reaching the highest value close
to the ground. The high rate of presence of snow mixing ratio equal to zero at these
low levels tends to artificially enforce vertical correlation as well.

5.2 Example of a pseudo single observation of cloud mixing ratio in
a multivariate approach

To verify that our analysis is multivariate, we conducted a series of tests in which
pseudo observations of hydrometeors were assimilated into WRFDA and the corre-
sponding analysis increment was plotted. Figure 17 shows the analysis response for
the qgjoug @Nd Gyap0r Model variables when three simulated observations of cloud liquid
water are assimilated. One obervation is taken over the Pacific ocean, a second one
over Texas and the last one in Canada.

The intensity of the increment can be weighted by the 1-D variance or by the 3-D vari-
ance (S operator) coming from the ensemble. The 1-D variance, displayed in Fig. 18a,
gives a general information by vertical level and binning type without any assumption
of horizontal location. It is most of the time used when the perturbations come from the
NMC method or when the variance is not diagnosed for the analysis time. In our test
case, the increment is modulated by the 3-D variance computed from a 6 h ensemble
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forecast with 50 members. The cloudy area coming from the background of the differ-
ent members is represented by a high value of variance in Fig. 18b while low variance
takes place in the dry area. The increment is most likely important where the variability
of cloud presence exists, as over the Pacific Ocean (Fig. 17). A minimum value would
probably need to be set to retain the possibility of increments in the dry area.

The covariance between the mixing ratio of cloud water condensate and relative
humidity, described in Sect. 3.2.2, can reinforce the possibility to add clouds in the
dry area or to remove clouds in the cloudy background area. The univariate version
of the balance for hydrometeors is beneficial at the analysis time as it allows including
increments of hydrometeors directly at the analysis time. The multivariate balance is
present to help to propagate the q.,,q increment in the forecast by balancing it with
@ Qyapor iINCrement. The increments of temperature, due to the multivariate balance
between humidity and temperature, are not significant.

The determination of the balance of humidity and hydrometeors is a difficult task as
it involves the microphysical processes of meteorological NWP models and different
local phenomena. The use of local covariances coming from D-ensemble may help
to balance those high sensible variables. Furthermore, operational centers, such as
Météo-France and the Met Office, already use ensemble forecasts at high resolution to
more accurately characterize specific meteorological events, such as precipitation and
convection. Nowadays, their ensemble size remains small (often less then 10 mem-
bers) because the cost in CPU time is still elevated. Studies have been dedicated to
evaluate the sampling errors in the ensemble method and in the parameters, such as
correlation length scales, that usually model the background errors. Methods that com-
bine general statistics of the background errors and local balance are found to perform
better when the ensemble size is small (Hamil and Snyder, 2000). Figures 15a, b and
16a, b, that display horizontal and vertical length scales parameters respectively, for
the hydrometeors in regards of the number of members, show stable results.

4314

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/4291/2014/gmdd-7-4291-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/4291/2014/gmdd-7-4291-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

6 Conclusions

While variational methods have been successfully used in operational centers for a long
time, the estimation of background errors needs to be continuously improved to assim-
ilate new variables and to provide more accurate statistics. The GEN_BE v2.0 code
has been developed to investigate and model univariate or multivariate covariance er-
rors from control variables defined by a user as an input. It gathers some methods and
options that can be easily applied to different model inputs and used on different data
assimilation platforms by extending its former capabilities. The flexibility of the frame-
work of the GEN_BE V2.0 code should help the diagnostics of correlated errors and
the implementation of new background error modeling.

This document describes the different stages and transforms that lead to the mod-
eling of the background error covariance matrix B by performing benchmark tests and
showing examples that use these new functionalities. First, the GEN_BE v2.0 code
has been validated through single observation tests on two different platforms using
the EOF decomposition (WRFDA) and the recursive filters (GSI) to model the vertical
transform. The benchmark test shows similar results with comprehensive differences
for the set of five control variables used at NCEP for real time purposes. Second, the
GEN_BE v2.0 code has been used to experiment with a multivariate approach that
includes new control variables for cloud data assimilation. The precedent set of control
variables used by NCEP has been expanded from five to nine to include a multivariate
approach for humidity and mixing ratio for hydrometeors. As clouds have an intermit-
tent presence, the 3-D variance coming from an ensemble of the day gives a spatial
envelope useful to weight the analysis relatively to the observation and the background
confidence. The next step is to test cloudy radiance data assimilation using a new defi-
nition of the B matrix that includes hydrometeors as control variables. Finally, statistics
of background are estimated for chemical species (shown in Appendix A) such as car-
bon monoxide (CO), nitrogen oxides (NO,) and ozone (Oj3) even if data assimilation of
chemical species and aerosols remains difficult due to strong non-linearities.
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The trend is to model more complex background error expanding the control vari-
ables and correlated errors by using techniques for more heterogeneity and anisotrpy.
The geographical binning and the 3-D variance available in the GEN_BE v2.0 code can
be utilized with new data assimilation algorithms. Hybrid data assimilation that com-
bines variational and ensemble methods may be helpful especially to add some flow
dependence in the estimation of the background error and to reduce the ensemble size
due to CPU time constraints (Hamil and Snyder, 2000). In addition, the GEN_BE code
can be a tool to diagnose inhomogeneous 3-D localization parameters in the ensem-
ble methods. The GEN_BE v2.0 code has been tested in atmospheric science but the
flexibility of the code may be useful in other geophysical applications.

Appendix A: Background error for chemical species

This text is just included to show the applicability of the GEN_BE v2.0 code as a diag-
nostic tool for other topics than meteorlogy. However further testing needs to be per-
formed to demonstrate real benefits. In recent decades, a large amount of studies that
investigate chemical data assimilation have been conducted. Some of the first studies
on stratospheric and tropospheric chemistry data assimilation were performed roughly
two decades ago (e.g. Austin, 1992; Fisher and Lary, 1995; Elbern et al., 1997). During
the last two decades, efforts have been made in order to improve atmospheric chemical
modeling and data assimilation scheme performances. Recently Barré et al. (2013) as-
similated stratospheric and tropospheric 0zone observations simultaneously in a fully
resolved chemical scheme. Whereas Massart et al. (2012) pointed out the importance
of using ensemble estimated background error covariance in chemical data assimila-
tion. Due to the increasing complexity and accuracy of new chemical model schemes
and data assimilation systems, it appears necessary to take a realistic background
error characterization into account.

Benedetti and Fisher (2007) defined the background errors for some aerosols
species, which include sea salt, desert dust and continental particulate using aerosol
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the optical depth. Statistics were analyzed in detail to ensure that the B matrix repro-
duced relevant correlation structures during the data assimilation process. Since data
assimilation of chemical species is more recent than for meteorology, the GEN_BE
code version 2.0 may be useful to test new definitions of background error covariance
matrices and to allow the user to utylize it on different platforms. Dust, sea salt, par-
ticulate matter (PM), and several other chemical species have been already included
as new possible control variables in the GEN_BE code. Results for some of them: CO
(carbon monoxide), NO, (nitrogen oxides) and O3 (ozone) are shown next.

The statistics are estimated using 20 members over the CONUS domain. Each mem-
ber comes from a 12 h forecast of WRF-CHEM (WRF model coupled with Chemistry) at
36 km of horizontal resolution and 33 vertical levels. The boundary conditions coming
from MOZART (Model for OZone And Related chemical Tracers) and the emissions
factors coming from MEGAN (Model of Emissions of Gases and Aerosols from Na-
ture) are perturbed. Most of the ozone variability takes place in the middle atmosphere
(stratosphere) on the ozone layer around 100 hPa where the NO, concentration fluctu-
ates as well, due to photochemistry (Fig. A1a—c). The NO, emitted from the ground are
reactive species with a short lifetime. The ozone, as a secondary product and less re-
active than NO,, has a larger length scale for all the pressure levels of the model above
950 hPa (Fig. A2). CO, which is a precursor for tropospheric ozone and aerosols, has
a high variability in the boundary layer due to the combined effect of emissions and
transport. Another variability maximum is observed at the top of the troposphere in
Fig. A1(d) where strong gradients of CO exist at the tropopause levels. The largest
vertical length scales of these species are diagnosed close to the surface where they
are emitted or secondarily produced for ozone (Fig. A3). Then, they sharply decrease
between 1000 hPa and 850 hPa because of the mixing that occurs inside the boundary
layer: their correlation with the lower levels decreases. The recursive filters associated
with these vertical length-scale values would better predict vertical diffusion close to the
ground. Above 850 hPa, which is around the top of the boundary layer, the evolution
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of the vertical length scale decreases slowly from approximately two to one grid point.
Vertical diffusion will be less significant for these levels.

The diagnostics of simple statistics of the background for chemical species are
straight forward with the GEN_BE code version 2.0. Moreover, data assimilation of
chemistry components remains a challenge because of the uncertainties of various
parameters that predict chemical processes as emission factors, deposition velocity
and (photochemical) reaction constant. For these reasons, the analysis may fit the ob-
servation not for the good reason if the data assimilation does not involve the origin
of the mismatch. In addition, chemical processes can be highly non-linear and may be
hard to model. Hybrid and ensemble methods may help to diagnose complex covari-
ance structures in future work.

Appendix B: Code information

The Tables B1—-B3 of this Appendix describe the FORTRAN sources, input and output
of the GEN_BE v2.0 code.

The Supplement related to this article is available online at
doi:10.5194/gmdd-7-4291-2014-supplement.
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Table 1. General information defining the experiment in the namelist input file (&gen_be_info

part).

&gen_be_info Namelist options Description

model “WRF” Set up the acronym for the model input. Allow
GEN_BE to read different input model in the
stageO.

application “WRFDA” “WRFDA” and “GSI” interface have been devel-
oped and tested.

be_method “ENS” or “NMC” Compute perturbations from an ensemble or
from different time lagged forecast.

ne Number of members If NMC method ne = 1.

cut 0,0,0,0,0,0 Allow to subset an area of a domain, defined in
grid points. imin, imax, jmin, jmax, kmin, kmax.

use_mean_ens “false” If be_method = “ENS” is selected, the perturba-
tion can be calculated from the mean of all the
members or from 2 different members.

start_date “ START_DATE_” Initial date, format ccyymmddhh.

end_date “ END_DATE_” Final date, format ccyymmddhh.

interval “hh” Frequency of the historical date available, de-

fined in hour (useful for the NMC method only).
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Table 2. Description of the binning options. % model (GEN_BE v2.0)
C
Bin_type Description 73 G. Descombes et al.
o
0 Binning by grid point. -
1 Binning by vertical level along the x direction point of the model. 2
2 Binning by vertical heights and by latitude num_bins_lat. The parameters L) _
binwidth_lat and binwidth_hgt defined the width that splits the bins. o
3 Binning by vertical level model and latitude dependent. The parameters - -
lat_min, lat_max are computed from the model input data and the param- ) - -
eter binwidth_lat is defined in the namelist.input file. §
4 Binning by model vertical level and along the y direction. @ - -
5 Binning on vertical level model including all the horizontal point. g'
6 Average over all points. T - -
7 Binning rain/no-rain by vertical levels and based on thresholds in the S
model background (Michel et al., 2011). g - -
D s
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% model (GEN_BE v2.0)
C
Table 3. Parameters defining the binning options of the namelist input file (&gen_be_bin part). 73 G. Descombes et al.
o
>S5
&gen_be_bin Namelist options  Description A
o
bin_type 1-8 Bin type option o _
lat_min, lat_max Minimum and Maximum of latitude defined in de- -
gree. Used if bin_type =2 - -
binwidth_lat 5.0 Width of the bins defines by latitude in degree ) - -
Used if bin_type = 2, 3, 4 8
hgt_min 1000.0 Used if bin_type = 2 (height, meter) § - -
binwidth_hgt 2000.0 Width of bins defines by height in meter S
Used if bin_type = 2 (meter) -éj - -
: I N
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Table 4. Description of the control variables available for the meteorology.

Nomenclature of the Description
control variables

psi Stream function (y)

chi Velocity potential ()

vor Vorticity

div Divergence

u Horizontal wind component in x direction
v Horizontal wind component in the y direction
t Temperature

ps Surface pressure

rh Relative humidity

gs Specific humidity

G eoud Cloud mixing ratio

G'rain Rain mixing ratio

Gice Ice mixing ratio

Gsnow Snow mixing ratio

sst Sea Surface Temperature
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Table 5. Description of the options available in the namelist input file (&gen_be_lenscale part) . .
covariance matrix

to diagnose length scale parameter.

& model (GEN_BE v2.0)
(@)
. . . . C
&gen_be_lenscale Namelist options Description a G. Descombes et al.
data_on_levels “true” The statistics can be computed by vertical S
model level (GSI) or by EOF mode (WRFDA) A
vert_|s_method 1,2 Estimate the vertical length scale (stage 3) = _
Option 1: parabolic approximation formula B
Option 2: gaussian approximation formula — - -
Is_method 1,2 Estimate length scale (stage 3)
See the paragraph for more details % - -
use_med_ls “true” Estimate the length using the median value or c
o ; N
stride 1 Subset of point to speed up the stage 4 =
n_smth_Is 2 Number of point to smooth the length scale Ry - -
use_global_bin “true” The statistics can be binned or not in the stages }3
3 and 4. Only inhomogeneous recursive filters - -
can handle binned length scale. - - -
. Fuisoeen/Esc
(2]
Q
(=
(2}
(]
=)
F  Iteractive Discussion
Q
e
@

(8
K ()

4326


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/4291/2014/gmdd-7-4291-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/4291/2014/gmdd-7-4291-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7,4291-4352, 2014

Jaded uoissnosiq

Generalized
Background Error

Table 6. Information related to the control variables and their covariance errors in the namelist . .
covariance matrix

input file (&gen_be_cv part, example CV5).

& model (GEN_BE v2.0)
(@]
. . . . C
&gen_be_cv  Namelist options Description a G. Descombes et al.
nb_cv 5, Number of control variables =
cv_list ‘psi’, ‘chi’)t’, 'ps’, rh’ Variables used for the analysis A
fit_method 1,2 Conversion of v and v to psi and chi o _
1 =Cosine, 2 = Sine transform -
covari 0,0,0,0,0,0,0,0,0,0 Firstvariable do not have covariance = - -
covar2 1,0,0,0,0,0,0,0,0,0 Covariance of variable 1 (psi) and variable 2
(chi 2 i R
covar3 1,0,0,0,0,0,0,0,0,0 Covariance of variable 1 (psi) with variable 3 (t) =
covar4 1,0,0,0,0,0,0,0,0,0 Covariance of variable 1 (psi) with variable 3 (ps) %‘ - -
covarb 0,0,0,0,0,0,0,0,0,0 Relative humidity univariate =)
covar6 0,0,0,0,0,0,0,0,0,0 Other possible variable & - -
use_chol_reg .false. by default, compute the regression coefficient as }3
a ratio of covariance by variance. If true, use - -
a choleski decomposition (specific to GSI). - - -
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O
input file (&gen_be_cv part, example CV9, definition of multivariate humidity and hydrometeors & model (GEN_BE v2.0)

. ; Q

error covariance matrix). 7 S

©

&gen_be_lenscale Namelist Options -

QO

CV_IiSt ’psl’, ’Chl’, ’t’, ’pS” ’rh’, ’qclo“d” ’qice” ’qrain” ’qsnow’ -
covar 0,0,0,0,0,0,0,0,0,0 —  Abstract Introduction

covar2 1,0,0,0,0,0,0,0,0,0

covar3 1,0.0.0,0,0.0,0, 0,0 2 i R

covar4 1,0,0,0,0,0,0,0,0,0 =
covars 0,0.1.1.0,0,0.0,0.0 ; N

covar6 0,0,0,0,1,0,0,0,0,0 S
Covar7 0.0,0.0,1,0.0,0.0,0 > 1

Covar8 0,0,0,0,0,0,0,0,0,0 ?
Covars 5.0,0.0.0,0.0.0,0.0 ° N e
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Table B1. FORTRAN code description of the GEN_BE v2.0 framework.

FORTRAN modules

Comments

variables_types.f90

configure.fo0
io_input_models.f90

io_input.f90
io_output.fo0
io_output_applications.f90

It defines, declares and allocates new types as state_type,
mesh_type, bin_type, state_matrix. Some basics operations
as addition substraction, calculation of variance, covariance
are available.

It reads the namelist.input file and initialize the variables

It reads input standard variables from a model define by the
user and convert them into control variables. If the user needs
to introduce new input model, only this module needs to be
updated to read and transform the data.

It reads NetCDF input data and initialize new types

It writes NetCDF output format for all new types

It writes output for different application needs
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Table B2. Input and output of the different components of the GEN_BE v2.0 code.

Programs Input output comments
gen_be_stage0.F Various models (ex: WRF) pert.ccyymmddhh It contains the perturbations for all the control vari-
ables defined in the namelist
mesh_grid.nc It contains all the static data as latitude array, lon-
All_mesh.grid.nc gitude array, map factors
mask.ccyymmddhh This file exist only with the option dynamical_mask

standard_variable.txt
control_variable.txt

which is activated with bin_type=7 or bin_type=8
It contains the list of the control variables in ASCII
format.

gen_be_stage1.F pert.ccyymmddhh var.ccyymmddhh The input file is splitted per variables
bins.nc All the information related to the binning options
are included in this file.
gen_be_stage2.F var.ccyymmddhh gen_be_stage2_regcoeff.nc All the regression coefficients are included in this

var(_u) ccyymmddhh

file

If a linear regression is applied to the current vari-
able to remove its balanced part, an unbalanced
output variable is written under this nomenclature

gen_be_stage3.F

var(_u).ccyymmddhh

gen_be_stage3_vert_lenscale.var(_u).nc

gen_be_stage3_varce.var(_u).nc
gen_be_stage3_vert_varce(_u).nc
var(_u).ccyymmddhh.ennn.kkk

It contains the vertical length scale parameter for
the full or unbalanced part of the variable
Variance 3 dimensions by grid point

Binned vertical variance.

Intermediate binary files splitted by vertical level.

gen_be_stage4.F

var(_u).ccyymmddhh.ennn.kkk

sl_print.blll.gcloud

Intermediate ASCII file format that contain the hor-
izontal lenscale.

gen_be_diags.F

Results of the precedents stages
from2to 4

be.nc

Final netcdf file that contains all the information to
model B.

gen_be_nc2gsi.F

be.nc

be_gsi_little_endian.gcv
be_gsi_big_endian.gcv

Binary format directly readble by GSI.
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Table B3. Content of the final output file be.nc (NetCDF format) of the GEN_BE v2.0 code.

Name of the field

Description

Fields defined by control variable name (e.g. cv1)

Lenscale_cv1
vert_lenscale_cv1

vert_variance_cv1
eigen_value_cv1

eigen_vector_cv1

varce_cv1

Horizontal lenscale in EOFs space or physical space

Vertical lenscale available only if the flag data_on_levels is true
and the control variable number 1 is 3-D.

Vertical variance of the control variable number 1 per bin

Eigen value of the control variable number 1 only available if the
flag data_on_levels is false

Eigen vector of the control variable number 1 only available if the
flag data_on_levels is false

Variance 3-D

Regression coefficients

list_regcoeff
regcoeff_cvi_cv2

vert_autocov_cv1

Complete list of the regression coefficients used in the balance
constraint.

Example of regression coefficient between the control variable 1
and 2. It can be 1-D, 2-D or 3-D

Vertical autocovariance of the control variable number 1

Binning parameters

bin_type
bin2d
bins

Bin_type option selected
Binning field 2-D array
Binning field 3-D array
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Figure 1. WRF domain over the conus area at the resolution of 15 km. Based on this configura-
tion, the 50 members coming from a 6 h forecast (DART, experiment DC3) are used to generate

background error stsatistics.
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User choices into namelist.input for
control variables and covariance

INPUT

forecast file from a model

Figure 2. General structure of the code to generate a background error covariance matrix. The
input and output are represented by the orange boxes and the five main stages that lead to

model B is in blue.

v

GENERATE Background error covariance
1- stage 0: compute perturbations

2- stage 1: remove temporal mean

3- stage 2: Physical transform (Up)

4- stage 3: vertical transform (Uv)

5- stage 4: horizontal transform (Uh)

_‘_‘___’__,/

OUTPUT
1- be.nc: netcdf format
2- be.dat: binary WRFDA input file
3. be_gsi.dat: binary file GSI input file
/
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Figure 3. Horizontal autocorrelation performed at the center of each square grid over vertical
model level 5, around 950 hPa, for the control variables (a) psi, (b) ¢, (c) rh, and (d) g ouq-
Larger correlations are oberved for psi compared to ¢t and rh. g4 has the smallest correlation

sparecly distrubuted.

(b) Raw Auto-Correlation t level 005
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(d) Raw Auto-Correlation gcloud level 005
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Figure 5. (a) Raw vertical cross-correlations between g,,q and rh, (b) filtered vertical cross-
correlations between q,,q @and rh, (c) raw vertical cross-correlations between g;.., and rh, (d) fil-
tered vertical cross-correlations between g, and rh. Taking into account only the perturbations
coming from the transition of a cloudy to a non-cloudy area intensify the vertical correlation.
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Figure 12. Pseudo observation test of temperature (+1 K) using recursive filters (U,) under the
GSl application and a background error covariance matrix diagnostic from GEN_BE v2.0 (B,).
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Figure 13. Pseudo observation of temperature (+1K) using recursive filters under the GSI
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Figure 15. Horizontal length scale for the hydrometeors using (a) 50 members and (b) using 5

members show similar behavior.
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Figure 17. (a) Horizontal slide (vertical model level 5) of a pseudo observation test of cloud
water condensate (0.1g kg'1) in a multivariate approach using the 3-D variance, (b) as a con-

sequence there is a positive increment on qap0-
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