
Author’s response to the reviews
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Author’s response to executive editor D. Lunt

We have contacted Prof. Lutz Gross, the editor handling this manuscript, and

GMD publisher. We have prepared the codes of global SWE model described

in our manuscript as requested.

Author’s response to reviewer #1

Thank you for carefully reading the paper. Your constructive comments are

extremely helpful for use to improve the manuscript. We have fully taken your

comments into account and accordingly modified the paper. Below, please find

our point-to-point responses to your comments. (The comments from the re-

viewer are marked in red color.)

This paper reports on a very interesting method for solving conservation

laws, with an application to global ocean modelling. The method is in some

senses a hybrid between discontinuous Galerkin methods, Finite volume meth-

ods and Collocation methods. High order is obtained from the high order poly-

nomial representation in the volumes, and robust high order approximation of

the fluxes is obtained via an interesting combination of averaging the fluxes at

the volume boundaries via (approx) Riemann solvers and interpolation in the

interiors of the volumes. The numerical experiments and the linear analysis

support the conclusion that the method produces a simple robust high order

method.
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The paper does need an edit to pick up slight problems in the language, for

instance, there are a number of places where definite or indefinite articles are

missing.

Thank you for your comments. We have made a thorough linguistic edit.

Some minor points or comments:

(1) As discussed on page 4255, the pointwise representation of the quantities

and the fluxes are obtained via high order polynomial interpolation. a question:

Is it always safe to do this, i.e. is it ever necessary to limit the interpolants or

introduce some sort of artificial viscosity? Or does the use of the average fluxes

at the boundaries stabilize the calculation of the derivative of the fluxes at the

interior points?

At cell boundaries, we solve a Riemann problem to determine the values of

the numerical fluxes. As a result, the proposed scheme is an upwind scheme with

inherent numerical viscosity, which guarantees the computational stability as

shown by the Fourier analysis of the semi-discrete system in the paper. However,

in the presence of discontinuous solutions the non-physical oscillations might

occur without effective limiters or artificial dissipations, which is a common

issue of the high-order schemes. There are some existing works for this purpose.

We added some explanations in the revised manuscript (line 122 to line 125 and

line 467 to line 473 in the marked-up manuscript).

(2) Equation (12). It would be good to remind the reader of the exactness

of Gaussian Quadrature for polynomials of degree 5.

Thank you for suggesting this. We added some words in the revised manuscript

(line 133 in the marked-up manuscript).

(3) Page 4258. Comment on the choice of Runge-Kutta methods. Provide a

reference.

Two types of explicit Runge-Kutta schemes have been adopted in present

study. The third-order scheme has been widely used in the existing models.

Third-order scheme is a good trade-off between numerical accuracy and com-

putational cost. The fifth-order scheme was used here only for assuring the

fifth-order accuracy in both time and spatial discretizations in numerical con-
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vergence tests. The references for the Runge-Kutta method is added to the

revised manuscript (line 144 and line 151 in the marked-up manuscript).

(4) Page 4260. Provide a very short overview of the methods DG3, MCV5

which you use for your numerical comparisons.

We conduct a comparison between DG3, MCV5 and the proposed scheme

since these three schemes have fifth-order accuracy and can be derived by flux

reconstruction framework using different constraint conditions for spatial re-

construction of flux functions. As detailed in Huynh(2007), the DG3 scheme

uses the Radau polynomial as the correction functions to derive the flux re-

construction which assure the continuity of the numerical fluxes computed from

Riemann solvers at the cell interfaces. MCV5 scheme can be derived by the gen-

eral framework for flux reconstruction using multi moments proposed in Xiao

et al. (2013). MCV5 uses constraint conditions on the point values, first- and

second-order derivatives of flux functions at the cell interfaces where Riemann

solvers in terms of derivatives of the flux function are required. We added a

brief description in the revised manuscript as suggested (line 206 to line 215 in

the marked-up manuscript).

(5) Page 4263. Provide the relationship between the covariant velocities u,

v and the contravariant velocities ubar and vbar.

We added the relationship between covariant and contravariant velocity com-

ponents in the revised manuscript as suggested (Eq.(28)).

(6) Can your method work with wet/dry interfaces?

The numerical techniques designed for the traditional finite volume schemes,

as well as other high order schemes, like DG, can be straightforwardly applied

to the present scheme without substantial barriers. The calculation of wet/dry

front in shallow flows has been extensively studied under such numerical frame-

works, and can be adopted in our model.

(7) Can your method reproduce a still lake (ocean) i.e. is well balanced for

this stationary solution?

The stationary state can be exactly preserved by the proposed model since

the topography source term is formulated in the way that satisfies the “exact
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C-property”. The numerical procedure for this was described in details in Chen

& Xiao, JCP, 2008.

Author’s response to reviewer #2

Thank you for carefully reading the paper. Your constructive comments are

extremely helpful for use to improve the manuscript. We have fully taken your

comments into account and accordingly modified the paper. Below, please find

our point-to-point responses to your comments. (The comments from the re-

viewer are marked in red color.)

This paper presents a flux reconstruction method for discontinuous elements

applied to 2D shallow water equations. While this research would be interesting

for the modeling community, I have many comments on the quality of the pre-

sentation (given by this paper). The main objection is that the paper does not

provide enough explanation on spatial discretizations. Also, there are comments

on the model and on English usage.

I recommend it for publication in GMD after major revisions.

Comments:

1. In the introduction, the paper claims using the flux reconstruction method

as described in Huynh, 2007 and modified in Xiao, 2013. The FR technique is to

redistribute flux to all elements nodes, but Eqns. (6), (7) and further only up-

date end points. If the paper uses one of the schemes derived in Xiao, 2013, then

it should be stated. Still, in Xiao, 2013 (http://arxiv.org/pdf/1206.4406.pdf) it

seems that interior points are modified by the FR process. In summary, much

more should be given on the scheme used. Also, describe what (if anything) is

different from previously published works.

Basically, the flux reconstruction (FR) includes the following steps:

1. Define the unknowns as the local degrees of freedom, which are the nodal

values at the solution points within each cell;

2. Build a high-order spatial reconstruction for flux function which is a con-

sistent approximation to the solution over each cell and satisfies the con-
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tinuity conditions using the Riemann solver at cell boundaries;

3. Evaluate the derivatives of flux function at the solution points to get the

time evolution equations to update the solutions.

The key is step 2, and different constraint conditions can used for flux re-

construction, which result in different numerical schemes.

In Huynh 2007, FR is formulated by two correction functions which assure

the continuity at the two cell boundaries and collocate with the so-called pri-

mary Lagrange reconstruction at their zero-points. So, the existing nodal type

schemes can be recast under the FR framework with different correction func-

tions.

In Xiao et al. 2013, a more general FR framework was proposed by introduc-

ing the multi-moment constraint conditions including nodal values, first-order

derivatives and even second-order derivatives to determine the flux reconstruc-

tion.

In this study, we present a more straightforward and simpler approach to

derive the FR formulation using the collocation method, which has not been

discussed in either Huynh (2007) or Xiao et al (2013). The resulting scheme,

GaussLegendre-point based conservative collocation (GLPCC) scheme, is new

and has not be reported by anyone else to our knowledge.

We added some explanations in the revised manuscript (line 86 to line 93 in

the marked-up manuscript).

2. Eqn. (12) and conservation: It seems that conservation is only achieved

for uniform meshes, because Eqn. (12) depends on the element length. So, in

general, the scheme does not conserve mass if non-uniform grids are used? Also,

cube-sphere meshes are only quasi-regular. Is scheme conservative on a sphere?

It would be useful to provide a plot for mass conservation from one of the

shallow water tests, similar to Figure 14.

The proposed scheme is conservative even for non-uniform grids. The to-

tal mass within each control volume, i.e. “∆xiqi” is exactly conserved, which

is in fact computed by a finite volume formulation with the numerical fluxes
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calculated at the cell boundaries as shown in Eq. (12). Rather than volume-

integrated average (VIA) itself, the product of VIA and the volume is conserved.

We have rewritten Eq. (12) in the revised manuscript to avoid possible

misleading. The plots for mass conservation of case 5 and 6 are shown in Fig.

10 and Fig. 13 in the revised manuscript.

3. Eqn. (19) and spectral analysis: How was eqn. (19) derived and what are

the coefficients? Also, it seems that the spectral problem is formulated globally

because neighbor values are included. I found more details in paper Xiao, 2013

(http://arxiv.org/pdf/1206.4406.pdf) but at least if notations are used, they

should be clarified.

We have revised this part in the revised manuscript with more details (line

160 to line 193 in the marked-up manuscript). The spectral analysis adopted

here follows the procedure in Huynh (2007).

4. Super convergence: The authors mention super convergence a few times.

I believe they mean that their method is an h-p method with corresponding

convergence properties. It would be desirable to clarify terminology. Also, the

authors state (p. 4253) that “The Fourier analysis and numerical tests show

that the present scheme has the super convergence property same as the DG

method.” First, they did not show this numerically because there are no tests

for the p refinement. Second, which DG method are they referring to? Third,

how exactly the Fourier analysis can be used for exponential convergence?

The discussion on the super convergence follows the context in Huynh (2007)

where a scheme using K solution points is said to be super-convergent if its order

of accuracy is higher than K. As shown in Huynh (2007) that the nodal DG

scheme has a convergence rate of 2K−1, we demonstrate that the present three-

point GLPCC scheme has 5th-order convergence rate by the Fourier analysis

used in Huynh(2007). Here, the DG scheme is referred to the nodal type DG

defined in Huynh (2007) which uses the Radau polynomial as the correction

function. A relevant theoretical work can be found in Guo et al. (W. Guo, X.

Zhong and J. Qiu, J. Comput. Phys. Vol. 235, 458-485 (2013)).

5. “The parameter a in Eq. (24) is determined by the contravariant veloc-
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ity component and the water depth, which are exactly same on two adjacent

patches.” A continuous velocity field in contravariant coordinates on an edge

has two components, and one of them, corresponding to a basis vector perpen-

dicular to the edge, is the same (up to the sign) for adjacent elements.

It has been clarified in the revised manuscript (line 330 to line 333 in the

marked-up manuscript).

6. Figure 15 needs labels ((a), (b) ...) and captions for them.

Thank you for suggestion. We added the figure labels in the revised manuscript

(Fig. 17 in the revised manuscript).

7. p. 4263: “The expression of metric tensor can be found in Chen and

Xiao (2008)”. I believe (correct this if I am wrong) that this paper largely uses

transformations and formulations from earlier papers (Nair, R. D., S. J. Thomas

and R. D. Loft, 2005: A discontinuous Galerkin transport scheme on the cubed

sphere. Monthly Weather Review,Vol. 133, pp 814-828) and (Nair, R. D., S. J.

Thomas and R. D. Loft, 2005: A discontinuous Galerkin global shallow water

model. Monthly Weather Review, Vol. 133, pp 876-888). The reference should

be corrected then.

Thank you for your comments. We revised the sentence in the manuscript

(line 281 in the marked-up manuscript).

8. The paper does not cover diffusive properties of the proposed method

and possible applications of artificial diffusion. I believe this is a valid point for

discussion. Shallow water models are often considered as preliminary studies

for 3D models. In 3D models, diffusion mechanisms cannot be ignored.

Based on the Riemann solver at cell interfaces, the proposed scheme is essen-

tially an upwind type method. As a result, the inherent numerical dissipation

is included and stabilizes the numerical solutions. We did not use any extra

artificial viscosity in the shallow water model for the numerical tests presented

in the paper. We agree with you that additional dissipation or limiter projection

might be necessary in other cases in 3D. Because of the algorithmic similarity,

the existing works on high-order limiting projection and artificial dissipation

devised for DG or spectral element methods should be applicable to GLPCC
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without substantial difficulty. Some comments have been included in the re-

vised manuscript (line 122 to line 125 and line 467 to line 473 in the marked-up

manuscript).

Comments on English:

1. More attention should be given to articles.

2. p. 4262: Revise “... coordinate system (ξ, η) are shown in Fig.”,“...the

governing equations is rewritten..”

3. p. 4264: Revise “... we solving ...”

4. p. 4267: Revise “The conservation errors of total energy and enstrophy

are interest for atmospheric modelling”

5. p. 4268: Revise “Two kinds of setup of this test are usually checked in

literatures.”

We have made a thorough linguistic check. All your comments are reflected

in the revised manuscript. Thank you.

Appendix

A marked-up version of the revised manuscript is included as follows, where the

revisions are indicated by using latexdiff.
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Abstract. An efficient and conservative collocation method is proposed and used to develop a global

shallow water model in this paper. Being a nodal type high-order scheme, the present method solves

the point-wise values of dependent variables as the unknowns within each control volume. The solu-

tion points are arranged as Gauss–Legendre points to achieve the high-order accuracy. The time evo-

lution equations to update the unknowns are derived under the flux-reconstruction
:::
flux

::::::::::::
reconstruction5

(FR) framework (Huynh, 2007). Constraint conditions used to build the spatial reconstruction for

the flux function include the point-wise values of flux function at the solution points, which are com-

puted directly from the dependent variables, as well as the numerical fluxes at the boundaries of the

control volume
:::::::::::
computational

::::::::
element,

:
which are obtained as the Riemann solutions between the

adjacent cells
:::::::
elements. Given the reconstructed flux function, the time tendencies of the unknowns10

can be obtained directly from the governing equations of differential form. The resulting schemes

have super convergence and rigorous numerical conservativeness.

A three-point scheme of fifth-order accuracy is presented and analyzed in this paper. The proposed

scheme is adopted to develop the global shallow-water model on the cubed-sphere grid where the

local high-order reconstruction is very beneficial for the data communications between adjacent15

patches. We have used the standard benchmark tests to verify the numerical model, which reveals

its great potential as a candidate formulation for developing high-performance general circulation

models.

1 Introduction

A recent trend in developing global models for atmospheric and oceanic general circulations is the20

increasing use of the high order
::::::::
high-order

:
schemes that make use of local reconstructions and have
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the so-called spectral convergence. Among many others are those reported in Giraldo et al. (2002);

Thomas and Loft (2005); Giraldo and Warburton (2005); Nair et al. (2005a,b); Taylor and Fournier

(2010); Blaise and St-Cyr (2012). Two major advantages that make these models attractive are (1)

they can reach the targeted numerical accuracy more quickly by increasing the number of degrees of25

freedom (or unknowns), and (2) they can be more computationally intensive with respect to the data

communications in parallel processing (Dennis et al., 2012).

The discontinuous Galerkin (DG) (Cockburn et al., 2000; Hesthaven and Warburton, 2008)

and spectral element(SE) (Patera, 1984; Karniadakis and Sherwin, 2005) methods are the widely

used framework
::::::::::
frameworks

:
in this context. A more general formulation, so-called flux re-30

construction (FR), was presented in Huynh (2007) which covers a wide spectrum of nodal

type schemes, including the DG and SE as the special cases. An
::
A

:
FR scheme solves

the values at the solution points located within each grid elementcell, and the cell integrated

:::::::::::::::
volume-integrated

:
value, which are the weighted summation of the solutions, can be numeri-

cally conserved. We recently
::::::::
proposed

:
a
:::::
class

::
of

:::::
local

:::::::::
high-order

::::::::
schemes,

::::::
named

::::::::::::
multi-moment35

:::::::
schemes,

::::::
which

:::::
were

::::
used

:::
to

:::::::
develop

:::
the

:::::::
accurate

:::::::
shallow

::::::
water

::::::
models

:::
on

::::::::
different

::::::::
spherical

::::
grids

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Chen and Xiao, 2008; Li et al., 2008; Ii and Xiao, 2010; Chen et al., 2014b) .

:::
By

::::::::::
introducing

:::::::::::
multi-moment

::::::::
concept,

::
we

:
show in Xiao et al. (2013) that the flux reconstruction can be implemented

in a more flexible way, and other new schemes can be generated by properly chosen different types

of constraint conditions.40

In this paper, we introduce a new scheme which is different from the existing nodal DG and SE

methods under the FR framework. The scheme, so-called Gauss–Legendre-point based conservative

collocation (GLPCC) method, is a kind of collocation method that solves the governing equations of

differential form at the solution points, and is very simple and easy to follow. The Fourier analysis

and
:::
the numerical tests show that the present scheme has the super convergence property same as the45

DG method. A global shallow water equation (SWE) model has been developed by implementing the

three-point GLPCC scheme on a cubed-sphere grid. The model has been verified by the benchmark

tests. The numerical results show the fifth-order accuracy of the present global SWE model. All the

numerical outputs look favourably comparable to other existing methods.

The rest of this paper is organized as follows. In Sect. 2, the numerical formulations in one50

dimensional case are described in detail. The extension of the proposed scheme to a global shallow

water model on cubed-sphere grid is then discussed in Sect. 3. In Sect. 4, several widely used

benchmark tests are solved by the proposed model to verify its performance in comparison with

other existing models. Finally, a short conclusion is given in Sect. 5.
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2 Numerical formulations55

2.1 Scheme in one dimensional scalar case

The first order scalar hyperbolic conservation law in one dimension is solved in this subsection,

∂q

∂t
+
∂f(q)

∂x
= 0, (1)

where q is dependent variable and f is flux function.60

The computational domain, x ∈ [xl,xr], is divided into I elements with the grid spacing of ∆xi =

xi+ 1
2
−xi− 1

2
for the ith element Ci :

[
xi− 1

2
,xi+ 1

2

]
.

A class of schemes can be devised under the framework of the flux reconstruction (FR)

(Huynh, 2007; Xiao et al., 2013) . For each grid
:::
The

:::::::::::::
computational

::::::::
variables

::::::::::
(unknowns)

::::
are

::::::
defined

::
at

::::::
several

:::::::
solution

::::::
points

::::::
within

::::
each

:
element, e.g.

:::::
within

:::::::
element Ci , the point values,65

qim (m= 1,2, . . . ,M ),
::
are

:
defined at the solution points (xim)which are located within the element,

are treated as the computational variables (unknowns). High order schemes can be built by increas-

ing the number of the solution points. In this paper, we describe the GLPCC scheme that has three

solution points for each grid element (M = 3).

Three
:::
The

::::::::::::
configuration

::
of

:
local degrees of freedom (DOFs) (unknowns), i.e. qim, m= 1 to 3,70

are point-wisely defined at solution points xim within each element as
:
is
:

shown in Fig. 1 (hollow

circles)
::
by

:::
the

:::::::
hollow

::::::
circles. To achieve the best accuracy, the DOFs are arranged at Gauss–

Legendre points ,
::
in

:::
this

::::::
study,

xi1 = xi−
1

2

√
3

5

√
3

2
√

5
::::

∆xi, xi2 = xi and xi3 = xi +
1

2

√
3

5

√
3

2
√

5
::::

∆xi, (2)

75

where xi is the center of the element xi = (xi− 1
2

+xi+ 1
2
)/2.

The unknowns are updated by applying the differential-form governing equations Eq. (1) at solu-

tion points as

∂qim
∂t

=−
[
∂f(q)

∂x

]
im

. (3)
80

As a result, the key task left is to evaluate the derivatives of the flux function, which is realized

by reconstructing the piecewise
:::::::::
polynomial

:::
for

:
flux function, Fi(x), over each element. Once the

reconstructed flux function is obtained, the derivative of flux function is approximated by[
∂f(q)

∂x

]
im

≈
[
∂Fi(x)

∂x

]
im

. (4)
85

In this study, we
::::::::::::
Huynh (2007) ,

::::
FR

::
is

:::::::::
formulated

:::
by

::::
two

:::::::::
correction

::::::::
functions

::::::
which

::::::
assure

::
the

::::::::::
continuity

::
at

::::
the

::::
two

:::
cell

::::::::::
boundaries

::::
and

::::::::
collocate

:::::
with

:::
the

:::::::::
so-called

:::::::
primary

:::::::::
Lagrange

:::::::::::
reconstruction

:::
at

::::
their

:::::::::::
zero-points.

:::::
So,

:::
the

:::::::
existing

::::::
nodal

::::
type

::::::::
schemes

::::
can

:::
be

:::::
recast

::::::
under

::
the

::::
FR

:::::::::
framework

::::
with

::::::::
different

:::::::::
correction

::::::::
functions.

:::
In
::::::::::::::::

Xiao et al. (2013) ,
::

a
:::::
more

::::::
general

::::
FR
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:::::::::
framework

::::
was

::::::::
proposed

::
by

::::::::::
introducing

:::
the

:::::::::::::
multi-moment

::::::::
constraint

:::::::::
conditions

:::::::::
including

:::::
nodal90

::::::
values,

::::::::
first-order

:::::::::
derivatives

:::
and

:::::
even

::::::::::
second-order

:::::::::
derivatives

::
to
:::::::::
determine

:::
the

:::
flux

:::::::::::::
reconstruction.

::::
Here,

:::
we

::::
will

:::::::
develop

:
a
::::
new

::::::
method

::
to
::::::::::
reconstruct

:::
the

:::
flux

::::::::
function,

:::::
which

::
is
:::::
more

:::::::::::::
straightforward

:::
and

::::::
simpler

:::::::::
compared

::::
with

:::
the

:::::::
methods

::::::::
discussed

::
in

:::::
either

::::::::::::::
Huynh (2007) or

::::::::::::::::
Xiao et al. (2013) .

:::
We assume that the reconstructed flux function over the ith element, Fi(x), has the form of

Fi(x) = c0i i0: + c1i i1:(x−xi) + c2i i2:(x−xi)2 + c3i i3:(x−xi)3 + c4i i4:(x−xi)4, (5)95

where the coefficients, c0i , c
1
i , . . . , c

4
i:::::::::::::
ci0, ci1, ..., ci4, are determined by a collocation method, which

meets five constrained
::::::::
constraint

:
conditions specified at five constrained

::::::::
constraint points (shown in

Fig. 1 by
::
the

:
solid circles) as

Fi (xim) = f (qim) , m= 1 to 3

Fi
(
xi− 1

2

)
= f̃i− 1

2

Fi
(
xi+ 1

2

)
= f̃i+ 1

2

, (6)100

where f̃i± 1
2

are the values of flux function at the interfaces between different elements
:::
cell

:::::::::
boundaries.

In Eq. (6), f(qim) are calculated by three known DOFs at solution points. The values of flux

function at interfaces
:::
the

:::::::::
boundaries

:
are obtained by solving the Riemann problems with the values105

of dependent variables at the interfaces between two neighboring elements, which are interpolated

separately from two adjacent elements. Considering the interface at xi− 1
2

, we get two values of flux

function from elements Ci−1 and Ci as

fLi− 1
2

= f
(
qLi− 1

2

)
= f

[
Qi−1

(
xi− 1

2

)]
and fRi− 1

2
= f

(
qRi− 1

2

)
= f

[
Qi

(
xi− 1

2

)]
, (7)

110

whereQi(x) is a spatial reconstruction for dependent variable based on local DOFs, having the form

of

Qi(x) =

3∑
m=1

[Lm(x)qim] , (8)

where the Lagrange basis function Lm(x) =
∏3
s=1,s6=m

x−xis
xim−xis

.115

Then the numerical flux f̃i− 1
2

at the element interface
:::::::
boundary

:
is obtained by an approximate

Riemann solver as,

f̃i− 1
2

=
1

2

[
fLi− 1

2
+ fRi− 1

2

]
+

1

2
a
[
qLi− 1

2
− qRi− 1

2

]
, (9)

where a=
∣∣∣f ′(qavg

i− 1
2

)∣∣∣ with f ′(q) = ∂f(q)
∂q being the characteristic speed. A simple averaging120

qavg
i− 1

2

=
qL
i− 1

2
+qR

i− 1
2

2 is used in the present paper.

:::::
Based

:::
on

:::
the

::::::::
Riemann

:::::
solver

::
at

::::
cell

::::::::::
boundaries,

:::
the

::::::::
proposed

::::::
scheme

::
is
:::::::::

essentially
:::

an
:::::::
upwind

:::
type

:::::::
method.

:::
As

::
a

:::::
result,

:::
the

:::::::
inherent

:::::::::
numerical

:::::::::
dissipation

::
is

:::::::
included

:::
and

::::::::
stabilizes

:::
the

:::::::::
numerical

4



::::::::
solutions.

:::
We

:::
did

:::
not

:::
use

::::
any

::::
extra

:::::::
artificial

::::::::
viscosity

::
in

:::
the

:::::::
shallow

:::::
water

:::::
model

:::
for

:::
the

:::::::::
numerical

::::
tests

::::::::
presented

::
in

:::
the

:::::
paper.

:
125

It is easy to show that the proposed scheme is conservative in terms of the volume-integrated

average of each element,

qi =

3∑
m=1

(wimqim) , (10)

where the weights wim are obtained by integrating the Lagrange basis function as130

wim =
1

∆xi

x
i+1

2∫
x
i− 1

2

Lm(x)dx., (11)

:::
and

::::::
exactly

:::::
same

::
as

:::::
those

::
in

::::::::
Guassian

:::::::::
quadrature

::
of

::::::
degree

::
5.

A direct proof of this observation is obtained by integrating Eq. (3) over the grid element, yielding

the following conservative formulation,135

dqi
dt

∂

∂t
::

(
∆xi
:::

qi

)
= ∆xi

:::

3∑
m=1

(
wim

dqim
dt

∂qim
∂t

::::

)
=− 1

∆x

(
f̃i+ 1

2
− f̃i− 1

2

)
., (12)

:::::
where

:::::
∆xiqi::

is
:::
the

::::
total

:::::
mass

:::::
within

:::
the

:::::::
element

:::
Ci.:

With the above spatial discretization, Runge–Kutta method is used to solve the following semi-

discrete equation
::::::
(ODE),140

dqim
dt

=D(q?), (13)

where D represents the spatial discretisation and q? is the dependent variables known at time t= t?.

A fifth-order Runge–Kutta scheme
::::::::::
Runge-Kutta

:::::::
scheme

:::::::::::::::
(Fehlberg, 1958) is adopted in the nu-

merical tests to examine the convergence rate,145

qim (t? + ∆t) = qipim
:

? + ∆t

(
17

144
d1 +

25

36
d3 +

1

72
d4−

25

72
d5 +

25

48
d6

)
, (14)

where

d1 =D (q?)

d2 =D
(
q? + 1

5∆td1

)
d3 =D

(
q? + 2

5∆td2

)
d4 =D

(
q? + 9

4∆td1 + 15
4 ∆td2− 5∆td3

)
d5 =D

(
q?− 63

100∆td1 + 9
5∆td2− 13

20∆td3 + 2
25∆td4

)
d6 =D

(
q?− 6

25∆td1 + 4
5∆td2 + 2

15∆td3 + 8
75∆td4

)
. (15)

150

In other cases, a third-order scheme
::::::::::
(Shu, 1988) is adopted to reduce the computational cost,

which does not noticeably degrade the numerical accuracy since the truncation errors of the spatial

5



discretisation are usually dominant. It is written as

qim (t? + ∆t) = qipim
:

? + ∆t

(
1

6
d1 +

1

6
d2 +

2

3
d3

)
, (16)

155

where
d1 = D (q?)

d2 = D (q? + ∆td1)

d3 = D
(
q? + 1

4∆td1 + 1
4∆td2

) . (17)

2.2 Spectral analysis and convergence test

We conduct the spectral analysis (Huynh, 2007; Xiao et al., 2013) to theoretically study the perfor-160

mance of GLPCC scheme by considering the following linear equation

∂q

∂t
+ c

∂q

∂x
= 0 (x ∈ [−∞,+∞])andc= 1.. (18)

The
:::
This linear equation is discretised on a

::
an uniform grid with ∆x= 1. Since c > 0

:::
the

::::::::
advection

:::::
speed

:
is
:::::::
positive, the spatial discretisation for the three DOFs defined in element Ci involves the six165

DOFs within elements Ci and Ci−1 . Using the proposed scheme, we have the semi-discrete equation

as

d
dt


qi1

qi2

qi3

=


ci−1,11 ci−1,12 ci−1,13 ci,11 ci,12 ci,13

ci−1,21 ci−1,22 ci−1,23 ci,21 ci,22 ci,23

ci−1,31 ci−1,32 ci−1,33 ci,31 ci,32 ci,33





qi−1,1

qi−1,2

qi−1,3

qi1

qi2

qi3


.

:::
and

:::
can

:::
be

::::::
written

::
as

:::
the

::::::::
following

:::::
linear

:::::::::::
combination

::
as

∂qim
∂t

=−
(
∂q

∂x

)
im

=

3∑
s=1

(
b̃i,msqi−1,s

)
+

3∑
s=1

(bi,msqis) ,

:::::::::::::::::::::::::::::::::::::::::::::::

(19)170

:::::
where

:::
the

:::::::::
coefficients

:::::
b̃i,ms:::

and
:::::
bi,ms:::

are
:::
the

::::::::::
coefficients

::
for

:::
the

::::::
DOFs

:::::
within

::::::::
elements

::::
Ci−1:::

and
:::
Ci

::::::::::
respectively,

:::::
which

:::
can

:::
be

:::::::
obtained

:::
by

:::::::
applying

:::
the

::::::::
proposed

::::::
scheme

::
to

::::::::
governing

::::::::
equation

:::
Eq.

::::
(18)

::
in

::::::
element

:::
Ci.:

With a wave solution q (x,t) = eIω(x+t), semi-discrete formulation Eq. (19)is written as175

:::::::::::::::
q (x,t) = eIω(x+t)

::::::::::
(I =

√
−1),

:::
we

::::
have

:

qi−1,m = e−Iω∆xqim = e−Iωqim.
:::::::::::::::::::::::::::

(20)
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:::::
Above

::::::
spatial

:::::::::::
discretization

::::
can

::
be

::::::::
simplified

:::
as

dqi
dt

∂qim
∂t

::::

= i−:

(
∂q

∂x
::

)
im =

3∑
s=1

:::::::

(
Bi,msqis
:::::::

)
and
::

Bi,ms =
::::::

(
b̃i,mse

−Iω + bi,ms
::::::::::::::

)
. (21)180

::::::::::
Considering

:::
the

:::
all

:::::
DOFs

:::
in

:::::::
element

:::
Ci,::

a
::::::::::
matrix-form

:::::::
spatial

:::::::::::
discretization

::::::::::
formulation

::::
are

:::::::
obtained

::
as

:

∂qi
∂t

= Biqi,
::::::::::

(22)
185

:::::
where

::::::::::::::::
qi = [qi1, qi2, qi3]T

::::
and

:::
the

:::::::::::
components

:::
of

:::
the

::::::
3× 3

::::::
matrix

:::
Bi::::

are
::::::::::
coefficients

::::::
Bi,ms

:::::::::
(m= 1 to 3, where qi = [qi1, qi2, qi3]T and

P =


ci−1,11e

−Iω + ci,11 ci−1,12e
−Iω + ci,12 ci−1,13e

−Iω + ci,13

ci−1,21e
−Iω + ci,21 ci−1,22e

−Iω + ci,22 ci−1,23e
−Iω + ci,23

ci−1,31e
−Iω + ci,31 ci−1,32e

−Iω + ci,32 ci−1,33e
−Iω + ci,33

 .

:::::::::
s= 1 to 3).

:

The exact solutionto
::::
With

:::
the

::::
wave

::::::::
solution,

:::
the

:::::
exact

:::::::::
expression

::
for

:::
the

::::::
spatial

:::::::::::
discretization

:::
of190

Eq. (18) is

dq

dt

∂qi
∂t
:::

=−I−I
::
ωqqi. (23)

The numerical property of the proposed scheme can be examined by analysing the eigenvalues

of matrix P
::
Bi:

in Eq. (23). Truncation errors of
::
the

:
spatial discretization are computed by com-195

paring the principal eigenvalues of matrix P and the exact solution −Iω
:::
Bi:::

and
:::
its

:::::
exact

:::::::
solution

::::
−Iω

:
and the convergence rate can be approximately estimated by errors for

::
the

:::::
errors

:::
at two dif-

ferent wavenumbers. The results are shown in Table 1 and
:::
the fifth-order accuracy is achieved.

The spectrum of the eigen matrix of Eq. (23)
:::
Bi is shown in Fig. 2. A scheme achieves bet-

ter numerical performance when the hollow circles become closer to imaginary axis. And the200

maximum of spectral radius determines the largest available CFL number, i.e.
:
a
:

larger spectral

radius corresponding to
:
a
:
smaller available CFL number. Numerical dispersion and dissipation

relations dominated by the principal eigenvalues are shown in Fig. 3. Numerical properties of

several schemes were analyzed in Xiao et al. (2013), shown in their Fig. 1 for spectra and Fig. 2

for numerical dispassion and dispersion relations. The proposed scheme has the similar numerical205

properties as
:::
We

:::::::
conduct

::
a

::::::::::
comparison

:::::::
between

:
DG3 (Huynh, 2007)and

:
,
:
MCV5 (Ii and Xiao,

2009) schemes.
::
and

::::
the

::::::::
proposed

::::::
scheme

:::::
since

:::::
these

::::
three

::::::::
schemes

::::
have

:::
the

:::::::::
fifth-order

::::::::
accuracy

:::
and

:::
can

:::
be

::::::
derived

:::
by

::
FR

::::::::::
framework

:::::
using

:::::::
different

::::::::
constraint

:::::::::
conditions

:::
for

::::::
spatial

::::::::::::
reconstruction

::
of

:::
flux

:::::::::
functions.

:::
As

:::::::
detailed

::
in

::::::::::::
Huynh (2007) ,

:::
the

:::::
DG3

::::::
scheme

::::
uses

:::
the

::::::
Radau

::::::::::
polynomial

::
as

:::
the

::::::::
correction

::::::::
functions

::
to

::::::
derive

:::
the

::::
flux

::::::::::::
reconstruction

:::::
which

::::::
assure

:::
the

:::::::::
continuity

::
of

:::
the

:::::::::
numerical210
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:::::
fluxes

::::::::
computed

:::::
from

::::::::
Riemann

::::::
solvers

::
at
:::
the

::::
cell

::::::::::
boundaries.

:::::::
MCV5

::::::
scheme

::::
can

::
be

:::::::
derived

:::
by

:
a
::::::
general

::::::::::
framework

:::
for

::::
flux

::::::::::::
reconstruction

:::::
using

:::::
multi

::::::::
moments

::::::::
proposed

::
in

::::::::::::::::
Xiao et al. (2013) .

::::::
MCV5

::::
uses

::::::::
constraint

:::::::::
conditions

:::
on

:::
the

:::::
point

:::::::
values,

::::
first-

::::
and

:::::::::::
second-order

:::::::::
derivatives

:::
of

::::
flux

:::::::
functions

::
at
::::

the
:::
cell

:::::::::
boundaries

::::::
where

::::::::
Riemann

::::::
solvers

::
in

:::::
terms

::
of

:::::::::
derivatives

:::
of

:::
the

:::
flux

::::::::
function

::
are

::::::::
required.

:
Compared with DG3 scheme, the proposed scheme is easier to be implemented and215

thus has less computational overheads. Though MCV5 scheme gives better spectra (eigenvalues are

closer to imaginary) than DG3 scheme and the present scheme, it adopts more local DOFs under

the same grid spacing, i.e. 4I + 1 DOFs for MCV5 and 3I DOFs for DG3 and the present scheme

where I is the total number of elements. Both MCV5 and the present scheme are accelerating up to

wavenumber 2π
::::
show

:::::::
slightly

:::::
higher

:::::::::
numerical

::::::::
frequency

::
in

:::
the

::::
high

:::::::::::
wavenumber

::::::
regime,

::::::
which

::
is220

:::::::::
commonly

:::::::
observed

::
in

:::::
other

:::::::::::::::::
spectral-convergence

::::::::
schemes,

::::
like

:::
DG. Considering the results of

:::
the

spectral analysis, the proposed scheme is a very competitive framework to build high-order schemes

compared with existing advanced methods.

Advection of a smooth sine wave is then computed by GLPCC scheme on a series
::::
series

:::
of

refined uniform grids to numerically checking the converge rate. The test case is specified by solving225

Eq. (18) with initial condition q(x,0) = sin(2πx) and periodical boundary condition over x ∈ [0,1].

CFL number of 0.1 is adopted in this example. Normalized l1, l2 and l∞ ::::
errors

:
and corresponding

convergence rate are given in Table 2. Again, the fifth-order convergence is obtained, which agrees

with the conclusion in the above spectral analysis.

2.3 Extension to system
::
of equations230

The proposed scheme is then extended to a hyperbolic system with L equations in one dimension,

which is written as

∂q

∂t
+
∂f(q)

∂x
= 0, (24)

where q is the vector of dependent variables and f the vector of flux functions.235

Above formulations can be directly applied to each equation of the hyperbolic system, except that

the Riemann problem, which is required at interfaces
::
the

:::
cell

::::::::::
boundaries between different elements

to determine the values of flux functions, is solved for a coupled system of equations.

For a hyperbolic system of equations, the approximate Riemann solver used at interface xi− 1
2

is

obtained by rewriting Eq. (9) as240

f i− 1
2

=
1

2

[
fLi− 1

2
+fRi− 1

2

]
+

1

2
aa
[
qLi− 1

2
− qRi− 1

2

]
, (25)

where the vectors fL
i− 1

2

, fR
i− 1

2

, qL
i− 1

2

and qR
i− 1

2

are evaluated by applying the formulations designed

for scalar case to each component of the vector. In this paper, we use a simple approximate Riemann

solver, the local Lax–Friedrich (LLF) solver, where a is reduced to a positive real number as245

a = max(|λ1| , |λ2| , . . . , |λL|) , (26)
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where λl (l = 1 to L) are eigenvalues of matrix A
(
qavg
i− 1

2

)
with A(q) = ∂f(q)

∂q and qavg
i− 1

2

=

qL

i− 1
2

+qR

i− 1
2

2 .

3 Global shallow-water
::::::
shallow

::::::
water model on cubed-sphere grid250

3.1 Cubed-sphere grid

The cubed-sphere grid (Sadourny, 1972), shown in Fig. 4, is obtained by projecting an inscribed

cube onto a sphere. As a result, the surface of a sphere is divided into six identical patches and

six identical curvilinear coordinates are then constructed. Two kinds of projections are adopted to

construct the local curvilinear coordinates, i.e. gnomonic and conformal projections (Rancic et al.,255

1996). Considering the analytic projection relations and more uniform areas of the computational

elements
:::
grid

:::::::
spacing, the equiangular gnomonic projection is adopted in the present study. The

transformation laws and the projection relations can be referred to Nair et al. (2005a,b) for details.

Whereas, a side-effect of this selection
:::::
choice is that the discontinuous coordinates are found along

the boundary edges between adjacent patches. In Chen and Xiao (2008), we have shown that the260

compact stencils for the spatial reconstructions through using local DOFs are beneficial to suppress

the extra numerical errors due to the discontinuous coordinates.

3.2 Global shallow-water
:::::::
shallow

:::::
water

:
model

The local curvilinear coordinate system (ξ,η) are
:
is shown in Fig. 5, where P is a point on sphere

surface, and P ′ is corresponding point on the cube surface through a gnomonic projection. λ and265

θ represent the longitude and latitude. α and β are central angles spanning from −π4 to π
4 for each

patch. Local coordinates are defined by ξ =Rα and η =Rβ where R is the radius of the Earth.

To build a high-order global model, the governing equations is
:::
are rewritten onto the general

curvilinear coordinates. As a result, the numerical schemes developed for Cartesian grid are straight-

forwardly applied in the computational space. The shallow-water
:::::::
shallow

::::
water

:
equations are recast270

on each spherical patch in flux form as

∂q

∂t
+
∂e(q)

∂ξ
+
∂f (q)

∂η
= s(q) , (27)

where dependent variables are q =
[√

Gh, u, v
]T

with water depth h, co-

variant velocity vector (u,v) and Jacobian of transformation
√
G, flux vec-275

tors are e =
[√

Ghũ, g (h+hs) + 1
2 (ũu+ ṽv) , 0

]T
in ξ direction and f =[√

Ghṽ, 0,g (h+hs) + 1
2 (ũu+ ṽv)

]T
in η direction with gravitational acceleration g,

height of the bottom mountain hs and contravariant velocity vector (ũ, ṽ), source term is

s =
[
0,
√
Gṽ (f + ζ) , −

√
Gũ(f + ζ)

]T
with Coriolis parameter f = 2Ωsinθ, rotation speed of

the Earth Ω = 7.292× 10−5s−1 and relative vorticity ζ = 1√
G

(
∂v
∂ξ −

∂u
∂η

)
.280
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The expression of metric tensor
:::
Gij:can be found in Chen and Xiao (2008) .

:::::::::::::::::
Nair et al. (2005a,b) .

:::::::
Jacobian

::
of

:::
the

::::::::::::
transformation

::
is

::::::::::::::::

√
G=

√
det(Gij) :::

and
:::
the

::::::::
covariant

:::
and

:::
the

:::::::::::
contravariant

:::::::
velocity

::::::::::
components

:::
are

::::::::
connected

:::::::
through ũ

ṽ

=Gij

u
v

 ,
:::::::::::::::

(28)

285

:::::
where

:::::::::::::
Gij = (Gij)

−1.
:

Here, taking
√
Gh as the model variable assures the global conservation of total mass. And the

total height is used in the flux term. Consequently, the proposed model can easily deal with the

topographic source term in a conservative
:::::::
balanced

:
way (Xing and Shu, 2005).

The numerical formulations for two dimensional schemes
::::::
scheme are easily obtained under the290

present framework by implementing the one-dimensional GLPCC formulations in ξ and η directions

respectively as(
∂q

∂t

)
=

(
∂q

∂t

)ξ
+

(
∂q

∂t

)η
+ s, (29)

where295 (
∂q

∂t

)ξ
=−∂e(q)

∂ξ
and

(
∂q

∂t

)η
=−∂f (q)

∂η
(30)

are discretised along the grid lines in ξ and η directions.

We describe the numerical procedure in ξ direction here as follows. In η direction, similar pro-

cedure is adopted for spatial discretisation by simply exchanging e and ξ with f and η. Con-300

sidering three DOFs, i.e. qij1nk, qij2nk and qij3nk, along the nth row (n= 1 to 3) of element

Cijk =
[
ξi− 1

2
, ξi+ 1

2

]
×
[
ηj− 1

2
,ηj+ 1

2

]
on patch k (defined at solution points denoted by the hollow

circles in Fig. 6), we have the task to solve
:::::::
discretize

:
the following equations(

∂qijmnk
∂t

)ξ
=−

(
∂e

∂ξ

)
ijmnk

. (31)
305

As in one dimensional case, a fourth-order polynomial Eijnk(x) is built for spatial reconstructions

of flux functions e to calculate the derivative of e with regard to ξ as(
∂e

∂ξ

)
ijmnk

=

[
∂Eijnk (ξ)

∂ξ

]
ijmnk

, (32)

where E (ξ) can be obtained by applying the constrained
::::::::
constraint

:
conditions at five constrained310

::::::::
constraint

:
points (solid circles in Fig. 6) along the nth row of element Cijk, which are point-wise

values of flux functions e including three from DOFs directly and other two by solving Riemann

problems along the nth lines of different
::::
rows

::
of

:::
the

:::::::
adjacent elements.

The LLF approximate Riemann solver is adopted. It means that the parameter a in Eq. (25) reads

a = |ũ|+
√
G11gh. Details of solving Riemann problem in global shallow-water

::::::
shallow

::::::
water315

model using governing equations Eq. (27) can be referred to Nair et al. (2005b).
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How to set up the boundary conditions along twelve patch boundary is a
::
the

::::::
twelve

::::::
patch

:::::::::
boundaries

::
is

:
a
:

key problem to construct a global model on cubed-sphere grid. With the enough

information from the adjacent patch, above numerical formulations can be applied on each patch

independently. In present study, the values of dependent variables are required to be interpolated320

from the grid lines in the adjacent patch, for example, as shown in Fig. 7 for
::
the

:
boundary edge

between patch 1 and patch 4. When we solving
::::
solve

:
the Riemann problem at point P on patch

1, qRP =

[(√
Gh
)R
P
,uRp ,v

R
P

]T
is obtained by interpolation along the grid line PP1. Whereas,

qLP =

[(√
Gh
)L
P
,uLp ,v

L
P

]T
need to be interpolated from the DOFs defined along grid line P4P

on patch 4. Since the coordinates on patch 1 and patch 4 is discontinuous at point P , the values325

of the covariant velocity vector on the coordinate system on patch 4 should be projected to coor-

dinate system on patch 1 and the values of the scalar can be adopted directly. Different from our

previous study (Chen and Xiao, 2008), we solve the Riemann problem at patch boundary only in

the direction perpendicular to the edge in present study. The parameter a in Eq. (25) is determined

by the contravariant velocity component
:::::::::::
perpendicular

::
to
::::

the
::::
edge

:
and the water depth, which are330

exactly same on two adjacent
:
is
:::::::
exactly

::::
same

:::
in

:::
two

::::::::
adjacent

:::::::::
coordinate

:::::::
systems

::::
since

::::
the

:::::
water

::::
depth

::
is
::
a
:::::
scalar

::::::::::
independent

::
of

:::::::::
coordinate

::::::
system

::::
and

:::
the

::::
basis

::::::
vector

:::::::::::
perpendicular

:::
to

::
the

:::::
edge

::
is

:::::::::
continuous

:::::::
between

:::::::
adjacent

:
patches. As a result, solving Riemann problem obtains the same result

wherever the numerical procedure is conducted on patch 1 or patch 4. So, no additional corrections

are required and the global conservation is guaranteed automatically.335

4 Numerical tests

Representative benchmark tests, three from Williamson’s standard test set
::::
cases

:
(Williamson et al.,

1992) and one introduced in Galewsky et al. (2004), are checked in this section to verify the perfor-

mance of the proposed global shallow-water
:::::::
shallow

:::::
water model. All measurements of errors are

defined following Williamson et al. (1992).340

4.1 Williamson’s standard case 2: steady-state geostrophic flow

A balanced initial condition is specified in case by using a height field as

gh= gh0−
(
RΩu0 +

u2
0

2

)
(−cosλcosθ sinγ+ sinθ cosγ)

2 (33)

where gh0 = 2.94× 104, u0 = 2πR/(12days) and the parameter γ represents the angle between345

the rotation axis and polar axis of the Earth, and a velocity field (velocity components in

::::::::
longitude/latitude /longitudegrid uλ and uθ) asuλ = u0 (cosθ cosγ+ sinθ cosλsinγ)

uθ =−u0 sinλsinγ
. (34)
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As a result, both height and velocity fields should keep unchanging during integration. Addition-350

ally, the height field in this test case is considerably smooth. Thus we run this test on a series of

refined grids to check the convergence rate of GLPCC global model. The results of l1, l2 and l∞

errors and convergence rates are in Table
:::::
given

::
in

:::::
Table 3. After extending the proposed high-order

scheme to the spheric geometry through the application of the cubed-sphere grid, the original fifth-

order accuracy as shown in one-dimensional simulations and spectral analysis preserved in this test.355

Numerical results of height fields and absolute errors are shown in Fig. 8 for test
::::
tests

:
on grid G12,

which means there are 12 elements in both ξ and η directions on every patch, in
::
the

:
different flow

directions. i.e. γ = 0 and γ = π
4 . Compared with our former global model on cubed sphere, the

present model is more accurate in this test. On grid G20 (240 DOFs along the equator), the nor-

malized errors are l1 = 1.278× 10−7, l2 = 2.008× 10−7 and l∞ = 8.045× 10−7, which are almost360

one order smaller than those on grid 32× 32× 6 (with similar number of DOFs, 256 DOFs along

the equator) in Chen and Xiao (2008). The influence of patch boundaries on the numerical results

can be found in the plots of the absolute errors. The distributions of absolute errors can reflect the

locations of patch boundaries, especially in the flow with γ = 0.

4.2 Williamson’s standard case 5: zonal flow over an isolated mountain365

The total height and velocity field in
:::
this

:
case is same as above case 2 with γ = 0, except h0 =

5960m and u0 = 20ms−1. A bottom mountain is specified as

hs = hs0

(
1− r

r0

)
, (35)

where hs0 = 2000m, r0 = π
9 and r = min

[
r0,

√
(λ−λc)2

+ (θ− θc)2

]
.370

This test is adopted to check the performance of a shallow-water
::::::
shallow

:::::
water model to deal with

a topographic source term. We run this test on a series of refined gridG6,G12,G24 andG48. Numer-

ical results of height fields are shown in Fig. 9 for total height field of the test on grid
::::
gridsG12 at day

5, 10 and 15, which agree well with the spectral transform solutions on T213 grid (Jakob-Chien et al.,

1995). Furthermore, the oscillations occurring at boundary of bottom mountain observed in spec-375

tral transform solutions are completely removed through the conservative treatment of
:
a
:::::::::
numerical

::::::::
treatment

:::::
which

::::::::
balances

:::
the

::::::::
numerical

::::
flux

:::
and

:
topographic source term

:::::::::::::::::::
(Chen and Xiao, 2008) .

The numerical results on finer grids are not depicted here since they are visibly identical to
:::
the

results shown in Fig. 9. Present model assures the rigorous conservation of the total mass .
::
as

:::::
shown

::
in

::::
Fig.

:::
10. The conservation errors of total energy and enstrophy are interest for atmospheric380

modelling
::
of

::::::::
particular

:::::::
interest

::
for

:::::::::
evaluating

:::
the

:::::::::
numerical

:::::::::
dissipation

::
of

::::
the

:::::
model. As shown in

Fig. 11, the conservation errors for total energy (left panel) and potential enstrophy (right panel) of

tests on a series of refined grid
::::
grids are checked. As above case, to compare with our former fourth-

order model this test case is checked on grid G20 having the similar DOFs on former 32× 32× 6

grid. The conservation errors are −9.288× 10−7 for total energy and −1.388× 10−5 for potential385
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enstrophy and much smaller than those by fourth-order model in Chen and Xiao (2008).

4.3 Williamson’s standard case 6: Rossy–Haurwitz wave

Rossby–Haurwitz wave case checks a flow field including the phenomena of a large range of scales.

As a result, the high-order schemes are always preferred to better capture the evolution of small

scales. The spectral transform solution on fine T213 grid given by Jakob-Chien et al. (1995) is390

wildly
:::::
widely

:
accepted as the reference solution to this test due to the good capability of spectral

method
:
its

:::::
good

:::::::::
capability to reproduce the behaviour of small scales. Numerical results of height

fields by GLPCC model are shown in Fig. 12 for tests on grids G12 and G24 at day 7 and 14. At

day 7, no visible
:::::::
obvious difference is observed between the solutions on different grids and both

agree well with the reference solution. At day 14, obvious differences are found on different grids.395

Eight circles of 8500 m exist in the result on coarser grid G12, which are also found in the spectral

transform solution on T42 grid, but not in the results on finer grid G24 by GLPCC model and the

spectral transform ones on T63 and T213 grids. Additionally, the contour lines of 8100 m exists

in spectral transform solution on T213 grid, but not in present results and spectral transform ones

on T42 and T63 grids. According to the analysis in Thuburn and Li (2000), this is due to the less400

inherent numerical viscosity on finer grid. As in case 5,
:::
total

:::::
mass

::
is

:::::::::
conserved

::
to

:::
the

::::::::
machine

:::::::
precision

:::
as

:::::
shown

:::
in

:::
Fig.

:::
13

::::
and

:::
the conservation errors for total energy and potential enstrophy

::
are

::::::
given in Rossby–Haurwitz test are also shown in Fig. 14 for tests with different resolutions.

Total energy error of −6.131× 10−6 and potential enstrophy error
::
of

:
−1.032× 10−3 are obtained

by the present model running on grid G20, which are smaller than those by our fourth-order model405

on 32× 32× 6 grid (Chen and Xiao, 2008). This test was also checked in Chen et al. (2014a) by

a third-order model (see their Fig. 19c and d
::::
.19(c)

::::
and

::
(d)), where much more DOFs (nine times than

those on grid G24) are adopted to obtain a results
::::
result

:
without eight circles of 8500 m

:
at

::::
day

:::
14.

:
It
::::::
reveals

::
a
::::
well

:::::::
accepted

::::::::::
observation

::::
that

:
a
::::::
model

::
of

:::::
higher

:::::
order

:::::::::
converges

:::::
faster

::
to

:::
the

::::::::
reference

:::::::
solution,

:::
and

::::::
should

:::
be

:::::
more

:::::::
desirable

:::
in

:::
the

::::::::::
atmospheric

:::::::::
modelling. High-order accuracy is very410

beneficial to simulating this test and the atmospheric dynamics.

4.4 Barotropic instability

A barotropic instability test was proposed in Galewsky et al. (2004). Two kinds of setup
:::::
setups

of this test are usually checked in literatures, i.e. the balanced setup and unbalanced setup. The

balanced setup is same as Williamson’s standard case 2, except the water depth changes with much415

larger gradient within a very narrow belt zone. This test is of special interest for global models

on the cubed-sphere grid, since that narrow belt zone is located along the boundary edges between

patch 5 and patches 1, 2, 3, and 4. Extra numerical errors near boundary edges would easily pollute

the numerical results. In practice, 4-wave
::::::::
four-wave

:
pattern errors may dominate the simulations

on
::
the

:
coarse grids. For this case, we run the proposed model on a series of refined grids. By420
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checking the convergence of the numerical results, we can figure out if the extra numerical errors

generated by discontinuous coordinates can be suppressed by the proposed models with the increase

of the
::::::::
increasing

:
resolution. The unbalanced setup introduces a small perturbation to the height field.

Thus, the balanced condition can not be preserved and the flow will evolve to a very complex pattern.

Exact solution does not exist for unbalanced setup and a spectral transform solution on T341 grid425

to this case given in Galewsky et al. (2004) at day 6 is widely adopted as reference solution. The

details of setup of this test can be referred to Galewsky et al. (2004).

4.4.1 Balanced setup

We test the balanced setup at first. The proposed model runs on two grids with different resolutions

of G24 and G72. Numerical results of water depth after integrating for 5 days are shown in Fig. 15430

and evolution of normalized l1 errors of water depth of two simulations are depicted in Fig. 16.

On a coarse grid with G24, the numerical result is dominated by four-wave pattern errors and the

balanced condition can not be preserved in simulation. The accuracy is obviously improved by

increasing the resolution using grid G72. The numerical result of height field at day 5 is visually

identical to the initial condition. The improvement of the accuracy can be also proven by checking435

the velocity component uθ. Numerical results of uθ, which keeps zero in exact solution, vary within

:
a
:::::
range

::
of ±31 ms−1 on grid G24 and

:::
are much smaller range of ±0.8 ms−1 on grid G72. This test

is more challenging for cubed-sphere grid than other quasi-uniform
:::::::
spherical

:
grids, e.g. Yin–Yang

grid and icosahedral grid. As shown in Fig. 16, at very beginning of the simulation the l1 errors

increase to a magnitude of about 10−4
::
on

:::::
coarse

::::
grid

::::
G24:

and this character does not change with440

the grid resolution
::
on

::::::
refined

:::
grid

::::
G72. This evolution pattern of l1 errors are different from those of

models on Yin–Yang and icosahedral grids, where initial startup errors also decrease on fine grids as

shown in Chen et al. (2014a, Fig. 23).

4.4.2 Unbalanced setup

We run the unbalanced setup on a series of refined grids to check if the numerical result will converge445

to the reference solution on fine grid
::::::
refined

::::
grids. Numerical results for relative vorticity field after

integrating the proposed model for 6 days are shown in Fig. 17. Shown are
::
the

:
results on four grids

with gradually refined resolutions ofG24,G48,G72 andG96. On gridG24, the structure of numerical

results
::::
result is very different from the reference solution. After refining the grid resolution, the result

is improved on grid G48. Except the structure in top-left conner
:::::
corner , it looks very similar to the450

reference solution. On grid G72 and G96, numerical results agree with
::
the

:
reference solution very

well and there is no obvious difference between these two contour plots. Compared with the results

of our former fourth-order model, the contour lines look slightly less smooth. Similar results are

found in the spectral transform reference solution. Since this test contains more significant gradients

in the solution, a high-order scheme might need some extra numerical dissipation to remove the455
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noise around the large-gradients. Increasing the grid solution can effectively reduce the magnitude

of the oscillations as shown in the present simulation.

5 Conclusions

In this paper, a three-point high-order GLPCC scheme is proposed under the framework of flux

reconstruction. Three local DOFs are defined within each element at Gauss–Legendre points and460

a super convergence of fifth order is achieved. This single-cell based method shares the advantages

with the DG and SE methods, such as high-order accuracy, grid flexibility, global conservation and

high scalability for parallel processing. Meanwhile, it is much simpler and easier to implement. With

the application of the cubed-sphere grid, the global shallow water model has been constructed using

GLPCC scheme. Benchmark tests are checked by using the present model, and promising results465

reveal that it is a potential framework to develop high-performance general circulation models for

atmospheric and oceanic dynamics.
:::
As

:::
any

:::::::::
high-order

:::::::::
numerical

:::::::
scheme,

:::::::::
additional

::::::::::
dissipation

::
or

::::::
limiter

:::::::::
projection

:::::
might

:::
be

:::::::
needed

::
in

::::::::::
simulations

::
of
::::

real
:::::

case
:::::::::::
applications.

::::::::
Because

::
of

::::
the

:::::::::
algorithmic

:::::::::
similarity,

:::
the

:::::::
existing

:::::
works

::
on

:::::::::
high-order

:::::::
limiting

:::::::::
projection

:::
and

:::::::
artificial

::::::::::
dissipation

::::::
devised

:::
for

::::
DG

::
or

:::
SE

:::::::
methods

:::
are

:::::::::
applicable

:::
to

:::::::
GLPCC

::::::
without

::::::::::
substantial

::::::::
difficulty.

:::::
Also

::
it

::
is470

::
an

::::::::
important

::::::
future

:::::
study

::
to

::::::
design

::::
more

:::::::
reliable

:::::::
limiting

::::::::
projection

:::::::::::
formulations

:::
for

:::::::
GLPCC

::::
and

::::
other

:::
FR

::::::::
schemes,

:::::
which

:::
are

::::
able

::
to

::::
deal

::::
with

:::::::::::::
discontinuities

::::::
without

::::::
losing

:::
the

::::::
overall

:::::::::
high-order

:::::::
accuracy.
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Fig. 1. Configuration of DOFs and constrained
:::::::
constraint

:
conditions in one dimensional case.
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Fig. 2. The spectrum of the semi-discrete scheme.
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Fig. 3. Numerical dispersion (left) and dissipation (right) relations of the semi-discrete scheme.
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Fig. 4. The cubed-sphere grid.

Fig. 5. The gnomonic projection.
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Fig. 6. Configuration of DOFs and constrained
:::::::
constraint

:
conditions in two dimensional case.

Fig. 7. Riemann problem along patch boundary edge between patch 1 and 4.
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Fig. 8. Numerical results and absolute errors of water depth for case 2 on grid G12 at day 5. Shown are water

depth (top-left) and absolute error (top-right) of the flow with γ = 0 and water depth (bottom-left) and absolute

error (bottom-right) of the flow with γ = π
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Fig. 9. Numerical results of total height field for case 5 on grid G12 at day 5 (top-left), day 10 (top-right) and

day 15 (bottom).
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Fig. 11. Normalized conservation errors of total energy and potential enstrophy on refined grids for case 5.
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Fig. 12. Numerical results of water depth for Rossby–Haurwitz wave test
:::
case

:
6
:
on grid G12 at day 7 (top-left),

day 14 (top-right) and on grid G24 at day 7 (bottom-left) and day 14 (bottom-right).
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Fig. 14. Normalized conservation errors of total energy and potential enstrophy on refined grids for

Rossby–Haurwitz wave test.
::::
case

:
6.

Fig. 15. Numerical results of water depth for balanced setup of barotropic instability test on two gridsG24 (left)

and G72 (right). Contour lines vary from 9000m to 10100m.
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Fig. 16. Normalized l1 error of water depth for balanced setup of barotropic instability test on two grids.
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(a) Numerical result on grid G 24 (b) Numerical result on grid G 48

(c) Numerical result on grid G 72 (d) Numerical result on grid G 96

Fig. 17. Numerical results of relative vorticity for unbalanced setup of barotropic instability test on a series

of refined grids. Contour lines vary from −1.1× 10−4 to −0.1× 10−4 by dashed lines and 0.1× 10−4 to

1.5× 10−4 by solid lines.
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Table 1. Numerical errors at two wavenumbers and corresponding convergence rate.

Wavenumber ω = π
8

ω = π
4

Order

Error −3.1408× 10−5 − 4.2715× 10−6i −5.0466× 10−7 − 3.4068× 10−8i 4.97

Table 2. Numerical errors and convergence rates for advection of a sine wave.

Resolution l1 error order l2 error Order l∞ error Order

I = 4 3.9392× 10−3 – 3.9623× 10−3 – 3.9702× 10−3 –

I = 8 1.5683× 10−4 4.65 1.4841× 10−4 4.74 1.3396× 10−4 4.89

I = 16 5.3627× 10−6 4.87 4.8431× 10−6 4.94 4.1707× 10−6 5.01

I = 32 1.6897× 10−7 4.98 1.5327× 10−7 4.98 1.3293× 10−7 4.97

I = 64 5.3017× 10−9 4.99 4.8092× 10−9 4.99 4.1670× 10−9 5.00

Table 3. Numerical errors and convergence rates for case 2 with
:
of

:::
the flow in north-east direction (

::::
with γ = π

4
).

Grid l1 error l1 order l2 error l2 order l∞ error l∞ order

G6 3.394× 10−5 –
:
- 5.492× 10−5 –

:
- 1.868× 10−4 – -

:

G12 1.440× 10−6 4.56 2.321× 10−6 4.56 8.924× 10−6 4.39

G24 5.367× 10−8 4.75 8.317× 10−8 4.80 3.457× 10−7 4.69

G48 1.942× 10−9 4.79 2.957× 10−9 4.81 1.487× 10−8 4.54
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