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Abstract

In this paper, we present a dynamical core for the atmospheric primitive hydrostatic
equations using a unified formulation of spectral element (SE) and discontinuous
Galerkin (DG) methods in the horizontal direction with a finite difference (FD) method
in the radial direction. The CG and DG horizontal discretization employs high-order5

nodal basis functions associated with Lagrange polynomials based on Gauss–Lobatto–
Legendre (GLL) quadrature points, which define the common machinery. The atmo-
spheric primitive hydrostatic equations are solved on the cubed-sphere grid using the
flux form governing equations in a three-dimensional (3-D) Cartesian space. By using
Cartesian space, we can avoid the pole singularity problem due to spherical coordi-10

nates and this also allows us to use any quadrilateral-based grid naturally. In order to
consider an easy way for coupling the dynamics with existing physics packages, we use
a FD in the radial direction. The models are verified by conducting conventional bench-
mark test cases: the Rossby–Haurwitz wavenumber 4, Jablonowski–Williamson tests
for balanced initial state and baroclinic instability, and Held–Suarez tests. The results15

from those tests demonstrate that the present dynamical core can produce numerical
solutions of good quality comparable to other models.

1 Introduction

Spectral element (SE; here after is referred to as continuous Galerkin (CG)) and dis-
continuous Galerkin (DG) methods are very attractive on many-core computing plat-20

forms because these methods decompose the physical domain into smaller pieces
having a small communication footprint. CG/DG methods are local in nature and
thus can have a large on-processor operation count (Kelly and Giraldo, 2012) which
is advantageous on large processor-count computers. Also CG/DG methods can
achieve high-order accuracy because the polynomial order can be adjusted automat-25

ically according to the corresponding numerical integration rule, that is, the Gaussian
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quadrature (Taylor et al., 1997; Giraldo, 2001; Giraldo et al., 2002). In addition, CG/DG
methods are geometrically flexible in the types of grids they can use; this includes
static and adaptive grids as well as conforming and non-conforming grids (Giraldo
et al., 2002; Giraldo and Rosmond, 2004; Mueller et al., 2013).

The CG method is characterized by the high-order approximation combined with the5

local decomposition property of the finite element method (FEM) and weak numeri-
cal dispersion property of the spectral method. The DG method, on the other hand,
is best characterized as a combination of the properties of the CG method plus the
local conservation properties of the finite volume method (FVM) (Giraldo and Restelli,
2008). The virtues of the DG method are that it is inherently conservative (both locally10

and globally) as in the case of the FVM. However, the common criticism of the DG
method is the stringent Courant–Friedrichs–Lewy (CFL) stability constraint in explicit
time schemes. For a DG method using kth order basis functions, an approximate CFL
limit estimate is 1/(2k +1) (Cockburn and Shu, 1989). This is partly due to the choice
of the numerical flux which, for expediency, is chosen as a purely edge-based flux al-15

though other fluxes are also possible (e.g., Yelash et al., 2014); however these more
sophisticated approaches come at a price and it is yet unclear which strategy yields
a faster wallclock time to solution.

To date, successful applications of the CG method in hydrostatic atmospheric mod-
eling include the Community Atmosphere Model – spectral element dynamical core20

(CAM-SE) (Dennis et al., 2012) and the scalable spectral element Eulerian atmo-
spheric model (NSEAM) (Giraldo and Rosmond, 2004, hereafter GR04). In this context,
one of the motivations of this study is to construct a dynamical core using a unified for-
mulation of CG and DG methods as described in Giraldo and Restelli, 2008 and Kelly
and Giraldo, 2012 where nonhydrostatic atmospheric models are proposed. Success-25

ful applications of the DG method in hydrostatic atmospheric modeling include the work
of Nair et al., 2009; however, in our paper we shall present results for more than one
test case. To our knowledge, the results for the Held–Suarez test cases presented in
our paper are the first such results shown for a DG model. The significance is that
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this confirms the long-term stability of the DG method for hydrostatic models. Although
we could also discretize the vertical direction with CG and DG methods, we choose
a conservative flux-form finite-difference method for discretization in the vertical direc-
tion which is similar to the approach used in both CAM-SE and NSEAM. This choice
of vertical discretization provides an easy way for coupling the dynamics with existing5

physics packages.
In this paper we construct a unified formulation of CG and DG for the primitive hydro-

static equations in GR04. In order to achieve a unified formulation, the advective-form
governing equations in GR04 are recast in flux form. GR04 provides a clue for con-
verting the advective-form equation set in 3-D Cartesian space to the flux form in their10

appendix. By using 3-D Cartesian space, we can be free from the pole singularity prob-
lem in spherical coordinates. Although a local Cartesian coordinate system could also
be used to overcome these problems (Taylor et al., 1997; Nair et al., 2005), the use of
3-D Cartesian space everywhere allows us to treat the pole as any other point. There-
fore it permits general grids naturally such as icosahedral, hexahedral, and adaptive15

unstructured grids (it should be noted that general grids can also be used with the co-
ordinate invariant form of the equations). In this paper we adopt a hexahedral grid –
the so called cubed-sphere.

In brief, the objective of this paper is to show the feasibility of the hydrostatic primitive
equation models using CG/DG horizontal discretization and the FD vertical discretiza-20

tion by conducting conventional benchmark test cases. The organization of the remain-
der of this paper is as follows. In the next section we describe the governing equations
in 3-D Cartesian space with a definition of the prognostic and diagnostic variables. In
Sect. 3 we explain the horizontal, vertical, and temporal discretization methods includ-
ing the numerical approximation of the equations. In Sect. 4 we describe the cubed-25

sphere grid, and in Sect. 5, we present the simulation results of the test cases. Finally,
in Sect. 6, we end the paper with a summary of our findings and some concluding
remarks.
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2 Governing equations

The primitive hydrostatic equations of conservation form in the 3-D Cartesian space
with a sigma pressure vertical coordinate σ are given as

∂q
∂t

+∇ ·F = SCor +Sh +Sv, (1)

where5

q =


π
U
V
W
Θ

 =


π
πu
πv
πw
πθ

 (2)

are prognostic variables,

SCor =


0

−2ωz
a2 (yW − zV )−µx

−2ωz
a2 (zU −xW )−µy

−2ωz
a2 (xV − yU)−µz

0

 , Sh =


0

(ϕ−Θcp
∂P
∂π )∂π∂x

(ϕ−Θcp
∂P
∂π )∂π∂y

(ϕ−Θcp
∂P
∂π )∂π∂z

0

 , Sv =



− ∂
∂σ (πσ̇)

− ∂
∂σ (Uσ̇)

− ∂
∂σ (V σ̇)

− ∂
∂σ (W σ̇)

− ∂
∂σ (Θσ̇)

 (3)

respectively denote Coriolis with the Lagrange multiplier µ, horizontal, and vertical
source terms, and10

F =



U
U2

π +πϕ
V U
π
WU
π
ΘU
π

 î +


V
UV
π

V 2

π +πϕ
WV
π
ΘV
π

 ĵ +


W
UW
π
V W
π

W 2

π +πϕ
ΘW
π

 k̂ (4)
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is the horizontal flux terms where î , ĵ , and k̂ denote the Cartesian directional unit vec-
tors. The prognostic variables q are comprised of: (1) the surface pressure π defined
as

π = ps −pt, (5)

where ps is the true surface pressure, and pt is the pressure at the top of the at-5

mosphere, (2) the flux-form velocity components U = (U ,V ,W ) = (πu,πv ,πw), where
(u,v ,w) are the three Cartesian velocity components, and (3) the flux-form potential
temperature Θ= πθ, where θ is the potential temperature. The diagnostic variables
are (1) the geopotential ϕ given by the diagnostic equation as

∂ϕ
∂P

= −cpθ, (6)10

(2) the Exner function P defined as

P =
(
p
p0

)Rd/cp
, (7)

where p and p0 is the hydrostatic pressure and standard surface pressure, respectively,
and Rd and cp is the gas constant and specific heat of dry air at constant pressure,
and (3) the σ-coordinate vertical velocity σ̇ = dσ

dt where σ = p−pt
π ∈ [0,1] is the definition15

of the sigma pressure coordinate with a value of 0 at the top of the atmosphere and
1 at the surface. The constants a and ω in Eq. (3) are the Earth’s radius and angular
velocity, respectively, and µ is a Lagrange multiplier for the fluid particles to remain
on a spherical shell with constant σ. The momentum variables representing the at-
mospheric motion over the shell in the Cartesian space have three components along20

the x, y , and z axes in Cartesian coordinates, so that the movement of a particle on
the shell has three degrees of freedom, which can move freely in R3. To ensure that
fluid particles remain on the spherical shell, it is required that the fluid velocity remains
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perpendicular to the position vector, which yields a Lagrange multiplier in the momen-
tum equations (Giraldo, 2001; Giraldo et al., 2002; Giraldo and Rosmond, 2004). It is
noteworthy that among the independent variables (x,y ,z,σ,t), (x,y ,z) represent grid
points on the sphere which are related to the points in the spherical coordinates (λ,φ)
given as5

x = acosλcosφ,

y = asinλcosφ,

z = asinφ. (8)

Thus ∇ is defined as10

∇ =


∂
∂x
∂
∂y
∂
∂z

 (9)

at constant σ.

3 Discretization

3.1 Discretization in the horizontal direction

To describe the discretization of the horizontal operators by the CG/DG method we15

follow the description given previously in Giraldo and Restelli, 2008 and in Kelly and
Giraldo, 2012. Let us begin by rewriting Eq. (1) as follows

∂q
∂t

+∇ ·F = S (10)

Next, let us introduce the following vector spaces

V CG =
{
ψ ∈ H1(Ω)

∣∣ψ ∈ PN (Ωe)
}

(11)20
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and

V DG =
{
ψ ∈ L2(Ω)

∣∣ψ ∈ PN (Ωe)
}

(12)

where we now seek solutions of Eq. (1) as follows:

q ∈ V ∀ψ ∈ V

where V denotes either V CG or V DG. Next, we approximate the solution vector as fol-5

lows

qN (x,y ,z,t) =
M∑
i=1

ψi (x,y ,z)qi (t) (13)

where, for quadrilateral elements in the horizontal direction, M = (N+1)2 with N repre-
senting the polynomial order of the basis function ψ .

We now introduce this expansion into our governing system of equations, multiply by10

a test function, and integrate by parts to yield∫
Ωe

ψi
∂qN
∂t

dΩe +
∫
Γe

ψi n̂ · FdΓe −
∫
Ωe

∇ψi · F (qN )dΩe =
∫
Ωe

ψiS(qN )dΩe. (14)

where the terms with Ωe refer to volume integrals and the one with Γe is a bound-
ary integral which accounts for internal faces (neighboring elements share faces). In
matrix-vector form, this equation can be written as15

Me
i ,j

dqe
j

dt
+
(

MF, e
i ,j

)T
· F ∗

j (qN )−
(

D̃e
i ,j

)T
· F j (qe

N ) = Me
i ,jSj (q

e
N ) (15)
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where

Me
i ,j =

∫
Ωe

ψiψjdΩe,

MF, e
i ,j =

∫
Γe

ψiψj n̂dΓe, (16)

D̃e
i ,j =

∫
Ωe

∇ψiψjdΩe.

5

These matrices represent: the mass, flux, and differentiation matrices, respectively.
For the DG method, the matrix-vector form given above is sufficient as long as we

define the numerical flux, e.g., as follows

F ∗(qN ) =
1
2

[
F (qL

N )+ F (qR
N )− n̂ |λmax|

(
qR
N −qL

N

)]
(17)

where the superscripts L and R refer to the left and right elements (arbitrarily decided)10

of the face Γe and λmax is the maximum eigenvalue of the Jacobian matrix of the gov-
erning partial differential equations. Here we use the Rusanov scheme for the numeri-
cal flux because of its simplicity although any other Riemann solver could be used. For
the CG method, the matrix-vector form given above is also used except that the term of
the flux matrix vanishes on the sphere and we then use the direct stiffness summation15

(DSS) operation which gathers the element-wise solution to a global grid point solution
and then scatters it back to the element-wise space. This is done to ensure that the
solution is C0 across all element faces.

3.2 Discretization in the vertical direction

We use the FD method similarly to other global models to gain an easy way for coupling20

the dynamics with existing physics packages, although we could also discretize the
4127
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vertical operators with the CG/DG methods (as done in Kelly and Giraldo, 2012; Giraldo
et al., 2013). Also by using the FD, we can keep the model as similar as possible to
the NSEAM model (GR04) so that we directly discern differences from the discrete
horizontal operators. Using a Lorenz staggering, the variables U , V , W , Θ, and ϕ are
at layer mid points denoted by k = 1,2, . . . ,N lev where N lev is the total number of5

layers, while the variable P and σ̇ are at layer interface points denoted by k + 1
2 , k =

0,1, . . . ,N lev.
We begin the vertical discretization by the evaluating ∂π

∂t which is given by integrat-
ing the first row of Eq. (1) (i.e., the continuity equation) from the surface (σbottom =
σN lev+1/2 = 1) to the top (σtop = σ1/2 = 0) with no-flux boundaries at the top and bottom10

levels of the atmosphere (i.e. σ̇top = σ̇bottom = 0). Thus,

∂π
∂t

= M−1
N lev∑
k=1

D̃ ·Uk∆σk , (18)

where k is the number of vertical levels to be integrated across and ∆σl = σl+1/2−σl−1/2
is the thickness of the layer. Then the vertical velocity σ̇ at each vertical level is obtained
by integrating the continuity equation from the top of the atmosphere to the material15

surface as follows

(σ̇π)k+1/2 = −∂π
∂t
σk+1/2 +M−1

k∑
l=1

D̃ ·U l∆σl . (19)

The vertical advection term ∂(σ̇q)
∂σ in the vertical source term Sv is computed using the

third-order upwind biased discretization in Hundsdorfer et al. (1995) which is given as

∂f
∂σ

∣∣∣∣
k
=
fk−2 −8fk−1 +8fk+1 − fk+2

12∆σ
+ sign(σ̇)

fk−2 −4fk−1 +6fk −4fk+1 + fk+2

12∆σ
, (20)20

where f denotes the flux (σ̇q). It is noted that the upwind-biased schemes are in-
herently diffusive. Following GR04, the hydrostatic equation, Eq. (6), is evaluated as
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follows

ϕk −ϕk+1 = cpΘk(Pk+1/2 − Pk)+cpΘk+1(Pk+1 − Pk+1/2), (21)

where the Exner function at layer interfaces and midpoints is given by

Pk+1/2 =
(pk+1/2

p0

)κ
(22)

and5

Pk =
1

κ +1
1

pκ0

pκ+1
k+1/2

−pκ+1
k−1/2

pk+1/2 −pk−1/2

 , (23)

respectively.

3.3 Discretization in time

For integrating the equations, we adopt a third-order strong stability preserving explicit
Runge–Kutta (SSP-RK) scheme (Cockburn and Shu, 1998; Nair et al., 2005). The 3rd10

order SSP-RK scheme is introduced into our governing equations in the form of

∂q
∂t

= R(q), (24)

and is given as follows:

q(1) = qn +∆tR(qn)

q(2) =
3
4
qn +

1
4
q(1) +

1
4
∆tR(q(1)) (25)15

qn+1 =
1
3
qn +

2
3
q(1) +

2
3
∆tR(q(2)),
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where the superscripts n and n+1 denote time levels t and t+∆t, respectively. While
for smooth problems the SSP-RK scheme does not generate spurious oscillations so
that are widely used for DG methods, for problems with strong shocks or discontinuities,
oscillations can lead to nonlinear instabilities (Cockburn and Shu, 1998). Since an SSP-
RK time-integration scheme cannot control such undesirable effects, a Boyd–Vandeven5

spatial filter is applied after the time integration, which is described in GR04. Neither
viscosity nor slope limiter are used in all simulations.

4 Cubed-sphere grid

The cubed-sphere grids are composed of the six patches obtained by the gnomonic
projection of the faces of the hexahedron which are subdivided into (nH ×nH ) quadri-10

lateral elements where nH is the number of quadrilateral elements in each direction
(GR04). Inside each element we build (N+1) Gauss–Lobatto–Legendre (GLL) quadra-
ture points, where N indicate the polynomial order of the basis function ψ . Therefore
the total number of grid points Np is given as

Np = 6(nHN)2 +2, (26)15

and the number of elements Ne comprising the sphere is

Ne = 6(nH )2. (27)

We now introduce the square region on the gnomonic space (ξG,ηG) =
[
−π

4 ,+π
4

]2
in

each of the six faces to describe the relation to spherical coordinates (λ,φ). The
gnomonic space (ξG,ηG) =

[
−π

4 ,+π
4

]2
is mapped to the corresponding spherical co-20
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ordinates (λG,φG) via

λG = ξG, (28)

φG = arcsin

 tanηG√
1+ tan2 ξG + tan2ηG

 , (29)

and then we construct the cubed-sphere grid by rotating this face to the six faces of the5

hexahedron by

λ = λc +arctan
(

cosφG sinλG

cosφG cosλG cosφc − sinφG sinφc

)
, (30)

φ = arcsin(sinφG cosφc + cosφG cosλG sinφc) , (31)

with the centroids, (λc,φc) =
(
[c−1]π2 ,0

)
for c = 1, . . . ,4, (λ5,φ5) =

(
0, π2

)
, and10

(λ6,φ6) =
(
0,−π

2

)
.

The resolution of the cubed-sphere grid H is determined by nH (the number of quadri-
lateral elements in each direction contained in each of the six faces of the cube) and
N (the polynomial order of the elements), where we use H = nHN as the convention to
define the grid resolution. Figure 1 show examples of the grids with H = 3 (nH = 3 and15

N = 1), H = 15 (nH = 3 and N = 5), and H = 35 (nH = 5 and N = 7).

5 Simulation results with benchmark tests

We consider the following test cases: (1) 3-D Rossby–Haurwitz wavenumber 4, (2)
Jablonowski–Williamson balanced initial state test, (3) baroclinic instability test, and (4)
Held–Suarez test. Because all of the test cases except (2) the Jablonowski–Williamson20

balanced initial state test do not have analytical solutions, we compare our results to
the results of other published papers and evaluate the results qualitatively. We now
discuss the results of the four test cases.
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5.1 3-D Rossby–Haurwitz wavenumber 4

We conduct the Rossby–Haurwitz (RH) wave test case which is a 3-D extension of
the 2-D shallow water RH wave discussed in Williamson et al. (1992). The main dif-
ferences compared to the 2-D shallow water formulation include the introduction of
a temperature field and the derivation of the surface pressure, which is discussed in5

GR04 and Jablonowski et al. (2008). The Rossby–Haurwitz wave approximately pre-
serves its shape even in nonlinear shallow water and primitive equation models, which
has a sufficiently simple enough pattern to allow one to judge if the simulation was
successful. We initialize the model following Jablonowski et al. (2008).

Snapshots of the output data for the CG and DG models for day 15 are presented in10

Figs. 2 and 3, respectively. The figures show the 850 hPa zonal wind, meridional wind,
and temperature as well as the surface pressure. These model results were computed
at the resolution of H = 64 (nH = 8 and N = 8) with 26 vertical levels (N lev = 26). The
results of the CG and DG simulations are virtually indistinguishable; in addition, the
accuracy results of both simulations are almost identical to the results obtained with the15

CAM3.5.41 version of the NCAR Finite Volume (FV) dynamical core at the resolution
1◦ by 1◦ with 26 hybrid levels, as described in Jablonowski et al. (2008). Although we
have used a relatively low resolution of H64 which is comparable to T63 of a spectral
model, the results are strikingly similar to the solutions with the 1◦×1◦ NCAR CAM-FV
core, both in phase and amplitude.20

5.2 Jablonowski–Williamson balanced initial state test

In order to estimate the accuracy and stability of the dynamical core, we conduct
the Jablonowski–Williamson balanced initial state test introduced by Jablonowski and
Williamson (2006). We initialize the model following Jablonowski and Williamson
(2006). Using the balanced initial fields, the simulation results should maintain the ini-25

tial state perfectly for a sufficient amount of time. Since the initial state of this test is the
true solution, we can compute error norms. We evaluate the error by using the relative
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L2 error defined by

‖qsimulation‖L2
=

√√√√∫
Ω (qexact −qsimulation)2dΩ∫

Ωq
2
exactdΩ

,

where qsimulation represents the computed state variables and qexact the exact (i.e., initial
condition) values.

Figure 4 shows the normalized surface pressure L2 error norms for the CG and DG5

simulations with H = 128 (nH = 16 and N = 8) horizontal resolution and 26 vertical lev-
els (N lev = 26). The L2 error norms of the two simulations are visually identical, in
which the error oscillates but remains bounded. These results (including the value of
the L2 error) compare well against those of the NSEAM model presented in GR04. The
bounded error confirms that the initial balanced state is properly maintained. In prac-10

tice though, the initial state degrades over time. After 20 days, the zonal wind fields for
the CG and DG simulations show a somewhat distorted distribution with an increas-
ing zonally asymmetric pattern (Fig. 5). Initially the maximum of the zonal winds at
the lowest level are about 9.4 m s−1 in mid-latitude, but after 20 days the maximum
difference of the zonal wind is up to about 0.02 m s−1 showing the zonal asymmetry.15

Although the error distribution is different between the CG and DG simulations in de-
tail, these have a wavenumber 4 structure which arise from the cubed-sphere grid.
The wavenumber 4 signals grow over time and lead eventually to a breakdown of the
balanced state. However, higher resolutions delay the growth of the signals as the trun-
cation error associated with the spatial discretization decreases. Actually, at H = 19220

(nH = 16 and N = 12) horizontal resolution this error virtually disappears for 20 day sim-
ulations (Fig. 6).

5.3 Jablonowski–Williamson baroclinic instability test

The baroclinic instability test case starts from the balanced initial fields, which is de-
scribed above, with a perturbation in the initial zonal velocity. The baroclinic wave is25
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induced by the small perturbation in the initial zonal wind. Here a Gaussian profile is
used for the zonal wind perturbation, which is centered at (λc,φc) =

(π
9 , 2π

9

)
pointing to

the location (20◦ E, 40◦ N). This perturbation is given by

uperturbation(λ,φ,σ) = exp
[
−
( r
R

)2
]

,

where5

r = aarccos
[
sinφc sinφ+ cosφc cosφcos(λ− λc)

]
,

and R = a/10 is the perturbation radius (Jablonowski and Williamson, 2006).
Since the baroclinic wave test case does not have an analytic solution, we compare

our results to the solutions from Jablonowski and Williamson (2006) and the NSEAM
model in GR04. We show the surface pressure, 850 hPa temperature, and 850 hPa10

relative vorticity at day 9 for the CG and DG simulations with the resolution of H = 80
(nH = 16 and N = 5) and 26 vertical levels (N lev= 26) in Fig. 7 which can be compared
with the solutions of the National Center for Atmospheric Research’s Community At-
mosphere Model version 3 (NCAR CAM3) Eulerian dynamical core at T85 resolution
and finite volume core at 1◦ by 1.25◦ from Jablonowski and Williamson (2006).15

The CG and DG simulations in Fig. 7 are visually very similar to those reported in
Jablonowski and Williamson with regard to the structure in the fields and the extrema
for the surface pressure; in addition, the CG and DG results are almost identical to
each other. Differences, however, can only be seen in the relative vorticity field at very
small scales. In the CG simulation, the small-scale vorticity in the vicinity of the hook is20

depicted, and the maximum strength of the relative vorticity is larger than that of the DG
simulation, which can be also seen in the results of a relatively higher resolution shown
in Fig. 8. Figure 8 shows the same fields at day 9 as in Fig. 7 but for the higher resolution
of H = 160 (nH = 32 and N = 5) and 26 vertical levels (N lev= 26). In comparison with
the results of the lower resolution of H = 80 (nH = 16 and N = 5), it can be clearly seen25

that the numerical solutions of the two different resolutions are well converged in terms
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of the strength and structure in the surface pressure, temperature, and vorticity fields. It
is noted that the vorticity fields in the higher resolution are characterized by the smallest
scale in the vicinity of the hook, which is the same as in the lower resolution, which
imply that the DG simulation is more diffusive than the CG simulation. It suggests that
the diffusive property of the DG simulation is induced by the Rusanov numerical flux5

used in this study, because the only difference between the CG and DG formulations
is the numerical flux and the fact that the DG solutions are allowed to contain jumps
across element edges. However, this difference in the results suggests that it is the
dissipation of the numerical flux that is mainly responsible for the differences in the two
simulations.10

In general, the baroclinic wave grows observably around day 4. At day 7 the baro-
clinic wave evolves rapidly and by day 9 the wave train has intensified significantly
(Jablonowski and Williamson, 2006). In order to examine the growth of the perturba-
tion, an evolution of the minimum surface pressure is shown in Fig. 9 which we now
compare with the results in GR04. The results of the CG and DG simulations with dif-15

ferent resolutions are almost in agreement until day 10, at which point the simulations
begin to show slight deviations from each other. The DG simulation with the lower res-
olution tends to simulate somewhat weak deepening. During the period between day
10 and 11 when wave breaking has set in, the remarkable weak deepening is shown
in the DG simulation at the lower resolution. At day 14, the difference of the minimum20

surface pressure between the DG simulation at the lower resolution and the three other
simulations is about 2 hPa.

5.4 Held–Suarez test

In order to estimate the capabilities of the model in simulating a realistic climate cir-
culation without complex parameterizations, we conduct the Held–Suarez test. The25

Held–Suarez test ensures that a dynamical core produces a realistic zonal and time
mean climate and synoptic eddies by using a simple Newtonian relaxation of the tem-
perature field and a Rayleigh damping of low-level winds representing boundary-layer

4135

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/4119/2014/gmdd-7-4119-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/4119/2014/gmdd-7-4119-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 4119–4151, 2014

Development of a
hydrostatic

dynamical core using
the CG/DG methods

S.-J. Choi and
F. X. Giraldo

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

friction (Held and Suarez, 1994). The Newtonian relaxation of the temperature is added
as the diabatic forcing term to the thermodynamic equation, the fifth row of Eq. (1), and
the Rayleigh damping is imposed as dissipation term in the momentum equation, the
second to fourth rows of Eq. (1). The detailed specifications are adapted from Held
and Suarez (1994). For this test we use a relatively low resolution of H = 40 (nH = 85

and N = 5) with 25 vertical levels (N lev= 25) because this test case requires a rel-
atively long model time simulation for 1200 days. In this paper, the integrations start
from a stably stratified state at rest atmosphere, in which the lapse rate of temperature
is 6.5 K m−1 and the surface temperature is 288 K. We use the simulation results from
day 200 to day 1200 integrations sampled every 10 days.10

Figure 10 shows the time mean zonally averaged zonal wind and temperature for
both the CG and DG simulations which can be easily compared to the results of other
published papers. In comparison with the results of the spectral transform model in Held
and Suarez (1994), both the CG and DG simulations show reasonable and comparable
distributions, where the midlatitude jets at the upper troposphere near 250 hPa and the15

equatorial easterly flow in the lower and upper atmosphere are clearly visible in each
hemisphere. Also temperature stratification is maintained realistically. The simulation
results are comparable to that of GR04. There exist, however, differences between the
results of the CG and DG simulations mainly in the strength of the westerly flow and
the temperature structure in the upper atmosphere. DG simulates broader upper-level20

jet streams than CG that strengthen with altitude. Also in the temperature field, the
DG simulation shows warmer air in the equatorial upper atmosphere. The difference
is shown clearly in Fig. 11 where we plot the time mean zonally averaged eddy heat
flux of the CG and DG simulations. There are two maxima at mid-latitude in the lower
and upper atmosphere indicating transportations of heat in the poleward direction, of25

which the distributions in the CG and DG simulations are in good agreement with pre-
vious studies, for example, Held and Suarez (1994), Lin (2004) and Wan et al. (2008).
However, in comparison of the strength and horizontal gradient of the eddy heat flux
between both simulations, CG simulates a stronger eddy motion than DG.
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6 Summary and conclusions

We have proposed a hydrostatic dynamical solver using both the continuous Galerkin
(CG) and discontinuous Galerkin (DG) methods. It is solved on a cubed-sphere grid in
3-D Cartesian coordinates although in principle any quadrilateral-based grid could be
used. The CG and DG horizontal discretization employs a high-order nodal (Lagrange)5

basis function based on quadrilateral elements and GLL quadrature points which com-
pose the common machinery. However, the DG method use fluxes along the bound-
aries of the elements which are approximated by the Rusanov method. In the vertical
direction, a conservative flux-form finite-difference method is employed for coupling
the dynamics with existing physics packages easily; we hope to report progresses on10

this specific topic in the future. A third-order strong stability preserving Runge–Kutta
scheme was used for time integration although other time-integrators (including semi-
implicit methods) could also be used.

In this paper, we show simulations of the model using four baroclinic test cases in-
cluding: the Rossby–Haurwitz wave, balanced initial state, baroclinic instability, and15

Held–Suarez test cases. All cases, except for the Jablonowski–Williamson balanced
initial state test case, do not have analytic solutions. Therefore, we compare our re-
sults to the results of test cases run by a vast community. Through our comparison of
the CG and DG simulations, we show that for the baroclinic instability test and Held–
Suarez test cases, the DG simulation tends to simulate somewhat weaker small-scale20

features, such as the minimum surface pressure perturbation and eddy heat flux, than
the CG method. This could be due to the intrinsic diffusion of the Rusanov numerical
flux scheme used for the horizontal discretization of the DG method, which is the only
difference between the CG and DG formulations. One of the valuable contributions of
this model is that we can use it to study the effects of using different horizontal dis-25

cretizations since we use the exact same model with the same finite difference method
in the vertical and time-integration methods but use either CG or DG in the horizon-
tal. The discrete operators in the horizontal use the exact same numerical machinery
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and so the results shown here isolate the differences offered by the CG and DG meth-
ods. However, for the other two test cases (Rossby–Haurwitz wave and balanced ini-
tial state tests), the results of the CG and DG simulations are virtually indistinguish-
able. Furthermore, the numerical results obtained for all four test cases show that the
present dynamical core can produce numerical solutions of good quality comparable5

to other models. The results confirm that the CG and DG methods combined with the
finite difference method in the vertical direction offer a viable strategy for atmospheric
modeling. To our knowledge, we present the first results for a DG model for long-time
simulations represented by the Held–Suarez test case. The importance of this result
is that this confirms the stability of the DG method for long-time simulations in hydro-10

static atmospheric dynamics. In order to make the model efficient and competitive with
operational models, we need a semi-implicit time integration method which, although
requires some additional machinery to be added, does not pose any theoretical barriers
since such algorithms have already been designed by one of the authors in previous
papers (Giraldo, 2005; Giraldo et al., 2013).15

Based on the implementation of the horizontally CG/DG vertically finite difference
method for the global hydrostatic dynamical core in this study, further research will fo-
cus on developing a global non-hydrostatic dynamical core. As an initial effort, we have
investigated feasibilities of the combined spatial discretization method of the horizon-
tally CG and vertically finite difference method for the development of a non-hydrostatic20

dynamical core in a two dimensional framework (Choi et al., 2014).
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Figure 1. The cubed-sphere grid for (a) the H = 3 (nH = 3 and N = 1), (b) the H = 15 (nH = 3
and N = 5), and (c) the H = 35 (nH = 5 and N = 7) horizontal resolutions.
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 1 

FIG. 2. Numerical results for the CG simulation on the resolution of the 64H   2 

( 8Hn   and 8N  ) with 26 vertical levels: Top row: 850 hPa zonal wind and meridional 3 

wind, bottom row: surface pressure and 850 hPa temperature.  4 

5 

Figure 2. Numerical results for the CG simulation on the resolution of the H = 64 (nH = 8 and
N = 8) with 26 vertical levels: top row: 850 hPa zonal wind and meridional wind, bottom row:
surface pressure and 850 hPa temperature.
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 1 

 2 

FIG. 3. As in Fig. 2 but for the DG simulation.  3 

4 

Figure 3. As in Fig. 2 but for the DG simulation.
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 1 

FIG. 4. L2 error norm of surface pressure in Pa for the CG and DG simulations at the 2 

H  128 ( 16Hn   and 8N  ) horizontal resolution and 26 vertical levels. 3 

4 

Figure 4. L2 error norm of surface pressure in Pa for the CG and DG simulations at the H = 128
(nH = 16 and N = 8) horizontal resolution and 26 vertical levels.
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 1 

FIG. 5. Distribution of zonal wind difference at the lowest model level between day 20 2 

and day 0 for the (top) CG and (bottom) DG simulations at the H  128  ( 16Hn   and 3 

8N  ) horizontal resolution and 26 vertical levels. 4 

5 

Figure 5. Distribution of zonal wind difference at the lowest model level between day 20 and day
0 for the (top) CG and (bottom) DG simulations at the H = 128 (nH = 16 and N = 8) horizontal
resolution and 26 vertical levels.
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 1 

FIG. 6. As in Fig. 5 but for the 192H   ( 16Hn   and 12N  ) horizontal resolution. 2 

3 

Figure 6. As in Fig. 5 but for the H = 192 (nH = 16 and N = 12) horizontal resolution.
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 1 

FIG. 7. Baroclinic wave at day 9 with the (left) CG and (right) DG simulations with the 2 

resolution of the 80H   ( 16Hn   and 5N  ) horizontal resolution and 26 vertical levels: 3 

(upper row) surface pressure, (middle row) 850 hPa temperature, and (bottom row) 850 hPa 4 

relative vorticity at days (left) 7 and (right) 9.  5 

6 

CG(H80) DG(H80) 

Figure 7. Baroclinic wave at day 9 with the (left) CG and (right) DG simulations with the res-
olution of the H = 80 (nH = 16 and N = 5) horizontal resolution and 26 vertical levels: (upper
row) surface pressure, (middle row) 850 hPa temperature, and (bottom row) 850 hPa relative
vorticity at days (left) 7 and (right) 9.
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 1 

FIG. 8. As in Fig. 7 but for the 160H   ( 32Hn   and 5N  ).  2 

3 

CG(H160) DG(H160) 

Figure 8. As in Fig. 7 but for the H = 160 (nH = 32 and N = 5).
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 1 

FIG. 9. The minimum surface pressure (hPa) as a function of days for the CG and DG  2 

simulations with the lower resolution of the 80H   ( 16Hn   and 5N  ) and the higher 3 

resolution of the 160H   ( 32Hn   and 5N  ).  4 

5 

Figure 9. The minimum surface pressure (hPa) as a function of days for the CG and DG simu-
lations with the lower resolution of the H = 80 (nH = 16 and N = 5) and the higher resolution of
the H = 160 (nH = 32 and N = 5).
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 1 

FIG. 10. The (left) mean zonally averaged zonal velocity (m/s) and (right) mean zonally 2 

averaged temperature (K) for the (upper row) CG and (bottom row) DG simulations with the 3 

resolution of the 40H   ( 8Hn   and 5N  ) and 25 vertical levels (Nlev=25). These are 4 

calculated over the last 1000 days of a 1200-day integration. 5 

6 

Figure 10. The (left) mean zonally averaged zonal velocity (m s−1) and (right) mean zonally
averaged temperature (K) for the (upper row) CG and (bottom row) DG simulations with the
resolution of the H = 40 (nH = 8 and N = 5) and 25 vertical levels (N lev= 25). These are calcu-
lated over the last 1000 days of a 1200 day integration.
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 1 

FIG. 11. The mean zonally averaged eddy heat flux for the (left) CG and (right) DG 2 

simulation with the resolution of the 40H   ( 8Hn   and 5N  ).  3 

Figure 11. The mean zonally averaged eddy heat flux for the (left) CG and (right) DG simulation
with the resolution of the H = 40 (nH = 8 and N = 5).
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