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Abstract 7	  

We present a new modular Bayesian inversion framework, called FLEXINVERT, for 8	  

estimating the surface fluxes of atmospheric trace species. FLEXINVERT can be applied to 9	  

determine the spatio-temporal flux distribution of any species for which the atmospheric loss 10	  

(if any) can be described as a linear process and can be used on continental to regional and 11	  

even local scales with little or no modification. The relationship between changes in 12	  

atmospheric mixing ratios and fluxes (the so-called source-receptor relationship) is described 13	  

by a Lagrangian Particle Dispersion Model (LPDM) run in a backwards in time mode. In this 14	  

study, we use FLEXPART but any LPDM could be used. The framework determines the 15	  

fluxes on a nested grid of variable resolution, which is optimized based on the source-receptor 16	  

relationships for the given observation network. Background mixing ratios are determined by 17	  

coupling FLEXPART to the output of a global Eulerian model (or alternatively, from the 18	  

observations themselves) and are also optionally optimized in the inversion. Spatial and 19	  

temporal error correlations in the fluxes are taken into account using a simple model of 20	  

exponential decay with space and time and, additionally, the aggregation error from the 21	  

variable grid is accounted for. To demonstrate the use of FLEXINVERT, we present one case 22	  

study in which methane fluxes are estimated in Europe in 2011 and compare the results to 23	  

those of an independent inversion ensemble. 24	  

 25	  

1. Introduction 26	  

Observations of atmospheric mixing ratios (or concentrations) of trace species (gases or 27	  

aerosols) contain information about their fluxes between land/ocean and the atmosphere. 28	  

Atmospheric inversions use this information formally in a statistical optimization to find 29	  

spatio-temporal distributions of trace gas (or aerosol mass) fluxes (e.g. Tans et al. 1990). This 30	  

can be done provided that there is a model of atmospheric transport relating changes in fluxes 31	  

to changes in mixing ratios (or concentrations), that is, the so-called Source-Receptor 32	  

Relationships (SRRs). Basically, two types of models are used: Eulerian models, in which 33	  

atmospheric transport and chemistry are calculated relative to a fixed coordinate, or 34	  
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Lagrangian Particle Dispersion Models (LPDMs), in which diffusion and chemistry are 1	  

calculated from the perspective of air parcels transported by ambient winds.  2	  

 3	  

Eulerian models have been used extensively in atmospheric inversions but have a 4	  

disadvantage in that SRRs cannot be calculated directly from the model. Instead, the SRRs 5	  

can be found from multiple runs of the transport model to determine the sensitivity of all 6	  

receptors to changes in the fluxes in a discrete number of regions (e.g. Fung et al. 1991; 7	  

Enting, 2002; Rayner et al. 1999). This approach is simple to implement but the 8	  

computational cost of running the model for each flux region limits the number of regions and 9	  

thus the resolution that can be used. More recently, adjoints of Eulerian transport models have 10	  

been developed and can be used as an alternative to calculating SRRs. Adjoints calculate the 11	  

partial derivative of the change in flux in a given grid cell to the change in mixing ratio at a 12	  

given point and time, which can be used to find the optimal fluxes based on a set of 13	  

observations (e.g. Kaminski et al. 1999; Chevallier et al. 2005). This approach has the 14	  

advantage that the fluxes can be solved at higher resolution (i.e. the resolution of the transport 15	  

model). However, deriving adjoint models represents a significant technical challenge, thus 16	  

adjoints are not available for all transport models and there is a significant lag between 17	  

forward model developments and these being implemented in the adjoint. A further 18	  

disadvantage is that these systems are computationally demanding, as they require forward 19	  

and adjoint model runs for every iteration until convergence. 20	  

 21	  

LPDMs are self-adjoint, i.e., they can track the dispersion of virtual particles representing e.g. 22	  

an atmospheric gas forward in time from its sources/sinks to receptors (i.e. measurement 23	  

sites) or backwards in time from receptors to its sources/sinks using the identical model 24	  

formulation (Stohl et al. 2003; Seibert and Frank 2004; Flesch et al. 1995). The forward and 25	  

backward calculations are equivalent but one direction can be much more computationally 26	  

efficient than the other. For instance, if there are few receptors but many sources/sinks, the 27	  

backwards mode is more efficient. This is the case, for instance, when particles are tracked 28	  

backwards from a relatively small number of available atmospheric observation sites (i.e. 29	  

receptors), as in our demonstration case. This feature makes LPDMs very efficient for the 30	  

purpose of atmospheric inversion and they have been previously used in numerous studies 31	  

(e.g. Gerbig et al. 2003; Lauvaux et al. 2009; Stohl et al. 2010; Thompson et al. 2011;	  Keller 32	  

et al. 2012; Brunner et al. 2012). Lagrangian models may be used on a global scale (e.g. Stohl 33	  

et al. 2010), sub-continental scale (e.g. Gerbig et al. 2003) or on a regional scale in the order 34	  
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of a few hundred square kilometers (e.g. Lauvaux et al. 2009). Owing to their favorable 1	  

treatment of atmospheric turbulence in the boundary layer, LPDMs can even be used down to 2	  

scales of a few hundreds of meters (Flesch et al. 1995) and have been used for inferring 3	  

source strengths for local sources (e.g. farmsteads and oil spills).  A further advantage of 4	  

LPDMs is that they can be run backward exactly from a measurement site, unlike Eulerian 5	  

models, where site measurements are represented by the averaged value of the corresponding 6	  

grid cell. By focusing on local or regional scales, fine resolution may be used without running 7	  

into problems of too large a number of unknown variables (in this case the fluxes). Fine 8	  

resolution is desirable as it reduces the model representation error, also known as aggregation 9	  

error (Kaminski et al. 2001; Trampert and Snieder 1996) but it must be traded-off with the 10	  

total number of flux variables to be determined, which is subject to computational constraints.  11	  

 12	  

Using LPDMs to solve the inverse problem, however, also has disadvantages. In LPDMs, 13	  

virtual particles are typically followed backward in time only for the order of days to a few 14	  

weeks, thus the influence of the atmospheric chemistry and transport and surface fluxes 15	  

further back in time (the so-called background mixing ratio) must be taken into account 16	  

separately. Although forward 3D simulations in LPDMs are possible, in order to reproduce 17	  

background signals, such as seasonal variability, simulations of months to years would be 18	  

necessary and, therefore, computationally too expensive (Stohl et al. 2009). Alternatively, the 19	  

background mixing ratio can be accounted for using either observation- or model-based 20	  

approaches. Observation-based approaches use some filtering method (either statistical or 21	  

based on meteorological criteria) to identify observations representative of the background i.e. 22	  

air not (or only minimally) influenced by fluxes during the time of the backwards calculations 23	  

(e.g. Stohl et al. 2009; Manning et al. 2011). However, the background is strongly influenced 24	  

by meteorology e.g., air transported from higher latitudes or altitudes may have significantly 25	  

different mixing ratios compared to air transported from lower latitudes or altitudes even if in 26	  

both cases no emissions occur during the backward calculation. This makes the determination 27	  

of an observation-based background difficult. Model-based approaches involve coupling the 28	  

back-trajectories at their point of termination to the mixing ratios determined from a global 29	  

model.  30	  

 31	  

One approach is to run the LPDM on a regional domain and couple this to a global model at 32	  

the domain boundary. This approach was adopted by Rödenbeck et al. (2009), who use a 2-33	  

step method to first solve for the fluxes on a coarse grid using a Eulerian model and to 34	  
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calculate the background mixing ratios at the receptors, and second to perform the inversion 1	  

at regional scale on a finer grid using an LPDM. A similar approach was developed by Rigby 2	  

et al. (2011) but using a 1-step method. A drawback of both these approaches, however, is 3	  

that only the coarse resolution Eulerian model is used to calculate the background mixing 4	  

ratios at the receptors and, thus, is more susceptible to transport errors. We use a different 5	  

approach and couple the LPDM, run on a global scale, to a Eulerian model at the time 6	  

boundary, such as done by Koyama et al. (2011). This approach utilizes the more accurate 7	  

transport of the LPDM to calculate the background at the receptors.  8	  

 9	  

In this paper, we present a new framework, called FLEXINVERT, for optimizing fluxes by 10	  

employing an LPDM that can be coupled to mixing ratio fields from a global (Eulerian) 11	  

model. This method may be used from large continental scales down to local scales and can 12	  

be used for sparse as well as dense observation networks. In this method, the LPDM is used to 13	  

transport air masses and, thus, the influence of fluxes, to each receptor. The fluxes inside the 14	  

domain are optimized on a grid of variable resolution, where finer resolution is used in areas 15	  

with a strong observation constraint, i.e. close to receptors, and coarser resolution is used 16	  

elsewhere. FLEXINVERT, as it is presented here, requires that the LPDM is run on a global 17	  

domain, or at least that the domain is large enough so that trajectories do not exit the domain. 18	  

In summary, the features of this method are: 19	  

 20	  

- atmospheric transport (SRR) is calculated using a single model, i.e. the LPDM 21	  

- the LPDM needs only to be run once for each species and receptor to find the SRRs, 22	  

as the output can be applied to optimize the fluxes for any domain and resolution (as 23	  

long as the resolution is no finer than that of the LPDM run) 24	  

- the variable resolution grid means that fine resolution close to receptors minimizes 25	  

model representation errors 26	  

- background mixing ratios can be provided either by coupling to mixing ratio output 27	  

from a global model or alternatively by using an observation-based method 28	  

- the background mixing ratios are optionally included in the optimization 29	  

- the influence of fluxes from outside the domain on the mixing ratios at the receptors is 30	  

accounted for without having to solve for them explicitly, thereby reducing the 31	  

dimensionality of the problem 32	  

 33	  
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Variable grid resolution has been used in atmospheric inversions previously such as in the 1	  

studies of Manning et al. (2003), Stohl et al. (2010) and Wu et al. (2011). Our method for 2	  

defining the variable grid is based on that of Stohl et al. (2010). However, we have also 3	  

implemented a re-optimization of the fluxes at variable resolution back to the finest model 4	  

resolution based on the method of Wu et al. (2011). 5	  

 6	  

This manuscript is structured as follows: first we describe the inversion framework and the 7	  

variable grid formulation and, second, we present an example using real observations of 8	  

methane (CH4) dry-air mole fractions to optimize CH4 emissions in Europe. 9	  

 10	  

2. Bayesian framework for linear inverse problems 11	  

2.1 Forward model 12	  

For cases where the atmospheric transport and chemistry are linear, the change in mixing ratio 13	  

of a given atmospheric species can be related to its fluxes by a matrix operator. Furthermore, 14	  

the absolute mixing ratio can be related to its fluxes plus the background mixing ratio, which 15	  

together form the so-called state vector. This is shown in Eq. 1 where ymod
(M×1) is a vector of 16	  

the modeled mixing ratio at M points in time and space, x(N×1) is a vector of the N state 17	  

variables discretized in time and space, and H(M×N) is the transport operator.  18	  

ymod =Hx            (1) 19	  

For simplicity, we describe the case where the state variables are optimized for only one time 20	  

step, although the framework is able to optimize many time steps simultaneously (for an 21	  

overview of the variables and their dimensions see Tables 1 and 2). We construct the matrix 22	  

H from three components of the atmospheric transport to each receptor: 1) transport of fluxes 23	  

within a nested domain (i.e. within the global domain), Hnest, 2) transport of fluxes outside the 24	  

nested domain, Hout, and 3) contribution of mixing ratio at the time and location when the 25	  

back-trajectories terminate, i.e. the initial mixing ratios, Hbg (see Fig. 1). Similarly, x is 26	  

constructed from the fluxes inside the domain, fnest, fluxes outside the domain, fout (there are 27	  

no common variables between fnest and fout so there is no double counting of fluxes), and 28	  

initial mixing ratios taken from the output of a global model, ybg. (Note that from hereon we 29	  

refer to the contribution to the observed mixing ratio from where the trajectories terminate as 30	  

the initial mixing ratio and the contribution from the initial mixing ratio plus from the fluxes 31	  

outside the domain as the background mixing ratio, this is explained in section 2.1.2). 32	  

Equation 1 can thus be expanded to: 33	  
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ymod =Hnestf nest +Houtf out +Hbgybg         (2) 1	  

 2	  

2.1.1 The Source Receptor Relationships (SRRs) 3	  

The matrices Hnest and Hout are Jacobians in which each element is a partial derivative of the 4	  

change in mixing ratio at a given receptor with respect to the change in mass flux in a given 5	  

grid cell and are built from the SRRs. In this study, we use the LPDM, FLEXPART (Stohl et 6	  

al. 2005; Stohl et al. 1998) to derive the SRRs, although any other LPDM capable of running 7	  

in backwards mode could also be used to construct these matrices.  8	  

 9	  

In an LPDM, ensembles of particles are released from each receptor point and their 10	  

displacement is calculated backwards in time based on wind fields from meteorological 11	  

analysis data. Backwards and forwards calculations are practically equivalent because the 12	  

transport is time reversible (Seibert and Frank 2004). For a tracer, which undergoes negligible 13	  

loss in the atmosphere on the time scale of the LPDM calculations, the SRR can be expressed 14	  

for a receptor and a flux in a given spatio-temporal grid cell (i,n), as proportional to the 15	  

average residence time of J back trajectories in the grid cell under consideration: 16	  

∂y
∂xi,n

= 1
J

Δ ′ti, j,n
ρ j,nj=1

J

∑           (3) 17	  

where ρi,n is the air density in the grid cell and Δt´i,j,n is the residence time of trajectory j in the 18	  

spatio-temporal grid cell (i,n) (see Seibert and Frank 2004). In Eq. 3, the SRR is in units of 19	  

residence time × volume per unit mass, which is integrated over the height of the surface layer 20	  

in FLEXPART to be comparable with the surface flux, which is given per unit area. 21	  

Atmospheric loss processes, such as reaction with the hydroxyl radical, dry and wet 22	  

deposition, or radioactive decay, can be considered by including a transmission function in 23	  

the right hand side of Eq. 3, which quantifies the loss. The SRRs for all receptors and fluxes 24	  

inside the nested domain constitute the elements of Hnest while the SRRs for all receptors and 25	  

fluxes outside the domain constitute the elements of Hout. 26	  

 27	  

2.1.2 Initial mixing ratios 28	  

The initial mixing ratio is the contribution from the mixing ratios where the LPDM back-29	  

trajectories terminate. We include two alternatives for the calculation of the initial mixing 30	  

ratio. The first alternative uses the sensitivity to the mixing ratio at the points in space and 31	  

time where the LPDM back-trajectories terminate (calculated in FLEXPART) and the mixing 32	  
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ratio at those points taken from the output of a global model. The sensitivity to mixing ratio in 1	  

a grid cell at a given time (i) is calculated as the number of particle trajectories that terminate 2	  

in the grid cell (ni) divided by the total number of particle trajectories released (J): 3	  

∂y
∂yi

= ni
J

           (4) 4	  

Again, loss processes can be considered by including a transmission function in the right hand 5	  

side of Eq. 4. The sensitivity to the mixing ratio in all P grid cells (over the global domain) 6	  

and for all M observations is represented by the matrix Hbg
(M×P) and the mixing ratios from the 7	  

global model by the vector ybg
(P×1), which has been interpolated to the resolution of the LPDM 8	  

output. Thus, the initial mixing ratio at all receptors is Hbgybg. 9	  

 10	  

The second alternative approximates the background mixing ratios from the observations 11	  

themselves. In this case, the background mixing ratio is calculated in one step, i.e. there is no 12	  

separate calculation of the initial mixing ratio and contribution from outside the nested 13	  

domain. We have implemented a simple method involving selecting the lower quartile of the 14	  

observations in a moving time window (e.g. 30 days) over the whole time series. This method 15	  

was chosen as it is robust to the number of observations (i.e. it can be used for in situ as well 16	  

as discrete measurements) although other more sophisticated background selection algorithms 17	  

exist and could be used instead (e.g. Ruckstuhl et al. 2012; Giostra et al. 2011). The selected 18	  

observations are the approximation for the contribution to the mixing ratio without any 19	  

influence from fluxes in the nested domain, thus, the corresponding elements of the prior 20	  

modelled mixing ratio, Hnestfnest, should be zero. However, this is not always the case, 21	  

therefore, we also subtract the prior simulated mixing ratio from the selected observations so 22	  

that there is zero contribution from fluxes inside the domain in the background mixing ratio. 23	  

To avoid overestimating the contribution from inside the domain and, hence, underestimating 24	  

the background mixing ratio, we also select the lower quartile of the prior simulated mixing 25	  

ratios in a moving time window. Lastly, we calculate a running average of the background 26	  

mixing ratios using a time window of 90 days, which is then linearly interpolated to the 27	  

timestamp of the observations. This is done for each receptor. Similar methods for the 28	  

background calculation have been used previously for cases where no reliable global model 29	  

estimate of the mixing ratio was available (e.g. Stohl et al. 2010).  30	  

 31	  

2.2 Variable resolution grid  32	  
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To reduce the number of variables in the inversion problem we aggregate grid cells where 1	  

there is little constraint from the atmospheric observations. In this way, we define a new 2	  

vector of the fluxes to be optimized, fnest
vg and transport matrix, Hnest

vg which are on a grid of 3	  

variable resolution (vg = variable grid). The aggregation algorithm is based on time-averaged 4	  

SRRs optionally convolved with the prior flux estimate. The variable grid is set-up starting 5	  

with a coarse grid, which is refined in a specified number of steps following the method of 6	  

Stohl et al. (2009). For example, starting with a coarse resolution of 4°×4° the grid may be 7	  

refined in two steps to resolutions of 2°×2° and 1°×1°. The refinement is made so that the flux 8	  

sensitivity (optionally multiplied by the prior flux) in each grid cell at its final resolution (e.g. 9	  

1°×1°, 2°×2° and 4°×4°) is above a given threshold. It is also optional whether or not to make 10	  

the grid refinement over water bodies and ice so that grid cells with a water/ice area of 99% or 11	  

more are not refined further reflecting cases where the water/ice surface fluxes are either 12	  

smaller, more homogeneous and/or more certain than the land surface fluxes. For determining 13	  

which grid cells are land/water/ice we use the International Geosphere Biosphere Programme 14	  

land-cover dataset (IGBP-DIS) (Belward et al. 1999). 15	  

 16	  

To convert from the fine to the variable grid, we define a projection operator Γ(W×K) where K 17	  

is the number of grid cells in the nested domain at the original resolution and, W, the number 18	  

at variable resolution. Each row of Γ corresponds to a cell in the variable grid, and is a 19	  

summation vector on the fine grid. The row vectors, λi, of Γ are orthogonal thus λiλj
T = 0 for i 20	  

≠ j (since each fine grid cell can only belong to one variable grid cell). The flux vector, fnest 21	  

and the matrix, Hnest on the variable grid can be found according to: 22	  

fvg
nest = Γf nest and Hvg

nest =HnestΓT         (5) 23	  

where “T” indicates the matrix transpose. The fluxes in fnest are weighted by the ratio of the 24	  

area of fine grid to the variable grid into which it is aggregated. The forward model on the 25	  

variable resolution grid can thus be written as: 26	  

ymod =Hvg
nestfvg

nest +Houtf out +Hbgybg + ε agg        (6) 27	  

where εagg
(M×1) is the model representation error from having reduced the resolution of the 28	  

model (for a schematic for the forward model see Fig. 1). It is also known as the aggregation 29	  

error and has been described by Trampert and Snieder (1996), Kaminski et al. (2001), and 30	  

Thompson et al. (2011). We describe the calculation of the aggregation error in section 2.5. 31	  

 32	  

2.3 Aggregation of the background mixing ratios  33	  
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The contribution of fluxes outside the domain to the change in mixing ratios at the receptor 1	  

points (i.e. Houtfout) can be added to the initial mixing ratio (Hbgybg). The contribution to the 2	  

modelled mixing ratio (i.e. ymod), which is not accounted for by the SRRs and fluxes inside 3	  

the domain (i.e. the background mixing ratio), is then defined by a new matrix, Mcg(M×R), on a 4	  

coarse grid (cg), which has rows corresponding to M observations and columns corresponding 5	  

to R grid cells or latitudinal bands. When the initial mixing ratio is calculated using the 6	  

sensitivity matrix, Hbg and mixing ratio fields, ybg from a global Eulerian transport model, 7	  

then Mcg is defined as: 8	  

Mcg = Hout Fout +Hbg Ybg( )ΓcgT         (7) 9	  

where ∘ indicates the Hadamard matrix product, Fout
(M×P) has M rows of (fout)T, and Ybg

(M×P) 10	  

has M rows of (ybg)T. The matrix, Γcg(R×P), is a projection operator from the Eulerian model 11	  

resolution to a coarse resolution of R grid cells (note Γcg ≠ Γ). Noteworthy, is that the matrix 12	  

multiplication Hout∘Fout is made using the original resolution of the LPDM and fluxes and 13	  

that the conversion to the coarse grid is performed only on the mixing ratios, thus avoiding an 14	  

aggregation error in this component. When the background is calculated using the 15	  

observations themselves, then Mcg is defined as: 16	  

Mcg = diag(y
bg )Γbg

T           (8) 17	  

where Γbg(R×M) is an operator to map the background mixing ratios to a matrix where the 18	  

background for each measurement is allocated to one of R latitudinal bands. Note that the 19	  

contribution from grid cells outside the domain is not explicitly included as it is assumed that 20	  

this contribution is incorporated into the definition of ybg when it is calculated from the 21	  

observations (see section 2.1.2).   22	  

 23	  

For both methods, the columns of Mcg correspond to the mixing ratios in each of the R coarse 24	  

grid cells (or latitudinal bands when using the observation-based method) such that the sum of 25	  

each row gives the total background mixing ratio for each measurement (note that for the 26	  

observation-based method there is only one non-zero entry in each row). The spatial 27	  

distribution of the contribution to the background mixing ratio (dimension R) is maintained as 28	  

it is these contributions that are optimized in the inversion. 29	  

 30	  

We then define a new transport operator, H(M×N)
 by concatenating the matrices Hnest

vg
 and Mcg. 31	  

Similarly, we define the state vector, x(N×1) by concatenating fnest
vg(W×1) (the flux variables 32	  

inside the nested domain) and acg(Rx1) (scalars of the mixing ratios in the columns of Mcg):  33	  
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H = Hvg
nestMcg

!" #$ and x = fvg
nestacg!" #$         (9) 1	  

The prior value of acg(i) (i = 1 to R) is 1. After inversion, the optimized values of acg 2	  

determine the posterior background mixing ratios.  3	  

 4	  

2.4 Optimization of the fluxes and background mixing ratios 5	  

The uncertainty in the initial mixing ratios and in the contribution to the mixing ratio from 6	  

fluxes outside the domain can be considerable. Therefore, we include this component in the 7	  

optimization problem. The prior state vector for optimization, xb thus contains variables for 8	  

the surface fluxes (on the variable resolution grid) and variables for the optimization of the 9	  

mixing ratios (on the coarse resolution grid defined by Γcg). 10	  

 11	  

Based on Bayes’ theorem, the most probable solution for x is the one that minimises the 12	  

difference between the observed and modelled mixing ratios while also depending on the 13	  

prior state variables, xb and their uncertainties (for details on Bayes’ theorem see e.g. 14	  

Tarantola (2005)). Assuming that the uncertainties have a Gaussian probability density 15	  

function (pdf) this can be described by the cost function: 16	  

J x( ) = 1
2
x − xb( )T B−1 x − xb( )+ 1

2
Hx − yobs( )TR−1 Hx − yobs( )     (10) 17	  

where B(N×N) is the prior flux error covariance matrix (see section 2.5), R(M×M) is the 18	  

observation error covariance matrix (see section 2.6), and yobs is a vector of the observed 19	  

mixing ratios. There exist a number of methods to find the x for which Eq. 10 is at a 20	  

minimum; we use the approach of finding the first derivative of Eq. 10 and solving this for x. 21	  

By rearrangement, x can be found according to Eq. 11. Equation 11 has a number of 22	  

alternative formulations and the one we use is the most efficient when the number of 23	  

observations is smaller than the number of unknowns, since the size of the matrix to invert 24	  

(HBHT+R) has dimensions of M×M: 25	  

x = xb +BH
T HBHT +R( )−1 yobs −Hxb( )        (11) 26	  

The inverse of (HBHT+R) is found by Cholesky factorization (using the DPOTRF and 27	  

DPOTRI routines from the LAPACK library). The corresponding posterior error covariance 28	  

matrix, A(N×N) is the inverse of the second derivative of the cost function, J″: 29	  

A = ′′J( )−1 = B −BHT HBHT +R( )−1HB        (12) 30	  

 31	  
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2.5 Prior error covariance matrix 1	  

Errors in the prior flux estimates are correlated in space and time owing to correlations in the 2	  

biogeochemistry model, upscaling model, or anthropogenic emission inventory that was used 3	  

to produce these estimates. Most often, there is little known about the true temporal and 4	  

spatial error correlation patterns. Here we define the spatial error correlation for the fluxes as 5	  

an exponential decay over distance, such that each element in the spatial correlation matrix, 6	  

CS is:  7	  

cS(i, j ) = exp −
dij
kS

⎛
⎝⎜

⎞
⎠⎟

          (13) 8	  

where dij is the distance between grid cells i and j in a given timestep and kS is the spatial 9	  

correlation scale length on land or ocean (we assume that fluxes on land and ocean are not 10	  

correlated with one another). The temporal error correlation matrix, CT is described similarly 11	  

using the time difference between grid cells in different timesteps. The full temporal and 12	  

spatial correlation matrix, C is given by the Kronecker product: CT⊗CS. The error covariance 13	  

matrix for the fluxes, Bflux
vg(W×W) is the matrix product of correlation pattern, C and the error 14	  

covariance of the prior fluxes, σσT where σ is a vector of the flux errors. We calculate the 15	  

error on the flux in each grid cell (on the fine grid) as a fraction of the maximum value out of 16	  

that grid cell and the 8 surrounding ones. Finally, the Bflux
vg matrix is scaled so that the square 17	  

root of its sum is consistent with a total error value assigned for the whole domain. This error 18	  

estimate may be from e.g. comparisons of independent biogeochemistry modelled fluxes or 19	  

flux inventories. The correlation matrix could be calculated for the fine grid and converted to 20	  

the variable grid using the prolongation operator as ΓBfluxΓT. However, we calculate Bflux
vg 21	  

directly for the variable grid (dimensions W×W) as the multiplication step BfluxΓT is very slow 22	  

if K is large and/or if there are many timesteps. In addition, Bflux
(K×K) is calculated for the fine 23	  

grid for a single time step only, as it is needed in the calculation of the aggregation error (see 24	  

section 2.6) and for the optimization of the posterior fluxes back to the fine grid (section 2.8). 25	  

We assume that the errors for the scalars of the background mixing ratios (i.e. acg) are 26	  

uncorrelated and have a fixed prior value  (e.g. 1%). The error variance for these scalars is 27	  

appended to Bflux
vg to give B(N×N). 28	  

 29	  

2.6 Aggregation error 30	  
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The aggregation incurred by reducing the spatial resolution of the model can be calculated by 1	  

projecting the loss of information in the state space into the observation space (Kaminski et al. 2	  

2001). The full aggregation error covariance matrix Eagg
(M×M) is given by: 3	  

Eagg =HΓ -B
fluxΓ -

THT           (14) 4	  

where Γ- is the projection of the loss of information in the variable grid compared to the fine 5	  

grid. The matrix Γ- can be calculated simply from the rows vectors λi of the projection 6	  

operator Γ, which are weighted by the square root of the row sum so as to have unit length: 7	  

Γ - = I − λiλi
T

i=1

W

∑           (15) 8	  

where I is the identity matrix. As λiλi
T is a matrix of size P × P, where P can be on the order 9	  

of 10,000 to 100,000, it is not calculated directly but rather HΓ- as follows: 10	  

HΓ - =H − H
i=1

W

∑ λiλi
T           (16) 11	  

 12	  

2.7 Observation error covariance matrix 13	  

The errors in the observation space incorporate measurement as well as model transport and 14	  

representation errors. For the measurement errors, we use values of the measurement 15	  

repeatability as given by the data providers. The measurement errors can be given as a single 16	  

value or for each observation, in which case it is read from the observation files. Transport 17	  

errors are extremely difficult to quantify and depend not only on the model but also on the 18	  

input data, resolution and location. Therefore, we do not quantify the full transport error, but 19	  

only the part of it that can be estimated from the model FLEXPART, i.e. the stochastic 20	  

uncertainty, which arises by the representation of transport with a limited number of particles 21	  

(see Stohl et al. (2005)). The stochastic error, however, is likely to be much smaller than the 22	  

full transport error. It is possible, however, to include an additional estimate of the transport 23	  

error into Eq. 17, if this information were available. The error in the modelled mixing ratio is 24	  

calculated using the stochastic uncertainty in the same way that the mixing ratios themselves 25	  

are calculated. We consider two types of representation error: observation representation error 26	  

and model aggregation error (discussed above). The observation representation error is 27	  

calculated from the standard deviation of all measurements available in a user-specified 28	  

measurement averaging time interval, based on the idea that if the measurements are 29	  

fluctuating strongly within that interval then their mean value is associated with higher 30	  

uncertainty than if the measurements are steady (e.g. Bergamaschi et al. 2010). If only one 31	  
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measurement is available during this interval, then a user-defined minimum error is used 1	  

instead. The measurement and transport errors are assumed to be uncorrelated. Although this 2	  

is a common assumption, correlations likely exist between e.g. hourly observations owing to 3	  

errors in the modelled boundary layer height and wind fields, which could lead to temporal 4	  

correlations. However, in the current version of FLEXINVERT, we do not account for these 5	  

correlations, hence, we define a diagonal matrix with elements equal to the quadratic sum of 6	  

the measurement, transport model and measurement representation errors: 7	  

σ 2 =σmeas
2 +σ trans

2 +σ repr
2          (17) 8	  

Another assumption that is made is that the observed – modelled mixing ratio residuals have a 9	  

Gaussian distribution (Eq. 10 is based on this assumption). Therefore, in cases where the 10	  

distribution is highly skewed, observations corresponding to the tail of the distribution will 11	  

have a strong influence on the result of the inversion. FLEXINVERT does not include any 12	  

component to deal with skewed distributions; however, the influence of observations in the 13	  

tail of the distribution may be reduced by increasing their uncertainty. For more details about 14	  

dealing with skewed distributions we refer the reader to Stohl et al. (2009). 15	  

 16	  

The observation error covariance matrix, R(M×M) is the sum of this diagonal matrix plus the 17	  

aggregation error covariance matrix, Eagg.  18	  

 19	  

2.8 Optimization of the fluxes to fine resolution 20	  

The optimal solution of the fluxes, fnest*
vg is found for the variable grid according to Eq. 11 21	  

and the corresponding posterior error covariance matrix, A is found according to Eq. 12. 22	  

However, it is not possible to directly apply the inverse of the projection operator to retrieve 23	  

the optimal emissions at fine resolution since the operation from the variable to the fine 24	  

resolution is ambiguous; there is insufficient information to redefine the fluxes at fine 25	  

resolution. To find the optimal emissions at fine resolution, fnest*
(K×1), we use an adaptation of 26	  

the method of Wu et al. (2011). This method involves a second Bayesian optimization step, 27	  

which uses the prior information about the distribution of the fluxes within each grid cell on 28	  

the variable resolution grid: 29	  

f nest* = fb
nest +Bnaw

fluxΓunit
T ΓBfluxΓT +Aflux( )−1 fvgnest* − Γfbnest( )      (18) 30	  

(see Appendix A for the derivation of Eq. 18 and 19). Since we only optimize the fluxes, i.e. 31	  

fnest*, the matrices Bflux and Aflux represent only the parts of the error covariance matrices 32	  

corresponding to flux errors. We have introduced a new error covariance matrix, Bflux
naw, 33	  
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which is the non area-weighted (naw) version of Bflux, i.e. calculated using the flux errors not 1	  

weighted by the ratio of the grid cell areas on the fine and coarse grid. Also, we have 2	  

introduced Γunit, which is equivalent to Γ but with each row vector normalized by the row 3	  

sum so that they have unit length. Our method departs from Wu et al. (2011) in that for the 4	  

error in posterior state vector on the variable grid we use the error covariance of the posterior 5	  

solution on the variable grid A, rather than a Dirac distribution. The inverse of 6	  

(ΓBfluxΓT+Aflux) is found by Singular Value Decomposition (SVD) using the DGESDD 7	  

routine from the LAPACK library. We find the posterior error covariance matrix Aflux*
(K×K) 8	  

also for the fine resolution fluxes according to: 9	  

Aflux* = Bnaw
flux−1 + Γunit

T Aflux−1Γunit( )−1         (19) 10	  

The inverse of the matrices Bflux
naw, Aflux, and (Bflux

naw
-1+Γunit

TAflux-1Γunit) are also found by 11	  

SVD, which can also be used for matrices that are non-positive definite. This optimization to 12	  

the fine grid should be carefully evaluated if used. Alternatively, we also include a simple 13	  

mapping back to the fine grid by distributing the flux in a coarse grid to the corresponding 14	  

fine grid cells based on the prior relative flux distribution at fine resolution. 15	  

 16	  

2.9 Inequality constraints 17	  

For some atmospheric species, there are physical restrictions on the values of the fluxes. For 18	  

example, for anthropogenic species, such as halocarbons and SF6, the fluxes can only be 19	  

positive over land, while there are no appreciable fluxes (positive or negative) over ocean. 20	  

Using an inequality constraint in the cost function Eq. 10 would mean that the first derivative 21	  

would be undefined. Therefore, we adopt a “truncated Gaussian” approach following Thacker 22	  

(2007), in which inequality constraints are applied by treating these as error-free observations. 23	  

The inequality constraints are applied to the posterior fluxes derived previously (i.e. with no 24	  

inequality constraint). This is described by the following equation, which is analogous to Eq. 25	  

11: 26	  

f nest** = f nest* +AfluxPT PAfluxPT( )−1 c −Pf nest*( )       (20) 27	  

where P(Q×K) is a matrix operator to select the Q variables that violate the inequality constraint 28	  

and c is a vector of the inequality constraints of length Q. The inequality constraint does not 29	  

only affect the grid cells with negative values but there is also some adjustment to other cells 30	  

according to the correlations described by the posterior error covariance matrix, Aflux. The 31	  

posterior error covariance matrix, however, is unchanged as the observation error covariance 32	  



	   15	  

matrix in this case is zero. To apply the inequality constraint requires running a second code, 1	  

which uses the output of FLEXINVERT. 2	  

 3	  

A brief description of the software, its inputs, and outputs, is provided in Appendix B. 4	  

 5	  

3. Case study: estimation of CH4 fluxes in Europe 6	  

We provide a case study using FLEXINVERT for the estimation of methane (CH4) fluxes in 7	  

Europe. Methane was chosen, as it is an important greenhouse gas with an atmospheric 8	  

lifetime of approximately 10 years (Denman et al. 2007) and since its loss in the troposphere   9	  

is principally by reaction with the OH radical, which can be approximated as a linear process. 10	  

The fluxes of CH4 are mostly positive (i.e. from the surface to the atmosphere) although small 11	  

negative fluxes of CH4 by oxidation in soils are also possible (Ridgwell et al. 1999). Europe 12	  

was chosen as it is reasonably well covered by observations, both discrete air sampling and 13	  

in-situ measurements. The important sources of CH4 in Europe are mostly anthropogenic, 14	  

namely agriculture, landfills, and oil and gas exploitation (including fugitive emissions as 15	  

well as those from incomplete combustion). Natural sources of CH4 are less important in 16	  

Europe and principally wetlands and mostly in the higher latitudes. In this case study, we 17	  

estimate the total fluxes of CH4 in the nested domain from 30°N to 70°N and 15°W to 45°E at 18	  

monthly resolution for the year 2011.  19	  

 20	  

3.1 Inversion set-up 21	  

3.1.1 FLEXPART runs 22	  

FLEXPART (version 8.1) (Stohl et al. 1998; Stohl et al. 2005) was used to generate the SRRs 23	  

by running 10-day backwards mode simulations from each of the receptors (i.e. the 24	  

observation sites). FLEXPART was run at 1.0°×1.0° resolution with meteorological analyses 25	  

from the European Centre for Medium-Range Weather Forecasts (ECMWF). Backwards 26	  

(“retro-plume”) simulations were made by releasing 20,000 virtual particles in 3-hourly 27	  

intervals and the SRRs (or equivalently emission sensitivities) were saved as 24-hour 28	  

averages. Particles were released from the sampling inlet height at each observation site (see 29	  

Table 3). The loss of CH4 by reaction with the OH radical was also included in the backwards 30	  

simulations even though the loss is very small over a 10-day period. Figure 2a shows the 31	  

combined total emission sensitivity for all observation sites in 2011. The total emission 32	  

sensitivity was used to determine the variable resolution grid (Fig. 2b) with grid cells ranging 33	  

in size from 1.0°×1.0° to 4.0°×4.0°.  34	  
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 1	  

3.1.2. Observations 2	  

We used measurements of CH4 from approximately weekly samples in the National Oceanic 3	  

and Atmospheric Administration Global Monitoring Division (NOAA GMD) Carbon Cycle 4	  

and Greenhouse Gases (CCGG) network. These measurements are made using Gas 5	  

Chromatographs fitted with Flame Ionization Detectors (GC-FID). In addition, we used data 6	  

from a number of in-situ measurement sites. These included in-situ GC-FID instruments 7	  

operated by the Umweltbundesamt (UBA), the Institute for Atmospheric Sciences and 8	  

Climate (ISAC) and the Advanced Global Gases Experiment (AGAGE) as well as in-situ 9	  

Cavity Ring Down Spectrometers (CRDS) operated by EMPA and the Finnish 10	  

Meteorological Institute (FMI). All measurements were reported as dry-air mole fractions in 11	  

parts-per-billion (abbreviated as ppb) on the NOAA2004 calibration scale, except AGAGE 12	  

data, which were reported on the Tohoku University scale but were converted to the 13	  

NOAA2004 scale using a conversion factor of 1.0003 (see Table 3). 14	  

 15	  

In-situ measurements were assimilated as averages of the afternoon observations (12:00 to 16	  

18:00) at low altitude sites and as averages of night-time observations at mountain sites 17	  

(00:00 to 06:00) and the corresponding FLEXPART SRRs were selected and averaged in the 18	  

same way. Discrete measurements were assimilated as available and matched with the closest 19	  

available 3-hourly SRR to the sampling time. The measurement error was defined as 5 ppb 20	  

based on the repeatability of the measurements and, in the case of the in-situ data, the 21	  

representation error was defined as the standard deviation of the afternoon observations. 22	  

 23	  

3.1.3. Prior fluxes and initial mixing ratios 24	  

The prior flux was composed from estimates of anthropogenic and natural emissions from a 25	  

number of different models and inventories (see Table 4 for details) and the total global 26	  

source amounted to 610 TgCH4 y-1. Methane fluxes were resolved monthly in the wetland, 27	  

ocean, termite, wild animal, soil, and biomass burning estimates, while the anthropogenic and 28	  

geological flux estimates were only resolved annually. For the anthropogenic and biomass 29	  

burning sources, the 2010 estimates were used, as no estimates were available for 2011. For 30	  

the remaining natural sources, climatological estimates were used. All fluxes were used at a 31	  

spatial resolution of 1.0°×1.0°.  32	  

 33	  
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Prior flux error covariance matrix, Bflux, was calculated as described in section 2.5 using a 1	  

spatial correlation length of 500 km, kS =500, and a temporal correlation length of 90 days, kT 2	  

= 90. For the calculation of the flux errors we used a fraction of 0.5 of the maximum flux out 3	  

of the cell of interest and the 8 surrounding ones.  4	  

 5	  

The background mixing ratios may be estimated either from the observations themselves or 6	  

by coupling FLEXPART to a global model (see sections 2.1.2 and 2.3). For the latter method, 7	  

FLEXPART calculates the sensitivity to the mixing ratio at the termination point of the 8	  

virtual particles. These sensitivities were coupled to daily 3D fields of CH4 mixing ratios from 9	  

the atmospheric chemistry transport model, TM5, in order to calculate the initial mixing ratios. 10	  

The TM5 model was run at 6.0°×4.0° horizontal resolution with 25 eta pressure levels using 11	  

pre-optimized fields of CH4 fluxes (Bergamaschi et al. 2010). Atmospheric loss of CH4 by 12	  

reaction with OH radicals is calculated in TM5 using monthly fields of OH concentration 13	  

(Bergamaschi et al. 2005) resulting in mean atmospheric lifetime of CH4 of 10.1 years, which 14	  

is close to the IPCC recommended value of 9.7 (±20%) years (Denman et al. 2007). The 15	  

initial mixing ratios were added to the change in mixing ratios from fluxes outside the domain, 16	  

together forming the background mixing ratio matrix, Mcg(M×R). The background was 17	  

optimized at a resolution of 30°×15° (longitude by latitude) over the global domain (i.e. R = 18	  

144). The uncertainty in the scalars of the background mixing ratio was set to 0.2% equivalent 19	  

to approximately 4 ppb. 20	  

 21	  

3.2 Sensitivity tests 22	  

We performed six inversions to test the sensitivity of the posterior fluxes and error reduction 23	  

to the spatial correlation scale length (S1 to S3), to the optimization of the background (S4), 24	  

to the filtering and averaging of the observations (S5), as well as to the background estimation 25	  

method (S6). The tests are summarized in Table 5. 26	  

 27	  

3.3 Results 28	  

The inversions were run on a Linux Ubuntu machine with 62 GB memory. The maximum and 29	  

mean memory usage was 18 and 6.4 GB, respectively, and each inversion took approximately 30	  

1.8 days to complete. 31	  

 32	  

Figure 3 shows the observed CH4 mixing ratios at in-situ measurement sites compared with 33	  

those simulated with the TM5 model and FLEXPART using the prior and posterior fluxes 34	  
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from test S1. At high altitude sites, namely, CMN, JFJ, and SSL, the global model tends to 1	  

underestimate the synoptic variability largely due to the coarse resolution. This can be 2	  

quantified by the Normalized Standard Deviation (NSD) (i.e. the SD of the model normalized 3	  

by the SD of the observations), which for TM5 was 0.46, 0.81 and 0.71, compared with 0.81, 4	  

0.75, and 1.07 for FLEXPART, for the three sites respectively. On the other hand, TM5 5	  

overestimated the variability at MHD, a coastal site, with a NSD of 2.53 compared with 0.97 6	  

in FLEXPART. Again, this is likely to be due to the coarse resolution in TM5, which cannot 7	  

accurately resolve the location of MHD and overestimates the influences of land fluxes at this 8	  

site.  9	  

 10	  

To examine the differences between the two methods of estimating the background mixing 11	  

ratios, we compare the background determined in test S1 (model-based method) and test S6 12	  

(observation-based method). The results are shown in Fig. 4 at the in-situ measurement sites. 13	  

The two methods compare reasonably well with one another with the mean difference 14	  

between the two backgrounds being between -7 and 4 ppb for the different sites. At MHD, 15	  

however, observation-based background is considerably lower than the model-based one 16	  

(difference of -11 ppb). This departure is caused by an overestimation of the prior 17	  

contribution to the mixing ratio from fluxes inside the nested domain, and since this is 18	  

subtracted from the observations that have been identified as being representative of the 19	  

background, this leads to an overall too low background estimate at this site (see section 2.1.2 20	  

for details).  21	  

 22	  

The model performance at the measurement sites for test S1, a priori and a posteriori, is 23	  

summarized in Table 6, which compares the correlation coefficient (R), Root Mean Square 24	  

Error (RMSE) and NSD of the simulated mixing ratios versus the observations. As expected, 25	  

the mixing ratios a posteriori agree better with observations. To assess the assumptions made 26	  

about the uncertainties and error correlation scales used in B and R, we look at χ2, which has 27	  

the value of the cost function at the optimum (equivalently the weighted sum of squares 28	  

divided by the number of observations). Ideally, χ2 would be equal to 1 indicating that the 29	  

posterior solution is within the limits of the prescribed uncertainties. In actual fact, the χ2 30	  

values are larger than 1. χ2 increased with increasing spatial correlation scale length with 31	  

values of 2.24, 2.56, and 2.97 with kS of 200, 300 and 500 km, respectively, which is as 32	  

expected since a longer correlation scale length corresponds to fewer degrees of freedom. 33	  

Using all observations, as in test S5, resulted in a χ2 of 2.05, the lowest value, as this also 34	  
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resulted in larger SDs over the averaging interval (1 day) and, hence, larger uncertainties in 1	  

the observation space. 2	  

 3	  

The posterior fluxes and the flux increments (posterior minus prior fluxes) for the six 4	  

sensitivity tests are shown in Fig. 5. The posterior fluxes and flux increments from tests S1 to 5	  

S5 are quite similar, however, on close inspection there are a few notable differences. 6	  

Decreasing the spatial correlation scale length from 500 to 200 km (tests S1 to S3) resulted in 7	  

a more heterogeneous pattern of flux increments as the greater degrees of freedom allowed 8	  

smaller spatial scales to be modified in the inversion. Although, overall the patterns of flux 9	  

increments from all tests were consistent with lower emissions, relative to the prior, over 10	  

France, Italy and the UK, and higher emissions over Austria, Hungary, and eastern Europe. 11	  

When the background mixing ratios are also optimized (test S4) there is only a small change 12	  

with respect to test S1; namely, in S4 the emissions are slightly lower over the United 13	  

Kingdom, France and the Iberian Peninsular. Lower emissions are found as the background 14	  

mixing ratios have been increased (by approximately 0.2%) to minimise the observation – 15	  

model error and, hence, smaller increments were needed in the emissions. Furthermore, using 16	  

all observations (test S5), compared to only afternoon ones at low altitude sites and only 17	  

night-time ones at high altitude sites, made almost no difference to the posterior fluxes. Test 18	  

S6, which used the observation-based approach for the background estimation, differed the 19	  

most from the other tests. Notably, higher emissions, compared to the other inversions, were 20	  

found in France, Germany, the Czech Republic and the UK and, correspondingly, the flux 21	  

increments were more positive in these regions as well. This difference is a direct result of the 22	  

lower background mixing ratios estimated at a number of sites with the observation-based 23	  

method and highlights the challenge of obtaining robust background estimates. 24	  

 25	  

Figure 6 shows the error reduction for the six sensitivity tests. The largest error reductions are 26	  

found using kS = 500 km, i.e. in tests S1, S4, S5 and S6, for which the error reduction is 27	  

almost identical. The error reductions in tests S2 and S3 are smaller and more limited to 28	  

central Europe as compared to S1. Again, this is because increasing the correlation scale 29	  

length results in fewer degrees of freedom for the inversion and effectively spreads the 30	  

atmospheric information over a larger area.  31	  

 32	  

Lastly, we compare the simulated mixing ratios using the a priori and a posteriori fluxes 33	  

(from test S1) with observations at an independent site, i.e. one that was not included in the 34	  
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inversion, Puy de Dôme, France (PUY). Figure 7 shows the observed, prior, posterior and 1	  

background mixing ratios at the time-stamp of the observations at PUY. Both the prior and 2	  

posterior mixing ratios overestimate the observed variability with NSD of 2.24 and 2.04, 3	  

respectively. This is most probably owing to both the topography (the station is located on a 4	  

volcanic cone, which represents a very abrupt change in topography) as well as the fact that 5	  

there are significant emissions in the prior around the station. A likely explanation is that 6	  

FLEXPART overestimates the BL height at PUY and thus overestimates the influence of 7	  

local emissions on this site. Despite the model transport errors at this site, using the posterior 8	  

fluxes improves the RMSE (23.1) and correlation coefficient (0.18) compared to the prior 9	  

(26.4 and 0.16, respectively). 10	  

 11	  

3.4. Discussion 12	  

The results for the sensitivity tests S1 and S6, using the model and observation based 13	  

background mixing ratios, respectively, highlight the challenge of robustly identifying the 14	  

background and the influence that this has on the optimized fluxes (see Fig. 5). There are 15	  

different problems associated with each method and warrant further discussion here.  16	  

 17	  

First, using an optimized global model (in our case study, the chemistry-transport model, 18	  

TM5) to derive the prior background may lead to problems of circularity, i.e. if the 19	  

background is included in the optimization and the same observations used to constrain the 20	  

global model are also used in the Lagrangian inversion. If different sets of observations are 21	  

used then this is not a problem, however, if there is overlap then the prior information (about 22	  

the background) and the observations are no longer completely independent. The degree of 23	  

overlap should, however, be small since the background calculated for the Lagrangian model 24	  

is an extremely smoothed version of the global modelled mixing ratio fields, as the sensitivity 25	  

to the background even for a single measurement is distributed over large parts of at least one 26	  

hemisphere. Furthermore, in the global model, the background is constrained mainly by 27	  

measurements from outside the region of interest. The degree of circularity is minimized even 28	  

further if new observations are included in the Lagrangian inversion, which may also 29	  

encompass assimilating observations from the same sites but at higher temporal resolution in 30	  

the Lagrangian model if observations from no additional sites are available. In any case, the 31	  

model-based background should be from a pre-optimized model or optimized in the 32	  

Lagrangian inversion, as biases in the background will be propagated into biases in the 33	  

optimized fluxes.  34	  
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 1	  

Second, using a filtering of the observations to derive the background will also lead 2	  

circularity, i.e. if the same observations are also used to optimize the background in the 3	  

inversion, and this case should be avoided. When the observations are used to derive the 4	  

background, biases only arise in the detection of the background signal. The background 5	  

mixing ratio may fluctuate depending on the altitude and latitude of the air masses’ origin. In 6	  

addition, if the site is in an area of strong local fluxes, a background signal may not detectable. 7	  

Analysing the modelled back trajectories in such cases may help determine if candidate 8	  

observations for the background calculation are likely to have been influenced by fluxes in the 9	  

domain or not. Furthermore, the observation-based method for determining the background is 10	  

not appropriate for species such as CO2, which have a strong diurnal cycle and thus no 11	  

definable background. 12	  

 13	  

We compare our posterior CH4 flux estimates with those derived from independent inverse 14	  

models, specifically, with the results of a recent inverse model ensemble for CH4 fluxes over 15	  

Europe from the NitroEurope project (Bergamaschi et al. 2014). This ensemble consisted of 16	  

four independent models, including two Eulerian and two Lagrangian ones. Although the time 17	  

period covered by the ensemble (2006 to 2007) differs from our study (2011), the fluxes of 18	  

CH4 in Europe are thought to have been fairly stable between both periods and, hence, the 19	  

differences are likely to represent differences in the model set-ups rather than only changes in 20	  

the fluxes. Table 6 compares the prior and posterior emission totals from this study with those 21	  

of Bergamaschi et al. (2014). Overall, the posterior fluxes from this study are within the range 22	  

from the ensemble, despite differences in the time period and the atmospheric observations 23	  

used. There is only one exception, i.e. BENELUX, where our estimate is 24% lower than the 24	  

lowest limit of the ensemble range. This may be due, at least in part, to real changes in 25	  

emissions. However, it may also be due to differing distributions of the posterior emissions 26	  

close to the boundaries of BENELUX with France and Germany, which considering the small 27	  

area of BENELUX, may become important in the calculation of the total emission. Another 28	  

contributing factor may also be that in the inversions in the Bergmaschi et al (2014) study, the 29	  

station, Cabauw (52.0°N, 4.9°E), in the Netherlands, was included (whereas it was not 30	  

included in our inversion), which likely also has a strong influence on the posterior fluxes in 31	  

BENELUX.  32	  

 33	  

5. Summary and conclusions 34	  
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We have presented a new Bayesian inversion framework, FLEXINVERT, for the estimation 1	  

of surface to atmosphere fluxes of atmospheric species. The framework is based on Source - 2	  

Receptor Relationships (SRR), which describe the relationship between changes in mixing 3	  

ratio at a receptor “point” and changes in fluxes, calculated by the Lagrangian Particle 4	  

Dispersion Model, FLEXPART. Fluxes may be optimized at any given temporal resolution 5	  

and on a nested grid of variable spatial resolution. The variable grid is determined using the 6	  

information of the integrated SRRs and has finer resolution where there is a strong 7	  

observational constraint and coarser resolution where there is a weak constraint. In this 8	  

framework, the background mixing ratio, i.e. the contribution to the mixing ratio at the 9	  

receptors not accounted for by transport and fluxes inside the nested domain, is calculated by 10	  

coupling FLEXPART to the output of a global Eulerian model (or alternatively, in the case 11	  

that no such model output is available, it is calculated from the observations themselves). The 12	  

background mixing ratios are also included in the optimization problem. 13	  

 14	  

We demonstrated the performance of FLEXINVERT in a case study estimating CH4 fluxes 15	  

over Europe in 2011. The posterior fluxes were found to compare well to the results from an 16	  

independent inversion ensemble consisting of four different transport models and inversion 17	  

frameworks. Although, we have only presented an example for CH4, FLEXINVERT can be 18	  

applied to any species for which atmospheric loss (if any) can be described as a linear process 19	  

such as radioactive decay, dry and wet deposition, and oxidative chemistry. Furthermore, the 20	  

framework can be used on continental, regional and even local scales with little or no 21	  

modification. 22	  
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Appendix 1	  

 2	  

A. Optimization of the posterior fluxes to the fine grid resolution 3	  

Optimization of the posterior fluxes, fnest*
vg on the variable resolution grid to the fine 4	  

resolution grid by applying Bayes’ theorem. (Note that to simplify the notation we have used 5	  

f = fnest*
vg , fb = fnest , and f* = fnest* i.e. the optimized fluxes on the fine grid). 6	  

ρ f * f( ) = ρ f f *( )ρ f *( )
ρ f( )         (A1) 7	  

where ρ(f*|f) is the posterior pdf that f* lies in the interval (f*, f*
 + df*) when f (the 8	  

“observation”) has a given value. Assuming a Gaussian pdf, and taking the natural logarithm 9	  

we can express ρ(f|f*) as: 10	  

−2 lnρ f f *( ) = f − Γf *( )TAflux−1 f − Γf *( )       (A2) 11	  

(where Aflux is the posterior error covariance matrix and Γ is the projection operator) and we 12	  

can express ρ(f*) as: 13	  

−2 lnρ f *( ) = f * − fb( )T Bflux−1 f * − fb( )        (A3) 14	  

(where Bflux is the prior error covariance matrix on the fine grid) and by substituting Eq. 2 and 15	  

3 into Eq. 1 we derive the expression for ρ(f*|f): 16	  

−2 lnρ f * f( ) = f * − fb( )T Bflux−1 f * − fb( )+ f − Γf *( )TAflux−1 f − Γf *( )    (A4) 17	  

the cost function can be thus be defined as: 18	  

J f *( ) = 12 f
* − fb( )T Bflux−1 f * − fb( )+ 12 f − Γf

*( )TAflux−1 f − Γf *( )    (A5) 19	  

and the first derivative: 20	  

′J f *( ) = Bflux−1 f * − fb( )− ΓTAflux−1 f − Γf *( )       (A6) 21	  

thus we can derive the expression for x* at the minimum: 22	  

f * = fb +Bnaw
fluxΓunit

T ΓBfluxΓT +Aflux( )−1 f − Γfb( )      (A7) 23	  

 24	  

B. Description of the software  25	  

B.1 General description 26	  

The code corresponding to the inversion framework described in this paper is called 27	  

FLEXINVERT and is available from the website:  http://flexinvert.nilu.no under a GNU 28	  

General Public License. FLEXINVERT is coded in Fortran90 and has been tested with the 29	  



	   29	  

gfortran compiler and the Linux Ubuntu operating system and a makefile for gfortran is 1	  

included. To run FLEXINVERT, the LAPACK and NetCDF libraries for Fortran must be 2	  

installed. The current version of FLEXINVERT can be run directly with output from 3	  

FLEXPART 9.2. 4	  

 5	  

B.2. Input data 6	  

FLEXINVERT uses two definition files, the first specifies the paths, filenames, and other file-7	  

related information (files.def), and the second specifies the settings for each inversion run, 8	  

such as the domain, dates, and uncertainties (control.def).  9	  

 10	  

- FLEXPART files  11	  

FLEXINVERT looks for FLEXPART output files for each receptor in directories with the 12	  

following naming convention: /STN_NET/YYYYMM/ where STN_NET is the name of the 13	  

receptor and must be the same as that given in the station list file and in the prefix of the 14	  

observation files. The FLEXPART files required are: header, grid_time (and 15	  

grid_initial when computing the background using global model output). It is 16	  

important to note that if the full 3D SRR fields are saved in the grid_time files, the 17	  

reading of these files becomes considerably slower, therefore, it is recommended to save 18	  

only the surface layer of the SRR fields in the grid_time files. However, if the 19	  

grid_initial files are used, these need all layers. (An option for this grid_time and 20	  

grid_initial was added into FLEXPART 9.2). Also, note that FLEXINVERT expects 21	  

the stochastic errors to be written to the grid_time files, if these are not written then a 22	  

minor modification is required in readgrid.f90. 23	  

- Station list file 24	  

This file specifies the receptors (where there are observations) to include in the inversion 25	  

The default file has the following format: receptor name, latitude, longitude, altitude, 26	  

observation type (either CM for continuous or FM for flask measurement) and a character 27	  

string of up to 55 characters describing the receptor. However, only the receptor name and 28	  

type are actually used in the inversion. 29	  
 30	  
ID   LAT   LON   ALT   TYP   STATIONNAME 31	  
STN_NET   XX.XX  XXX.XX XXXX XX Station Name, Country  32	  
 33	  

- Observations 34	  



	   30	  

The sub-routine readobs.f90 reads the observations from a separate ASCII file for each 1	  

receptor. Again, FLEXINVERT looks for the file prefix STN_NET. The files contain 6 2	  

columns: year, month, day, hour, minute, mixing ratio, and optionally the measurement 3	  

error estimate. 4	  

- Prior fluxes 5	  

The sub-routine reademissions.f90 reads the prior fluxes (or equivalently prior 6	  

emissions) from a NetCDF file containing a 3D floating variable for the fluxes with 7	  

dimensions time, latitude and longitude, and the corresponding dimension variables. The 8	  

name of the floating point variable is specified in files.def by the variable emisname. 9	  

- Landcover file 10	  

FLEXINVERT uses high-resolution landcover data to specify areas of water when 11	  

determining the variable resolution grid. By default, FLEXINVERT uses the IGBP data, 12	  

which is included in the tar archive. 13	  

- Land-sea mask file 14	  

A land-sea mask file is used in FLEXINVERT to determine which grid-cells are on 15	  

land/ocean when calculating the covariance matrix. The default land-sea mask is at 16	  

0.125°×0.125° resolution and is converted to the needed resolution automatically.   17	  

- 3D concentration fields 18	  

For the calculation of the initial mixing ratios from a global model, its 3D concentration 19	  

fields are needed. FLEXINVERT includes routines for reading the output of the models 20	  

LMDZ4 and TM5 in NetCDF format, which can be used as templates for reading data 21	  

from other models. 22	  

 23	  

B.3 Output data 24	  

At the end of an inversion run, FLEXINVERT writes the output into the following files: 25	  

 26	  

• obsread.txt 27	  

ASCII file containing the observed, prior, posterior and background mixing ratios at the 28	  

same timestamp as the observations. Note that if the background is not optimized, then the 29	  

observed, prior and posterior mixing ratios are the difference from the background and the 30	  

values in the column BGND_POST are zero. The obsread.txt file has the following 31	  

format: 32	  

 33	  
ID  DATE  OBS  PRIOR  POST  BGND_PRIOR  BGND_POST  ERROR  34	  



	   31	  

STN_NET YYYYMMDDHH F11.3 F11.3 F11.3 F9.3 F9.3 F9.3  1	  

 2	  

• modout.nc 3	  

NetCDF file containing floating point variables for the prior and posterior mixing ratios 4	  

(ypri and ypos, respectively) as well as the prior and posterior background mixing ratios 5	  

(bgpri and bgpos, respectively). These mixing ratios are computed using the fluxes at 6	  

the finest resolution and at the timestamp of the FLEXPART trajectories. The variables 7	  

have dimension of time and receptor. 8	  

• analysis.nc 9	  

NetCDF file containing floating point variables for the prior and posterior fluxes 10	  

(emis_prior and emis_post, respectively) as well as the prior and posterior flux errors 11	  

(error_prior and error_post, respectively). The variables are in dimensions of 12	  

longitude, latitude and time and have units of kg m-2 s-1. 13	  

• covb.nc 14	  

NetCDF file containing a floating point variable of the prior error covariance matrix 15	  

(covb) and units (kg m-3 s-1)2. Note that the errors are scaled by the numerical scaling 16	  

factor defined in mod_var.f90. 17	  

• cova.nc 18	  

As for covb.nc but containing the posterior error covariance matrix (cova). 19	  

• covr.nc 20	  

NetCDF file containing a floating point variable of the observation error covariance matrix 21	  

(covr) with units of mixing ratio squared (e.g. ppb2). 22	  

• nbox_xy.nc 23	  

NetCDF file containing a floating point variable of the mapping of the fine to the variable 24	  

resolution grid with dimensions of the number of longitudinal by latitudinal grid cells.  25	  

 26	  

For testing purposes, the following files are also written but in most cases will not be 27	  

required: 28	  

 29	  

• gain.nc 30	  

NetCDF file containing the Gain matrix, BHT(HBHT + R)-1(y – Hxb).  31	  

• covbfin.nc  32	  



	   32	  

NetCDF file of the prior error covariance matrix on the fine grid (covbfin) with units 1	  

(kgm-3 s-1)2. Note that the errors are scaled by the numerical scaling factor. 2	  

• covbfinaw.nc 3	  

As for covbfin.nc but containing the area-weighted errors (covbfinaw). 4	  

• covagg.nc 5	  

NetCDF file of the aggregation errors in units of mixing ratio squared (e.g. ppb2). 6	  

• grid_operator.nc 7	  

NetCDF file of the projection operator, Γ, from the fine to the variable grid. 8	  

• grid_coarse.nc 9	  

NetCDF file of the projection operator, Γcg, from the fine to the coarse grid. 10	  

• emisflex.nc 11	  

NetCDF file of the prior emissions converted to the FLEXPART (i.e. fine) grid in units of 12	  

kg m-3 s-1. 13	  

• knest_finobs.nc 14	  

NetCDF file of the transport operator, Hnest, for the fine grid and averaged to the 15	  

observation averaging interval. 16	  

• knest_obs.nc 17	  

NetCDF file of the transport operator, Hnest, for the variable grid and averaged to the 18	  

observation averaging interval. 19	  

• knest_trim.nc 20	  

NetCDF file of the transport operator, Hnest, for the variable grid with rows matching 21	  

observations. 22	  

• kout_obs.nc 23	  

NetCDF file of the initial mixing ratio contributions, Houtyout, for the coarse grid and 24	  

averaged to the observation averaging interval.  25	  

• immr.nc 26	  

NetCDF file of the 3D initial mixing ratios from the global model (for option bgmethod = 27	  

2 only) interpolated to the FLEXPART resolution (first timestep only). 28	  

• area_box.txt 29	  

ASCII file containing a vector of the variable grid cell areas (m2). 30	  

• prior.txt 31	  

ASCII file containing the prior state vector, xb 32	  

• posterior.txt 33	  



	   33	  

ASCII file containing the posterior state vector, x 1	  

• bgscalars.txt 2	  

ASCII file containing the prior and posterior scalars of the background mixing ratios and 3	  

their errors with the format: 4	  
PRIOR POST PRIOR_ERROR POST_ERROR  5	  
F6.4 F6.4 F6.4 F6.4 F6.4  6	  

 7	  

C. Applying inequality constraints 8	  

After running FLEXINVERT, a separate code may be run to apply inequality constraints. The 9	  

inequality constraint code is similarly written in Fortran90 and has been tested with the 10	  

gfortran compiler and the Linux operating system. To run the code, the LAPACK and 11	  

NetCDF libraries for Fortran must be installed. This code is available from the website: 12	  

http://flexinvert.nilu.no. 13	  

14	  



	   34	  

Table 1. Overview of the variables used in this manuscript 1	  

Variable Dimension Description 
ymod

 M×1 modelled atmospheric mixing ratios 
x N×1 state vector 
H M×N complete atmospheric transport operator 
fnest K×1 fluxes inside the nested domain 
Hnest M×K atmospheric transport operator for inside the nested domain 
fout P×1 fluxes outside the nested domain 
Hout M×P atmospheric transport operator for outside the nested domain 
ybg P×1 mixing ratios from the global model interpolated to the fine grid globally 
Hbg M×P sensitivity to initial mixing ratios from the global model 
Γ W×K prolongation operator from the fine to the variable grid in the nested 

domain 
fnest

vg
 W×1 fluxes inside the nested domain on the variable grid 

Hnest
vg

 M×W atmospheric transport operator for fluxes on the variable grid 
Mcg M×R total background mixing ratios 
Γcg R×P prolongation operator from fine to coarse grid 
Γbg R×M prolongation operator for observation-based background mixing ratios 
acg R×1 background mixing ratio scalars 
xb N×1 prior state vector of fluxes and background mixing ratio scalars 
σ W×1 prior flux error vector 
B N×N prior error covariance matrix on the variable grid 
Bflux

vg W×W prior error covariance matrix for the fluxes on the variable grid 
Bflux K×K prior error covariance matrix for fluxes on the fine grid 
R M×M observation error covariance matrix 
C W×W spatial and temporal correlation matrix 
CS W×W spatial correlation matrix 
CT 1×1 temporal correlation matrix (trivial case when only 1 time step is used) 
A N×N posterior error covariance matrix 
Aflux W×W posterior error covariance matrix for fluxes on the variable grid 
fnest* K×1 posterior fluxes optimized on the fine grid 
Aflux* N×N posterior error covariance matrix for fluxes on the fine grid 
P Q×K operator to select variables that violate the inequality constraint 
c Q a vector of inequality constraints 
 2	  

Table 2. Overview of the dimension notation and their values in the case study (test S1). 3	  

Dimension Description Value 
M total number of observations 1602 
N total number of state variables (12 time steps) 13,896 
K number of fine resolution grid cells in 1 time step 2400 
W number of variable resolution grid cells in 1 time step 1158 
P number of grid cells in global domain in 1 time step 2700 
R number of coarse grid cells for the background mixing ratio 144 

4	  
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Table 3. Atmospheric observation sites for CH4 mole fraction used in the case study. The 1	  
altitude is given in meters above sea-level.  2	  
Site ID Organization Latitude Longitude Altitude (m) Type Description 
PAL FMI 68.0°N 24.1°E 572 CM Pallas, Finland 
ICE NOAA 63.3°N 20.3°W 127 FM Heimay, Vestmannaeyjar, Iceland 
BAL NOAA 55.4°N 17.2°E 28 FM Baltic Sea, Poland 
MHD AGAGE 53.3°N 9.9°W 40 CM Mace Head, Ireland 
OXK NOAA 50.0°N 11.8°E 1185 FM Ochsenkopf, Germany 
SSL UBA 47.9°N 7.9°E 1213 CM Schauinsland, Germany 
HPB NOAA 47.8°N 11.0°E 990 FM Hohenpeissenberg, Germany 
HUN NOAA 47.0°N 16.7°E 344 FM Hegyhatsal, Hungary 
JFJ EMPA 46.6°N 8.0°E 3590 CM Jungfraujoch, Switzerland 
PUYa NOAA 45.8°N 3.0°E 1475 FM Puy de Dôme, France 
BSC NOAA 44.2°N 28.7°E 3 FM Black Sea, Constant, Romania 
CMN ISAC 44.2°N 10.7°E 2165 CM Monte Cimone, Italy 
CIB NOAA 41.8°N 4.9°W 845 FM CIBA, Spain 
LMP NOAA 35.5°N 12.6°E 50 FM Lampedusa, Italy 
aOnly used for independent validation 3	  

 4	  

Table 4. Methane flux estimates used in the prior in the case study. 5	  

Source  Dataset Total (TgCH4 y-1) 
anthropogenic:   
- agricultureb EDGAR-4.2 FT2010a 152.8 
- industrial processesc EDGAR-4.2 FT2010 0.3 
- residential and transportd EDGAR-4.2 FT2010 13.4 
- wastee EDGAR-4.2 FT2010 61.5 
- oil, coal and gasf EDGAR-4.2 FT2010 129.7 
natural:   
- wetlands LPJ DGVMg 175.0 
- biomass burning GFED-3.1h 19.3 
- geological seeps (Etiope et al. 2008) 55.3 
- soils (Ridgwell et al. 1999) -37.9 
- wild animals (Houweling et al. 1999) 5.0 
- termites (Sanderson et al. 1996) 19.3 
- ocean (Lambert and Schmidt, 1993) 17.0 
total  610.0 
aEmission Database for Global Atmospheric Research (http://edgar.jrc.ec.europa.eu) 6	  
bIPCC categories: 4A, 4B, 4C 7	  
cIPCC categories: 2 8	  
dIPCC categories: 1A3, 1A4 9	  
eIPCC categories: 6A, 6B, 6C 10	  
fIPCC categories: 1A1, 1A2, 1B1, 1B2, 7A 11	  
gLund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ DGVM) 12	  
hGlobal Fire Emissions Database (http://www.falw.vu/~gwerf/GFED.html) 13	  
 14	  

15	  
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Table 5. Overview of the sensitivity tests. 1	  

Test ID Spatial correlation Observations Backgrounda 

S1 500 km afternoon/night onlyb model-based, not optimized 
S2 300 km afternoon/night only model-based, not optimized 
S3 200 km afternoon/night only model-based, not optimized 
S4 500 km afternoon/night only model-based, optimized 
S5 500 km allc model-based, not optimized 
S6 500 km afternoon/night only observation-based, not optimized 
aThe method of calculation and whether or not the background mixing ratios were optimized in the 2	  
inversion 3	  
bLow altitude sites averaged afternoon data, high altitude sites averaged night data 4	  
cAveraged all data over 24 h. 5	  
 6	  

Table 6. Statistics of the simulated versus observed CH4 mixing ratios from test S1. 7	  

Site ID Prior   Posterior   
 NSD R RMSE NSD R RMSE 
PAL 0.99 0.69 16.2 1.04 0.82 11.9 
ICE 1.01 0.26 9.4 0.90 0.24 9.2 
BAL 1.14 0.66 16.6 0.96 0.72 13.7 
MHD 1.18 0.57 9.2 0.97 0.63 7.8 
OXKa - - 42.3 - - 7.34 
SSL 1.21 0.52 28.2 1.07 0.71 19.3 
HPB 0.61 0.49 44.3 0.67 0.73 33.7 
HUN 0.54 0.69 47.5 0.96 0.88 27.1 
JFJ 1.04 0.30 21.4 0.75 0.33 20.3 
BSC 1.10 0.24 51.1 0.91 0.39 35.2 
CMN 1.00 0.56 26.4 0.81 0.68 21.6 
CIB 0.89 0.50 20.9 0.91 0.68 15.6 
LMP 2.02 0.34 35.0 1.68 0.45 24.0 
ainsufficient observations for calculating R and NSD 8	  
 9	  

Table 7. Comparison of CH4 emissions (TgCH4 y-1) from this study with the range of values 10	  
from an inversion ensemble for 2006 and 2007 (Bergamaschi et al. 2014). The prior and 11	  
posterior emissions are shown from test S1 and include the 1-σ SD prior and posterior 12	  
uncertainties. NW Europe includes UK, Ireland, BENELUX, France, and Germany, and E 13	  
Europe includes Hungary, Poland, Czech Republic, and Slovakia, according to the definition 14	  
in Bergamaschi et al. (2014). 15	  
 Prior Posterior Bergamaschi et al. 2014 
UK + Ireland 2.66 ± 0.84 2.41 ± 0.33 2.32 - 4.57 
BENELUXa 1.18 ± 0.80 1.09 ± 0.26 1.44 - 2.29  
France 4.33 ± 1.37 3.14 ± 0.42 2.02 - 4.94 
Germany 2.22 ± 1.16 2.48 ± 0.33 2.35 - 3.51 
NW Europe 10.39 ± 4.17 9.12 ± 1.34 8.13 - 14.44 
Hungary 0.37 ± 0.62 0.50 ± 0.17 0.34 - 0.73 
Poland 2.81 ± 1.05 2.62 ± 0.38 1.84 - 2.87 
Czech Republic + Slovakia 1.18 ± 0.94 1.27 ± 0.27 1.12 - 1.63 
E Europe 4.36 ± 2.61 4.39 ± 0.82 3.59 - 4.90 
NW + E Europe 14.75 ± 4.17 13.51 ± 2.16 11.71 - 19.34 
aBENELUX = Belgium, The Netherlands and Luxembourg 16	  

17	  
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Figure 1. Schematic showing how the forward model is defined. The black dots represent 1	  

receptors, the solid boxes represent gridded fluxes and the dotted box represents gridded 2	  

mixing ratios from global model output. The arrows indicate transport to a receptor (which 3	  

may be either inside or outside the nested domain): solid arrows show transport from fluxes 4	  

within the nested domain, dashed arrows indicate transport from fluxes outside the nested 5	  

domain, and the dotted arrows indicate transport of the mixing ratio at the point of back-6	  

trajectory termination. Each arrow can be thought of as an element (i.e. a partial derivate) in 7	  

the transport matrix, Hnest, Hout, and Hbg, respectively. 8	  

9	  
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Figure 2. Total emission sensitivity for 2011 in units of log(s m-3 kg-1) calculated using 1	  

FLEXPART and used to determine the variable grid (note that for this no weighting is applied 2	  

for the number of observations available from each site) (a) and the variable resolution grid 3	  

used in the inversion (b). The points indicate the positions of the observation sites. 4	  

 5	  

6	  
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Figure 3. CH4 mole fractions (ppb) as observed (black) and simulated from the prior (blue) 1	  

and posterior models (red). Also shown is the background CH4 mole fraction (green) and CH4 2	  

calculated by the TM5 Eulerian model (light blue).  3	  

 4	  

5	  
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Figure 4. Comparison of the background CH4 mole fraction, calculated using the observation-1	  
based (purple) and the model-based methods (green), with the observed mixing ratio (black). 2	  
  3	  
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Figure 5. A posteriori fluxes of CH4 (left) and the flux increments (i.e. a posteriori – a priori 1	  

fluxes) (right) for each of the sensitivity tests (in units of gCH4 m-2 day-1). 2	  

3	  

15W 5W 5E 15E 25E 35E
30N

35N

40N

45N

50N

55N

60N

65N

−0.100
−0.080
−0.060
−0.040
−0.020
 0.000
 0.020
 0.040
 0.060
 0.080
 0.100

15W 5W 5E 15E 25E 35E
30N

35N

40N

45N

50N

55N

60N

65N

−0.100
−0.080
−0.060
−0.040
−0.020
 0.000
 0.020
 0.040
 0.060
 0.080
 0.100

15W 5W 5E 15E 25E 35E
30N

35N

40N

45N

50N

55N

60N

65N

−0.100
−0.080
−0.060
−0.040
−0.020
 0.000
 0.020
 0.040
 0.060
 0.080
 0.100

15W 5W 5E 15E 25E 35E
30N

35N

40N

45N

50N

55N

60N

65N

−0.100
−0.080
−0.060
−0.040
−0.020
 0.000
 0.020
 0.040
 0.060
 0.080
 0.100

15W 5W 5E 15E 25E 35E
30N

35N

40N

45N

50N

55N

60N

65N

−0.100
−0.080
−0.060
−0.040
−0.020
 0.000
 0.020
 0.040
 0.060
 0.080
 0.100

15W 5W 5E 15E 25E 35E
30N

35N

40N

45N

50N

55N

60N

65N

−0.050
−0.025
 0.000
 0.025
 0.050
 0.075
 0.100
 0.125
 0.150
 0.175
 0.200

15W 5W 5E 15E 25E 35E
30N

35N

40N

45N

50N

55N

60N

65N

−0.050
−0.025
 0.000
 0.025
 0.050
 0.075
 0.100
 0.125
 0.150
 0.175
 0.200

15W 5W 5E 15E 25E 35E
30N

35N

40N

45N

50N

55N

60N

65N

−0.050
−0.025
 0.000
 0.025
 0.050
 0.075
 0.100
 0.125
 0.150
 0.175
 0.200

15W 5W 5E 15E 25E 35E
30N

35N

40N

45N

50N

55N

60N

65N

−0.050
−0.025
 0.000
 0.025
 0.050
 0.075
 0.100
 0.125
 0.150
 0.175
 0.200

15W 5W 5E 15E 25E 35E
30N

35N

40N

45N

50N

55N

60N

65N

−0.050
−0.025
 0.000
 0.025
 0.050
 0.075
 0.100
 0.125
 0.150
 0.175
 0.200

S1

S2

S3

S4

S5

15W 5W 5E 15E 25E 35E
30N

35N

40N

45N

50N

55N

60N

65N

−0.100
−0.080
−0.060
−0.040
−0.020
 0.000
 0.020
 0.040
 0.060
 0.080
 0.100

15W 5W 5E 15E 25E 35E
30N

35N

40N

45N

50N

55N

60N

65N

−0.050
−0.025
 0.000
 0.025
 0.050
 0.075
 0.100
 0.125
 0.150
 0.175
 0.200S6



	   42	  

Figure 6. Error reduction for the CH4 fluxes for each of the sensitivity tests. 1	  

2	  
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Figure 7. Comparison of the prior (blue), posterior (red) and background (green) simulated 1	  

CH4 mixing ratios (ppb) with observations (black) at the independent site, PUY. Results are 2	  

shown for test S1. 3	  

 4	  

 5	  
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