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Abstract

The non-hydrostatic (NH) compressible Euler equations of dry atmosphere are solved
in a simplified two dimensional (2-D) slice framework employing a spectral element
method (SEM) for the horizontal discretization and a finite difference method (FDM)
for the vertical discretization. The SEM uses high-order nodal basis functions asso-5

ciated with Lagrange polynomials based on Gauss–Lobatto–Legendre (GLL) quadra-
ture points. The FDM employs a third-order upwind biased scheme for the vertical flux
terms and a centered finite difference scheme for the vertical derivative terms and
quadrature. The Euler equations used here are in a flux form based on the hydrostatic
pressure vertical coordinate, which are the same as those used in the Weather Re-10

search and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate
is implemented in this model. We verified the model by conducting widely used stan-
dard benchmark tests: the inertia-gravity wave, rising thermal bubble, density current
wave, and linear hydrostatic mountain wave. The results from those tests demonstrate
that the horizontally spectral element vertically finite difference model is accurate and15

robust. By using the 2-D slice model, we effectively show that the combined spatial
discretization method of the spectral element and finite difference method in the hori-
zontal and vertical directions, respectively, offers a viable method for the development
of a NH dynamical core.

1 Introduction20

There is a growing interest in developing highly scalable dynamical cores using nu-
merical algorithms under petascale computers with many cores (with the goal of exas-
cale computing just around the corner). The spectral element method (SEM) has been
known as one of the most promising methods with high efficiency and accuracy (Taylor
et al., 1997; Giraldo, 2001; Thomas and Loft, 2002). SEM is local in nature because25

of having a large on-processor operation count (Kelly and Graldo, 2012). The SEM
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achieves this high level of scalability by decomposing the physical domain into smaller
pieces with a small communication stencil. Also SEM has been shown to be very attrac-
tive in achieving high-order accuracy and geometrical flexibility on the sphere (Taylor
et al., 1997; Giraldo, 2001; Giraldo et al., 2004).

To date, the SEM has been successfully implemented in atmospheric modeling such5

as in the Community Atmosphere Model – Spectral Element dynamical core (CAM-
SE) (Thomas and Loft, 2005) and the Scalable Spectral Element Eulerian Atmospheric
Model (SEE-AM) (Giraldo and Rosmond, 2004). These models consider the primi-
tive hydrostatic equations on global grid meshes such as a cubed-sphere tiled with
quadrilateral elements using SEM in the horizontal discretization and the finite differ-10

ence method (FDM) in the vertical. The robustness of the SEM has been illustrated
through three-dimensional dry dynamical test cases (Thomas and Loft, 2005; Giraldo
and Rosmond, 2004; Giraldo, 2005; Taylor et al., 2007; Lauritzen et al., 2010).

The ultimate objective of our study is to build a 3-D non-hydrostatic (NH) model
based on the compressible Navier–Stokes equations using the combined horizontally15

SEM and vertically FDM. Since testing a 3-D NH model requires a huge amount of
computing resources, studying the feasibility of our approach in 2-D is an attractive al-
ternatively to the development of a fully 3-D model. This is the case because a 2-D slice
model effectively can test the practical issues resulting from the vertical discretization
and time integration, prior to the construction of a full 3-D model. Although we could20

also discretize the vertical direction with SEM (as is proposed in Kelly and Giraldo,
2012; Giraldo et al., 2013), we choose to use a conservative flux-form finite-difference
method for discretization in the vertical direction, which provides an easy way for cou-
pling the dynamics and existing physics packages.

We have developed a dry 2-D NH compressible Euler model based on SEM along25

the x direction and FDM along the z direction for this purpose. Hereafter, this is simply
referred to as the 2DNH model. We adopt the governing equation formulation proposed
by Skamarock and Klemp (2008) (hereafter, SK08) which is used in the Weather Re-
search and Forecasting (WRF) Model. The Euler equations are in flux form based
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on the hydrostatic pressure vertical coordinate. In SK08, the terrain-following sigma-
pressure coordinate is used, but here we employ a hybrid sigma-pressure vertical co-
ordinate. Park et al. (2013) (hereafter, PK13) provides a clue for the equation set in
the hybrid sigma-pressure in their appendix, in which the hybrid sigma-pressure coor-
dinate is applied to the hydrostatic primitive equations and can be modified exactly to5

the sigma-pressure coordinate at the level of the actual coding implementation. Also,
we built the 2DNH model using a time-split third-order Runge–Kutta (RK3) for the time
discretization, which has been shown to work effectively in the WRF model. We keep
the temporal discretization of the model as similar as possible to the WRF model in
order to more directly discern the differences related to the discrete spatial operators10

between the two models. This provides robust tools for development and verification of
the 2DNH model.

In this paper, we show the feasibility of the 2DNH model by conducting conventional
benchmark test cases as well as focusing on the description of the numerical scheme
for the spatial discretization. We verify the 2DNH by analyzing four test cases: the15

inertia-gravity wave, rising thermal bubble, density current wave, and linear hydrostatic
mountain wave.

The organization of this paper is as follows. In the next section we describe the gov-
erning equations with a definition of the prognostic and diagnostic variables used in our
model, in which we present essential changes from SK08. In Sect. 3 we explain tempo-20

ral and spatial discretization including the spectral element formulation. In Sect. 4, we
present the results of the 2DNH model using all four test cases. Finally we summarize
the paper and propose future directions in Sect. 5.

2 Governing equations

We adopt the formulation of the governing equation set of SK08. Here we implement25

the hybrid sigma-pressure coordinate reported by PK13 which considered only the
hydrostatic primitive equation. The hybrid sigma pressure coordinate is defined with
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η ∈ [0,1] as

pd = B(η)(ps −pt)+ [η−B(η)](p0 −pt)+pt (1)

where pd is the hydrostatic pressure of dry air, B(η) is the relative weighting of the
terrain-following coordinate vs. the normalized pressure coordinate, ps, pt, and p0 are5

the hydrostatic surface pressure of dry air, the top level pressure, and a reference sea
level pressure, respectively. A more detailed description of the hybrid sigma pressure
coordinate can be found in the Appendix of PK13. The definition of the flux variables
are

(V H,W ,Ω,Θ) = µd × (v H,w, η̇,θ) (2)10

where v H = (u,v) and w are the velocities in the horizontal and vertical directions,
respectively, η̇ ≡ ∂η

∂t is the η-coordinate (contravariant) vertical velocity, θ is the potential
temperature, and µd is the mass of the dry air in the layers defined as

µd(x,y ,η,t) =
∂pd

∂η
=
∂B(η)

∂η
(ps −pt)+

[
1−

∂B(η)

∂η

]
(p0 −pt). (3)15

The flux-form Euler equations for dry atmosphere are expressed as

∂V H

∂t
=−µd

(
∇ηϕ′ +αd∇ηp′ +α′

d∇ηp
)
−∇ηϕ

(
∂p′

∂η
−µ′

d

)
−∇η · (V H ⊗ v H)−

∂ (Ωv H)

∂η
+ F VH

, (4)

∂W
∂t

= g
[
∂p′

∂η
−µ′

d

]
−∇η · (V Hw)−

∂(Ωw)

∂η
+ FW, (5)20

∂µ′
d

∂t
=
∂
∂t

(
∂p′d
∂η

)
=
∂B(η)

∂η
∂p′s
∂t

= −∇η · V H − ∂Ω
∂η

, (6)
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∂ϕ′

∂t
=− 1

µd

[
V H · ∇ηϕ+Ω

∂ϕ
∂η

−gW
]

, (7)

∂Θ
∂t

=−∇η · (V Hθ)−
∂ (Ωθ)

∂η
, (8)

where ϕ is the geopotential, αd is the inverse density for dry air, and F VH
and FW

represent forcing terms of the Coriolis and curvature which we ignore for simplicity. In5

Eqs. (4)–(8), the governing equations are described with perturbation variables such as
p = p(z)+p′, ϕ =ϕ(z)+ϕ′, αd = αd(z)+α′

d, and ps = ps(x,y)+p′s where the variables
denoted by overbars are reference state variables that satisfy hydrostatic balance.

For completeness, the diagnostic relation for Ω is given by integrating Eq. (6) verti-
cally from the surface (η = 1) to the material surface as10

Ω= −
η∫

1

(
∂B(η)

∂η
∂p′s
∂t

+∇η · V H

)
dη, (9)

where ∂p′s
∂t is obtained by integrating vertically Eq. (6) from the surface (η = 1) to the top

(η = 0) using a no-flux boundary condition such as Ω|η=0or1 = 0 and the specification
of the vertical coordinate such as B(η = 1) = 1 and B(η = 0) = 0 as15

∂p′s
∂t

= −
η=1∫
η=0

(∇ · V H)dη. (10)

The above equation allows p′s to be evolved forward in time where we then compute µ′
d

directly from Eq. (5). The diagnostic relation for the dry inverse density is given as

∂ϕ′

∂η
= −µdα

′
d −αdµ

′
d, (11)20
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and the full pressure for dry atmosphere is

p = p0

(
Rdθ
p0αd

)cp/cv
. (12)

This concludes the description of the governing equations used in our model; in the
next section we describe the discretization of the continuous form of the governing5

equations that are used in our model.

3 Discretization

3.1 Spatial discretization

3.1.1 Horizontal direction

For a given η level, we discretize the horizontal operators using the SEM. Therefore in10

2-D (X-Z) slice framework we focus on the SEM discrete gradient operator for 1-D (x).
In SEM, we approximate the solution in non-overlapping elements Ωe as

q(x,t) =
N+1∑
k=1

ψk(x)qN (xk ,t), (13)

where xk represents N+1 grid points that correspond to the Gauss–Lobatto–Legendre15

(GLL) points and ψk(x) are the Nth-order Lagrange polynomials based on the GLL
points. It is noteworthy that the ψk have the cardinal property, i.e., they can be repre-
sented as Kronecker delta functions where ψk are zero at all nodal points except xk
(but are allowed to oscillate between nodal points).

The GLL points ξk in a reference coordinate system ξ ∈ [−1,+1] and the associated20

quadrature weights ω(ξk),

ω(ξk) =
2

N(N +1)

[
1

PN (ξk)

]2

, (14)
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are introduced for the Gaussian quadrature:

∫
Ωe

qdΩe =

+1∫
−1

q(ξ)|J(ξ)|dξ ≈
N∑
i=0

ω(ξi )q(ξi )|J(ξi )|, (15)

where PN (ξ) are the Nth-order Legendre polynomials, J = ∂x
∂ξ is the transformation Ja-

cobian, and Ωe represents the non-overlapping elements.5

We now introduce the polynomial expansions into our governing equations in the
form of

∂q
∂t

= −F (q), (16)

multiply by the basis function as a test function, and integrate to yield a system of10

ordinary differential equations as such

N+1∑
n=1

Me
nk

dqk
dt

= −
∫
Ωe

F

(
N+1∑
n=1

ψn(ξ)qn

)
ψkdξ, (17)

where k = 1,2, · · · ,N +1, Me
nk is the element based mass matrix given as

Me
nk =

∫
Ωe

ψnψkdξ =ωn|Jn|δnk . (18)15

The right-hand sides of Eqs. (17) and (18) is evaluated using Gaussian quadrature of
Eq. (15). It is noted that using GLL points for both interpolation and integration results
in a diagonal mass matrix Me

nk , which means that the inversion of the mass matrix is
trivial.20
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The horizontal derivatives included in the right-hand side of Eq. (17) are evaluated
using the analytic derivatives of the basis functions as follows

∂q
∂x

=
∂q
∂ξ

∂ξ
∂x

=
∂
∂ξ

[
N+1∑
k=1

ψk(ξ)qk

]
∂ξ
∂x

=

[
N+1∑
k=1

∂ψk
∂ξ

qk

]
1

|J |
. (19)

Note that the non-differential operations, such as cross products, are computed directly5

at grid points since we use nodal basis functions associated with Lagrange polynomi-
als based on the GLL points. In order to satisfy the equations globally, we use the di-
rect stiffness summation (DSS) operation. For a more detailed description of the SEM,
see Giraldo and Rosmond (2004), Giraldo and Restelli (2008), and Kelly and Giraldo
(2012).10

3.1.2 Vertical direction

Using a Lorenz staggering, the variables V H, Θ, µ, α, p are at layer midpoints de-
noted by k = 1,2, . . . ,K where K is the total number of layers, and the variables W ,
Ω, ϕ live at layer interfaces defined by k + 1

2 , k = 0,1, . . . ,K , so that ηK+1/2 = ηtop and
η1/2 = ηBottom = 1. Figure 1 describes the grid points and the allocation of the variables.15

Here, we evaluate the vertical advection terms (∂(ΩvH)
∂η , ∂(Ωw)

∂η , and ∂(Ωθ)
∂η ) and vertical

derivative terms (∂p
′

∂η , and ∂ϕ
∂η ). The former is discretized using the third-order upwind

biased discretization in Hundsdorfer et al. (1995) which is given as

∂f
∂η

∣∣∣∣
k
=
fk−2 −8fk−1 +8fk+1 − fk+2

12∆η
+ sign(Ω)

fk−2 −4fk−1 +6fk −4fk+1 + fk+2

12∆η
, (20)

20

where f corresponds to the flux such as Ωv H, and ∆η = ηk+1/2−ηk−1/2 is the thickness
of the layer. The latter is discretized by the centered finite difference. Likewise the
vertical discretization quadrature rules for the calculations of Eqs. (9) and (10) follow
the finite difference discretization naturally.

3725

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/3717/2014/gmdd-7-3717-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/3717/2014/gmdd-7-3717-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 3717–3750, 2014

Verification of
a non-hydrostatic
dynamical core

S.-J. Choi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

3.2 Temporal discretization

For integrating the equations, we use the time-split RK3 integration technique following
the strategy of SK08, in which low-frequency modes due to advective forcings are ex-
plicitly advanced using a large time step of the RK3 scheme, but high-frequency modes
are integrated over smaller time steps using an explicit forward-backward time integra-5

tion scheme for the horizontally propagating acoustic/gravity waves and a fully implicit
scheme for vertically propagating acoustic waves and buoyancy oscillations (Klemp
et al., 2007). This technique has been shown to work effectively within numerous non-
hydrostatic models including the WRF model (Skamarock et al., 2008), the Model for
Prediction Across Scales (MPAS) (Skamarock et al., 2012), and the Nonhydrostatic10

Icosahedral Atmospheric Model (NICAM) (Satoh et al., 2008).
It is noted that in the procedure of the time-split RK3 integration, the difference be-

tween the approach used in this paper and SK08 comes from the vertical coordinate.
Since we use the hybrid sigma-pressure coordinate, the equation for p′s (Eq. 6) should
be first stepped forward in time using the forward-backward differencing on the small15

time steps, then µ′
d can be computed directly from the specification of the vertical co-

ordinate in Eq. (9) and Ω is obtained from the vertical integration.

4 Test cases

We validate the 2DNH model on four test cases of the linear hydrostatic mountain wave,
density current, inertia-gravity wave, and rising thermal bubble experiments. All cases20

but the mountain wave experiment do not have analytic solutions. Therefore, for the
mountain wave experiment, numerical results of the 2DNH model are compared to an-
alytic solutions (Durran and Klemp, 1983), and for the other experiments, we compare
our results to the results of other published papers.

It should be mentioned that the horizontal SEM formulation is able to utilize arbitrary25

order polynomials per element to represent the discrete spatial operators, but in this
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paper all the results presented use either 5th or 8th order polynomials. The averaged
horizontal grid spacing is defined as

∆x =

N∑
n=1

∆xn

N
(21)

where ∆xn is the internal grid spacing within the element which is regularly spaced5

in the domain and N is the number of the interval associated with irregularly spaced
GLL quadrature points which is equivalent to the order of the basis polynomials. The
average vertical grid spacing is defined in the same way of Eq. (24). Below, we use this
convention to define the grid resolution.

4.1 Linear hydrostatic mountain wave test10

In order to verify the 2DNH’s feasibility to treat surface elevations associated with the
vertical terrain-following coordinate, we simulate the linear hydrostatic mountain wave
test introduced by Durran and Klemp (1983) (hereafter, DK83) in which the analytic
steady-state solution is provided by using a single-peaked mountain with uniform zonal
wind. To compare our results with the analytic and numerical solution shown in DK83,15

the 2DNH is initialized using the same initial conditions and mountain profile in DK83
and we analyze our results using the same metrics of DK83.

The mountain profile is given by

h(x) =
hm

1+
(
x−xc
am

)2
(22)

20

where the half-length of the mountain am is 10 km, the height hm is 1 m, and the pre-
scribed center of the profile is 0 km. The initial temperature is T0 = 250 K for an isother-
mal atmosphere with the uniform zonal wind u = 20 m s−1. In the isothermal case, the

3727

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/3717/2014/gmdd-7-3717-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/3717/2014/gmdd-7-3717-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 3717–3750, 2014

Verification of
a non-hydrostatic
dynamical core

S.-J. Choi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Brunt–Väisälä frequency N2 = g d(lnθ)
dz ≈ g2

cpT0
yields the potential temperature given as

θ = θ0e
g

cpT0
z
, (23)

which is one of the prognostic variables in our model. The domain is defined as (x,z) ∈
[−300,300]×[0,30] km2. The bottom boundary uses a no-flux boundary condition while5

the lateral and top boundaries use sponge layers. The sponged zone is 10 km deep
from the top and 50 km wide from the lateral boundaries. Over the sponge layer zone,
the prognostic variables are relaxed to the basic initial hydrostatic state. The model is
integrated for a nondimensional time of ut

a = 60 which corresponds to 8.33 h without
diffusion or viscosity.10

Figure 2 shows the numerical and analytic solutions at steady state for the horizontal
and vertical velocities, which agree reasonably well. The vertical velocity fields match
very closely, although the extrema in the horizontal velocity field are underestimated
by the numerical model. The underestimated extrema in the horizontal velocity is also
shown in both models of DK83 and Giraldo and Restelli (2008) (hereafter, GR08). And15

our result in the horizontal velocity is in good agreement with DK83 and GR08.
Figure 3 shows the normalized momentum flux values at various times to check

vertical transport of horizontal momentum. It is observed that the flux is developing
well and the simulations have reached steady-state after ut

a = 60. It is noted that the
mean momentum flux at that time is 97 % of its analytic value. It agrees well with DK8320

as well as GR08; it is important to point out that the Durran–Klemp model is based on
the FD method in both directions while the Giraldo–Restelli model is based on SEM
in both directions. The mountain test shows the terrain-following vertical coordinate
is well suited for the combination of the horizontal SEM and vertical FDM for spatial
discretization even though we consider a small mountain.25
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4.2 2-D density current test

In order to verify the 2DNH’s feasibility to control oscillations with numerical viscosity
and evaluate numerical schemes in the 2DNH, we conduct the density current test
suggested by Straka et al. (1993). The density current test is initialized using a cold
bubble in a neutrally stratified atmosphere. When the bubble touches the ground, the5

density current wave starts to spread symmetrically in the horizontal direction forming
Kelvin–Helmholtz rotors. Following Straka et al. (1993) we employ a dynamic viscosity
of ν = 75 m2 s−1 to obtain converged numerical solutions.

For an initial cold bubble, the potential temperature perturbation is given as

θ′ =
θc

2
[1+ cos(πr)], (24)10

where θc = −15 K and r =

√(
x−xc
xr

)2
+
(
z−zc
zr

)2
with the center of the bubble at

(xc,zc) = (0,3000) m. No-flux boundary conditions are used for all boundaries. The
model is integrated for 900 s on a domain [−25600,25600]× [0,6400] m2.

Figure 4 shows the potential temperature perturbation after 900 s for 400, 200, 100,15

and 50 m grid spacing (∆x) using 5th order basis polynomials per element. All simula-
tions use ∆z = 64 m grid spacing vertically. As expected, the higher resolution experi-
ments produce better solutions than the lower resolution. At the very lowest resolution
of 400 m, only two of the three Kelvin–Helmholtz rotors are generated with somewhat
coarsened frontal surfaces. In the experiment with 200 m resolution, the three rotors20

appear but the numerical solution still suffers from coarsening frontal surfaces. The so-
lutions on grids finer than 100 m converge with the three rotor structures adequately
simulated. The converged solution is almost identical to other published solutions (e.g.
Straka et al., 1993; Skamarock and Klemp, 2008; GR08).

In order to show the effect of higher order of the basis polynomials, we show the25

potential temperature perturbations using 8th order basis polynomials per element with
the same number of degrees of freedom (DOF) of the simulations using 5th order
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basis polynomials in Fig. 5. The simulation with 8th order basis polynomials on the
very lowest resolution of 400 m reproduced the converged solution more closely than
with 5th order basis polynomials. Even in the experiment with 200 m resolution, the
coarsening frontal surfaces are mitigated and the solution is similar with the converged
solution with three rotors.5

Figure 6 shows the profiles of the potential temperature perturbation at the height of
1200 m. The results from the highest grid resolution of the simulations using 5th and
8th order basis polynomials are indistinguishable and well converged (Fig. 6a). Three
minima corresponding to the three rotors agree well with other published solutions. In
addition to the profiles, the front location (−1 K of potential temperature perturbation at10

the surface), and the extrema of the pressure perturbation and potential temperature
perturbation agree well with each other (Table 1), of which the numbers are comparable
to those of GR08. In the numerical results from the different grid resolutions simulated
by using 5th order basis polynomials, the potential temperature profile at the coarsest
resolution of 400 m grid shows significant fluctuations (Fig. 6b). That of 8th order poly-15

nomials, however, tends to be relieved from the deviation from the converged solution
(Fig. 6c). The above results suggest that the numerical solution can be converged more
rapidly by using higher order of basis polynomial. Furthermore, the results in this pa-
per show that an adequate convergence can be reached at grid resolutions finer than
200 m.20

4.3 Inertia-gravity wave test

This test examines the evolution of a potential temperature perturbation θ′ in a con-
stant mean flow with a stratified atmosphere. This initial perturbation diverges to the
left and right symmetrically in a channel with periodic lateral boundary conditions. The
inertia-gravity wave test introduced by Skamarock and Klemp (1994) (hereafter, SK94)25

serves as a tool to investigate the accuracy for NH dynamics. Also we use this experi-
ment to check the consistency of the results with various resolutions. The parameters
for the test are the same as those of SK94. The initial state is a constant Brunt–Väisälä
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frequency of N = 0.01 s−1 with surface potential temperature of θ0 = 300 K and a uni-
form zonal wind u = 20 m s−1. In order to trigger the wave, the initial potential tempera-
ture perturbation θ′ is overlaid to the above initial state and is given as

θ′(x,z) = θc

sin
(
πz
zc

)
1+
(
x−xc
ac

) (25)

5

where θc = 0.01 K, zc = 10 km, xc = 100 km. The domain is defined as (x,z) ∈ [0,300]×
[0,10] km2. We use periodic lateral boundary conditions and a no-flux boundary con-
ditions for both the bottom and top boundaries. The simulation is performed for 3000 s
with no viscosity.

Figure 7 shows the solution θ′ at the initial time and time 3000 s with a horizontal10

resolution ∆x = 250 m and a vertical resolution ∆z = 250 m. The figure uses the same
contouring interval as in SK94 and Giraldo and Restelli (2008) for comparison. The
results are produced with 8th order polynomials per element. We have conducted the
2DNH model with various basis polynomial orders at the same resolution, where the
simulated results are found to be very comparable. SK94 give an analytic solution for15

the case of the Boussinesq equations, but it is only valid for the Boussinesq equations
while we use the fully compressible equations in our model. Using the analytic solution
only for qualitative comparisons, we find that the extrema of our results are compara-
ble to the analytic values. In comparison with the results of Giraldo and Restelli (2008)
in which the fully compressible equations are also used, our results look very similar.20

Figure 8 shows the profiles along 5000 m for various horizontal resolutions. All models
show consistently identical solutions with the symmetric distribution about the midpoint
(x = 160 km) which is the location to which the initial perturbation moved by the hori-
zontal flow of 20 m s−1 after 3000 s. Even at coarser resolution experiments, it does not
exhibit phase errors although the maxima and minima near the midpoint (x = 160 km)25

are slightly damped. Table 2 shows the extrema of vertical velocities and potential
temperature perturbations for the results of various horizontal resolutions after 3000 s.
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It is noted that all experiments give almost the same values for potential tempera-
ture perturbation where these values in the range θ′ ∈ [−1.52×10−3,2.83×10−3] are
comparable to other studies (e.g., GR08 and Li et al., 2013). GR08 give the ranges of
θ′ ∈ [−1.51×10−3, 2.78×10−3] from the model based on the spectral element and dis-
continuous Galerkin method. Also Li et al. (2013) show θ′ ∈ [−1.53×10−3, 2.80×10−3]5

using the high-order conservative finite volume model which are similar to our results.

4.4 Rising thermal bubble test

We also conduct the rising thermal bubble test to verify the consistency of the scheme
in the model to simulate thermodynamic motion (Wicker and Skamarock, 1998). This
test considers the time evolution of warm air in a constant potential temperature envi-10

ronment for an atmosphere at rest. The air that is warmer than the ambient air rises due
to buoyant forcing which then deforms due to the shearing motion caused by gradients
of the velocity field and eventually shapes the thermal bubble into a mushroom cloud.
Because the test case has no analytic solution, the simulation results are evaluated
qualitatively.15

The initial conditions we use follow those of GR08 in which the domain for the case
is defined as (x,z) ∈ [0,1]2 km2. We consider no-flux boundary conditions for all four
boundaries. The domain is initialized for a neutral atmosphere at rest with θ0 = 300 K
in hydrostatic balance. A potential temperature perturbation to drive the motion is given
as20

θ′ =

{
0 for r > rc
θc
2

[
1+ cos

(
πr
rc

)]
for r ≤ rc

, (26)

where θc = 0.5 K, r =
√

(x−xc)2 + (z− zc)2 with (xc,zc) = (500,350) m. The model was
run for a time of 700 s. It should be noted that an explicit second-order diffusion on co-
ordinate surfaces is used with a viscosity coefficient of ν = 1 m2 s−1 for all simulations25

of this test. The numerical diffusion is applied for momentum and potential temperature
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along the horizontal and vertical directions so that it eliminates the erroneous oscilla-
tions at the small scale – while this amount of diffusion might seem excessive, it has
been chosen because it allows the model to remain stable even after the bubble hits
the top boundary.

Figure 9 shows the potential temperature perturbation, horizontal wind, and vertical5

wind fields for the simulations of two resolutions of 20 and 5 m horizontal and vertical
grid spacings (∆x and ∆z), respectively, employing 5th order basis polynomials. In
both simulations, the fine structures in the numerical solutions are well depicted with
a perfectly symmetric distribution at the midpoint and sharp discontinuities of the fields
along boundary lines of the bubble. At lower resolution, however, degradations in the10

solution are visible in the potential temperature perturbation and vertical wind which
are illustrated by fluctuations in the values as well as the concaving contours at the
top of the bubble. It is noted that while the numerical solution of the model using the
spatially centered FDM of Wicker and Skamarock (1998) shows spurious oscillations
in the potential temperature field, the simulations here of 2DNH using the horizontally15

SEM and vertically FDM is devoid of these oscillations.
We also show the vertical profiles of potential perturbation at x = 500 m after 700 s

for various resolutions in Fig. 10. Simulations were run with various resolutions of 5, 10,
and 20 m, where the resolutions given are defined for both the horizontal and vertical
directions. The results of 10 and 5 m resolutions are almost identical to each other.20

The result of the lowest resolution of 20 m, however, shows a somewhat unresolved
solution, in which the maximum value is underestimated and the phase shift is depicted.
The time series for maximum potential temperature perturbation and maximum vertical
velocity are shown in Fig. 11. In all simulations, the maximum vertical velocity increases
as the maximum theta perturbation decreases. This shows that the thermal energy25

of the theta perturbation leads to the acceleration of the vertical velocity. This result
agrees well with the study of Ahmad and Lindeman (2007).
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5 Summary and conclusions

The non-hydrostatic compressible Euler equations for a dry atmosphere are solved
in a simplified 2-D slice (X-Z) framework by using the spectral element discretization
(SEM) in the horizontal and the third-order finite difference scheme for the vertical
discretization. The form of the Euler equations used here are the same as those used5

in the Weather Research and Forecasting (WRF) model. We employ a hybrid sigma-
pressure vertical coordinate which can be converted exactly into a sigma-pressure
coordinate at the level of the actual coding implementation.

For the spatial discretization, the spatial operators are separated into their horizontal
and vertical components. In the horizontal components, the operators are discretized10

using the SEM in which high-order representations are constructed through the GLL
grid points by Lagrange interpolations in elements. Using GLL points for both interpo-
lation and integration results in a diagonal mass matrix, which means that the inversion
of the mass matrix is trivial. In the vertical components, the operators are discretized
using the third-order upwind biased finite difference scheme for the vertical fluxes and15

centered differences for the vertical derivatives. The time discretization relies on the
time-split third-order Runge–Kutta technique.

We have presented results from idealized standard benchmark tests for large-scale
flows (e.g., linear hydrostatic mountain wave) and for nonhydrostatic-scale flows (e.g.,
inertia-gravity wave, rising thermal bubble, and density currents). The numerical results20

show that the present dynamical core is able to produce solutions of good quality com-
parable to other published solutions. These tests effectively reveal that the combined
spatial discretization method of the spectral element and finite difference method in the
horizontal and vertical directions, respectively, offers a viable method for the develop-
ment of a NH dynamical core. Further research will be continued to couple the present25

core with the existing physics packages together and extend the 2-D slice framework
to develop a 3-D dynamical core for the global atmosphere where the cubed-sphere
grid will be used for the spherical geometry.
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Table 1. Comparison between the 5th and 8th order polynomials per elements for the density
current. The simulations is conducted with ∆x = 50 m and ∆z = 50 m resolution.

Order of polynomials Front location (km) p′
max (Pa) p′

min (Pa) θ′
max θ′

min

5th 14.77 630.62 −452.79 0.08 −8.87
8th 14.74 626.91 −456.84 0.08 −8.94
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Table 2. Comparison of the numerical results for various horizontal resolutions for inertia-gravity
wave. All simulations use the 8th order polynomials per elements and vertical resolution of
∆z = 250 m.

Resolution (m) wmax (m s−1) wmin (m s−1) θ′
max θ′

min

∆x = 125 2.85×10−3 −2.89×10−3 2.83×10−3 −1.52×10−3

∆x = 250 2.80×10−3 −2.82×10−3 2.83×10−3 −1.52×10−3

∆x = 500 2.73×10−3 −2.73×10−3 2.83×10−3 −1.52×10−3

∆x = 750 2.72×10−3 −2.70×10−3 2.83×10−3 −1.52×10−3

∆x = 1250 2.68×10−3 −2.62×10−3 2.82×10−3 −1.52×10−3
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FIG. 1. The grid points of columns within an element having four GLL points. The 2 

hybrid sigma coordinate are illustrated and the close (open) circles on the solid (dashed) line 3 

indicate the location of the variables at layer mid-points (interfaces).4 

Figure 1. The grid points of columns within an element having four GLL points. The hybrid
sigma coordinate are illustrated and the close (open) circles on the solid (dashed) line indicate
the location of the variables at layer mid-points (interfaces).
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 1 

FIG. 2. Steady-state flow of (left) horizontal velocity (m/s) and (right) vertical velocity 2 

(m/s) over 1 m high mountain at nondimensional time 60
ut

a
=  with a grid resolution of 3 

2x∆ =  km using 5th order basis polynomials per element and 375z∆ =  m. The numerical 4 

solution is represented by solid lines and the analytic solution by dashed lines. 5 

6 

Figure 2. Steady-state flow of (left) horizontal velocity (m s−1) and (right) vertical velocity (m s−1)
over 1 m high mountain at nondimensional time ut

a = 60 with a grid resolution of ∆x = 2 km using
5th order basis polynomials per element and ∆z = 375 m. The numerical solution is represented
by solid lines and the analytic solution by dashed lines.
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 1 

FIG. 3. Vertical flux of horizontal momentum, normalized by its analytic value at several 2 

non-dimensional times ut

a
. Here M and MH are the momentum flux of the numerical and 3 

analytic solutions.  4 

5 

Figure 3. Vertical flux of horizontal momentum, normalized by its analytic value at several non-
dimensional times ut

a . Here M and MH are the momentum flux of the numerical and analytic
solutions.
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  1 

FIG. 4. Potential temperature perturbation after 900 s using (a) 400x∆ = m, (b) 2 

200x∆ = m, (c) 100x∆ = m, and (d) 50x∆ = m grid spacing with 5th order basis 3 

polynomials per element for the density current. All simulations use 64z∆ = m grid spacing. 4 

5 

(a) 

(b) 

(c) 

(d) 

Figure 4. Potential temperature perturbation after 900 s using (a) ∆x = 400 m, (b) ∆x = 200 m,
(c) ∆x = 100 m, and (d) ∆x = 50 m grid spacing with 5th order basis polynomials per element
for the density current. All simulations use ∆z = 64 m grid spacing.
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  1 

FIG. 5. As in Fig. 4, but with 8th order basis polynomials per element. 2 

3 

(a) 

(b) 

(c) 

(d) 

Figure 5. As in Fig. 4, but with 8th order basis polynomials per element.
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  1 

FIG. 6. Profiles of potential temperature perturbation after 900 s along 1200 m height: 2 

(a) high-resolution simulations using 5th (thin solid line) and 8th (thick solid line) order basis 3 

function, (b) simulations using 5th order basis polynomials, and (c) simulations using 8th 4 

order basis polynomials per element. The total number of the degrees of freedom is the same 5 

in both 5th and 8th order experiments. All simulations use 64z∆ = m grid spacing. 6 

7 

(a) 

(b) 

(c) 

Figure 6. Profiles of potential temperature perturbation after 900 s along 1200 m height:
(a) high-resolution simulations using 5th (thin solid line) and 8th (thick solid line) order ba-
sis function, (b) simulations using 5th order basis polynomials, and (c) simulations using 8th
order basis polynomials per element. The total number of the degrees of freedom is the same
in both 5th and 8th order experiments. All simulations use ∆z = 64 m grid spacing.
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 1 

FIG. 7. Potential temperature perturbation at the initial time (left) and time 3000s (right) 2 

for 250x∆ = m using 8th order basis polynomials per element and 250z∆ = m for the 3 

inertia-gravity wave. 4 

5 

Figure 7. Potential temperature perturbation at the initial time (left) and time 3000 s (right)
for ∆x = 250 m using 8th order basis polynomials per element and ∆z = 250 m for the inertia-
gravity wave.
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  1 

FIG. 8. The profiles of potential temperature perturbation along 5000 m height for 2 

125x∆ = m (thick solid line), 500x∆ = m (thin dashed line) and 1250x∆ = m (thin solid 3 

line) using 8th order basis polynomials per element for the inertia-gravity wave. All models 4 

use 250z∆ = m. 5 

6 

 

 

Figure 8. The profiles of potential temperature perturbation along 5000 m height for ∆x = 125 m
(thick solid line), ∆x = 500 m (thin dashed line) and ∆x = 1250 m (thin solid line) using 8th order
basis polynomials per element for the inertia-gravity wave. All models use ∆z = 250 m.
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 1 

FIG. 9. Plots of (a,b) potential temperature perturbation (K), (c,d) horizontal wind (m/s), 2 

and (e,f) vertical wind (m/s) for the rising thermal bubble test after 700s with (left)  3 

, 20x z∆ ∆ = m and (right) , 5x z∆ ∆ = m resolution for the rising thermal bubble test.  All 4 

simulations use 5th order basis polynomials per element. All negative values are denoted by 5 

dashed lines and positive values by solid lines.  6 

7 

(a) 

(c) 

(e) 

(b) 

(d) 

(f) 

Figure 9. Plots of (a, b) potential temperature perturbation (K), (c, d) horizontal wind (m s−1),
and (e, f) vertical wind (m s−1) for the rising thermal bubble test after 700 s with (left) ∆x,∆z =
20 m and (right) ∆x,∆z = 5 m resolution for the rising thermal bubble test. All simulations use
5th order basis polynomials per element. All negative values are denoted by dashed lines and
positive values by solid lines.
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 1 

FIG. 10. Vertical profiles of the potential temperature perturbation for the rising thermal 2 

bubble test at x = 500 m after 700 s for various resolutions: , 20x z∆ ∆ = m (thin solid line), 3 

, 10x z∆ ∆ = m (thin dashed line), and , 5x z∆ ∆ = m (thick solid line). 4 

 5 

6 

Figure 10. Vertical profiles of the potential temperature perturbation for the rising thermal
bubble test at x = 500 m after 700 s for various resolutions: ∆x,∆z = 20 m (thin solid line),
∆x,∆z = 10 m (thin dashed line), and ∆x,∆z = 5 m (thick solid line).
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  1 

FIG. 11. (top) Domain maximum potential temperature perturbation and (bottom) 2 

vertical wind for the rising thermal bubble test. All simulations use the 5th order basis 3 

polynomials per element, and the vertical resolutions are the same as the horizontal 4 

resolutions. 5 

 6 

Figure 11. (top) Domain maximum potential temperature perturbation and (bottom) vertical
wind for the rising thermal bubble test. All simulations use the 5th order basis polynomials per
element, and the vertical resolutions are the same as the horizontal resolutions.
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