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Abstract 17	  

Top-of-atmosphere spectrally-resolved shortwave reflectances and longwave radiances 18	  

describe the response of the Earth’s surface and atmosphere to feedback processes and 19	  

human-induced forcings. In order to evaluate proposed long-duration spectral measurements, 20	  

we have projected 21st Century changes from the Community Climate System Model 21	  

(CCSM3.0) conducted for the Intergovernmental Panel on Climate Change (IPCC) A2 22	  

Emissions Scenario onto shortwave reflectance spectra from 300 to 2500 nm and longwave 23	  

radiance spectra from 2000 to 200 cm-1 at 8 nm and 1 cm-1 resolution, respectively. The 24	  

radiative transfer calculations have been rigorously validated against published standards and 25	  

produce complementary signals describing the climate system forcings and feedbacks.  26	  

Additional demonstration experiments were performed with the MIROC5 and HadGEM2-ES 27	  

models for the Representative Concentration Pathway 8.5 (RCP8.5) scenario.  The calculations 28	  

contain readily distinguishable signatures of low clouds, snow/ice, aerosols, temperature 29	  

gradients, and water vapour distributions.  The goal of this effort is to understand both how 30	  

climate change alters reflected solar and emitted infrared spectra of the Earth and determine 31	  

whether spectral measurements enhance our detection and attribution of climate change.  This 32	  

effort also presents a path forward to understand the characteristics of hyperspectral 33	  

observational records needed to confront models and inline instrument simulation. Such 34	  

simulation will enable a diverse set of comparisons between model results from coupled model 35	  

intercomparisons and existing and proposed satellite instrument measurement systems.  36	  



1. Introduction 37	  

The spectrally-integrated upwelling top-of-atmosphere radiant energy field comprises the Earth 38	  

system’s total energy balance, and comprehensive comparisons of modelled Outgoing 39	  

Longwave Radiation (OLR) and albedo with observationally-based estimates of these quantities 40	  

have led to important constraints on climate models [e.g., Morcrette, 1991; Kiehl et al., 1994].  41	  

The spectrally resolved energy field spans an additional dimension that contains information 42	  

regarding the processes that govern that balance.  Moreover, it has been demonstrated that 43	  

infrared spectra contain important information that can be used to test climate models [e.g., 44	  

Goody et al., 1998], primarily because the spectral signatures of individual forcings and 45	  

feedbacks can be readily separated, detected, and quantified.  Recent work by Roberts et al. 46	  

[2011] suggest that shortwave spectra also contain independent information about processes 47	  

that contribute to albedo. Although the separability of processes that contribute to albedo from 48	  

these spectra has not been addressed formally, Jin et al [2011] showed the utility of shortwave 49	  

spectral fingerprints which may be extended to consider spectral separability. 50	  

 51	  

This has motivated the implementation of Observing System Simulation Experiments (OSSEs) 52	  

based on climate models as a means for exploring the utility of well-posed comparisons 53	  

between models and measurements.  OSSEs are well-established techniques for evaluating the 54	  

scientific and operational value of new instruments proposed for meteorological applications 55	  

[Arnold and Dey, 1986].  The role of OSSEs for climate science is less mature than that of the 56	  

application to short-term weather forecasting for which they were originally developed.  The 57	  

decadal length of climate studies and the necessarily long measurement records that are 58	  

needed to confront how models predict climate change motivate the development of climate 59	  

model OSSEs. The forward evaluation of remote sensing signal sensitivity to uncertain model 60	  

parametrisations and/or global climate sensitivity contributes to the determination of the value of 61	  

certain types of remote sensing measurements where the underlying climate signal from the 62	  



model is known. To that end, it has been recently noted by the Intergovernmental Panel on 63	  

Climate Change (IPCC) that instrument simulators are valuable in that they can obviate 64	  

inconsistencies between models and measurements [Flato et al., 2013]. 65	  

 66	  

Several investigations have explored direct comparisons between measurements from a variety 67	  

of existing satellite-based instruments and simulations of those measurements based on various 68	  

climate model integrations.  For example, community-wide efforts have led to the establishment 69	  

of the Cloud Feedback Model Intercomparison Project Observational Simulator Package 70	  

(COSP) [Bodas-Salcedo et al., 2011], enabling inline instrument simulations for existing 71	  

missions including the International Satellite Cloud Climatology Project (ISCCP), the MODerate 72	  

Resolution Imaging Spectroradiometer (MODIS), CloudSat, and Cloud-Aerosol Lidar and 73	  

Infrared Pathfinder Satellite Observation (CALIPSO).  Results from COSP based on models run 74	  

in historical mode are then compared to existing measurement records to identify model biases 75	  

(e.g., Kay et al. [2012]; Pincus et al. [2012]). 76	  

 77	  

Additionally, there have been efforts to explore how hyperspectral measurements can be 78	  

utilised for facile measurement-model intercomparison. Huang et al. [2007; 2010a] and Leroy et 79	  

al. [2008] examined longwave measurements and radio occultation simulations in detail and 80	  

have compared the spectral signatures of variations in lapse rate, water vapour, and cloud 81	  

radiative effects (CREs).  The discrepancies in measured and modelled spectra suggest that the 82	  

agreement in measured and modelled OLR is a result of compensating errors between 83	  

temperature, water vapour, and cloud structure in the models. 84	  

 85	  

Feldman et al. [2011a; 2011b; 2013] developed climate OSSEs with shortwave spectra.  These 86	  

works showed utility of shortwave spectra for detecting climate change, and found that 87	  



shortwave measurements are more sensitive to low clouds and changes in frozen surface 88	  

extent than are longwave spectral measurements.  89	  

 90	  

Despite the potential utility of using visible, near-infrared, and infrared measurements, the 91	  

simultaneous utilisation of shortwave reflectance and longwave radiance spectra to address 92	  

climate change questions has not been explored in detail to date, despite the numerous studies 93	  

based on coincident observations of broadband OLR and albedo [e.g., [Kiehl and Trenberth, 94	  

1997; Hansen et al., 2005; Wielicki et al., 2006; Loeb et al., 2009].  The combination of 95	  

shortwave and longwave hyperspectral measurements could potentially be quite useful in 96	  

addressing fundamental and unanswered questions related to shortwave cloud and ice 97	  

feedbacks while simultaneously describing the temperature and water vapour structure of the 98	  

atmosphere.  The ultimate goal of this research area is to develop rigorous observational tests 99	  

for climate models with a particular focus on using measurements to constrain climate model 100	  

sensitivity. 101	  

 102	  

Existing hyperspectral infrared measurement systems including the Atmospheric Infrared 103	  

Sounder (AIRS) [Aumann et al., 2003] and the Infrared Atmospheric Sounding Interferometer 104	  

(IASI) [Siméoni et al., 1997] can be considered as strong observational constraints.  Moreover, 105	  

hyperspectral shortwave measurements are available from the SCanning Imaging Absorption 106	  

SpectroMeter for Atmospheric CHartographY (SCIAMACHY) [Bovensmann et al., 1999], and 107	  

these extensive data records could be useful for measurement-model intercomparison. 108	  

 109	  

This paper presents a versatile tool for simulating spectrally resolved measurements from the 110	  

near-UV (300 µm) to the far-infrared (50 µm) and discusses how these measurements can be 111	  

used to generalise existing OSSE efforts.  It demonstrates the rigorous radiometric validation 112	  

needed to establish comprehensive science traceability studies for planned instruments such 113	  



those recommended by the National Research Council’s Decadal Survey including CLimate 114	  

Absolute Radiance and Refractivity Observatory (CLARREO) [Wielicki et al., 2013] and 115	  

GEOstationary Coastal and Air Pollution Events (GEO-CAPE) [Space Studies Board, 2007].   116	  

Additionally, the pan-spectral OSSE may be utilised to develop climate model observational 117	  

tests for evaluating results reported to the Coupled Model Intercomparison Project – Phase 5 118	  

(CMIP5) [Taylor et al., 2012] and Phase 6 (CMIP6) [Meehl et al., 2014]. 119	  

 120	  

2. Methodology 121	  

Following Feldman et al. [2011a], we present OSSE calculations of shortwave spectral 122	  

reflectance and longwave spectral radiance that simulates spectral measurements based on the 123	  

climate projections conducted with Community Climate System Model, Version 3.0 (CCSM3) 124	  

integrations [Collins et al., 2006a; Meehl et al., 2006].  The spectral calculations are performed 125	  

with the MODerate Resolution TRANsmission (MODTRANTM) radiative transfer code [Berk et al., 126	  

2005].  The shortwave and longwave spectra are calculated from 0.3 to 2.5 µm (33333 to 127	  

4000 cm-1) at a 15 cm-1 native resolution, and from 5 to 50 µm (2000 to 200 cm-1) at a 1 cm-1 128	  

native resolution, respectively.  The calculations produce top-of-atmosphere (TOA) radiance 129	  

spectra and upwelling and downwelling direct and diffuse spectral flux (irradiance) fields at each 130	  

vertical level of CCSM3. 131	  

 132	  

The fields produced in CCSM3 integrations include vertical profiles of atmospheric 133	  

thermodynamic properties, trace gases, and condensed species on a 26 level hybrid-sigma grid 134	  

extending from the surface to a constant pressure level of 2 hPa.  CCSM3 has been run at a 135	  

variety of different horizontal resolutions for the spectral-Eulerian atmospheric dynamical core.  136	  

The results described here have been computed and archived at T85 resolution representing a 137	  

triangular truncation of the dynamics at 85 wavenumbers and corresponding to a 1.4° 138	  

equilateral grid on the equator.  The OSSE, as described by Feldman et al. [2011a], utilises 139	  



monthly-mean values for profiles of temperature, water vapour (H2O), carbon dioxide (CO2), 140	  

ozone (O3), methane (CH4), nitrous oxide (N2O), trichlorofluoromethane (CFC-11), and 141	  

dichlorodifluoromethane (CFC-12).  Profiles of both liquid and ice cloud area, condensed water 142	  

content, and effective radius are utilised.  The treatment of cloud optics for the spectral 143	  

simulations in the OSSE is identical to that used by the CCSM3.  In the shortwave, the optical 144	  

properties of liquid and ice clouds vary with wavelength [Hansen and Travis, 1974; Slingo, 1989].  145	  

In the longwave, liquid and ice clouds are treated as grey bodies where liquid clouds are 146	  

assigned a constant emissivity and ice clouds are assigned an emissivity that varies with the 147	  

effective radii diagnosed for the constituent ice crystals.  The infrared absorption and scattering 148	  

by aerosols are not included in the longwave OSSE; although the direct radiative effects of dust, 149	  

sulfate, carbonaceous, and sea-salt aerosols are incorporated in the shortwave OSSE.   150	  

 151	  

The treatment of the optical surface properties utilises the MODIS Bi-directional Reflectance 152	  

Distribution Function [Schaaf et al., 2002] and has been critical for the realism of the shortwave 153	  

OSSE [Feldman et al., 2011b] under present-day conditions.  The formulation of the land-154	  

surface optical reflection reproduces the snow-free and snow-covered bidirectional reflectance 155	  

properties from MODIS, and it also includes the effects of retreating snow cover on projections 156	  

of the Earth’s future reflectance field.  The longwave portion of the OSSE treats ocean surfaces 157	  

with unitary emissivity, while land surface emissivity is based on an annually-cyclic monthly-158	  

mean climatology derived from spatial and temporal binning of the MODIS Land Surface 159	  

Emissivity product [Wan and Zhao-Liang, 1997].  By design, the effects of changes in sea-ice 160	  

extent and snow cover are included in the OSSE calculations while the effects of future land-use 161	  

and land-cover change and of changing soil moisture on near-infrared surface albedos are not. 162	  

 163	  

This OSSE software framework requires multiple calls to the MODTRAN radiative transfer code 164	  

and the OSSE is quite computationally expensive despite the optimised load-balancing and 165	  



intrinsic parallelism of the calculations. Even though it is has been run on a massively parallel 166	  

NASA High-End Computing (HEC) facility, the ratio of OSSE computational time to the 167	  

computational time to integrate the fully-coupled CCSM3 for the 21st Century is approximately 168	  

50:1. There are several potential methods to reduce this computational expense, which will be 169	  

discussed in Section 4. 170	  

 171	  

In support of the IPCC Fifth Assessment Report, modelling centres have undertaken significant 172	  

efforts to produce a large set of model integrations for CMIP5.  A similar infrastructure to the 173	  

CCSM3 offline hyperspectral calculations was adopted for two climate models.  These models 174	  

were MIROC5 [Watanabe et al., 2010] and HadGEM2-ES [Jones et al., 2011], which lie on the 175	  

low and high end of the model range of CMIP5 equilibrium climate sensitivities at 2.72 and 176	  

4.59 °K/2xCO2, respectively [Andrews et al., 2012].  Simulations were implemented for the first 177	  

three decades of the Representative Concentration Pathway 8.5 (RCP8.5) scenario [Van 178	  

Vuuren et al., 2011].  The fields necessary to perform reflectance and radiance calculations in 179	  

the OSSE have, unfortunately, only been archived at monthly-mean temporal resolution for this 180	  

scenario.  Due to the nonlinearity of radiative transfer, it is challenging to validate offline OSSE 181	  

calculations with the reported values of albedo and OLR from these models, the latter of which 182	  

are based on averages of radiation calculations performed with time-steps of a few minutes.  183	  

 184	  

3. Results  185	  

In order to meet the requirement for high-accuracy calculations to support both mission design 186	  

and climate model evaluation, there has been extensive validation performed on both the 187	  

longwave and shortwave OSSE calculations based on CCSM3.  As a result, the radiation 188	  

calculations performed by MODTRAN are fully consistent with those produced by the CCSM3 189	  

radiation code, which itself is extensively evaluated against line-by-line models [Collins et al., 190	  

2006b; Oreopoulos et al., 2010].  While the shortwave OSSE calculations from MODTRAN have 191	  



already been extensively validated against CCSM3 all-sky and clear-sky albedo [Feldman et al., 192	  

2011a], the longwave fields are a new and critical feature to the OSSE, representing the first 193	  

time that the hyperspectral climate change signal has been simulated and validated across the 194	  

entire shortwave and longwave energy budget of the climate system. 195	  

 196	  

Longwave validation of the two codes was performed using a comparison of TOA OLR.  197	  

Differences between the two radiative transfer schemes are less than 1% for both clear- and all-198	  

sky conditions and arise from several factors.  These factors include the contrasting treatments 199	  

of clouds as vertically extended non-isothermal layers in MODTRAN versus infinitely-thin 200	  

isothermal objects in CCSM3 together with the contrasting solutions to the radiative equations 201	  

using 8 discrete-ordinate streams in MODTRAN versus two streams in CCSM3.  Figure (1a-b) 202	  

shows a distribution of the differences between the OLR produced by the OSSE through offline 203	  

calls to the CCSM3 longwave radiation code and the OLR produced from the MODTRAN 204	  

instrument emulator.  Figure (1b) indicates the clear-sky calculations agree to better than 2 205	  

W/m2.  Meanwhile, the level of agreement between the all-sky OLR from CCSM3 and 206	  

MODTRAN is degraded relative to the clear-sky case, as shown in Figure (1a), with a mean 207	  

offset of 1 W/m2 and a root-mean-square (RMS) value of 3.1 W/m2.  A closer investigation 208	  

revealed that the differences in the numbers of streams in the radiative solution and level-layer 209	  

formulation differences accounted for the all-sky discrepancies. This is consistent with the 210	  

performance of the shortwave reflectance component of the OSSE, though the all-sky 211	  

agreement between MODTRAN and the Community Atmosphere Model (CAM) component of 212	  

CCSM3 exhibit less spread because the level-layer formulation discrepancy affects OLR more 213	  

than albedo.  The implication here is that details of vertical formulation of the radiative transfer 214	  

are critical for competent instrument simulation, especially in the LW. The agreement between 215	  

MODTRAN and CAM for shortwave fluxes is shown in Figure (1c) and (1d) with a mean offset of 216	  

around 3 W/m2 in all-sky conditions and 1 W/m2 for clear-sky conditions. 217	  



 218	  

Globally-averaged longwave radiance and shortwave reflectance spectra are shown in 219	  

Figure (2a) for both clear-sky and all-sky conditions at the beginning of the integration.  This 220	  

figure demonstrates many of the complementary features, due to a number of climate-relevant 221	  

processes, in these two spectral ranges, including two high-transmittance features in the visible 222	  

and the mid-infrared which are affected by the presence of clouds, but, as shown in Figure (2b), 223	  

clear-sky and all-sky differences are of opposite sign between the visible and infrared.  224	  

Additionally, the spectra indicate a role of water vapour in reducing reflectance in the near-225	  

infrared overtone absorption bands between 0.8 and 2.0 µm and producing rich spectral 226	  

structure and decreased infrared radiance between 5 and 8.3 µm and 17 and 50 µm.  Prominent 227	  

greenhouse-gas absorption features are also indicated for CO2, O3, CH4, and N2O. 228	  

 229	  

Figure (2b) shows the corresponding globally-averaged trends in shortwave reflectances and 230	  

longwave radiances during the first 50 years of the A2 scenario simulation.  Several prominent 231	  

features can be seen.  First, the shortwave reflectances generally increase with the increased 232	  

aerosol loading projected for the first half of the 21st Century under both clear- and all-sky 233	  

conditions, and this effect is evident at shorter wavelengths.  While much of the spatial and 234	  

seasonal heterogeneity in shortwave reflectance trends that was identified in Feldman et al. 235	  

[2011a] is averaged out in the globally and annually averaged trends, the contrast between 236	  

clear-sky and all-sky reflectance trends gives an indication of the additional increase in 237	  

reflectance from clouds.  Also, the complex spectral structure in the wings of the near-infrared 238	  

H2O overtone absorption bands indicates the potential for shortwave forcing of greenhouse 239	  

gases, a topic that deserves greater scrutiny [Collins et al., 2006b].    240	  

 241	  

Meanwhile, longwave radiances show a negative trend around 6.3 µm due to greater 242	  

atmospheric water vapour, positive trends between 8 and 12 µm from higher surface skin 243	  



temperatures, and negative trends between 14 and 16 µm from increased absorption in the 244	  

wings of the mid-infrared CO2 bands.  The prescribed increases in CH4 and N2O produce 245	  

prominent negative trends around 7 µm, while increases in surface and tropospheric 246	  

temperature are aliased into positive trends in the H2O mid- and far-IR bands. 247	  

 248	  

Figure (3a-c) shows differences in zonally- and decadally-averaged shortwave reflectance and 249	  

longwave radiance spectra for clear-sky and all-sky conditions and cloud radiative effect (CRE) 250	  

between the decade from 2050-2059 and the first decade of the 21st Century, while Figure (3d-f) 251	  

show the differences between 2090-2099 and the first decade of the 21st Century.  Increases in 252	  

anthropogenic aerosol loading between the decades of the 2000s and the 2050s result in 253	  

increased clear-sky reflectance at low latitudes and visible and near-infrared wavelengths during 254	  

that time period.  Concurrent changes in the frozen surface coverage decrease reflectance at 255	  

higher latitudes in the window band but not in the near-infrared.  Decadal differences in all-sky 256	  

shortwave reflectance share some similarities to decadal differences in the clear-sky shortwave 257	  

reflectance, but vertical striping features in the water-vapour overtone absorption bands are also 258	  

present and are indicative of the decrease in low-level stratus clouds.  Additionally, movement 259	  

of the InterTropical Convergence Zone (ITCZ) produces a dipole in reflectance near the equator 260	  

with diminished striping features across the overtone absorption bands. 261	  

 262	  

The changes in both all-sky and clear-sky longwave radiance exhibit the spectral features 263	  

highlighted in Figure (2b).  The only other prominent feature is the polar amplification of surface 264	  

temperature warming that produces meridional gradients in the window band.  Increased cloud 265	  

cover at high northern latitudes over this period lead to decreases in the radiance across the 266	  

longwave spectrum.  Additionally, the stratospheric cooling and increased CO2 are prominent 267	  

around 15 µm while increasing CH4 and N2O produce significant signals around 7 µm. 268	  

 269	  



Differences in zonally- and decadally-averaged shortwave reflectance and longwave radiance 270	  

between the start and end of the 21st Century under the A2 emissions scenario are shown in 271	  

Figure (3d-f).  These spectra show decreased frozen surface extent at high latitudes in visible 272	  

reflectances and increased water vapour loading leading to lower reflectances in the water 273	  

vapour overtone bands and at 6.3 µm and in the far-infrared H2O rotational band.  All-sky pan-274	  

spectral simulations reveal the shifts in storm-tracks with striping features in the H2O near-275	  

infrared overtone bands at mid-latitudes, and they reveal a stronger dipole near the ITCZ near 276	  

the equator across the shortwave and longwave. 277	  

 278	  

The CRE changes in Figure (3c) and (3f) reveal that significant changes in low-clouds at high 279	  

latitudes that impact shortwave reflectance and, to a lesser extent, longwave radiance in both 280	  

panels. Movement of the ITCZ by the 2090s produces a broadband increase in shortwave 281	  

reflectance but a broadband decrease in longwave radiance as shown in Figure (3f). Such 282	  

features are much less apparent in the Figure (3c). 283	  

 284	  

OSSEs can also be used for inter-model comparisons.  To demonstrate this, we considered the 285	  

contributions of the MIROC5 and HadGEM2-ES models to the CMIP5 archive.  Trend 286	  

differences in albedo and OLR are shown in Figure (4a-d). In all-sky OLR, as shown in Figure 287	  

(4b), trend differences indicate model disagreement in deep convective response in the Tropical 288	  

Western Pacific, with HadGEM2-ES showing increased deep convection as compared to 289	  

MIROC5, though the difference in the trends changes sign over South America.  The clear-sky 290	  

OLR trend differences, as shown in Figure (4d) are small, but spatially expansive and are due in 291	  

large part to the water vapour response both in convective and subsidence regions. The 292	  

MIROC5 model exhibits a water vapour loading response that impacts OLR more than the 293	  

HadGEM2-ES model. 294	  

 295	  



For climate sensitivity, however, the difference in the processes that affect shortwave radiation 296	  

of these models is larger than the longwave.  Differences in the models’ description of sea-ice 297	  

loss and cloud response at high latitudes and particularly in subsidence regions, have been 298	  

shown to contribute most significantly to the discrepancy in their equilibrium sensitivities 299	  

[Andrews et al., 2012].  Hyperspectral longwave simulations based on these models have been 300	  

validated with a bias of 3 W/m2 and an RMS difference of 0.5 and 3 W/m2 for clear-sky and all-301	  

sky longwave, respectively, with respect to the model-reported TOA fluxes.  For the shortwave 302	  

simulations, the hyperspectral simulations exhibit an average bias of 0.1% and an RMS 303	  

difference of 1.5% and 2.2% for clear-sky and all-sky, respectively, for both models subject to 304	  

the above-mentioned issues with temporal averaging.  Nevertheless, Figures (4e) and (4f) 305	  

indicate that there are numerous differences in the models’ response in hyperspectral 306	  

simulations in subsets of the OSSE spectra from the Arctic and the Tropical Western Pacific. 307	  

Both the visible and infrared window spectral regions readily differentiate the two climate model 308	  

runs, and spectral trends of the model differ significantly.  Also, in the TWP, the sign of the 309	  

change in the shortwave visible differs from that of the near-infrared water vapour overtone 310	  

regions, potentially improving signal detectability, and indicating the potential for spectra to 311	  

identify processes that contribute to different trends in OLR and albedo.  The corollary of this is 312	  

that long-term spectral trends from measurements can be confronted with the results of a 313	  

hyperspectral simulator from models to exclude one or more model descriptions of the response 314	  

to known forcings. It is worth noting that Huang and Ramaswamy [2009] showed that longwave 315	  

spectral radiance measurements can disclose detailed climate change signals that would have 316	  

otherwise been hidden in the model-reported broadband fluxes due to compensating effects. 317	  

The results here also suggest that such compensation may be occurring in the shortwave as 318	  

well.  319	  

 320	  



One important caveat to these results, though, is, as mentioned above, the use of monthly-321	  

mean profiles for simulation. Previous work by Huang and Ramaswamy [2009] found that 322	  

calculations based on monthly-mean profiles rather than instantaneous ones could introduce 323	  

negative brightness temperature biases between 3 and 4 °K. To test the effect in the shortwave, 324	  

we modified CCSM such that it reported the fields necessary for the OSSE at 3-hour intervals 325	  

for a single month, and then compared the results from the OSSE based on a monthly-mean 326	  

profile.  We find that the use of monthly mean profiles leads to a positive shortwave reflectance 327	  

bias RMSE of 0.05, due to the effect from clouds, but, as was found previously by Roberts et al, 328	  

[2011], does not appear to impact variability significantly.  However, this shortwave is larger 329	  

than the climate change signal, and modelling centres therefore need to archive the fields 330	  

necessary for instantaneous radiative transfer calculation to avoid precluding offline diagnoses. 331	  

 332	  

Hyperspectral instrument simulators such as the one presented here enable researchers to 333	  

explore the spectral dimension of climate change to understand how various processes 334	  

contribute to changes in albedo and OLR.   The large number of data points generated by this 335	  

pan-spectral OSSE provide numerous opportunities for measurement-model intercomparison, 336	  

and the contrasting performance of the OSSE in the visible and infrared windows and near-337	  

infrared water vapour overtone bands and mid-infrared vibration-rotation bands provide an 338	  

indication for the potential benefit for the construction of combined shortwave and longwave 339	  

spectral fingerprints (e.g., [Leroy and Anderson, 2010], [Huang et al. 2010b]) of climate change, 340	  

without the degeneracy of signals from low-clouds and surface temperature. 341	  

 342	  

4. Computational Expense 343	  

The computational expense of the OSSE described here is extreme, even for advanced 344	  

supercomputers, and requires a careful consideration of system queuing priorities to balance 345	  



throughput with resource request size. Furthermore, even the expense of the COSP simulators, 346	  

which is considerably less than the OSSE described herein, is prohibitive. 347	  

 348	  

For reference purposes, we find that, using MODTRAN, for a 26-level atmosphere, each all-sky 349	  

shortwave spectrum calculation, which includes 16 sub-column calls for the cloud overlap 350	  

approximation, requires 184 CPU-seconds while each longwave spectrum calculation, which 351	  

also includes 16 sub-column calls, requires 17.6 CPU-seconds on the NASA HEC resources. 352	  

The computational expense scales with the number of levels and sub-column calls. More 353	  

optimized radiative transfer codes such as Principal Component Radiative Transfer Model 354	  

(PCRTM) [Liu et al. 2006] can achieve a speed-up of at least an order of magnitude in the 355	  

shortwave and two orders of magnitude in the longwave. 356	  

 357	  

In preparation for the large number of simulations that will likely be submitted to the CMIP6 358	  

archive, there is, a pressing need to consider how observational simulators can have reduced 359	  

computational expense. We therefore consider how future OSSEs may perform spatial sampling 360	  

to achieve tolerable radiometric accuracy with fewer radiative transfer calls. Figure (5a-d) show 361	  

that global and regional averages can be obtained by randomly sampling grid boxes and then 362	  

performing radiative transfer calculations. This will produce a level of radiometric error that is 363	  

less 2% for global average and 1% for Tropical Western Pacific regional average, which is 364	  

consistent with the CLARREO mission specification [Wielicki et al. 2013] with two orders of 365	  

magnitude fewer calculations. These results imply that inline satellite simulation, may be 366	  

tractable for CMIP5 and CMIP6 models where climatological averages are desired. 367	  

 368	  

5. Discussion 369	  

This paper has introduced a software framework that is capable of simulating the shortwave and 370	  

longwave TOA spectral signatures of the climate change diagnosed from projections from global 371	  



climate and Earth system models.  This represents a contribution to the growing literature 372	  

around instrument emulation since attainment of this consistency requires particular attention to, 373	  

and extensive validation of, the issues of consistent treatment of cloud overlap / geometry, cloud 374	  

condensate, the spectral optical properties of cloud condensate, and the cloud thermodynamic 375	  

state.   376	  

 377	  

The reason why this consistency is critically important is that departures of the hyperspectral 378	  

simulated signal against observations (e.g., SCIAMACHY and AIRS) can then be used directly 379	  

to check the cloud physics in the model, and in turn we can examine whether broadband cloud 380	  

feedbacks to climate change have a particularly large AND UNIQUE spectral signature that 381	  

would be particularly useful for early-detection efforts. 382	  

 383	  

The pan-spectral simulations span from the near-UV to the far-infrared and indicate a rich level 384	  

of information content.  Long-term measurements of changes in these quantities will capture 385	  

many of the climate change processes and the relationships between these processes that are 386	  

sources of uncertainty in climate models.  They also indicate that the shortwave measurements 387	  

are much more spatially heterogeneous than the longwave measurements, so analysis of 388	  

globally-averaged changes in shortwave spectra is less suited towards diagnosing the 389	  

processes that contribute to spectral changes than detailed examination of spatially resolved 390	  

differences. 391	  

 392	  

The ultimate goal of this research is to understand both how climate change alters the evolution 393	  

of the Earth’s top-of-atmosphere shortwave reflectance and longwave radiance spectra and 394	  

determine whether spectral measurements enhance our detection and attribution of climate 395	  

change.  The pan-spectral OSSE described here will enable formal comparisons between 396	  

models and a broad suite of planned and existing instrumentation, and will help establish 397	  



observational metrics for differentiating between climate models according to specific processes.  398	  

This may also enhance the current efforts to utilise the highly-regularised climate model 399	  

reporting framework of the CMIP5 to simulate specific instrumentation through the 400	  

Observational Simulator Package (COSP) [Bodas-Salcedo et al., 2011].  As of this writing, the 401	  

COSP framework (version 1.3.1) currently has an ISCCP, MODIS, CloudSat, and CALIPSO 402	  

instrument emulators.  It can be linked with the Radiative Transfer for Television Infrared 403	  

Observation Satellite Operational Vertical Sounder (RTTOV) [Saunders et al., 1999], which is a 404	  

hyperspectral mid-infrared simulator, but that package has only been developed for clear-sky 405	  

applications.  Regardless, is a critical need to develop the methodology to utilise the spectral 406	  

dimension to gauge model performance.  Recent works by Roberts et al. [2011; 2013] provide a 407	  

path forward for how this can be undertaken quantitatively using principal components, and 408	  

these tools may be helpful for the modelling community for narrowing the range in reported 409	  

shortwave feedback. 410	  

 411	  

A primary challenge to the utilisation of instrument simulators for model and measurement-412	  

model intercomparison is their large computational expense.  For pan-spectral simulators, the 413	  

expense is even more significant, with over 70% arising from the shortwave simulation. 414	  

However, it should be noted that we found a contrast between the visible and near-infrared 415	  

response to climate change, with the former largely controlled by spectrally-flat features and the 416	  

latter controlled by the interaction between clouds, aerosols, water vapour, and greenhouse 417	  

gases.  Spectral resolution is required to capture those interactions in the near-infrared.  418	  

Moreover, Roberts et al. [2011] showed that the principal component spectrum from 419	  

SCIAMACHY measurements changed significantly between 25 and 100 nm Full-Width Half Max 420	  

(FWHM) resolution, suggesting that information about shortwave processes requires dozens of 421	  

channels, but not thousands. The computational expense can be lowered with ultra-fast 422	  

radiative transfer methods (e.g., Liu et al. [2006]). Alternatively, regional calculations may be 423	  



considered for addressing those regions that contribute most significantly to climate sensitivity 424	  

divergence [Armour et al., 2013].  We also demonstrate that global and regional averages can 425	  

be obtained with acceptable levels of radiometric error via simulations based on random grid-426	  

box sampling. This approach does have the potential to encompass a large number of existing 427	  

and proposed measurement concepts.  It is much more of a challenge to use narrow-band 428	  

simulators to explore the value of new mission concepts. 429	  

 430	  

For competent simulation, it is critical that model intercomparison projects, such as those of 431	  

CMIP5, archive the fields necessary to perform offline diagnostic radiative transfer across the 432	  

electromagnetic spectrum.  This includes the three-dimensional thermodynamic, gaseous, and 433	  

condensate structure of the atmosphere, and land emission and reflectance at time-scales sub-434	  

daily time-scales. The Cloud Feedback Model Intercomparison Project [Bony et al., 2011] 435	  

archived these fields for snapshots of several experiments associated with CMIP5, but the level 436	  

of participation by the modelling centres was less than for the CMIP5 Tier 1 experiments 437	  

including RCP8.5. 438	  

 439	  

Spectra can be a very important tool for measurement model intercomparison, but OSSE 440	  

development needs to be expanded to consider existing hyperspectral data records, which 441	  

contain numerous indicators of processes that control the Earth’s energy balance.  As of the 442	  

writing of this paper, the data record from AIRS is over 11 years’ long, the IASI record is over 7 443	  

years’ long, and the SCIAMACHY record is over 10 years’ long.  These decadal length records 444	  

provide an opportunity to test present day climate model performance in multiple ways that 445	  

cannot be easily be adjusted with problematic tuning [Mauritsen et al., 2012] and can therefore 446	  

be strict constraints for model development and testing. However, the challenges that have 447	  

faced other long-term satellite data record analyses [Norris, 2007; Clement et al., 2009; Spencer 448	  

and Christy, 1992; Fu and Johanson, 2004; Seidel et al., 2011] must be considered.  While orbit 449	  



and calibration are considerably less problematic for newer instrumentation, the climate quality 450	  

of the instantaneous retrievals must be established.  This pan-spectral simulation capability may 451	  

also be applicable to recent efforts by CLARREO and GEO-CAPE to develop the pan-spectral 452	  

measurements in order to answer questions related to the processes that contribute to TOA 453	  

atmospheric energetics and also the evolution of tropospheric chemistry.  454	  

 455	  

The community should consider how the advent of pan-spectral measurements may have the 456	  

potential to detect climate change and to distinguish which climate models produce more 457	  

realistic projections, sooner than is possible with conventional broadband instruments [Feldman 458	  

et al., 2013]. Spectral Empirical Orthogonal Functions may accelerate this ability to distinguish 459	  

models even further by exploiting spectral redundancy to minimise noise and discern spectral 460	  

multi-pole features less readily detected with broadband instruments.  Pan-spectral techniques 461	  

can then be used to detect low-cloud feedbacks sooner and with greater accuracy than 462	  

broadband or spectral infrared techniques alone.  Optimal detection techniques [e.g., 463	  

Newchurch et al., 2003; Leroy and Anderson, 2010] are critical to establishing how the 464	  

hyperspectral dimension can be utilised to detect climate change and assess models.  465	  
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Figure Captions 635	  

Figure 1: (a) Histogram of all grid points for the difference in all-sky OLR calculated by the 636	  

CCSM radiative transfer code and by MODTRAN for the 32,768 grid boxes from an example 637	  

month January 2099 for the A2 simulation.  Also included are the Pearson correlation coefficient 638	  

(r2) and the mean (µ) and standard deviation (σ) of the differences between the two codes.  (b) 639	  

Same as (a) but for clear-sky OLR. (c) Same as (a) but for all-sky shortwave flux.  (d) Same as 640	  

(b) but for clear-sky shortwave flux. 641	  

 642	  

Figure 2: (a) Pan-spectral composite of the globally-averaged all- and clear-sky shortwave 643	  

reflectance and longwave radiance from January 2000 for the A2 simulation.  (b) Same as (a) 644	  

but showing the least-squares trends in shortwave reflectance (in reflectance units per decade) 645	  

and longwave radiance (in W/m2/sr/µm/decade) between 2000 and 2050.  Shading indicates 646	  

95% confidence interval of uncertainty in trends. 647	  

 648	  

Figure 3:  (a) Differences in zonally- and decadally-averaged pan-spectral clear-sky composite 649	  

for 2050-2059 and 2000-2009 for the A2 simulation.  (b) Same as (a) but plotting differences in 650	  

all-sky conditions between the 2050s and the 2000s.  (c) Differences in cloud radiative effect 651	  

(CRE) between the 2050s and 2000s. (d) Same as (a) but plotting differences between the 652	  

2090s and the 2000s.  (e) Same as (d) but plotting all-sky conditions. (f) Same as (c) but plotting 653	  

differences between the 2090s and 2000s. 654	  

 655	  

Figure 4: (a) Difference in all-sky shortwave TOA flux trends between HadGEM2-ES and 656	  

MIROC5 running the RCP8.5 scenario over the period 2005-2035. (b) Same as (a) but for 657	  

longwave TOA flux trends.  (c) Same as (a) but for clear-sky shortwave TOA flux trends. (d) 658	  

Same as (a) but for clear-sky longwave TOA flux trends. (e) Pan-Spectral all-sky trends 659	  

shortwave reflectance and longwave radiance for the MIROC5 and HadGEM2-ES models 660	  



derived for the Arctic (70-90N; 0-100E) and (f) for the Tropical Western Pacific (10S-10N; 100-661	  

150E). 662	  

 663	  

Figure 5: (a) RMSE vs. number of randomly-sampled grid cells for January 2000 global average. 664	  

(b) Same as (a) but for a Tropical Western Pacific region (10S-10N; 100-150E). (c) Same as (a) 665	  

but for decadal average 2000-2009. (d) Same as (b) but for the decadal average 2000-2009. 666	  



Figure 1: 

(a) (b) 

(c) (d) 
 



Figure 2: 

(a) 

(b) 



Figure 3: 
 

(a) (b) (c)	  
	  

(d) (e) (f)	  



Figure 4: 

(a)  (b) 

(c)  (d)

(e) (f) 

 

  



Figure 5: 

(a)  (b) 

(c)  (d) 

 

  


	GMD-revised4-notrackedchanges
	Figure1
	Figure2
	Figure3
	Figure4
	Figure5

