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Abstract 17	
  

Top-of-atmosphere spectrally-resolved shortwave reflectances and longwave radiances 18	
  

describe the response of the Earth’s surface and atmosphere to feedback processes and 19	
  

human-induced forcings. In order to evaluate proposed long-duration spectral measurements, 20	
  

we have projected 21st Century changes from the Community Climate System Model 21	
  

(CCSM3.0) conducted for the Intergovernmental Panel on Climate Change (IPCC) A2 22	
  

Emissions Scenario onto shortwave reflectance spectra from 300 to 2500 nm and longwave 23	
  

radiance spectra from 2000 to 200 cm-1 at 8 nm and 1 cm-1 resolution, respectively. The 24	
  

radiative transfer calculations have been rigorously validated against published standards and 25	
  

produce complementary signals describing the climate system forcings and feedbacks.  26	
  

Additional demonstration experiments were performed with the MIROC5 and HadGEM2-ES 27	
  

models for the Representative Concentration Pathway 8.5 (RCP8.5) scenario.  The calculations 28	
  

contain readily distinguishable signatures of low clouds, snow/ice, aerosols, temperature 29	
  

gradients, and water vapour distributions.  The goal of this effort is to understand both how 30	
  

climate change alters reflected solar and emitted infrared spectra of the Earth and determine 31	
  

whether spectral measurements enhance our detection and attribution of climate change.  This 32	
  

effort also presents a path forward to understand the characteristics of hyperspectral 33	
  

observational records needed to confront models and inline instrument simulation. Such 34	
  

simulation will enable a diverse set of comparisons between model results from coupled model 35	
  

intercomparisons and existing and proposed satellite instrument measurement systems.  36	
  



1. Introduction 37	
  

The spectrally-integrated upwelling top-of-atmosphere radiant energy field comprises the Earth 38	
  

system’s total energy balance, and comprehensive comparisons of modelled Outgoing 39	
  

Longwave Radiation (OLR) and albedo with observationally-based estimates of these quantities 40	
  

have led to important constraints on climate models [e.g., Morcrette, 1991; Kiehl et al., 1994].  41	
  

The spectrally resolved energy field spans an additional dimension that contains information 42	
  

regarding the processes that govern that balance.  Moreover, it has been demonstrated that 43	
  

infrared spectra contain important information that can be used to test climate models [e.g., 44	
  

Goody et al., 1998], primarily because the spectral signatures of individual forcings and 45	
  

feedbacks can be readily separated, detected, and quantified.  Recent work by Roberts et al. 46	
  

[2011] suggest that shortwave spectra also contain independent information about processes 47	
  

that contribute to albedo. Although the separability of processes that contribute to albedo from 48	
  

these spectra has not been addressed formally, Jin et al [2011] showed the utility of shortwave 49	
  

spectral fingerprints which may be extended to consider spectral separability. 50	
  

 51	
  

This has motivated the implementation of Observing System Simulation Experiments (OSSEs) 52	
  

based on climate models as a means for exploring the utility of well-posed comparisons 53	
  

between models and measurements.  OSSEs are well-established techniques for evaluating the 54	
  

scientific and operational value of new instruments proposed for meteorological applications 55	
  

[Arnold and Dey, 1986].  The role of OSSEs for climate science is less mature than that of the 56	
  

application to short-term weather forecasting for which they were originally developed.  The 57	
  

decadal length of climate studies and the necessarily long measurement records that are 58	
  

needed to confront how models predict climate change motivate the development of climate 59	
  

model OSSEs. The forward evaluation of remote sensing signal sensitivity to uncertain model 60	
  

parametrisations and/or global climate sensitivity contributes to the determination of the value of 61	
  

certain types of remote sensing measurements where the underlying climate signal from the 62	
  



model is known. To that end, it has been recently noted by the Intergovernmental Panel on 63	
  

Climate Change (IPCC) that instrument simulators are valuable in that they can obviate 64	
  

inconsistencies between models and measurements [Flato et al., 2013]. 65	
  

 66	
  

Several investigations have explored direct comparisons between measurements from a variety 67	
  

of existing satellite-based instruments and simulations of those measurements based on various 68	
  

climate model integrations.  For example, community-wide efforts have led to the establishment 69	
  

of the Cloud Feedback Model Intercomparison Project Observational Simulator Package 70	
  

(COSP) [Bodas-Salcedo et al., 2011], enabling inline instrument simulations for existing 71	
  

missions including the International Satellite Cloud Climatology Project (ISCCP), the MODerate 72	
  

Resolution Imaging Spectroradiometer (MODIS), CloudSat, and Cloud-Aerosol Lidar and 73	
  

Infrared Pathfinder Satellite Observation (CALIPSO).  Results from COSP based on models run 74	
  

in historical mode are then compared to existing measurement records to identify model biases 75	
  

(e.g., Kay et al. [2012]; Pincus et al. [2012]). 76	
  

 77	
  

Additionally, there have been efforts to explore how hyperspectral measurements can be 78	
  

utilised for facile measurement-model intercomparison. Huang et al. [2007; 2010a] and Leroy et 79	
  

al. [2008] examined longwave measurements and radio occultation simulations in detail and 80	
  

have compared the spectral signatures of variations in lapse rate, water vapour, and cloud 81	
  

radiative effects (CREs).  The discrepancies in measured and modelled spectra suggest that the 82	
  

agreement in measured and modelled OLR is a result of compensating errors between 83	
  

temperature, water vapour, and cloud structure in the models. 84	
  

 85	
  

Feldman et al. [2011a; 2011b; 2013] developed climate OSSEs with shortwave spectra.  These 86	
  

works showed utility of shortwave spectra for detecting climate change, and found that 87	
  



shortwave measurements are more sensitive to low clouds and changes in frozen surface 88	
  

extent than are longwave spectral measurements.  89	
  

 90	
  

Despite the potential utility of using visible, near-infrared, and infrared measurements, the 91	
  

simultaneous utilisation of shortwave reflectance and longwave radiance spectra to address 92	
  

climate change questions has not been explored in detail to date, despite the numerous studies 93	
  

based on coincident observations of broadband OLR and albedo [e.g., [Kiehl and Trenberth, 94	
  

1997; Hansen et al., 2005; Wielicki et al., 2006; Loeb et al., 2009].  The combination of 95	
  

shortwave and longwave hyperspectral measurements could potentially be quite useful in 96	
  

addressing fundamental and unanswered questions related to shortwave cloud and ice 97	
  

feedbacks while simultaneously describing the temperature and water vapour structure of the 98	
  

atmosphere.  The ultimate goal of this research area is to develop rigorous observational tests 99	
  

for climate models with a particular focus on using measurements to constrain climate model 100	
  

sensitivity. 101	
  

 102	
  

Existing hyperspectral infrared measurement systems including the Atmospheric Infrared 103	
  

Sounder (AIRS) [Aumann et al., 2003] and the Infrared Atmospheric Sounding Interferometer 104	
  

(IASI) [Siméoni et al., 1997] can be considered as strong observational constraints.  Moreover, 105	
  

hyperspectral shortwave measurements are available from the SCanning Imaging Absorption 106	
  

SpectroMeter for Atmospheric CHartographY (SCIAMACHY) [Bovensmann et al., 1999], and 107	
  

these extensive data records could be useful for measurement-model intercomparison. 108	
  

 109	
  

This paper presents a versatile tool for simulating spectrally resolved measurements from the 110	
  

near-UV (300 µm) to the far-infrared (50 µm) and discusses how these measurements can be 111	
  

used to generalise existing OSSE efforts.  It demonstrates the rigorous radiometric validation 112	
  

needed to establish comprehensive science traceability studies for planned instruments such 113	
  



those recommended by the National Research Council’s Decadal Survey including CLimate 114	
  

Absolute Radiance and Refractivity Observatory (CLARREO) [Wielicki et al., 2013] and 115	
  

GEOstationary Coastal and Air Pollution Events (GEO-CAPE) [Space Studies Board, 2007].   116	
  

Additionally, the pan-spectral OSSE may be utilised to develop climate model observational 117	
  

tests for evaluating results reported to the Coupled Model Intercomparison Project – Phase 5 118	
  

(CMIP5) [Taylor et al., 2012] and Phase 6 (CMIP6) [Meehl et al., 2014]. 119	
  

 120	
  

2. Methodology 121	
  

Following Feldman et al. [2011a], we present OSSE calculations of shortwave spectral 122	
  

reflectance and longwave spectral radiance that simulates spectral measurements based on the 123	
  

climate projections conducted with Community Climate System Model, Version 3.0 (CCSM3) 124	
  

integrations [Collins et al., 2006a; Meehl et al., 2006].  The spectral calculations are performed 125	
  

with the MODerate Resolution TRANsmission (MODTRANTM) radiative transfer code [Berk et al., 126	
  

2005].  The shortwave and longwave spectra are calculated from 0.3 to 2.5 µm (33333 to 127	
  

4000 cm-1) at a 15 cm-1 native resolution, and from 5 to 50 µm (2000 to 200 cm-1) at a 1 cm-1 128	
  

native resolution, respectively.  The calculations produce top-of-atmosphere (TOA) radiance 129	
  

spectra and upwelling and downwelling direct and diffuse spectral flux (irradiance) fields at each 130	
  

vertical level of CCSM3. 131	
  

 132	
  

The fields produced in CCSM3 integrations include vertical profiles of atmospheric 133	
  

thermodynamic properties, trace gases, and condensed species on a 26 level hybrid-sigma grid 134	
  

extending from the surface to a constant pressure level of 2 hPa.  CCSM3 has been run at a 135	
  

variety of different horizontal resolutions for the spectral-Eulerian atmospheric dynamical core.  136	
  

The results described here have been computed and archived at T85 resolution representing a 137	
  

triangular truncation of the dynamics at 85 wavenumbers and corresponding to a 1.4° 138	
  

equilateral grid on the equator.  The OSSE, as described by Feldman et al. [2011a], utilises 139	
  



monthly-mean values for profiles of temperature, water vapour (H2O), carbon dioxide (CO2), 140	
  

ozone (O3), methane (CH4), nitrous oxide (N2O), trichlorofluoromethane (CFC-11), and 141	
  

dichlorodifluoromethane (CFC-12).  Profiles of both liquid and ice cloud area, condensed water 142	
  

content, and effective radius are utilised.  The treatment of cloud optics for the spectral 143	
  

simulations in the OSSE is identical to that used by the CCSM3.  In the shortwave, the optical 144	
  

properties of liquid and ice clouds vary with wavelength [Hansen and Travis, 1974; Slingo, 1989].  145	
  

In the longwave, liquid and ice clouds are treated as grey bodies where liquid clouds are 146	
  

assigned a constant emissivity and ice clouds are assigned an emissivity that varies with the 147	
  

effective radii diagnosed for the constituent ice crystals.  The infrared absorption and scattering 148	
  

by aerosols are not included in the longwave OSSE; although the direct radiative effects of dust, 149	
  

sulfate, carbonaceous, and sea-salt aerosols are incorporated in the shortwave OSSE.   150	
  

 151	
  

The treatment of the optical surface properties utilises the MODIS Bi-directional Reflectance 152	
  

Distribution Function [Schaaf et al., 2002] and has been critical for the realism of the shortwave 153	
  

OSSE [Feldman et al., 2011b] under present-day conditions.  The formulation of the land-154	
  

surface optical reflection reproduces the snow-free and snow-covered bidirectional reflectance 155	
  

properties from MODIS, and it also includes the effects of retreating snow cover on projections 156	
  

of the Earth’s future reflectance field.  The longwave portion of the OSSE treats ocean surfaces 157	
  

with unitary emissivity, while land surface emissivity is based on an annually-cyclic monthly-158	
  

mean climatology derived from spatial and temporal binning of the MODIS Land Surface 159	
  

Emissivity product [Wan and Zhao-Liang, 1997].  By design, the effects of changes in sea-ice 160	
  

extent and snow cover are included in the OSSE calculations while the effects of future land-use 161	
  

and land-cover change and of changing soil moisture on near-infrared surface albedos are not. 162	
  

 163	
  

This OSSE software framework requires multiple calls to the MODTRAN radiative transfer code 164	
  

and the OSSE is quite computationally expensive despite the optimised load-balancing and 165	
  



intrinsic parallelism of the calculations. Even though it is has been run on a massively parallel 166	
  

NASA High-End Computing (HEC) facility, the ratio of OSSE computational time to the 167	
  

computational time to integrate the fully-coupled CCSM3 for the 21st Century is approximately 168	
  

50:1. There are several potential methods to reduce this computational expense, which will be 169	
  

discussed in Section 4. 170	
  

 171	
  

In support of the IPCC Fifth Assessment Report, modelling centres have undertaken significant 172	
  

efforts to produce a large set of model integrations for CMIP5.  A similar infrastructure to the 173	
  

CCSM3 offline hyperspectral calculations was adopted for two climate models.  These models 174	
  

were MIROC5 [Watanabe et al., 2010] and HadGEM2-ES [Jones et al., 2011], which lie on the 175	
  

low and high end of the model range of CMIP5 equilibrium climate sensitivities at 2.72 and 176	
  

4.59 °K/2xCO2, respectively [Andrews et al., 2012].  Simulations were implemented for the first 177	
  

three decades of the Representative Concentration Pathway 8.5 (RCP8.5) scenario [Van 178	
  

Vuuren et al., 2011].  The fields necessary to perform reflectance and radiance calculations in 179	
  

the OSSE have, unfortunately, only been archived at monthly-mean temporal resolution for this 180	
  

scenario.  Due to the nonlinearity of radiative transfer, it is challenging to validate offline OSSE 181	
  

calculations with the reported values of albedo and OLR from these models, the latter of which 182	
  

are based on averages of radiation calculations performed with time-steps of a few minutes.  183	
  

 184	
  

3. Results  185	
  

In order to meet the requirement for high-accuracy calculations to support both mission design 186	
  

and climate model evaluation, there has been extensive validation performed on both the 187	
  

longwave and shortwave OSSE calculations based on CCSM3.  As a result, the radiation 188	
  

calculations performed by MODTRAN are fully consistent with those produced by the CCSM3 189	
  

radiation code, which itself is extensively evaluated against line-by-line models [Collins et al., 190	
  

2006b; Oreopoulos et al., 2010].  While the shortwave OSSE calculations from MODTRAN have 191	
  



already been extensively validated against CCSM3 all-sky and clear-sky albedo [Feldman et al., 192	
  

2011a], the longwave fields are a new and critical feature to the OSSE, representing the first 193	
  

time that the hyperspectral climate change signal has been simulated and validated across the 194	
  

entire shortwave and longwave energy budget of the climate system. 195	
  

 196	
  

Longwave validation of the two codes was performed using a comparison of TOA OLR.  197	
  

Differences between the two radiative transfer schemes are less than 1% for both clear- and all-198	
  

sky conditions and arise from several factors.  These factors include the contrasting treatments 199	
  

of clouds as vertically extended non-isothermal layers in MODTRAN versus infinitely-thin 200	
  

isothermal objects in CCSM3 together with the contrasting solutions to the radiative equations 201	
  

using 8 discrete-ordinate streams in MODTRAN versus two streams in CCSM3.  Figure (1a-b) 202	
  

shows a distribution of the differences between the OLR produced by the OSSE through offline 203	
  

calls to the CCSM3 longwave radiation code and the OLR produced from the MODTRAN 204	
  

instrument emulator.  Figure (1b) indicates the clear-sky calculations agree to better than 2 205	
  

W/m2.  Meanwhile, the level of agreement between the all-sky OLR from CCSM3 and 206	
  

MODTRAN is degraded relative to the clear-sky case, as shown in Figure (1a), with a mean 207	
  

offset of 1 W/m2 and a root-mean-square (RMS) value of 3.1 W/m2.  A closer investigation 208	
  

revealed that the differences in the numbers of streams in the radiative solution and level-layer 209	
  

formulation differences accounted for the all-sky discrepancies. This is consistent with the 210	
  

performance of the shortwave reflectance component of the OSSE, though the all-sky 211	
  

agreement between MODTRAN and the Community Atmosphere Model (CAM) component of 212	
  

CCSM3 exhibit less spread because the level-layer formulation discrepancy affects OLR more 213	
  

than albedo.  The implication here is that details of vertical formulation of the radiative transfer 214	
  

are critical for competent instrument simulation, especially in the LW. The agreement between 215	
  

MODTRAN and CAM for shortwave fluxes is shown in Figure (1c) and (1d) with a mean offset of 216	
  

around 3 W/m2 in all-sky conditions and 1 W/m2 for clear-sky conditions. 217	
  



 218	
  

Globally-averaged longwave radiance and shortwave reflectance spectra are shown in 219	
  

Figure (2a) for both clear-sky and all-sky conditions at the beginning of the integration.  This 220	
  

figure demonstrates many of the complementary features, due to a number of climate-relevant 221	
  

processes, in these two spectral ranges, including two high-transmittance features in the visible 222	
  

and the mid-infrared which are affected by the presence of clouds, but, as shown in Figure (2b), 223	
  

clear-sky and all-sky differences are of opposite sign between the visible and infrared.  224	
  

Additionally, the spectra indicate a role of water vapour in reducing reflectance in the near-225	
  

infrared overtone absorption bands between 0.8 and 2.0 µm and producing rich spectral 226	
  

structure and decreased infrared radiance between 5 and 8.3 µm and 17 and 50 µm.  Prominent 227	
  

greenhouse-gas absorption features are also indicated for CO2, O3, CH4, and N2O. 228	
  

 229	
  

Figure (2b) shows the corresponding globally-averaged trends in shortwave reflectances and 230	
  

longwave radiances during the first 50 years of the A2 scenario simulation.  Several prominent 231	
  

features can be seen.  First, the shortwave reflectances generally increase with the increased 232	
  

aerosol loading projected for the first half of the 21st Century under both clear- and all-sky 233	
  

conditions, and this effect is evident at shorter wavelengths.  While much of the spatial and 234	
  

seasonal heterogeneity in shortwave reflectance trends that was identified in Feldman et al. 235	
  

[2011a] is averaged out in the globally and annually averaged trends, the contrast between 236	
  

clear-sky and all-sky reflectance trends gives an indication of the additional increase in 237	
  

reflectance from clouds.  Also, the complex spectral structure in the wings of the near-infrared 238	
  

H2O overtone absorption bands indicates the potential for shortwave forcing of greenhouse 239	
  

gases, a topic that deserves greater scrutiny [Collins et al., 2006b].    240	
  

 241	
  

Meanwhile, longwave radiances show a negative trend around 6.3 µm due to greater 242	
  

atmospheric water vapour, positive trends between 8 and 12 µm from higher surface skin 243	
  



temperatures, and negative trends between 14 and 16 µm from increased absorption in the 244	
  

wings of the mid-infrared CO2 bands.  The prescribed increases in CH4 and N2O produce 245	
  

prominent negative trends around 7 µm, while increases in surface and tropospheric 246	
  

temperature are aliased into positive trends in the H2O mid- and far-IR bands. 247	
  

 248	
  

Figure (3a-c) shows differences in zonally- and decadally-averaged shortwave reflectance and 249	
  

longwave radiance spectra for clear-sky and all-sky conditions and cloud radiative effect (CRE) 250	
  

between the decade from 2050-2059 and the first decade of the 21st Century, while Figure (3d-f) 251	
  

show the differences between 2090-2099 and the first decade of the 21st Century.  Increases in 252	
  

anthropogenic aerosol loading between the decades of the 2000s and the 2050s result in 253	
  

increased clear-sky reflectance at low latitudes and visible and near-infrared wavelengths during 254	
  

that time period.  Concurrent changes in the frozen surface coverage decrease reflectance at 255	
  

higher latitudes in the window band but not in the near-infrared.  Decadal differences in all-sky 256	
  

shortwave reflectance share some similarities to decadal differences in the clear-sky shortwave 257	
  

reflectance, but vertical striping features in the water-vapour overtone absorption bands are also 258	
  

present and are indicative of the decrease in low-level stratus clouds.  Additionally, movement 259	
  

of the InterTropical Convergence Zone (ITCZ) produces a dipole in reflectance near the equator 260	
  

with diminished striping features across the overtone absorption bands. 261	
  

 262	
  

The changes in both all-sky and clear-sky longwave radiance exhibit the spectral features 263	
  

highlighted in Figure (2b).  The only other prominent feature is the polar amplification of surface 264	
  

temperature warming that produces meridional gradients in the window band.  Increased cloud 265	
  

cover at high northern latitudes over this period lead to decreases in the radiance across the 266	
  

longwave spectrum.  Additionally, the stratospheric cooling and increased CO2 are prominent 267	
  

around 15 µm while increasing CH4 and N2O produce significant signals around 7 µm. 268	
  

 269	
  



Differences in zonally- and decadally-averaged shortwave reflectance and longwave radiance 270	
  

between the start and end of the 21st Century under the A2 emissions scenario are shown in 271	
  

Figure (3d-f).  These spectra show decreased frozen surface extent at high latitudes in visible 272	
  

reflectances and increased water vapour loading leading to lower reflectances in the water 273	
  

vapour overtone bands and at 6.3 µm and in the far-infrared H2O rotational band.  All-sky pan-274	
  

spectral simulations reveal the shifts in storm-tracks with striping features in the H2O near-275	
  

infrared overtone bands at mid-latitudes, and they reveal a stronger dipole near the ITCZ near 276	
  

the equator across the shortwave and longwave. 277	
  

 278	
  

The CRE changes in Figure (3c) and (3f) reveal that significant changes in low-clouds at high 279	
  

latitudes that impact shortwave reflectance and, to a lesser extent, longwave radiance in both 280	
  

panels. Movement of the ITCZ by the 2090s produces a broadband increase in shortwave 281	
  

reflectance but a broadband decrease in longwave radiance as shown in Figure (3f). Such 282	
  

features are much less apparent in the Figure (3c). 283	
  

 284	
  

OSSEs can also be used for inter-model comparisons.  To demonstrate this, we considered the 285	
  

contributions of the MIROC5 and HadGEM2-ES models to the CMIP5 archive.  Trend 286	
  

differences in albedo and OLR are shown in Figure (4a-d). In all-sky OLR, as shown in Figure 287	
  

(4b), trend differences indicate model disagreement in deep convective response in the Tropical 288	
  

Western Pacific, with HadGEM2-ES showing increased deep convection as compared to 289	
  

MIROC5, though the difference in the trends changes sign over South America.  The clear-sky 290	
  

OLR trend differences, as shown in Figure (4d) are small, but spatially expansive and are due in 291	
  

large part to the water vapour response both in convective and subsidence regions. The 292	
  

MIROC5 model exhibits a water vapour loading response that impacts OLR more than the 293	
  

HadGEM2-ES model. 294	
  

 295	
  



For climate sensitivity, however, the difference in the processes that affect shortwave radiation 296	
  

of these models is larger than the longwave.  Differences in the models’ description of sea-ice 297	
  

loss and cloud response at high latitudes and particularly in subsidence regions, have been 298	
  

shown to contribute most significantly to the discrepancy in their equilibrium sensitivities 299	
  

[Andrews et al., 2012].  Hyperspectral longwave simulations based on these models have been 300	
  

validated with a bias of 3 W/m2 and an RMS difference of 0.5 and 3 W/m2 for clear-sky and all-301	
  

sky longwave, respectively, with respect to the model-reported TOA fluxes.  For the shortwave 302	
  

simulations, the hyperspectral simulations exhibit an average bias of 0.1% and an RMS 303	
  

difference of 1.5% and 2.2% for clear-sky and all-sky, respectively, for both models subject to 304	
  

the above-mentioned issues with temporal averaging.  Nevertheless, Figures (4e) and (4f) 305	
  

indicate that there are numerous differences in the models’ response in hyperspectral 306	
  

simulations in subsets of the OSSE spectra from the Arctic and the Tropical Western Pacific. 307	
  

Both the visible and infrared window spectral regions readily differentiate the two climate model 308	
  

runs, and spectral trends of the model differ significantly.  Also, in the TWP, the sign of the 309	
  

change in the shortwave visible differs from that of the near-infrared water vapour overtone 310	
  

regions, potentially improving signal detectability, and indicating the potential for spectra to 311	
  

identify processes that contribute to different trends in OLR and albedo.  The corollary of this is 312	
  

that long-term spectral trends from measurements can be confronted with the results of a 313	
  

hyperspectral simulator from models to exclude one or more model descriptions of the response 314	
  

to known forcings. It is worth noting that Huang and Ramaswamy [2009] showed that longwave 315	
  

spectral radiance measurements can disclose detailed climate change signals that would have 316	
  

otherwise been hidden in the model-reported broadband fluxes due to compensating effects. 317	
  

The results here also suggest that such compensation may be occurring in the shortwave as 318	
  

well.  319	
  

 320	
  



One important caveat to these results, though, is, as mentioned above, the use of monthly-321	
  

mean profiles for simulation. Previous work by Huang and Ramaswamy [2009] found that 322	
  

calculations based on monthly-mean profiles rather than instantaneous ones could introduce 323	
  

negative brightness temperature biases between 3 and 4 °K. To test the effect in the shortwave, 324	
  

we modified CCSM such that it reported the fields necessary for the OSSE at 3-hour intervals 325	
  

for a single month, and then compared the results from the OSSE based on a monthly-mean 326	
  

profile.  We find that the use of monthly mean profiles leads to a positive shortwave reflectance 327	
  

bias RMSE of 0.05, due to the effect from clouds, but, as was found previously by Roberts et al, 328	
  

[2011], does not appear to impact variability significantly.  However, this shortwave is larger 329	
  

than the climate change signal, and modelling centres therefore need to archive the fields 330	
  

necessary for instantaneous radiative transfer calculation to avoid precluding offline diagnoses. 331	
  

 332	
  

Hyperspectral instrument simulators such as the one presented here enable researchers to 333	
  

explore the spectral dimension of climate change to understand how various processes 334	
  

contribute to changes in albedo and OLR.   The large number of data points generated by this 335	
  

pan-spectral OSSE provide numerous opportunities for measurement-model intercomparison, 336	
  

and the contrasting performance of the OSSE in the visible and infrared windows and near-337	
  

infrared water vapour overtone bands and mid-infrared vibration-rotation bands provide an 338	
  

indication for the potential benefit for the construction of combined shortwave and longwave 339	
  

spectral fingerprints (e.g., [Leroy and Anderson, 2010], [Huang et al. 2010b]) of climate change, 340	
  

without the degeneracy of signals from low-clouds and surface temperature. 341	
  

 342	
  

4. Computational Expense 343	
  

The computational expense of the OSSE described here is extreme, even for advanced 344	
  

supercomputers, and requires a careful consideration of system queuing priorities to balance 345	
  



throughput with resource request size. Furthermore, even the expense of the COSP simulators, 346	
  

which is considerably less than the OSSE described herein, is prohibitive. 347	
  

 348	
  

For reference purposes, we find that, using MODTRAN, for a 26-level atmosphere, each all-sky 349	
  

shortwave spectrum calculation, which includes 16 sub-column calls for the cloud overlap 350	
  

approximation, requires 184 CPU-seconds while each longwave spectrum calculation, which 351	
  

also includes 16 sub-column calls, requires 17.6 CPU-seconds on the NASA HEC resources. 352	
  

The computational expense scales with the number of levels and sub-column calls. More 353	
  

optimized radiative transfer codes such as Principal Component Radiative Transfer Model 354	
  

(PCRTM) [Liu et al. 2006] can achieve a speed-up of at least an order of magnitude in the 355	
  

shortwave and two orders of magnitude in the longwave. 356	
  

 357	
  

In preparation for the large number of simulations that will likely be submitted to the CMIP6 358	
  

archive, there is, a pressing need to consider how observational simulators can have reduced 359	
  

computational expense. We therefore consider how future OSSEs may perform spatial sampling 360	
  

to achieve tolerable radiometric accuracy with fewer radiative transfer calls. Figure (5a-d) show 361	
  

that global and regional averages can be obtained by randomly sampling grid boxes and then 362	
  

performing radiative transfer calculations. This will produce a level of radiometric error that is 363	
  

less 2% for global average and 1% for Tropical Western Pacific regional average, which is 364	
  

consistent with the CLARREO mission specification [Wielicki et al. 2013] with two orders of 365	
  

magnitude fewer calculations. These results imply that inline satellite simulation, may be 366	
  

tractable for CMIP5 and CMIP6 models where climatological averages are desired. 367	
  

 368	
  

5. Discussion 369	
  

This paper has introduced a software framework that is capable of simulating the shortwave and 370	
  

longwave TOA spectral signatures of the climate change diagnosed from projections from global 371	
  



climate and Earth system models.  This represents a contribution to the growing literature 372	
  

around instrument emulation since attainment of this consistency requires particular attention to, 373	
  

and extensive validation of, the issues of consistent treatment of cloud overlap / geometry, cloud 374	
  

condensate, the spectral optical properties of cloud condensate, and the cloud thermodynamic 375	
  

state.   376	
  

 377	
  

The reason why this consistency is critically important is that departures of the hyperspectral 378	
  

simulated signal against observations (e.g., SCIAMACHY and AIRS) can then be used directly 379	
  

to check the cloud physics in the model, and in turn we can examine whether broadband cloud 380	
  

feedbacks to climate change have a particularly large AND UNIQUE spectral signature that 381	
  

would be particularly useful for early-detection efforts. 382	
  

 383	
  

The pan-spectral simulations span from the near-UV to the far-infrared and indicate a rich level 384	
  

of information content.  Long-term measurements of changes in these quantities will capture 385	
  

many of the climate change processes and the relationships between these processes that are 386	
  

sources of uncertainty in climate models.  They also indicate that the shortwave measurements 387	
  

are much more spatially heterogeneous than the longwave measurements, so analysis of 388	
  

globally-averaged changes in shortwave spectra is less suited towards diagnosing the 389	
  

processes that contribute to spectral changes than detailed examination of spatially resolved 390	
  

differences. 391	
  

 392	
  

The ultimate goal of this research is to understand both how climate change alters the evolution 393	
  

of the Earth’s top-of-atmosphere shortwave reflectance and longwave radiance spectra and 394	
  

determine whether spectral measurements enhance our detection and attribution of climate 395	
  

change.  The pan-spectral OSSE described here will enable formal comparisons between 396	
  

models and a broad suite of planned and existing instrumentation, and will help establish 397	
  



observational metrics for differentiating between climate models according to specific processes.  398	
  

This may also enhance the current efforts to utilise the highly-regularised climate model 399	
  

reporting framework of the CMIP5 to simulate specific instrumentation through the 400	
  

Observational Simulator Package (COSP) [Bodas-Salcedo et al., 2011].  As of this writing, the 401	
  

COSP framework (version 1.3.1) currently has an ISCCP, MODIS, CloudSat, and CALIPSO 402	
  

instrument emulators.  It can be linked with the Radiative Transfer for Television Infrared 403	
  

Observation Satellite Operational Vertical Sounder (RTTOV) [Saunders et al., 1999], which is a 404	
  

hyperspectral mid-infrared simulator, but that package has only been developed for clear-sky 405	
  

applications.  Regardless, is a critical need to develop the methodology to utilise the spectral 406	
  

dimension to gauge model performance.  Recent works by Roberts et al. [2011; 2013] provide a 407	
  

path forward for how this can be undertaken quantitatively using principal components, and 408	
  

these tools may be helpful for the modelling community for narrowing the range in reported 409	
  

shortwave feedback. 410	
  

 411	
  

A primary challenge to the utilisation of instrument simulators for model and measurement-412	
  

model intercomparison is their large computational expense.  For pan-spectral simulators, the 413	
  

expense is even more significant, with over 70% arising from the shortwave simulation. 414	
  

However, it should be noted that we found a contrast between the visible and near-infrared 415	
  

response to climate change, with the former largely controlled by spectrally-flat features and the 416	
  

latter controlled by the interaction between clouds, aerosols, water vapour, and greenhouse 417	
  

gases.  Spectral resolution is required to capture those interactions in the near-infrared.  418	
  

Moreover, Roberts et al. [2011] showed that the principal component spectrum from 419	
  

SCIAMACHY measurements changed significantly between 25 and 100 nm Full-Width Half Max 420	
  

(FWHM) resolution, suggesting that information about shortwave processes requires dozens of 421	
  

channels, but not thousands. The computational expense can be lowered with ultra-fast 422	
  

radiative transfer methods (e.g., Liu et al. [2006]). Alternatively, regional calculations may be 423	
  



considered for addressing those regions that contribute most significantly to climate sensitivity 424	
  

divergence [Armour et al., 2013].  We also demonstrate that global and regional averages can 425	
  

be obtained with acceptable levels of radiometric error via simulations based on random grid-426	
  

box sampling. This approach does have the potential to encompass a large number of existing 427	
  

and proposed measurement concepts.  It is much more of a challenge to use narrow-band 428	
  

simulators to explore the value of new mission concepts. 429	
  

 430	
  

For competent simulation, it is critical that model intercomparison projects, such as those of 431	
  

CMIP5, archive the fields necessary to perform offline diagnostic radiative transfer across the 432	
  

electromagnetic spectrum.  This includes the three-dimensional thermodynamic, gaseous, and 433	
  

condensate structure of the atmosphere, and land emission and reflectance at time-scales sub-434	
  

daily time-scales. The Cloud Feedback Model Intercomparison Project [Bony et al., 2011] 435	
  

archived these fields for snapshots of several experiments associated with CMIP5, but the level 436	
  

of participation by the modelling centres was less than for the CMIP5 Tier 1 experiments 437	
  

including RCP8.5. 438	
  

 439	
  

Spectra can be a very important tool for measurement model intercomparison, but OSSE 440	
  

development needs to be expanded to consider existing hyperspectral data records, which 441	
  

contain numerous indicators of processes that control the Earth’s energy balance.  As of the 442	
  

writing of this paper, the data record from AIRS is over 11 years’ long, the IASI record is over 7 443	
  

years’ long, and the SCIAMACHY record is over 10 years’ long.  These decadal length records 444	
  

provide an opportunity to test present day climate model performance in multiple ways that 445	
  

cannot be easily be adjusted with problematic tuning [Mauritsen et al., 2012] and can therefore 446	
  

be strict constraints for model development and testing. However, the challenges that have 447	
  

faced other long-term satellite data record analyses [Norris, 2007; Clement et al., 2009; Spencer 448	
  

and Christy, 1992; Fu and Johanson, 2004; Seidel et al., 2011] must be considered.  While orbit 449	
  



and calibration are considerably less problematic for newer instrumentation, the climate quality 450	
  

of the instantaneous retrievals must be established.  This pan-spectral simulation capability may 451	
  

also be applicable to recent efforts by CLARREO and GEO-CAPE to develop the pan-spectral 452	
  

measurements in order to answer questions related to the processes that contribute to TOA 453	
  

atmospheric energetics and also the evolution of tropospheric chemistry.  454	
  

 455	
  

The community should consider how the advent of pan-spectral measurements may have the 456	
  

potential to detect climate change and to distinguish which climate models produce more 457	
  

realistic projections, sooner than is possible with conventional broadband instruments [Feldman 458	
  

et al., 2013]. Spectral Empirical Orthogonal Functions may accelerate this ability to distinguish 459	
  

models even further by exploiting spectral redundancy to minimise noise and discern spectral 460	
  

multi-pole features less readily detected with broadband instruments.  Pan-spectral techniques 461	
  

can then be used to detect low-cloud feedbacks sooner and with greater accuracy than 462	
  

broadband or spectral infrared techniques alone.  Optimal detection techniques [e.g., 463	
  

Newchurch et al., 2003; Leroy and Anderson, 2010] are critical to establishing how the 464	
  

hyperspectral dimension can be utilised to detect climate change and assess models.  465	
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Figure Captions 635	
  

Figure 1: (a) Histogram of all grid points for the difference in all-sky OLR calculated by the 636	
  

CCSM radiative transfer code and by MODTRAN for the 32,768 grid boxes from an example 637	
  

month January 2099 for the A2 simulation.  Also included are the Pearson correlation coefficient 638	
  

(r2) and the mean (µ) and standard deviation (σ) of the differences between the two codes.  (b) 639	
  

Same as (a) but for clear-sky OLR. (c) Same as (a) but for all-sky shortwave flux.  (d) Same as 640	
  

(b) but for clear-sky shortwave flux. 641	
  

 642	
  

Figure 2: (a) Pan-spectral composite of the globally-averaged all- and clear-sky shortwave 643	
  

reflectance and longwave radiance from January 2000 for the A2 simulation.  (b) Same as (a) 644	
  

but showing the least-squares trends in shortwave reflectance (in reflectance units per decade) 645	
  

and longwave radiance (in W/m2/sr/µm/decade) between 2000 and 2050.  Shading indicates 646	
  

95% confidence interval of uncertainty in trends. 647	
  

 648	
  

Figure 3:  (a) Differences in zonally- and decadally-averaged pan-spectral clear-sky composite 649	
  

for 2050-2059 and 2000-2009 for the A2 simulation.  (b) Same as (a) but plotting differences in 650	
  

all-sky conditions between the 2050s and the 2000s.  (c) Differences in cloud radiative effect 651	
  

(CRE) between the 2050s and 2000s. (d) Same as (a) but plotting differences between the 652	
  

2090s and the 2000s.  (e) Same as (d) but plotting all-sky conditions. (f) Same as (c) but plotting 653	
  

differences between the 2090s and 2000s. 654	
  

 655	
  

Figure 4: (a) Difference in all-sky shortwave TOA flux trends between HadGEM2-ES and 656	
  

MIROC5 running the RCP8.5 scenario over the period 2005-2035. (b) Same as (a) but for 657	
  

longwave TOA flux trends.  (c) Same as (a) but for clear-sky shortwave TOA flux trends. (d) 658	
  

Same as (a) but for clear-sky longwave TOA flux trends. (e) Pan-Spectral all-sky trends 659	
  

shortwave reflectance and longwave radiance for the MIROC5 and HadGEM2-ES models 660	
  



derived for the Arctic (70-90N; 0-100E) and (f) for the Tropical Western Pacific (10S-10N; 100-661	
  

150E). 662	
  

 663	
  

Figure 5: (a) RMSE vs. number of randomly-sampled grid cells for January 2000 global average. 664	
  

(b) Same as (a) but for a Tropical Western Pacific region (10S-10N; 100-150E). (c) Same as (a) 665	
  

but for decadal average 2000-2009. (d) Same as (b) but for the decadal average 2000-2009. 666	
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