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Abstract

The Ensemble Kalman filter (EnKF) assimilation method is applied to the tracer trans-
port using the same stratospheric transport model as in the 4D-Var assimilation system
BASCOE. This EnKF version of BASCOE was built primarily to avoid the large costs
associated with the maintenance of an adjoint model. The EnKF developed in BASCOE5

accounts for two adjustable parameters: a parameter α controlling the model error term
and a parameter r controlling the observational error. The EnKF system is shown to be
markedly sensitive to these two parameters, which are adjusted based on the monitor-
ing of a χ2-test measuring the misfit between the control variable and the observations.
The performance of the EnKF and 4D-Var versions was estimated through the assim-10

ilation of Aura-MLS ozone observations during an 8 month period which includes the
formation of the 2008 Antarctic ozone hole. To ensure a proper comparison, despite
the fundamental differences between the two assimilation methods, both systems use
identical and carefully calibrated input error statistics. We provide the detailed pro-
cedure for these calibrations, and compare the two sets of analyses with a focus on15

the lower and middle stratosphere where the ozone lifetime is much larger than the
observational update frequency. Based on the Observation-minus-Forecast statistics,
we show that the analyses provided by the two systems are markedly similar, with
biases smaller than 5 % and standard deviation errors smaller than 10 % in most of
the stratosphere. Since the biases are markedly similar, they have most probably the20

same causes: these can be deficiencies in the model and in the observation dataset,
but not in the assimilation algorithm nor in the error calibration. The remarkably similar
performance also shows that in the context of stratospheric transport, the choice of the
assimilation method can be based on application-dependent factors, such as CPU cost
or the ability to generate an ensemble of forecasts.25
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1 Introduction

Two of the most important and widely used data assimilation methods are the Four-
Dimensional Variational method (4D-Var: Talagrand and Courtier, 1987) and the
Ensemble Kalman Filter (EnKF: Evensen, 1994; Houtekamer and Mitchell, 1998;
Evensen, 2003). Although they solve similar estimation problems, they are built around5

different constraints and thus have different strengths and weaknesses. The BASCOE
(Belgian Assimilation System for Chemical ObsErvations) system was originally de-
veloped with the 4D-Var assimilation method applied to a stratospheric CTM (Errera
et al., 2008; Errera and Ménard, 2012). This variational method determines the initial
conditions which optimize the fit between model forecast and observations over a pe-10

riod, i.e. an assimilation window. In atmospheric chemistry, an assimilation window of
12 h (Flemming et al., 2009) or 24 h (Errera et al., 2008; Elbern et al., 2009) is typ-
ically used. The 4D-Var provides an accurate solution, but requires the development
and maintenance of an adjoint model, which may be a time consuming task in the CTM
context.15

The most popular alternative to the 4D-Var is the EnKF which consists in a Monte
Carlo method (Evensen, 1994). As the 4D-Var, the EnKF is built on the assumption of
Gaussian-distributed observation errors to estimate the minimum variance in the mis-
fit between model forecast and observations. But the EnKF computes this minimum
variance estimate at each time step of the model by computing explicitly its error co-20

variances. It does not require an adjoint model but assumes that the forecast errors are
Gaussian-distributed. In the 4D-Var scheme, the evolution of forecast error within the
assimilation window is computed by the model (whether it is accurate and appropriate
or not). By contrast the EnKF relaxes this assumption into a weak constraint by adding
a model error covariance to the analysis error covariance which becomes dynamically-25

propagated (for more details, see Lorenc, 2003; Ménard and Daley, 1996). Hence, the
model error covariance is of great importance for the filter performance. Moreover, the
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uncertainty of the EnKF analysis is directly provided by the spread of the ensemble of
analyses.

The 4D-Var and the EnKF have comparable computational costs. The advantages
and disadvantages of each method in the meteorological context have been discussed
in several papers (e.g. Hamill, 2006; Kalnay et al., 2007). A rigorous intercomparison5

was also presented by Buehner et al. (2010b) in the context of global NWP (Numer-
ical Weather Prediction) system with real observations. In this context, it was shown
that the EnKF error variance is larger than with the 4D-Var. In their intercomparison
paper, Buehner et al. (2010a) also conducted different variational experiments using
static covariances with horizontally homogeneous and isotropic correlations as well as10

flow-dependent EnKF covariances with spatial localization. The authors went further
and made a hybrid system called Ensemble-4DVar using flow-dependent EnKF covari-
ances without the need of the tangent-linear or adjoint versions of the model. An overall
conclusion obtained by Miyoshi et al. (2010) with the Japanese weather prediction sys-
tem is that both systems have essentially comparable performance.15

In the context of chemical modelling, Lahoz and Errera (2010) and Sandu and Chai
(2011) reviewed different assimilation methods and challenges in chemical data as-
similation. Data assimilation systems based on a CTM are often developed within the
variational approach (Khattatov et al., 1999; Errera et al., 2008), but also with sequen-
tial filtering (Khattatov et al., 2000; Ménard et al., 2000; Miyazaki et al., 2012). Recently20

Sekiyama et al. (2011) constructed a total ozone assimilation system on the basis of
a four-dimensional local ensemble transform Kalman filter (LETKF). Nakamura et al.
(2013) applied the EnKF to stratospheric ozone data assimilation using a multi-model
approach. Meanwhile some developments based on the EnKF have begun to address
tropospheric composition (Constantinescu et al., 2007a; Liu et al., 2012).25

In the context of chemical data assimilation, few studies have been devoted to the
comparison of the 4D-Var and EnKF methods. Constantinescu et al. (2007a) have com-
pared the EnKF with an operational-like 4D-Var setting using common background er-
rors modelled by autoregressive processes applied to a tropospheric chemistry model.
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Wu et al. (2008) presented an intercomparison of four assimilation methods including
the 4D-Var and the EnKF. The paper was organized as a sensitivity study with respect
to different model and assimilation parameters. The experiments were conducted over
a short periods of typically one or two days. One of their conclusions was that the EnKF
is superior to the 4D-Var, but also that Optimum Interpolation is superior to the EnKF.5

However from the study, it was unclear whether each assimilation system was tuned to
provide its best performance. Hence these conclusions were not entirely convincing as
the individual systems may have performed differently with different parameter values.

In the present study, the EnKF and the 4D-Var were both tuned to provide their best
performance while using the same spectral formulation for the prescribed background10

error covariance. First of all, the background error covariance is calibrated within the
4D-Var using the NMC method. The calibrated errors are passed to the EnKF to gen-
erate the initial ensemble and the model error term. The EnKF is then tuned to provide
its best results with χ2 diagnostics close to one (Ménard et al., 2000) by calibration of
the observation and model error covariance. The 4D-Var uses the observation covari-15

ance error calibrated within the EnKF experiments. We have not attempted to introduce
a localization of error covariances in the 4D-Var because the localizations in a 4D-Var
and EnKF are not strictly equivalent (Buehner et al., 2010a). However, the prescribed
correlation length-scales in the EnKF were adjusted to match, after localization, those
prescribed in the 4D-Var.20

The next section describes the configurations of the EnKF and the 4D-Var data as-
similation systems used in this study. The Sect. 3 describes the experimental set-up
and specifically the calibration of the error variances in the two systems. Section 4
compares their results. Finally, some conclusions are given in Sect. 5.
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2 Description of the EnKF and 4D-Var data assimilation systems

2.1 Configuration of the 3D-CTM

The comparison of EnKF and 4D-Var is performed using a tracer version of the BAS-
COE CTM. The model in its usual configuration includes 57 chemical species with a full
description of stratospheric chemistry (Errera et al., 2008). All species are advected5

via the Flux-Form Semi-Lagrangian scheme (Lin and Rood, 1996). For the purposes
of this study as well as to reduce the CPU time, the chemistry is turned off as in Errera
and Ménard (2012) and only the advection of ozone (O3) is considered. The CTM is
driven by winds and temperatures obtained from the ECMWF ERA-Interim reanalysis
(Dee et al., 2011). The horizontal resolution of the model grid is 3.75◦ longitude by 2.5◦

10

latitude. Vertically, the model uses a subset of 37 levels of the ERA-Interim 60 levels
which excludes most tropospheric levels. The vertical domain extends from 0.1 hPa
down to the surface. Hence the model state is described by the vector x ∈ R

n of length
n = 96×73×37 ≈ 2.6×105. Finally, the model time step is set to 30 min.

2.2 The 4D-Var system15

The detailed description of the BASCOE-4DVar data assimilation system is provided
in Errera and Ménard (2012). Here we give only the features relevant to the aims of
this study. The evolution of the model state vector between the time step k−1 and k is
computed by the model operator:

x(tk) =Mk−1,k
(
x(tk−1)

)
, k ∈ [0,K ], (1)20

where k is the time index, Mk−1,k is the model operator between tk−1 to tk and K is
the number of time steps within the assimilation window. In the 4D-Var experiments
performed in this study, the assimilation window is set to 24 h such that, considering
the model time step of 30 min, K = 48.25
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4D-Var data assimilation is carried out by minimizing the so-called cost function (Ta-
lagrand and Courtier, 1987)

J =
1
2

[
x(t0)−xb(t0)

]T
B−1

0

[
x(t0)−xb(t0)

]
+

1
2

K∑
k=0

(
HkM0,k

(
x(t0)−xb(t0)

)
−dk

)T
R−1
k

(
HkM0,k

(
x(t0)−xb(t0)

)
−dk

)
, (2)

5

where xb(t0) ∈ R
n is the background model state and B0 ∈ R

n×n is the background
error covariance matrix; Hk is the observation operator at time tk ; the vector dk =
y(tk)−HkM0,kx

b(t0) is the first-guess innovation vector at time tk ; the y(tk) ∈ R
mk and

Rk ∈ R
mk×mk represent the observational vector and its associated error covariance

matrix at time tk , respectively; mk is the number of observations assimilated during10

time step k.
The BASCOE system has been, up to now, designed to assimilate observational

profiles delivered by limb-scanning instruments. Hence the observation operator Hk
simply consists in a linear interpolation of the model value at the observation tangent
point. We assume that the observation errors are uncorrelated both horizontally and15

vertically. The observation error covariance matrix Rk is thus defined diagonal:

Rk(i , j ) =

{
(r σy (i )

∣∣
tk

)2, if i = j

0, if i 6= j ,
(3)

where r is an adjustable observation error parameter and σy (i )
∣∣
tk

is the measurement
error at level i and time tk . The observations and their errors are described in Sect. 3.120

while the adjustment of r is described in Sect. 2.5. Note that the parameter r governing
the observational error matrix Rk is introduced into the BASCOE 4D-Var system to
allow the comparison with the EnKF.
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The dimension n of the matrix B0 makes the computation of the background term of
Eq. (2) unfeasible by current computers. To avoid the inversion of B0, a control variable
transform is introduced:

Lξ = x0 −xb
0 ≡ δx0, (4)

5

where ξ is a new control variable, δx0 is the analysis increment and L is the square
root of B0:

B0 = LTL. (5)

Hence, the cost function is then re-written as:10

J(ξ) =
1
2
ξTξ+

1
2

K∑
k=0

(HkM0,k(Lξ)−dk)TR−1
k (HkM0,k(Lξ)−dk). (6)

The method used to formulate the operator L is discussed in Sect. 2.4 and additional
information of this incremental form of 4D-Var may be found in Errera and Ménard
(2012). The present study used BASCOE 4D-Var version b07.27.15

2.3 The EnKF system

In this section, we describe a specific variant of the EnKF algorithm as implemented
into the BASCOE system (BASCOE EnKF version b08.06). The general algorithm fol-
lows the theoretical formulation of the EnKF with perturbed observations (Houtekamer
and Mitchell, 1998; Evensen, 2003). Here, we provide only details that are essential to20

understand the performed experiments.
An ensemble of initial states is produced by adding, to a model state, a set of spatially

correlated perturbations according to the prescribed initial error covariance. The details
of the procedure are described in details in Sect. 2.4. The ensemble of model states is
propagated forward in time using the same tracer version of the BASCOE CTM as used25
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in the 4D-Var system (see Sect. 2.1). In a practical implementation, the model error
covariance is represented by the addition of a stochastic noise ηi to each ensemble
member at each model time step:

xf
i (tk) =Mk−1,k

(
xa
i (tk−1)

)
+ηi (tk), i ∈ [1,N], (7)

5

where N is the size of the ensemble, the superscripts “f” and “a” stand for model fore-
cast and analysis, respectively. All other symbols have the same meaning as in the
previous section, and the procedure to simulate the model noise ηi is discussed in the
next section.

To derive the analysis equation, we define first the matrix holding the ensemble mem-10

bers at time tk , xi (tk) ∈ R
n

X(tk) = (x1(tk),x2(tk), . . . ,xN (tk)) ∈ Rn×N . (8)

In practice, the ensemble size N is much smaller than the dimension of the model state
vector n. The ensemble mean is stored in the vector x(tk) ∈ R

n:15

x(tk) =
1
N

N∑
i=1

xi (tk) (9)

Let us note the perturbation of an ensemble member as:

x̃i (tk) = xi (tk)−x(tk), i ∈ [1,N]. (10)
20

The ensemble perturbation matrix X′(tk) is then written as

X′(tk) = (x̃1(tk), x̃2(tk), . . . , x̃N (tk)) ∈ Rn×N . (11)

The ensemble forecast error covariance matrix Be(tk) ∈ R
n×n is obtained from this en-

semble perturbation matrix:25

Be(tk) =
X′(tk)(X′(tk))T

N −1
. (12)
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The matrix Be(tk) can be also rewritten in terms of individual perturbations as:

Be =
1

N −1

∑
i ,j

x̃i x̃
T
j . (13)

Using the same notation as in the previous section, we define the matrix of perturbed
observations as:5

Yk = (y(tk)+ε1(tk),y(tk)+ε2(tk), . . . ,y(tk)+εN (tk)) ∈ Rmk×N , (14)

where εj (tk) ∈ R
mk are observation perturbation vectors at time tk generated by ran-

dom Gaussian numbers characterized by a zero mean distribution and a standard de-
viation equal to the observational error (rσy (tk))2 ∈ R

mk at time tk :10

εj (tk) ∼N
(

0,(rσy (tk))2
)

, j ∈ [1,N]. (15)

The observation error covariance matrix Rk is defined as in the 4D-Var version by
Eq. (3).

The analysis equation in the ensemble Kalman filter stochastic formulation, i.e. with15

perturbed observations (Houtekamer and Mitchell, 2001; Evensen, 2003), is written as

Xa(tk) = Xf(tk)+Be(tk)HT
k

[
HkBe(tk)HT

k +Rk

]−1
Dk , (16)

where Xa(tk) is the analysis ensemble matrix, Xf(tk) is the forecast ensemble matrix
and Dk = Yk −HkXf(tk) is the ensemble innovation matrix at time tk .20

A widely known issue with the EnKF method is its tendency to produce analyses
with noisy spatial correlations at large distances in the analysis covariance. This is
due to the finite and relatively small size of the ensemble compared to the size of the
model state vector (Houtekamer and Mitchell, 2001). To filter out this noise, we fol-
low the method proposed by S.E. Cohn and R. Ménard in 1997 and applied in many25
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EnKF systems (e.g. Houtekamer and Mitchell, 2001; Hamill et al., 2001; Constanti-
nescu et al., 2007b; Fertig et al., 2007; Sakov et al., 2010). The method consists in
using the Schur (element-wise) product of the ensemble covariance matrix with a com-
pact support correlation function, here denoted ρ. The function ρ used in this study is
the 5th-order piecewise rational function of Gaspari and Cohn (1999) which is isotropic5

and decreases monotonically with distance depending on the correlation length scale
Lloc. The function ρ is positive only for distances that are less than 2Lloc and zero
otherwise. We applied this procedure to both horizontal and vertical correlations, using
the compact support correlation functions ρh and ρv , with correlation length scales Lh

loc
and Lv

loc, respectively. The choice of these parameters is discussed in Sect. 3.2.2.10

The actual implementation of the analysis equation is thus written as follows (omitting
the time index):

Xa = Xf +ρv ◦ρh ◦BeHT
[
H(ρv ◦ρh ◦Be)HT +R

]−1
D, (17)

where the notation A ◦B denotes the Schur product between two matrices A and B.15

The observational operator H involves the vertical and horizontal interpolations on the
model grid. And the function ρ has a length scale which is much broader than the inter-
polation distances. Hence, the order of the interpolation and the Schur product can be
interchanged without significant loss of accuracy. So, Eq. (17) is written approximately
as:20

Xa = Xf +ρv ◦ρh ◦BeHT
[
ρv ◦ρh ◦HBeHT +R

]−1
D, (18)

The application of the Schur product to the ensemble covariances has several ad-
vantages. First, the correlation function filters out small and noisy correlations related
to observations at large distances. Second, it allows the EnKF to perform reasonably25

well even with a small number of ensemble members. Houtekamer and Mitchell (2001)
stated that the use of the Schur product improves the conditioning of the matrices BeHT
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and HBeHT. They also argued that the Schur product tends to reduce and smooth the
effect of observations at intermediate distances.

In practice, the forecast error covariance matrix Be is never computed explicitly. The
ensemble representation (Eq. 12) is used instead:

Xa = Xf +ρv ◦ρh ◦X′(HX′)T
[
ρv ◦ρh ◦ (HX′)(HX′)T +R

]−1
D. (19)5

In our system the number of observations per model time step is rather small, allowing
the inversion of the innovation matrix [HBeHT +R] for a reasonable CPU cost.

2.4 Ensemble initialization and model error generation

Several authors have reported the problem of the EnKF divergence: the decreasing10

ability of the filter to correct the ensemble state towards the observations after a cer-
tain number of assimilation cycles (Houtekamer and Mitchell, 1998; Hamill, 2006). The
exact cause of this filter divergence is not entirely clear but two main reasons have
been raised: (i) the variance of the ensemble forecast error becomes too small when
the effect of model error in the prediction is not considered (Lorenc, 2003); and (ii)15

the finite sample size causes a mismatch between estimated and true error variance
(Houtekamer and Mitchell, 1998). A common method preventing the filter divergence
is to increase artificially the ensemble covariance. In our system, the error covariance
is increased by adding a state-wide model error ηi (Eq. 7) at every model time step to
each ensemble forecast.20

Let us first provide a short description of the method to formulate the variational
background error covariance matrix, as proposed by Courtier et al. (1998) and adopted
to the 4D-Var version by Errera and Ménard (2012). In this study, the method is used
not only to compute the matrix B0 in the 4D-Var system (Eq. 5) but also to compute the
initial ensemble and the model error in the EnKF system.25

As stated in Errera and Ménard (2012), the formulation of the background error co-
variance matrix is crucial for any variational data assimilation system. The matrix B0

350

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/339/2014/gmdd-7-339-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/339/2014/gmdd-7-339-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 339–377, 2014

EnKF and 4D-Var
using a stratospheric

tracer transport
model

S. Skachko et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

should be sufficiently compact to be implemented numerically and sufficiently complex
to represent adequately realistic error covariances of the first guess field. To achieve
this goal, there are several approaches. The proposed method expresses the spatial
correlations on a spherical harmonic basis (Courtier et al., 1998). It is based on the fact
that on such basis, homogeneous and isotropic horizontal correlations are represented5

by a diagonal matrix with repeating values on the diagonal (for the same zonal wave
number).

In this case, the operator L introduced in Eq. (4) is defined by:

L = ΣSΛ1/2, (20)
10

where Σ is the (diagonal) background error standard deviation matrix; Λ1/2 is the spatial
correlation matrix defined on a spherical harmonic basis hence diagonal; and S is the
spectral transform operator from the spectral space to the model space.

In the present study, the spatial correlation matrix considers Gaussian correlations in
the horizontal and in the vertical directions with correlation length scales fixed to Lh

0 =15

800 km horizontally and Lv
0 = 1 level vertically. The vertical profile of the background

standard deviation matrix is estimated using the NMC method (Parrish and Derber,
1992) and is shown on Fig. 1. This profile is used for every point of the horizontal grid.

The operator L is also used to generate the initial deviation x̃i (t0) and the model
error ηi (tk) of the EnKF system. In the case of the initial deviation, this ensures that at20

the initial time, both EnKF and 4D-Var systems have the same error statistics. For an
initial deviation, we have:

x̃i (t0) = Lζ i (t0), i ∈ [1,N], (21)

while for a model error, we have25

ηi (tk) = αLψ i (tk), i ∈ [1,N], (22)

351

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/339/2014/gmdd-7-339-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/339/2014/gmdd-7-339-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 339–377, 2014

EnKF and 4D-Var
using a stratospheric

tracer transport
model

S. Skachko et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

where ζ i (t0) and ψ i (tk) are normally distributed random numbers with zero mean and
variance equal to 1, defined in the spectral space; and where α is a model error pa-
rameter smaller than 1.

Normalizing to a normal distributed random deviate is exactly what should also be
done for the simulation of the model error term. In the theory of the Kalman filter5

(Kalman, 1960), the model error ηi is uncorrelated with the observation error and with
the initial condition error. The model error and the analysis error must remain uncor-
related at later times. Hence, the perturbations ψ i should be different at each model
time step.

The algorithm to generate EnKF state perturbations is then identical to the algorithm10

of the 4D-Var background error covariance generation. However, the operator L is ap-
plied to the normally distributed random deviate ζ i (Eq. 21) rather than to the analysis
increment ξ (Eq. 4).

2.5 Methodology of tuning the parameters r and α

As stated before, the EnKF system has two adjustable parameters: r and α. The ob-15

servation error parameter r and the model error parameter α are adjusted statistically
using a χ2 diagnostic introduced by Ménard and Chang (2000) for the Kalman filter.
This diagnostic compares the innovation vector d with the innovation covariance ma-
trix S = HBeHT +R (Eq. 16) using a Mahalanobis norm (Talagrand, 2010). Specifically,
at every analysis time step k, the value of χ2

k is computed as follows:20

χ2
k = dT

kS−1
k dk . (23)

An assimilation system is said optimal when 〈χ2
k 〉 is equal to the number of observa-

tions mk at time tk where 〈〉 denote the mathematical expectation. Since the number
of observations per time step is relatively large, i.e. about 1100 in our case, we can25

approximate 〈χ2
k 〉 by a realization of χ2

k for a given set of observed values (i.e. for a re-
alization of the observation error).
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As shown by Ménard and Chang (2000), modifying the model error parameter
changes the trend (or slope) of χ2

k over time, while modifying the observational er-
ror parameter r changes the mean value of χ2

k . Since these two parameters have
distinguishable effects on the time series of χ2

k (mean and trend), they can be tuned
separately, as summarized by Khattatov et al. (2000):5

1. Run the assimilation system and monitor χ2
k/mk . If its value increases (de-

creases) consistently with time, increase (decrease) α. This procedure is re-
peated until the mean value of χ2

k/mk does not show a trend in its time series.

2. If the average value of χ2
k/mk is larger (smaller) than 1, increase (decrease) the

observation error scaling factor r .10

3 Experimental set-up

3.1 Observations

The data used in this study are ozone profiles given by EOS Aura-MLS version 2.2
(Froidevaux et al., 2008). The observations of ozone cover the latitude range between
82◦ S and 82◦ N with an along-track separation of around 165 km between consecutive15

scans. Around 3500 vertical scans are performed every day. Ozone profiles have a ver-
tical resolution around 3 km in the stratosphere and they are valid for scientific studies
between 215 and 0.02 hPa. However, ozone data are not assimilated above 1 hPa be-
cause the tracer assumption is not valid above this pressure level. The observational
error σy (Eq. 3) is set from the instrumental error provided with each observation and20

increased if necessary to represent at least 5 % of the observation value. This accounts
for the representativeness error because smaller errors would give too large a weight
to observations.
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3.2 Calibration of the systems

To perform a proper comparison between the 4D-Var and EnKF, we must calibrate
both systems in such a way that they use the same error statistics. Our starting point
is the calibration of the error covariance matrix B0 used by the 4D-Var system. This is
realized through a calibration of the spatial correlation operator L, i.e. the background5

error spatial correlation matrix Λ and the background error standard deviation matrix Σ
(Eq. 20). The calibrated operator L is then used in the EnKF system, where the model
error parameter α and the observation error parameter r are estimated using the χ2-
diagnostic. Once the parameter r is estimated, its value is passed to the 4D-Var system
for a final test of performance.10

3.2.1 4D-Var

The matrix Σ of the 4D-Var system has been calibrated using the NMC method (Parrish
and Derber, 1992; Rabier et al., 1998; Bannister, 2008). For this purpose, a 6 month
assimilation experiment (May–October 2008) has been performed assuming a matrix Σ
setup as 30 % of the background field and a matrix Λ assuming Gaussian correlations15

with correlation length scales Lh
0 = 800 km horizontally and Lv

0 = 1 level vertically. The
NMC method assumes that the B0 matrix may be estimated by the difference between
pairs of forecasts of different lead times but same validity times. In meteorology, the
forecast pairs have typically 24 and 48 h lead times. In our case the forecast pairs have
0 and 24 h lead times, i.e. the difference between the forecast pairs is equivalent to the20

analysis increments of the 4D-Var system. Indeed contrary to the meteorological case,
there is no need in chemistry to perform a 24 h forecast to balance the model fields.

The calibration of B0 with the NMC method has been computed for several periods
in 2008: May–July, August–October and May–October. No significant differences in
the estimated Σ and Λ have been found. So the period May–October is used in this25

study. Moreover, to parametrize the diagonal values of the matrix Σ, two variants of
it have been tested using the NMC method. They assume that the background error
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standard deviations are defined by (1) a one-dimensional pressure profile and (2) a two-
dimensional latitude-pressure field. The 4D-Var assimilation experiments using these
two parameterizations of Σ have not shown important differences in results. So the
one-dimensional profile of Σ (see Fig. 1) has been used to compare the 4D-Var and
EnKF systems. We have also estimated the correlation matrix Λ with the NMC method.5

But the differences between the 4D-Var assimilation considering the NMC Λ and the
Gaussian Λ (where both experiments use the NMC Σ) have not shown an important
difference in results. So the Gaussian Λ has been kept to ease its implementation in
the EnKF system – specifically its explicit formulation of compact support correlation
length scales.10

3.2.2 EnKF

Once the matrices Λ and Σ are calibrated in the 4D-Var system, the resulting operator
L is passed to the EnKF system. As explained in Sect. 2.3, the EnKF uses as localiza-
tion method a Schur product with a compact support correlation function. The use of
Schur product reduces the resulting correlation length scales. In order to maintain the15

correlations of the EnKF analysis comparable to those of the 4D-Var system, a different
setting of the correlation length scales is adopted to generate the model error (Eq. 22).
Let C be a matrix resulting from the Schur product of two matrices A and B: C = A ◦B.
If the correlation length scales of A and B are, respectively LA and LB, the correlation
length scale of C is given by (Gaspari and Cohn, 1999):20

1

L2
C

=
1

L2
A

+
1

L2
B

. (24)

In our case, LA corresponds to the correlation length scale Lloc of the compact sup-
port correlation function ρ and LB corresponds to the correlation length scale of the
forecast ensemble covariance matrix Be, denoted in the following by Le. Similarly, LC25

corresponds to the correlation length scale of the analysis ensemble covariance matrix,
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denoted in the following by the effective correlation length scale Leff. As we would like to
maintain the Leff equal to the Gaussian correlation length scales used in the 4D-Var (i.e.
Lh

0 = 800 km and Lv
0=1 level), we need to set Lloc and Le such that Leff = L0. First, rea-

sonable values for the localized correlation length scales were chosen: Lh
loc = 2000 km

and Lv
loc = 1.5. In this configuration, the correlation length scales used to generate the5

model error in the EnKF are defined by Lh
e = 872 km and Lv

e = 1.3 model level.
The next step in the calibration of the EnKF is the tuning of α and r using a χ2-

diagnostic (see Sect. 2.5). Figure 2 shows the time evolution of χ2
k/mk for three EnKF

runs. The first run assumed r = 1 and α = 0, resulting in χ2
k/mk at ∼ 2.8 initially and

growing quickly during the next days. The model error parameter α was then adjusted10

by trial and error until the time-series of χ2
k/mk displayed no trend, a condition met

by a run using α = 0.025. This second run still resulted in χ2
k/mk too large, around 3.

A second series of trial and error adjustments for the observation error parameter r
led to the final run for the EnKF calibration: setting r = 1.65 resulted in analyses with
χ2
k/mk close to 1.15

Figure 3 displays the Observation minus Forecast (OmF) statistics, biases and stan-
dard deviations with respect to the assimilated MLS data, for these three EnKF ex-
periments with [α = 0,r = 1], [α = 0.025,r = 1], and [α = 0.025,r = 1.65]. A clear im-
provement is found after the tuning of α, i.e. the presence of the model error term is
essential for the EnKF to function properly. The impact of the tuning of r is not so visi-20

bly marked, however, the final EnKF experiment using α and r parameters both tuned
shows systematically better results than the experiment where only α is tuned. Overall,
this illustrates an important sensitivity of the EnKF to the adjustable error parameters.

The value of r = 1.65 has been passed to the 4D-Var system for a final experiment
to ensure the use of common observation error statistics. Note that no significant dif-25

ferences in the OmF statistics have been found between the 4D-Var analysis with r = 1
and r = 1.65 (not shown). Thus, while the 4D-Var requires important work to develop
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an adjoint operator, the tuning of error parameters does not require large efforts in the
context of stratospheric chemistry.

3.3 Numerical performance

We tried to configure the EnKF and 4D-Var systems to allow comparable total CPU
costs. Preliminary experiments with the 4D-Var system show that the 4D-Var performs5

reasonably well using about 20 iterations. Accounting for the adjoint model integration
in the 4D-Var, we have chosen for the EnKF an ensemble size of 40 members.

In terms of numerical performance, the 4D-Var requires about 750 s on a single pro-
cessor to integrate one assimilation window of 24 h. The EnKF algorithm consists in
two separate phases: the ensemble propagation and the analysis (Eq. 19). The anal-10

ysis phase of the EnKF requires 550 s to perform 48 analyses, covering the period of
24 h, and 500 s to propagate the ensemble during the same period on a single pro-
cessor. The actual EnKF configuration allows to solve Eq. (19) on multiple processors,
which helps to gain an important wallclock time: the analysis phase requires 100 s
on 16 processors. Note that the computation of the Kalman gain in our EnKF is per-15

formed using Cholesky decomposition where the full observation vector is considered
at a given time step. No simplification is used to compute the inversion of the innovation
matrix [HBeHT+R] or the matrix BeHT. The CPU cost of the EnKF can be improved us-
ing local domain decomposition and integration of the ensemble members on different
processors in parallel. These two tasks will be a subject of our future work.20

4 Results and discussion

In this section, we discuss the performance of the EnKF and 4D-Var after calibra-
tion as described in the previous section. The performance is evaluated using stan-
dard OmF statistics i.e. the average of the differences (bias) between observations and
forecasts, as well as the and their standard deviation. Here we use 24 h forecasts and25
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the assimilated MLS O3 profiles as observation data. This statistical diagnostic is per-
formed in five different latitudinal bands covering the globe. Figure 4 shows the OmF
statistics for the period September–October 2008. The OmF errors are computed in
percents from the observation values. In order to evaluate if the difference between
OmF errors provided by EnKF and 4D-Var are statistically significant for confidence5

interval of 95 %, the Student test (T test) and the Fisher test (F test) are computed for
biases and standard deviation errors, respectively. The application of these statistical
tests are explained in the Appendix. Their results are depicted on Fig. 4 by green/red
stars, which correspond to significant/not significant differences for the chosen confi-
dence interval.10

As seen from the figure, both systems exhibit a small OmF bias, generally less than
2 % in the pressure range 1–100 hPa. The OmF standard deviations are generally less
than 10 % in the range 1–50 hPa and increase to a maximum of ∼ 50 % in the tropical
upper troposphere (200 hPa). In the Upper Troposphere-Lower Stratosphere (UTLS),
the limb sounding observations by Aura-MLS are less precise and less accurate than15

in the mid-stratosphere (Froidevaux et al., 2008) which explains the increase in the
bias and OmF standard deviation below 50 hPa. According to the T and F tests, the
OmF of the EnKF and 4D-Var 24 h forecasts are statistically equivalent at almost all
levels and in all latitude bands. We note however that decreasing the value of the
confidence interval from 95 % to 90 %, for example, reveals that following the T and20

F tests, the OmF of the two systems are different at pressure levels around 4 and
70 hPa in the South Pole region. We note also that in this same region the OmF bias is
much larger for both systems in the lower and upper stratosphere (but still smaller than
6 %). The biases of two systems concord to be of the same sign and roughly of the
same magnitude. This indicates that the origin of the bias is common for both systems.25

Figure 5 shows a time series of the OmF bias and standard deviation in the upper
stratosphere (1–10 hPa) above the South Pole region. The bias and standard devia-
tions of both systems are very similar and remain stable between June and Septem-
ber, with a negligible bias and standard deviations around 6–7 %. From September to

358

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/339/2014/gmdd-7-339-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/339/2014/gmdd-7-339-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 339–377, 2014

EnKF and 4D-Var
using a stratospheric

tracer transport
model

S. Skachko et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

November, these values increase up to 7 % for the bias and 12 % for the standard de-
viation. During that period, the dynamics becomes relatively active in the upper strato-
sphere above the South Pole due to the breakup of the vortex. The ERA-Interim wind
fields used to drive the transport model may be either insufficiently accurate or their
update period (6 h) may be too long to allow the systems to provide accurate 24 h5

forecasts.
Figure 6 shows the time series of the OmF bias and standard deviation in the lower

stratosphere (10–100 hPa) above the South Pole region. Again, both systems have
similar OmF departures. Between May and September, the biases are generally less
than 2 % from the observation values, and the standard deviations are less than 10 %10

until the end of August. The standard deviations increase quickly during the first days
of September and reach maximum values – around 15–17 % – in mid-September, the
4D-Var providing values slightly lower that those from the EnKF. At the beginning of
November, the standard deviations have decreased back to pre-September levels. In
September, the bias of both experiments also slightly increases up to 4 % where 4D-15

Var shows again values slightly lower that those by the EnKF. In mid-October, the bias
becomes negative but with values lower than −2 %. Since the months of September
and October are precisely the period of photochemically-driven ozone destruction, we
attribute these degradations in the OmF series to the absence of chemistry in our sim-
plified model: during the ozone hole period, the tracer transport approximation is clearly20

not adequate. In this situation, the 4D-Var delivered a slightly better performance than
the EnKF. This may be due to the assimilation window of 24 h used by the 4D-Var,
compared with the sequential assimilation of the EnKF.

Outside the ozone hole period/region and based on the OmF statistics between
MLS and the analysis, no significant differences have been found between the sys-25

tems. OmF statistics have also been computed against independent observations by
Envisat/MIPAS (Raspollini et al., 2013). Although the OmF statistics differ slightly, no
statistical differences between the EnKF and 4D-Var systems have been found either
(not shown). Hence the slightly different OmF statistics are only due to the differences
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between the MLS and MIPAS datasets. We thus conclude that both systems are statis-
tically equivalent in the observation space except during the ozone hole period, where
the 4D-Var delivers analyses with slightly smaller OmF departures than the EnKF.

However, individual analyses provided by the two systems can exhibit larger dif-
ferences than those given by OmF statistics. Figure 7 (upper row) shows the ozone5

distribution at 54.6 hPa on 15 September 2008 by both systems and their differences.
Although both analyses display similar patterns, they are clearly not identical. But look-
ing at the monthly averaged maps (Fig. 7, lower row) these difference become small.
Hence while there are some differences between the analyses by the two systems,
these are not systematic and can be attributed to noise in the analyses.10

Finally, let us come back to the time series of the χ2 diagnostic for the EnKF system
(Fig. 2) A small but sharp increase occurs during the first days of September. We
attribute this jump to the onset of photochemically-driven ozone depletion. Figure 8
shows the formation of the ozone hole through ozone analyses delivered by the EnKF
system at 54.6 hPa (model level 22) in the Southern Hemisphere from 29 August to15

20 September (one snapshot every two days). While it takes several days to see a clear
ozone hole above Antarctica (even on 20 September ozone depletion is not complete
yet), ozone depletion started during the first days of September i.e. exactly during the
sudden growth of χ2. If this growth is really due to a missing process in our model
(in this case the ozone polar chemistry), then χ2 may be used as a tool to monitor20

the model error. Note that although the time series of the standard deviation in the
OmF also increases during the formation of the ozone hole (see Fig. 6), the growth in
the standard deviation is smoother that displayed by the χ2 and thus provides a less
clear signal. Future work will extend the comparison to the full BASCOE CTM including
the ozone polar chemistry, and if our explanation is correct this sharp increase should25

disappear from the χ2 time series.
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5 Conclusions

The first aim of this paper was to present the implemention of the EnKF method in
the BASCOE system. This system was originally based on 4D-Var, and our motiva-
tion was to bypass the development and maintenance of an adjoint model. The new
EnKF version of BASCOE was developed accounting for two adjustable parameters:5

the parameter α controlling the model error term of the EnKF and the parameter r con-
trolling the observational error. These two parameters have been adjusted based on
the monitoring of a χ2-test measuring the misfit between the control variable and the
observations. In this study, we have turned off the chemistry in the CTM of BASCOE
and have considered only ozone transport. This configuration allowed considerably10

faster execution of both systems and a large number of assimilation experiments.
The second aim of this paper was to properly compare the EnKF and 4D-Var de-

spite the fundamental differences between the two methods. To this end, we have
used the same numerical model, an identical set of observations, an identical observa-
tion operator H and the same observation error covariance matrix R. Furthermore, the15

background error covariances have been carefully calibrated in both systems. First, the
background error covariance matrix B0 of the 4D-Var system has been calibrated using
the NMC method. Two components of B0, i.e. the background error spatial correlation
matrix Λ and the background error standard deviation matrix Σ, have been transfered
to the EnKF system to generate the initial ensemble and the model error term. The20

background error statistics were then carefully designed to use the same correlation
models and equivalent length-scales in both systems. The EnKF parameters α and r
have been calibrated using the χ2 test. The value of r has been passed to the 4D-Var
system to ensure that both systems use identical observation error covariances. De-
spite a straightforward implementation of the EnKF numerical algorithm, the resulting25

EnKF version of BASCOE was shown to be extremely sensitive to the parameter val-
ues. Thus, an accurate adjusting procedure of these parameters is of great importance
to the performance of the system.

361

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/339/2014/gmdd-7-339-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/339/2014/gmdd-7-339-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 339–377, 2014

EnKF and 4D-Var
using a stratospheric

tracer transport
model

S. Skachko et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

We note that the EnKF has a model error term whereas the 4D-Var is considered
as a strong constraint problem. It may thus be argued that their comparison cannot be
totally fair. Note however that the EnKF is not able to work properly without a model
error and the implementation of the model error term was relatively fast. On the other
hand, the effort required to implement a weak constraint in the 4D-Var seems quite5

large. We thus have considered both methods in their original form. Consequently, we
have not attempted to introduce the background error covariance localization within
4D-Var. Such localization would have resulted in a comparison with a form of 4D-Var
that is never used in practice.

The two systems were compared through the assimilation of Aura-MLS ozone obser-10

vations for the period May–December 2008, thus comprising the polar night and ozone
hole periods. We focused our attention on the lower and middle stratosphere where the
ozone lifetime is much larger than the observational update frequency.

We have assessed the performance primarily in terms of observation minus 24 h
forecast statistics and found that the analyses provided by the two systems are signifi-15

cantly similar for confidence interval of 95 %, with biases smaller than 5 % and standard
deviation errors smaller than 10 % in most of the stratosphere. In September–October,
the two systems display increase in their OmF above South Pole due to (1) the vortex
breakup in the upper stratosphere and (2) the ozone hole formation in the lower strato-
sphere. The degradation of the OmF is these cases are attributed to (1) inaccuracies20

in the modelling of the dynamics and (2) the missing of ozone hole chemistry in the
model.

Since the biases are markedly similar, they have most probably the same causes:
these can be deficiencies in the model and in the observation dataset, but not in the
assimilation algorithm nor in the error calibration. The remarkably similar performance25

also shows that in the context of stratospheric transport, the choice of the assimilation
method can be based on application-dependent factors, such as CPU cost or the ability
to generate an ensemble of forecasts.
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The BASCOE 4D-Var system can provide analyses taking explicitly into account
stratospheric chemistry, in the forward as well as the adjoint model. The EnKF system
presented here accounts only for stratospheric transport, not chemistry. The application
of the EnKF method to the full-chemistry model may require a careful tuning procedure
for each chemical species, a task that can be time consuming. So, the EnKF does5

not require the development of an adjoint model but the 4D-Var requires less tuning
experiments due to its consistency with the atmospheric chemistry and physics. Hence
it is not yet clear if the time required to develop the two methods differs significantly.
The implementation of EnKF with chemistry is ongoing and will be reported in future
studies.10

Appendix A

Statistical tests to compare the OmF errors

A1 The Student Test

We use the two-sample significance Student test (T test; see e.g. Snedecor and
Cochran, 1989) to compare two mean OmF residuals d (l ) computed by the EnKF15

and the 4D-Var, where the bar denotes the time-averaged OmF residual value at level
l . This test is used in our case under the assumption that the two samples have the
same size and variance. The t statistics is computed at each level l as follows:

t(l ) =
d1(l )−d2(l )

Sd1d2
(l )

·

√
2

n(l )
, (A1)

20

where n(l ) is the size of the samples, Sd1d2
(l ) =

√
1
2

(
σ2

1 +σ2
2

)
is the grand or pooled

standard deviation and σ1(l ) and σ2(l ) are the OmF standard deviations for the EnKF
and the 4D-Var at level l , respectively.
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Then, for a given value of significance level α (typically set to 5 %), the hypothesis
that two means are statistically equal is rejected if:

|t(l )| > T1−α/2,n(l ), (A2)

where Tα,n(l ) is a critical value of t(l ) computed as the inverse of the Student’s T cumu-5

lative distribution function (cdf) for a given α and n(l ). The well known t tables provide
the values of Tα,n(l ) only for small sample sizes n(l ). In practice, the Student’s T cdf is
easily computed by many statistical packages like SciPy, the Matlab statistical toolbox
etc.

A2 The Fisher Test10

The Fisher or F test (Snedecor and Cochran, 1989) is used to compare two OmF
standard deviations and determine if they are significantly different. For a two-tailed
significance test it is supposed that σ2

1 6= σ2
2 . The F test statistics is computed as at

each level l as follows

f (l ) =
σ2

1 (l )

σ2
2 (l )

. (A3)15

The more this ratio deviates from 1, the stronger the evidence for unequal OmF stan-
dard deviations. The hypothesis that the two OmF standard deviations are equal is
rejected if

f (l ) > Fα/2,n(l ), (A4)20

or

f (l ) < F1−α/2,n(l ), (A5)

where Fα,n(l ) is the critical value of F distribution computed as F cumulative distribution25

function with n(l ) degrees of freedom and a significance level of α. The F cdf can be
computed using the same statistical packages as for the T cdf.
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Fig. 1: Vertical profile of the background error as used for the standard deviation matrix Σ.
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evolution for the EnKF experiments using [α= 0, r= 1] (orange dashed line), [α= 0.04, r= 1] (green

dashed), and [α= 0.04, r= 1.6] (red solid). for the period from 00 UTC on 1 May 2008 to 00 UTC on 1 January 2009.
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Fig. 2. 〈χ2/m〉 evolution for the EnKF experiments using [α = 0, r = 1] (orange dashed line),
[α = 0.04, r = 1] (green dashed), and [α = 0.04, r = 1.6] (red solid). for the period from
00:00 UTC on 1 May 2008 to 00:00 UTC on 1 January 2009.
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Fig. 3: OmF statistics, bias and standard deviation, with respect to the MLS data of the EnKF experiments using [α=

0, r = 1] (orange dashed line), [α= 0.025, r = 1] (green dashed), and [α= 0.025, r = 1.65] (red solid). for the

period from 1 May to 31 June 2008.
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Fig. 3. OmF statistics, bias and standard deviation, with respect to the MLS data of the EnKF
experiments using [α = 0, r = 1] (orange dashed line), [α = 0.025, r = 1] (green dashed),
and [α = 0.025, r = 1.65] (red solid). for the period from 1 May to 31 June 2008.
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Fig. 4. OmF statistics for the EnKF (red lines) and the 4D-Var (blue lines) with respect to the
assimilated EOS Aura-MLS data for the period September–October 2008. Bias (top row) and
standard deviation (bottom row) for 5 different latitudinal bands. The green or red stars show
the result of the Student and Fisher tests of significance on the 95 % level (see text).
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Fig. 5: OmF time series, bias (top row) and standard deviation (bottom row), for the EnKF (red lines) and the 4D-Var

(blue lines) with respect to the assimilated EOS Aura-MLS data between 1 and 10 hPa and between −90◦ and −60◦ for

the period May-December 2008.
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Fig. 5. OmF time series, bias (top row) and standard deviation (bottom row), for the EnKF (red
lines) and the 4D-Var (blue lines) with respect to the assimilated EOS Aura-MLS data between
1 and 10 hPa and between −90◦ and −60◦ for the period May–December 2008.
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Fig. 6: As Fig. 5 but between 10 and 100 hPa.
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Fig. 6. As Fig. 5 but between 10 and 100 hPa.
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Fig. 7: O3 at 54.6 hPa (model level 22) from 4D-Var (left), EnKF (middle) and their absolute differences (right). The

upper row corresponds to a snapshot on September 15, 2008 while the lower row corresponds to a monthly mean for the

month of September 2008.
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Fig. 7. O3 at 54.6 hPa (model level 22) from 4D-Var (left), EnKF (middle) and their absolute
differences (right). The upper row corresponds to a snapshot on 15 September 2008 while the
lower row corresponds to a monthly mean for the month of September 2008.
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Fig. 8. Ozone distributions at 54.6 hPa (model level 22) for the Antarctic region. The snapshots
are taken for the period between 29 August and 20 September every two days. Contours are
plotted for every 0.25 ppmv.
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