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Abstract. High resolution direct numerical simulations
(DNS) are an important tool for the detailed analysis of
turbidity current dynamics. Models that resolve the vertical
structure and turbulence of the flow are typically based upon
the Navier–Stokes equations. Two-dimensional simulations5

are known to produce unrealistic cohesive vortices that are
not representative of the real three-dimensional physics. The
effect of this phenomena is particularly apparent in the later
stages of flow propagation. The ideal solution to this prob-
lem is to run the simulation in three dimensions but this is10

computationally expensive.
This paper presents a novel finite-element (FE) DNS tur-

bidity current model that has been built within Fluidity, an
open source, general purpose, computational fluid dynamics
code. The model is validated through re-creation of a lock15

release density current at a Grashof number of 5× 106 in
two, and three-dimensions. Validation of the model consid-
ers the flow energy budget, sedimentation rate, head speed,
wall normal velocity profiles and the final deposit. Conser-
vation of energy in particular is found to be a good metric20

for measuring model performance in capturing the range of
dynamics on a range of meshes. FE models scale well over
many thousands of processors and do not impose restrictions
on domain shape, but they are computationally expensive.
The use of adaptive mesh optimisation is shown to reduce25

the required element count by approximately two orders of
magnitude in comparison with fixed, uniform mesh simula-
tions. This leads to a substantial reduction in computational
cost. The computational savings and flexibility afforded by
adaptivity along with the flexibility of FE methods make this30

model well suited to simulating turbidity currents in complex
domains.

1 Introduction

Density currents, also known as gravity or buoyancy cur-35

rents, occur when two fluids with different densities meet.
The density difference creates a pressure gradient that causes
the more dense fluid to intrude beneath the less dense fluid.
They occur in both natural and man-made situations, within
a wide range of environments, and over a vast range of tem-40

poral and spatial scales. When a fluid contains particles in
suspension the bulk density of that fluid changes. Density
currents that are at least partly driven by a density variation
due to suspended particles are termed particle-laden density
currents. Examples include pyroclastic flows, dust storms,45

avalanches, and turbidity currents.
A single submarine particle-laden density currents can in-

volve 100km3 of sediment (Talling et al., 2007). That is ap-
proximately ten times the annual sediment flux into the ocean
from all of the Earth’s rivers combined (Talling et al., 2007).50

They can travel for hundreds of kilometres over the sea bed
at speeds of tens of metres per second (Heezen and Ew-
ing, 1952). Turbidity currents, a dilute sub-class of subma-
rine particle-laden density currents where particle-fluid in-
teractions dominate dynamics, can deliver enough destruc-55

tive power to break telecommunications cables which can
have huge financial implications (Heezen and Ewing, 1952).
Turbidity currents can have an impact on pollutant dispersal
from river outflow (Huang et al., 2005; Bombardelli et al.,
2004), industrial discharge (Hallworth and Huppert, 1998;60

Bonnecaze et al., 1993), oil drilling (Curran et al., 2002) and
water-injection dredging (Harris et al., 2002). Turbidity cur-
rents are also a key process for the movement of sediment
around our planet (Talling et al., 2012). They form a sig-
nificant component of the stratigraphic record, and their de-65

posits can form hydrocarbon reservoirs (Kneller and Buckee,



2 S. D. Parkinson et al.: Direct numerical simulations of particle-laden density with finite-elements

2000; Sequeiros et al., 2009). Having a good understanding
of turbidity current behaviour can also allow us to predict
and improve water quality in reservoirs by enhancing our un-
derstanding of pollutant concentrations (Alavian et al., 1992;70

Huang et al., 2005) and oxygenation (Best et al., 2005).
Studying turbidity currents is not easy. They occur infre-

quently and unpredictably at any particular location, and tend
to destroy any measurement devices that are positioned to
measure their effects. The dynamics of these currents are75

highly complex, with strong feedback between turbulence
and sediment suspension making measurement of the dy-
namics difficult (Kneller and Buckee, 2000; Serchi et al.,
2012). Small scale laboratory experiments can provide use-
ful insight into the dynamics of these currents, but are limited80

by scaling issues and the available measurement techniques
(Kneller and Buckee, 2000).

High resolution numerical models have become an impor-
tant tool for the detailed analysis of particle-laden density
current dynamics. Models that resolve the vertical structure85

of the flow are typically based upon the Navier–Stokes equa-
tions. Direct numerical simulations (DNS) of particle-laden
density currents should be carried out in three-dimensions
as unrealistic cohesive vortices form in two-dimensions that
have a significant impact on virtually all of the important90

outputs from these simulations(Cantero et al., 2007; Espath
et al., 2014). The scale of particle-laden density currents
is often described using the Grashof number. The Grashof
number approximates the ratio of buoyant to viscous forces.
This is equivalent to the square of the Reynolds number of95

a flow where the buoyancy velocity is used as the charac-
teristic velocity. DNS modelling of particle-laden density
currents has been achieved in three dimensions at moder-
ate Grashof numbers of O

(
106
)

by Necker et al. (2002)
and Nasr-Azadani and Meiburg (2011). Espath et al. (2014)100

have simulated a particle-laden density current at a Grashof
number of O

(
108
)
. Computational power has limited mod-

elling of higher Grashof number flows. A Grashof number
of O

(
108
)

translates to modelling of low volumetric parti-
cle concentration 10−4 – 10−3 % flows in water at labora-105

tory scales. Even at these moderate Grashof numbers a fully
turbulent flow is obtained (Necker et al., 2002; Espath et al.,
2014), and very useful insights have been obtained from sim-
ulations of particle-laden currents within this range.

There has been some success in modelling these flows us-110

ing DNS in two dimensions which makes the problem more
computationally tractable (Blanchette et al., 2005; Ooi et al.,
2007). However, Espath et al. (2014) showed that the only
important diagnostic that can be accurately predicted using
a two-dimensional DNS model is the sedimentation rate. An-115

other alternative to three-dimensional DNS is to use turbu-
lence models to handle the small scale turbulence and only
resolve the large scale motions. Turbulence modelling is un-
doubtedly important for extending models that resolve the
vertical structure of the flow to more realistic Grashof num-120

bers. Whether it is appropriate to use a turbulence model de-

pends upon the diagnostics that are important in the study.
DNS simulations are necessary to perform detailed analysis
of turbulent structures, and also for the validation of turbu-
lence models for this application.125

DNS models of turbidity currents in three dimensions have
generally been formulated using spectral element techniques
(Necker et al., 2002) and finite differences (Espath et al.,
2014; Nasr-Azadani and Meiburg, 2011). These models are
designed to be highly efficient, having structured meshes130

and, in most cases, high-order methods such that these com-
putationally challenging problems become tractable. How-
ever, these computationally optimised methods make simu-
lations in irregularly shaped domains very difficult (Mohd-
Yusof, 1998). Natural turbidity currents propagate over com-135

plex bathymetries. The interaction of turbidity currents over
complex geometries is therefore of obvious interest. The
model of Nasr-Azadani and Meiburg (2011) can model tur-
bidity currents in geometries with some complex features us-
ing the immersed boundary method, but this method has lim-140

itations and is not suitable for all use cases (Mohd-Yusof,
1998).

The finite-element method (FEM) benefits from the abil-
ity to easily accommodate complex geometries via the use
of flexible unstructured meshes (Donea and Huerta, 2005).145

Hence, FEM provides an alternative approach to modelling
interactions of turbidity currents in complex geometries.
However, FEM is significantly more expensive than spectral
element techniques (Mohd-Yusof, 1998). This paper presents
a novel particle-laden density current model that has been150

built within Fluidity, an open source, general purpose, mul-
tiphase computational fluid dynamics FEM code (Imperial
College London AMCG, 2014). This paper simulates a lock
release density current at a Grashof number of 5× 106 in
two and three dimensions with a configuration similar to that155

of Necker et al. (2002). The governing equations are well
established and have been validated extensively against ex-
perimental data across a range of simulation configurations
(Sequeiros et al., 2009; Necker et al., 2002; Espath et al.,
2014; Huang et al., 2007; Georgoulas et al., 2010). This pa-160

per validates the use of novel computational methods, includ-
ing unstructured mesh adaptivity and discontinuous finite-
elements, through convergence analyses and by direct com-
parison with the results from the previous models of Necker
et al. (2002) and Espath et al. (2014), providing a frame-165

work for future modelling efforts of this type. It is shown
that adaptivity reduces the required element count by approx-
imately two orders of magnitude for this application in com-
parison with fixed, uniform mesh simulations. The compu-
tational savings and flexibility afforded by adaptivity along170

with the flexibility of FEM make this model well suited to
simulating turbidity currents in complex domains.
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2 Mathematical model

2.1 Governing equations

A general discussion of particle motion in a non-uniform175

flow by Maxey and Riley (1983) stated that pressure gradient,
added mass, viscous Stokes and augmented drag, and buoy-
ancy forces need to be considered. This work considers flows
where the particles are very small in relation to the length
scales of motion. It also considers situations where the parti-180

cle density is significantly larger than that of the surrounding
fluid. For example, silica is ≈ 2.6 times the density of water
in turbidity currents, and ≈ 2600 times the density of air in
dust storms. Based upon these restrictions Maxey and Riley
(1983) showed that the dominant forces in the equations of185

motion for a single particle relative to the fluid in which it is
suspended are the viscous Stokes drag and buoyancy terms.

Particle-laden density currents consist of a collection of
particles and hence particle collisions must also be consid-
ered. The effect of these collisions can be safely ignored by190

limiting the model to applications where the sediment vol-
ume fraction is less than 1% (Necker et al., 2002). Floccula-
tion of sediment particles can be ignored if the model is fur-
ther restricted to sediment sizes of sand and larger (> 64 µm)
(Maerz et al., 2011).195

Cantero et al. (2008) showed that the effects of inertia on
particle motion in density currents are insignificant for parti-
cles smaller than 250 µm in diameter and hence the model is
restricted to sediment diameters below 250 µm.

Taking all of the above into account the acceleration of200

particles will be the same as that of the containing fluid.
Particles will move with a velocity equal to the sum of the
fluid velocity, ũ, and a settling velocity, ũsk, where ˜ de-
notes a dimensional value. The settling speed, ũs, is ob-
tained by balancing the Stokes drag and buoyancy forces, and205

k = (0,0,1)T . This means that the evolution of the particle
volume fraction, c̃, can be described with a transport equation
of the form

∂c̃

∂t̃
+(ũi − ũski)

∂c̃

∂x̃i
= κ̃

∂2c̃

∂x̃i∂x̃i
, (1)

210

where κ̃ is the particle concentration diffusivity. Particle con-
centrations will never be completely uniform. Individual par-
ticles will have a range of masses and settling velocities
which lead to slight variations in speed and trajectory. As par-
ticles move past one-another they interact and cause a self-215

induced hydrodynamic diffusion (Davis and Hassen, 1988).
The magnitude of this diffusivity is generally chosen to be
0.7–1.0 times the ambient fluid viscosity (Necker et al., 2002;
Cantero et al., 2008). Higher values help convergence and
stability of the solution. It has been shown that this value has220

little effect on the relevant flow quantities so long as it does
not significantly exceed the ambient fluid viscosity (Hartel
et al., 2000).

Continuity and momentum balance in this model is gov-
erned by the Navier–Stokes equations. The fluid is assumed225

to be incompressible. Due to the very low volumetric concen-
trations, the displacement of fluid by the suspended particles
can be ignored (Necker et al., 2002). Therefore the velocity
field is considered to be divergence-free. The Boussinesq ap-
proximation is adopted, where density is considered constant230

except in the buoyancy term. The isotropic kinematic viscos-
ity, ν̃, is assumed constant throughout the model. This leads
to the following form for the Navier–Stokes equations

∂ũi

∂t̃
+ ũj

∂ũi

∂x̃j
=− ∂p̃

∂x̃i
− g̃′ki +

∂

∂x̃j
S̃ij , (2a)

∂ũi

∂x̃i
= 0. (2b)235

where the stress tensor, S̃, for an incompressible flow is de-
fined as

S̃ij = ν̃

(
∂ũi

∂x̃j
+

∂ũj

∂x̃i

)
, (3)

240

and the buoyancy density, g̃′, is a function of the sediment
density, ρc, the ambient fluid density, ρa, the magnitude of
the acceleration due to gravity, g̃, and the volumetric concen-
tration of sediment, c̃, with the form

g̃′ =
ρ̃c − ρ̃a

ρ̃a
g̃c̃ . (4)245

The assumption c̃� 1 and (ρ̃c − ρ̃a)/ρ̃a =O(1) justify the
use of the Boussinesq approximation.

Particle-laden density currents deposit and/or erode the
surface over which they travel. This means that the250

suspended mass changes with time, i.e. they are non-
conservative. They have the potential to accelerate if their
mass increases, or decelerate more rapidly due to settling
out of the suspended sediment. The dynamics of sediment
erosion are complex. Sediment on the bed will affect tur-255

bulence in the boundary layer. Larger sediment grains will
shield smaller ones and grains may adhere to each other in
the bed. The bed shape will also change as sediment is eroded
generating complex topography that may promote or inhibit
further sediment erosion. Empirical algorithms have been de-260

veloped for predicting erosion rates based upon particle pa-
rameters and the bed shear stress. Erodible boundaries, Γd,
are modelled here as a flux boundary condition of the form

niκ̃
∂c̃

∂x̃i
= ũsẼ on Γd , (5)

265

where Ẽ is the non-dimensional erosion rate of sediment into
suspension, n is the boundary unit normal vector.

Garcia and Parker (1991) reviewed empirical formulae by
Fukushima et al. (1985), Akiyama and Stefan (1985), and
Parker et al. (1986) for predicting the erosion of non-cohesive270

sediment in finite size ranges. They validated these against
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laboratory results, and produced an improved formula for
sediment erosion. This has been successfully used in work by
Huang et al. (2007) and Sequeiros et al. (2009) when mod-
elling sediment-laden density currents and is described as275

Ẽ =
AZ̃5

1+AZ̃5/0.3
, (6a)

Z̃ =

√
τ̃b
ũs

(√(
ρ̃c − ρ̃a

ρ̃a
g̃d̃

)
d̃

ν̃

)0.6

, (6b)
280

where A= 1.3×10−7 is a non-dimensional constant and d̃ is
the diameter of the suspended sediment. The bed shear stress,
τ̃b, is defined as

τ̃b =
∣∣∣niS̃ij

∣∣∣ . (7)
285

The total flux through an erodible boundary is calculated as:

∂η̃

∂t̃
= ni ũski c̃b − ũsẼ, (8)

where η̃ is the depth of the deposited sediment in the bed and
c̃b is the volumetric concentration of sediment at the sedi-290

ment bed boundary. Ẽ is limited such that it never exceeds
η̃/∆t, where ∆t is the period of a time step. As in the work
by Necker et al. (2002) and Espath et al. (2014), no adjust-
ment for porosity of the deposit is included.

It is also possible for sediment to be moved along the bed295

without being entrained into the flow. This process is known
as bedload transport. This has not been included in the cur-
rent work. Sequeiros et al. (2009) stated that suspended sed-
iment is the key factor in the movement of sediment in tur-
bidity currents and that bedload transport can be neglected300

for currents that do not have a significant fraction of particles
larger than 100µm.

Four parameters are used to non-dimensionalise the equa-
tions outlined above

Gr =

(
ũbh̃0

ν̃

)2

, (9)305

Sc =
ν̃

κ̃
, (10)

310

us =
ũs

ũb
, (11)

Rp =

√(
ρ̃c − ρ̃a

ρ̃a
g̃d̃

)
d̃

ν̃
, (12)

315

where Gr is the Grashof number, Sc is the Schmidt number,
Rp is the particle Reynolds number, and h0 is a character-
istic length scale (half the lock-release depth in this work,

as defined in Sect. 3). The buoyancy velocity, ũb, is used as
the characteristic velocity scale and is defined in terms of the320

initial buoyancy density, g̃′0, and the characteristic length h0,
as

ũb =

√
g̃′0h̃0 . (13)

Equations (1–3) and (5–8) can now be redefined in non-325

dimensional form as

∂c

∂t
+(ui −uski)

∂c

∂xi
=

1√
Sc2Gr

∂2c

∂x2
i

, (14)

∂ui

∂t
+uj

∂ui

∂xj
=− ∂p

∂xi
−kic+

∂

∂xj
Sij , (15)330

∂ui

∂xi
= 0 , (16)

335

ni
1√

Sc2Gr

∂c

∂xi
= usE on Γd , (17)

E =
A Z5

1+A Z5/0.3
, (18)

Z =

√
τb
us

R0.6
p , (19)340

τb = |niSij | , (20)

∂η

∂t
= niuski cb −usE , (21)

345

Sij =
1√
Gr

(
∂ui

∂xj
+

∂uj

∂xi

)
. (22)

2.2 Discretisation

Fluidity uses the finite element method to solve the Navier–350

Stokes equations. Using finite elements gives great flexibility
in element choices and many are available when using Flu-
idity. A linear Discontinuous Galerkin (DG) scheme is used
for the discretisation of both the velocity and sediment con-
centration fields.355

A DG discretisation does not enforce continuity across el-
ement boundaries. A field that is discretised on a DG function
space may therefore have multiple values at element bound-
aries. It will also have more degrees of freedom than a con-
tinuous function of the same order as elements do not share360

nodes. DG methods are a good choice of discretisation for
advection-dominated problems as they produce stable dis-
cretisations without the need for stabilisation strategies such
as streamline-upwinding (Peraire and Persson, 2008). DG
methods also work well on arbitrary meshes and have the365



S. D. Parkinson et al.: Direct numerical simulations of particle-laden density with finite-elements 5

desirable properties of having a block-diagonal mass matrix
that can be trivially inverted locally for each element. This al-
lows for certain equations to be solved very efficiently (Bassi
and Rebay, 1997).

Use of the DG method requires a choice of flux schemes370

for both the advective and diffusive terms. A simple upwind
flux is chosen for advective terms. A centred flux is used
for the diffusive terms. The compact discontinuous Galerkin
method (CDG) is used to implement the diffusive terms
(Peraire and Persson, 2008). For a detailed discussion of DG375

discretisations and flux terms see the review paper by Cock-
burn and Shu (2001).

Advection when using a DG discretisation is not bounded.
Undershoots and overshoots can occur that affect the dy-
namics of a gravity current. Slope limiters are employed to380

bound the solution although these can be dissipative. Vertex-
based slope limiting, as suggested by Kuzmin (2010), is used
herein.

For the pressure field a quadratic Continuous–Galerkin
scheme is used. We therefore have a mixed finite el-385

ement pairing for solving the incompressible Navier–
Stokes equations. This element pairing, described by
Cotter et al. (2009), has the benefit of satisfying the
Ladyženskaja-Babuška-Brezzi (LBB) stability condition and
hence needs no stabilisation of the pressure field. Addition-390

ally, a higher order accurate pressure field means that the
pressure gradient term in the momentum equation is the same
order accuracy as the buoyancy forcing term. These two
terms dominate in early stages of propagation and hence the
ability for these terms to balance is important in determining395

how the flow evolves.
A Crank–Nicolson time discretisation is used throughout

the model which is second-order accurate in time. The cou-
pled system of non-linear equations are solved using two
non-linear iterations known as Picard iterations. Within each400

non-linear iteration the equations are linearised using the best
available solution for each variable that is not being solved
for. The momentum and conservation equations are solved
using a pressure correction scheme.

An adaptive time step is used. This makes the simulation405

more robust when using a changing multi-scale mesh and
also takes advantage of the reducing current velocity over
time which allows for much larger time steps towards the
end of the simulation. The time step length is based upon
obtaining a target Courant number of 2. This is a relatively410

conservative requirement for the implicit time discretisation
used.

There are two exceptions to the use of Crank-Nicolson
time discretisation. Slope limiters used with DG discreti-
sations only guarantee a bounded solution in conjunction415

with an explicit advection scheme. Therefore the sediment
transport and momentum equations are solved in two stages.
Advection is calculated using explicit subcycles with adap-
tive time step lengths based upon achieving a Courant num-
ber of 0.2 (an order of magnitude smaller than the rest of420

the model). Diffusion/viscous dissipation is solved using the
simulation time step, ∆t, and a Crank-Nicolson discretisa-
tion. Additionally, the bed shear stress is calculated at the
start of each time step and hence the erosion rate is totally
explicit. A thorough description of the time discretisation425

outlined above is available in the Fluidity manual (Imperial
College London AMCG, 2014).

2.3 Anisotropic mesh adaptivity

The motivation behind using mesh adaptivity is to optimise
the spatial resolution with time such that both the discreti-430

sation error and computational cost of a simulation are min-
imised (Piggott et al., 2005). Adapting the mesh is split into
three tasks. The first step is to determine the desired edge
lengths, or to form a metric against which element edge
lengths can be defined, the second part involves generating435

a new mesh that better fits these requirements and distribut-
ing this mesh amongst the active processors, and the third
involves transferring data from the old mesh to the new mesh
(see Figure 1). A brief description of each phase of the pro-
cess is included below. The reader is referred to the work of440

Piggott et al. (2008) for a more details.

2.3.1 Metric formation

Determining the desired edge lengths for a mesh requires
some quantification of the error in the solution due to spa-
tial discretisation. This is difficult to do as there is usually no445

better estimate of the exact solution than the estimate from
the current discretisation. An indirect method of measuring
the error is required. Ciarlet (1991) showed that the finite el-
ement error can be bounded by the interpolation error for el-
liptic problems. It is assumed that this also holds for other450

partial-differential equations. This is deemed a reasonable
way of defining an error indicator (Fortin, 2000).

The aim is to minimise the error in fields that are discre-
tised using first order discretisations. For first order elements,
the interpolation error depends upon the Hessian, H (the ma-455

trix of second-order partial derivatives) (Frey and Alauzet,
2005). The second derivative of such a discretisation is for-
mally zero and hence some method of recovering the Hes-
sian for these fields is needed. In Fluidity a double lumped
Galerkin projection is used to compute the Hessian as de-460

scribed by Pain et al. (2001). This Hessian will contain infor-
mation about both the magnitude and direction of the curva-
ture of a field and hence can be used to guide generation of
anisotropic elements. This is very useful in regions, such as
boundary layers, where the solutions vary significantly more465

rapidly in one direction than in others.
The Hessian is used to form a metric tensor, M, that will

guide the mesh optimisation. M is defined such that the op-
timal mesh, M, would have edges, v, with unit length when
measured against it470 √
viMij vj = 1 ∀v ∈M . (23)
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The choice of formulation for M is therefore fundamental to
the way in which the mesh adapts. A formulation suggested
by Chen et al. (2007) which controls the L2 norm of the in-475

terpolation error is used

M=
1

ε
det |H|−

1
4+n |H| , (24)

where n is the number of dimensions, and ε is the interpola-
tion error bound, a value which is defined by the user. For Lp

480

methods, Loseille and Alauzet (2011) found p= 2 to be the
optimal value and incorporate more influence from dynam-
ics of smaller magnitudes. Experience has shown this metric
formation to be very effective for gravity current simulations
(Hiester et al., 2011, 2014).485

It is often important to adapt to more than one solution
field. When this is the case the final metric is a superposition
of the metrics calculated for each individual field (Pain et al.,
2001). At this point the metric is also modified to take into
account bounds upon the maximum and minimum element490

size, maximum allowable aspect ratio, edge length gradation,
and the number of elements. Additionally, this metric can
be advected forward in time providing an estimate of future
requirements for the mesh resolution and allowing for more
time between adapt operations (Hiester et al., 2011).495

2.3.2 Mesh generation and partitioning

The second stage of creating the new mesh is handled by the
open-source mesh optimisation library libmba2d in two di-
mensions, or libadaptivity, another open source library devel-
oped alongside Fluidity, in three dimensions. This involves500

a series of topological and geometrical operations, with the
aim of obtaining a mesh with unit edge lengths with respect
to the determined metric, see Eq. (23). These operations in-
clude node insertion or deletion, edge/face swapping, which
preserves the node locations but manipulates edge lengths by505

changing the configuration of a edge/face between elements,
and node movement (Piggott et al., 2009).

The Zoltan library (Boman et al., 2012) is used to partition
the mesh in parallel after each adapt iteration. Nodes cannot
be adapted at the edge of partitions. After each adapt iteration510

parameters are passed to the Zoltan library which discour-
age it from generating partitions through elements that have
not been able to adapt. For three-dimensional simulations,
a minimum of three adapt iterations are required to allow all
elements to adapt and create a mesh that satisfies the metric515

constraint everywhere. Zoltan’s graph re-partitioning algo-
rithm is used to partition the mesh efficiently between adapt
iterations. Once a good quality mesh has been obtained the
hypergraph partitioning method is used to redistribute the el-
ements amongst the processes.520

2.3.3 Data transfer

After creating the new mesh the data is transferred on to it
from the previous mesh. For the purposes of describing this

step these meshes will be referred to as the target and donor
meshes respectively.525

Consistent interpolation is used for the transfer of the Pres-
sure field from the donor to the target mesh. This field is con-
tinuous, and conservation of Pressure is not essential. Con-
sistent interpolation is very cheap and hence is a good choice
for data transfer of this field.530

All other prognostic fields are discontinuous. Consistent
interpolation cannot be used for discontinuous fields as test
and trial functions are not continuous across element bound-
aries. Additionally, consistent interpolation is not conserva-
tive and is dissipative. It is important to conserve sediment535

mass during data transfer. It is also important that dissipation
of both velocity and sediment is kept to a minimum. Galerkin
projection is used for data transfer of these fields, this is both
conservative and non-dissipative (Farrell et al., 2009). This
requires the generation of a supermesh, which is the union of540

both the donor and target mesh. Within each element of the
supermesh the test and trial functions for both discretisations
are consistent and thus this method is valid for DG discreti-
sations. The construction of a supermesh can be a very ex-
pensive operation. Fluidity uses an algorithm developed by545

Farrell and Maddison (2011) where the supermesh is created
locally for each target element. For DG discretisations the
Galerkin projection can be carried out entirely locally due to
the fact that the mass matrix is block diagonal. This combi-
nation greatly increases efficiency.550

Where the projection occurs over a surface of the volume
mesh (e.g. deposited sediment) projection is carried out in
a n− 1 dimension space. For DG discretisations, all donor
mesh surface elements that intersect a target mesh element
must be in the same plane as the target mesh element. The555

Galerkin projection is carried out locally for each target ele-
ment by rotating the coordinates of the target element and all
intersecting donor elements into the x− y plane.

3 Simulation configuration

The classic lock-release setup is used as a test case for the560

model. This is a well researched configuration with a range of
data against which to validate results (Gladstone et al., 1998;
Necker et al., 2002; Cantero et al., 2006; Espath et al., 2014).
As defined in Fig. 2, L2 = L3 = 2.0, which means that h0 =
1.0, L1R = L3/2.0, and L1 = 19.0 which is slightly longer565

than the final run out length of the density current considered.
The dimensionless parameters are set as

Gr = 5.0× 106 , Sc = 1.0 ,

us = 0.02 , Rp = 20.0 . (25)
570

As such the experiment configuration is identical to that of
Necker et al. (2002), with the exception of the addition of
sediment erosion, and hence a requirement for the definition
of Rp. Rp is defined to lie in the range of Rp for which the
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erosion algorithm outlined in Eq. (18) is valid, as detailed575

in Garcia and Parker (1991).
Boundary conditions for velocity are free-slip for all side

walls, u1 = 0 at x=−1 and x= 18, u2 = 0 at y = 0, and
y = 2, and no-slip at the top and bottom of the domain,
u= (0,0,0)T at z = 0 and z = 2. All velocity boundary con-580

ditions are applied weakly. Where a velocity component is
not set with a Dirichlet condition, a zero Neumann boundary
condition is applied. Note that the side wall boundary con-
ditions vary from those of Necker et al. (2002). A free slip
boundary condition should give comparable results to the pe-585

riodic boundary conditions used in that work.
Boundary conditions for the sediment concentration field

are as follows. The erosion boundary condition outlined in
Eq. (17) is applied at the bottom surface, z = 0. A zero
Dirichlet boundary condition is prescribed at z = 2 (the top590

surface of the tank). At all other boundaries (u+kus) ·n
equals zero, hence zero Neumann boundary conditions are
applied which enforce zero flux of sediment across these sur-
faces.

The initial condition for the sediment concentration field in595

the three-dimensional simulation is similar to that suggested
by Hartel et al. (1997) and Cantero et al. (2006). This initial
condition is based upon the solution obtained from a purely
diffusive problem. Hartel et al. (1997) argued that the prob-
lem will be dominated by diffusion for very early stages of600

the simulation and hence this initial condition is justified as
being the condition of the flow a short time period after the
initial release. This initial condition includes a perturbation,
γ, in a similar way to the work by Cantero et al. (2006).
A random perturbation of the initial condition is important to605

help promote the generation of three-dimensional structures
in the flow. Necker et al. (2002) and Espath et al. (2014) use
an alternative perturbation of the velocity field for the same
purpose. The initial condition for the sediment concentration,
including the perturbation, is as follows610

c=
1

2
− 1

2
erf
{

4
√

GrSc2[x− γ]
}

, (26)

with

γ = cos

(∑
i

f(i,x,y,z)

)
∆x , (27)

615

where ∆x is chosen to be 0.2. γ is constructed of four sets
of waves originating from the four corners of a plane aligned
with the lock gate. Each set of waves contain 60 waves with
random phases and random wavelengths ranging between
0.02 and ∞. Wave i has amplitude f(i,x,y,z) at positions620

x, y, z. The perturbation chosen covers a wide range of fre-
quencies so as to not preferentially generate particular wave-
lengths of oscillations. The mesh is adapted before the first
time step to produce a good mesh for this initial condition.

To use adaptivity several controlling parameters need to625

be defined. The fundamental parameters which define the

mesh resolution in the simulation are the interpolation error
bounds. The next section describes how values for these pa-
rameters were chosen. The time between adapts also requires
definitions, and it is necessary to ensure that there is adequate630

resolution in periods between adapts. Through experimenta-
tion it was found that an adapt every 5 time steps kept the
simulation stable towards the beginning of the simulation.
At later stages in the simulation an adapt was required ev-
ery 2 time steps. The high frequency of mesh adapts was re-635

quired to limit instabilities in the boundary layer which grow
rapidly. Small instabilities that developed did not have any
noticeable impact on the important outputs from the simula-
tion. This is discussed further in the following sections. As
mentioned in Sect. 2.3.1, metric advection is used to advect640

the metric, which defines the edge lengths required to meet
the interpolation error bounds, forward in time. The metric
is conservatively advected through 5 adapt intervals at each
adapt.

4 Choosing appropriate interpolation error bounds645

It is possible to define an interpolation error bound for any of
the functions in the simulation. In this simulation sediment
concentration, velocity, and pressure are solved for. It is com-
mon practice to adapt to the velocity field for the purposes of
resolving the velocity and pressure fields. Good resolution of650

the sediment concentration field is also required. Hence four
interpolation error bounds require definition for the simula-
tion, one for each velocity component, and another for the
sediment concentration.

In order to select good values for these parameters655

a convergence analysis is required. Doing this with three-
dimensional models would be prohibitively expensive and
hence two-dimensional simulations are used to carry out this
convergence analysis. The two-dimensional simulations are
defined in the x− z plane. It has been well documented by660

Necker et al. (2002) and Cantero et al. (2007) that output
from two-dimensional simulations of particle-laden density
currents do not compare well with three-dimensional simu-
lations. However, two-dimensional simulations are useful for
the purpose of understanding the resolution requirements of665

simulations.
A measure of the quality of a mesh, in terms of the dy-

namics computed within it, is required. The simulation is of
a turbulent flow. Head speed, deposit profile, quantity of sus-
pended sediment and deposition rates are all important out-670

puts from these simulations, but due to the turbulent nature of
the flow, which is very sensitive to small changes in the mesh,
it is very hard to show convergence of these quantities.

However, one important quantity does show convergence.
This is the energy lost due to discretisation, and data transfer675

errors. DNS simulations resolve all length scales of motion.
Convergence analysis will show that the discretisation errors
are small enough that they have a negligible impact on the
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result and that the mesh resolution is fine enough to resolve
all of the energy in the flow. The combination of upwind680

flux terms and slope limiting in the discretisation dissipates
energy at scales that the mesh cannot resolve. Additionally,
adapting the mesh requires a data transfer operation which
will introduce some relatively small errors. By computing
the energy budget in the simulation and how this varies over685

time a value for the energy lost due to discretisation, and
data transfer errors, εd can be obtained. This quantity gives
us some indication of how well the scales of motion in the
flow are being resolved. Importantly, this value converges as
the mesh resolution increases and so gives us a good method690

of comparing the quality of different mesh configurations.
Following the method of Winters et al. (1995), Necker et al.
(2002), and Espath et al. (2014), equations for the rates of
change of potential energy, Ep, and kinetic energy, Ek, in
the system can be derived as follows.695

The kinetic energy in the system is

Ek =
1

2

∫
Ω

|u|2dΩ . (28)

To obtain the time derivative for Ek compute the dot product
of the momentum Eq. (15) with u and apply the chain rule to700

obtain

1

2

∂ |u|2

∂t
+

1

2
uj

∂ |u|2

∂xj
=−ui

∂p

∂xi
−u3c+ui

∂τ ij

∂xj
. (29)

Integrating over the domain and integrating by parts, using
the continuity Eq. (16) and the knowledge that there are705

no normal flow boundary conditions on all boundaries, i.e.
uini = 0, an equation for the rate of change of Ek is ob-
tained
∂Ek

∂t
=−

∫
Ω

cu3dΩ−
∫
Ω

τ ij
∂ui

∂xj
dΩ . (30)

710

The potential energy in the system is

Ep =

∫
Ω

cx3dΩ . (31)

To obtain the time derivative for this term first multiply the
equation for sediment concentration (Eq. 14) by x3715

∂c

∂t
x3 +x3 (ui −uski)

∂c

∂xi
= x3

1√
Sc2Gr

∂2c

∂xi∂xi
. (32)

Integrating over the domain, and by parts, using the chain
rule and noting that all velocities normal to the wall are zero,
an equation for the rate of change of Ep is obtained720

∂Ep

∂t
=

∫
Ω

cu3dΩ+us

∫
Ω

x3
∂c

∂x3
dΩ+

1√
Sc2Gr

∫
Γ

x3
∂c

∂xi
nidσ−

∫
Ω

∂c

∂x3
dΩ

 . (33)

An equation for the transfer of energy from Ek and Ep to and725

from internal energy and heat, and also lost due to the settling
of particles can be obtained by combining Eqs. (30) and (33).
This equation will not hold for an under-resolved mesh. En-
ergy dissipation that occurs at scales below the grid resolu-
tion will be dissipated through application of slope limiting.730

An additional term, εd, is therefore included to balance the
equation and represent the dissipation due to numerical er-
rors which yields

∂ (Ep +Ek)

∂t
=−ε− εs − εd , (34)

735

where

ε=

∫
Ω

τ ij
∂ui

∂xj
dΩ , (35)

and
740

εs =
1√

Sc2Gr

∫
Ω

∂c

∂x3
dΩ−

∫
Γ

x3
∂c

∂xi
nidσ

−
us

∫
Ω

x3
∂c

∂x3
dΩ . (36)

In order to compare overall mesh quality εd is integrated over
time to give the single quantity745

ED =

t∫
0

|εd(τ)| dτ . (37)

ED is computed for a set of two-dimensional simulations
forming a parameter sweep of values for the interpolation
error bounds for the two components of velocity and sedi-750

ment concentration with values of 4× 10−3, 4× 10−2.5 and
4× 10−2. This leads to a total of 27 simulations. The range
of values used in the parameter sweep were determined from
sensitivity analyses performed prior to this. For the pur-
poses of comparing results against fixed mesh simulations755

the above quantity was also computed for a range of regu-
lar, structured triangular mesh simulations with edge-lengths
5× 10−2, 2.5× 10−2, 1.25× 10−2, and 6.25× 10−3, result-
ing in 2.88× 104, 1.15× 105, 4.6× 105 and 1.84× 106 ele-
ments respectively. The adaptive mesh simulations converge760

at a higher order than the fixed mesh simulations in relation
to the mean number of elements, N̄e, used in the simulation
(Fig. 3). The number of elements in adaptive mesh simula-
tions, Ne, varies with time (Table 1). The difference between
the maximum and minimum number of elements increases765

superlinearly as the interpolation error bounds tighten. The
number of elements in the domain is a function of the in-
terpolation error bounds, the dynamics of the flow, which
vary significantly with time and also mesh resolution, cre-
ating a non-linearity in this relationship, and also the bound770
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set for the maximum element size. The largest relative dif-
ference between the maximum and minimum number of ele-
ments occurs in adaptive simulation A2 where the maximum
is ≈ 130% of the mean, and the minimum is ≈ 40% of the
mean. The distribution of element counts throughout a sim-775

ulation is skewed. An increase in the number of elements
implies that element size has decreased. This in turn implies
that the length of timesteps has decreased leading to more
timesteps being required at periods during which there are
a large number of elements.780

Importantly, Fig. 3 shows that, at the highest resolutions,
a saving of more than one order of magnitude is obtained in
the mean number of elements required in the simulation. In
three-dimensions the saving are likely to be even greater.

Integrating Eq. (38) over time785

Ep +Ek =

t∫
0

−ε(τ)− εs(τ)− εd(τ)dτ =−E−Es −Ed .

(38)

Figure 4 shows how the above quantities vary over the pe-
riod of the simulation for adaptivity options A3, as detailed
in Table 1. Values are compared against two-dimensional re-790

sults (Espath et al., 2014). There is very good agreement for
E, but there is a notable variation between the values for Es

in this work and that of Espath et al. (2014). This is because
of the zero Dirichlet boundary condition for sediment con-
centration at the top of the tank in this work where Espath795

et al. (2014) has a zero flux condition. At very early stages
of the simulation the Dirichlet condition results in a flux of
sediment through the top of the domain. The overall impact
on the simulation is a loss of sediment mass of < 1% and
a total energy loss of ≈ 3%. The zero flux condition is prefer-800

able but is not implemented in Fluidity for this discretisation.
A future aim will be to implement this boundary condition.
Generally there is good agreement for Ek and Ep. In two-
dimensional simulations strong coherent vortices form that
contain and transport large quantities of the suspended sed-805

iment. These vortices play an important role in the transfer
of energy between Ek and Ep. Because of the chaotic nature
of the creation and propagation of the vortices, there will al-
ways be variations in the values of Ek, Ep and to some extent
E between simulations.810

Another important aspect of the flow is the boundary
layer at no-slip boundaries. This feature of the flow requires
very small elements in the wall normal direction to resolve
the boundary layer properly. Convergence on a solution is
quickly obtained for the boundary layer using an adaptive815

mesh (Fig. 5). All but the most coarse adaptive simulation
configurations have converged on to a solution. The fixed
mesh configurations show a similar level of convergence
for the two highest resolution simulations. Anisotropic mesh
adaptivity is particularly useful for resolving features such as820

boundary layers which require high resolution in one direc-
tion compared to others.

Using the evidence outlined above, the chosen interpola-
tion error bounds were those of adaptive simulation A3. This
simulation had a well resolved boundary layer and good con-825

servation of energy. This simulation had interpolation error
bounds of 4× 10−2.5 for both velocity components. An as-
sumption is made that this error bound will also be suitable to
use for the third velocity dimension in the three-dimensional
simulation.830

Figure 6 shows a qualitative comparison of results from
high and low resolution fixed mesh simulations, and an adap-
tive mesh simulation, A3. The low resolution fixed mesh sim-
ulation has approximately the same number of elements as
the adaptive simulation but is clearly not resolving the turbu-835

lent structures as well as the adaptive mesh simulation. Re-
sults from the high resolution fixed mesh and the adaptive
mesh simulations are very similar. There are some variations
in the vortices that are generated and these variations grow
with time. Within the scope of this investigation no two sim-840

ulations ever produced identical results. Very small variations
in spatial discretisation lead to small variations at early stages
in the simulation which propagate and lead on to larger vari-
ations downstream.

5 The benefits of using mesh adaptivity845

In three-dimensions, adaptivity is essential to compute this
simulation using finite elements with Fluidity. A fixed, and
regular tetrahedral grid would have required more than 1×
109 elements which would have led to an unachievable run
time and unmanageable post-processing and visualisation850

demands. By using adaptivity the number of required el-
ements has been reduced to a maximum of approximately
1× 107, at least a two order of magnitude reduction, making
all aspects of the simulation manageable.

To resolve a comparable flow Espath et al. (2014) used855

≈ 6× 107 degrees of freedom. A Fluidity simulation with
O(109) discontinuous elements has O(109) degrees of free-
dom. The finite difference method used by Espath et al.
(2014) uses less degrees of freedom as it employs a high-
order finite-difference discretisation which increases the ac-860

curacy of the solution.
Figure 7 shows how the number of elements in the simula-

tions varied over time. Throughout the simulation the number
of processor cores that were used was varied between 36 and
512 to keep the number of elements per core in the region of865

20000. The initial drop in number of elements at the start of
the simulation is due to the fact that conservative interpola-
tion bounds were used to generate the mesh from the initial
conditions. Following this initial drop, during early periods
of the simulation the flow is transitioning from a laminar to870

a turbulent flow. Throughout this period u becomes more and
more complex and hence the number of elements required to
resolve the flow increase rapidly. The highest amount of ele-
ments required is at a t≈ 10 at which point the flow has de-
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veloped into a fully three-dimensional, highly turbulent flow.875

Beyond this point the number of elements required for the
simulation steadily decreases as energy is dissipated from the
flow. Additionally, c gradually diffuses such that the curva-
ture of the field decreases and fewer elements are required
to resolve the field. Note the drop in elements at t≈ 25 of880

approximately 12.5%. This coincides with the reduction in
the number of time steps between adapts from 5 to 2 as men-
tioned in Sect. 3. A reduction in adapt interval means that the
metric is not advected so far, and hence fewer elements are
required. Also note the noise in the number of elements in the885

simulation. This is reduced by adapting more regularly and
is due to the adapt routine responding to small instabilities
in the boundary layer. Future work will look into removing
these instabilities. This may require mesh adapts after every
time step.890

Figure 8 shows the adapted mesh over a subdomain in the
region of the current head at two times, t= 3.5 and t= 4.
The images are generated from the three-dimensional sim-
ulation, and are taken from a plane at y = 0. The cut plane
is chosen to be at the edge of the domain as a good two-895

dimensional representation of the mesh can be obtained at
boundaries where all element surfaces are parallel to one an-
other. These images demonstrate how the mesh adapts to the
concentration field c, and velocity field, u. The images also
show how the mesh changes over a short period of the sim-900

ulation. The change between t= 3.5 and t= 4 is dramatic.
Very few, if any elements, within this view are consistent.
The images clearly display how anistropic elements are gen-
erated along the density interface and the boundary layer
where the curvature of the solution is highly anisotropic.905

Figure 9 shows the distribution of element sizes across
a plane of the domain at y = 1 at times t= 8 and t= 20.
Three images for each time show the dimensions of the el-
ements in the x, y, and z directions. High resolution in the
z, or wall normal direction, can be seen on no-slip bound-910

aries in proximity to the wall. Much larger relative resolu-
tions are found in the same regions for the x and y direc-
tions. This is enabled by the use of anisotropic mesh adap-
tivity which keeps the number of elements to a minimum,
whilst still resolving this important feature of the flow. These915

images also highlight the cost of resolving the wall bound-
ary layer with a high density of small elements, and hence
a large proportion of the elements found in the near-wall re-
gion. The high wall resolution in the z direction is present on
all no-slip surfaces and extends beyond the front of the grav-920

ity current head. In the x direction the highest resolution is
generally found at the front of the gravity current head. This
is caused by a sharp interface in c at the front of the head.
There is also high resolution around vortices and at the left
hand wall where there is a strong recirculation of the over-925

lying fluid. The increase in resolution at the left hand wall
is present at both t= 8 and at t= 20. The same increase in
resolution is not present at the right hand wall at either t= 8
or t= 20 (not shown in Fig. 9). This is because the fluid has

more space to recirculate in front of the current than behind it930

in both cases such that the curvature of the velocity field, and
thus the mesh resolution, is less. In the y direction the largest
region of high resolution is in the gravity current body just
behind the head of the current due to recirculating flow in
this region and hence high curvature in c and u2. The dis-935

tribution of element sizes in this region varies rapidly due to
the three-dimensional turbulent structure of the flow. There is
a large difference in the resolution between t= 8 and t= 20.
Within the current the resolution has generally decreased by
t= 20 but a significantly larger proportion of the domain is940

below the maximum element size. Generally, the elements
appear to be smaller in the z direction. This implies that the
interpolation error bound may be proportionally tighter on u
in this direction, and could be reduced a little to bring the
resolution in line with the other directions.945

In Sect. 4 it was shown that an adaptive simulation with the
interpolation error bounds used here compared well with the
finest fixed mesh simulation (6.25× 10−3). It is no surprise
that, in the most computationally demanding regions of the
flow, Fig. 9 shows that the smallest element edge lengths in950

the adaptive simulation match well with the fixed mesh edge
length.

Adaptivity does of course come at a cost. The mean time
required for a parallel adapt operation throughout this sim-
ulation, including mesh adaptation, data-transfer, mesh par-955

titioning and data-migration, was 110 s. This can be com-
pared to a mean time required to compute a time step in par-
allel of 67 s. Therefore, when adapting every 5 time steps,
approximately 1/4 of the simulation time is spent adapting
the mesh, or the run time is increased by 33% compared to960

a fixed mesh simulation using the same number of elements.
When adapting every 2 time steps approximately 1/2 of the
simulation is spent in the adapt stage. The mesh optimisa-
tion algorithm used provides the most flexibility for mesh
refinement, and hence will produce a highly optimised mesh,965

but it is potentially more expensive than other adaptivity al-
gorithms. A high percentage of the total simulation time is
spent in the adapt phase and hence it may be worth consid-
ering cheaper alternatives based upon hierarchical refinement
for future models. Regardless of this, the benefits of reducing970

the number of elements by two orders of magnitude far out-
weigh the cost of adaptivity. The simulation required approx-
imately 100 000 processor hours. Over 500 cores this equates
to just under a week of run time. Assuming a linear increase
in run time with number of elements, a fixed mesh simulation975

would have taken at least an order of magnitude longer and
would have been nearly impossible to post-process.

The run time of a simulation is dependent upon many pa-
rameters. This run time includes the time required for many
online diagnostics and the writing of data to disk. When us-980

ing adaptivity the frequency of adapts is an additional key
parameter that governs a trade-off between total processing
hours and time to completion. Increasing the time between
adapts requires a larger amount of elements to ensure that
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there is adequate resolution throughout the period between985

adapts. This will increase the number of processing hours re-
quired to solve the problem. However, with more elements,
the problem can be split amongst more cores whilst keep-
ing the minimum number of elements per core constant. The
time to completion is then likely to reduce as fewer adapt990

operations are required. This parameter can be varied depen-
dent upon what is important to the scientist. Size of output,
time to completion, the cost of processor time, and the size of
available computers must all be taken in to account. Another
adaptive simulation with similar properties, but slightly var-995

ied parameters, could require significantly more, or less total
processing hours.

6 Results

Figure 10 shows how the density current propagates along
the tank in three-dimensions. The perturbation in the initial1000

condition for the concentration field is shown in the image re-
lating to t= 0. This initial condition creates the initial three-
dimensional instabilities required to generate a realistic den-
sity current. By t= 8 this flow is fully turbulent and three-
dimensional. This is in agreement with other models (Necker1005

et al., 2002; Espath et al., 2014). The well known structures
of lobes and clefts are present at the front of the density cur-
rent from this point onward.

Figure 11 shows how the head position varies with time
throughout the simulation. This is computed as the maximum1010

x value, averaged across the width of the domain, obtained
from a sediment concentration contour at c= 0.01. Lines are
plotted showing the agreement with other models. The re-
sults compare well with Espath et al. (2014), whose model
predicted a head position slightly in front of the model by1015

Necker et al. (2002). Espath et al. (2014) noted the impor-
tance of the initial condition to the development of the flow.
The initial conditions used in this work are slightly different
to those of Espath et al. (2014) and Necker et al. (2002) and
hence complete agreement is not expected.1020

Figure 12 shows the spatially integrated deposition rates
over the course of the simulation. Again the deposition rate
shows good agreement with other published values. As noted
by Necker et al. (2002) the deposition rate increases at a rate
proportional to t0.5 until approximately t= 14, at which1025

point there is a sharp change and the deposition rate begins to
drop rapidly at a rate proportional to t−2.5. A key difference
between the results from this work and those of the other
models is the presence of erosion in this simulation. The de-
position rates from this simulation are higher than those of1030

Necker et al. (2002) and Espath et al. (2014). Noting that
the vertical fluid velocities are small near the bed due to the
no slip boundary condition, and that eroded sediment will be
settling, the majority of eroded sediment will almost imme-
diately be deposited, and will never be fully entrained back1035

into the flow. This will lead to an increased deposition rate

compared to a simulation without erosion. By making the as-
sumption that all eroded sediment is immediately deposited,
a modified deposit rate can be calculated for the Fluidity
simulation with the effect of erosion removed. As shown in1040

Figure 10, this modified deposition rate shows much better
agreement with the results of both Necker et al. (2002) and
Espath et al. (2014) leading to the conclusion that it is the
inclusion of erosion in the simulation that led to the higher
deposition rate.1045

An important diagnostic for applications is the final de-
posit profile from a particle-laden density current. Fig-
ure 13 shows the span-wise averaged deposit profile from
the three-dimensional Fluidity simulation compared against
those of previous modellers and also from the experiments1050

of De Rooij and Dalziel (2001). A good match is observed in
the peak deposit height of η ≈ 0.12 at x1 ≈ 4 between all of
the models and the experimental results.

There is a notable variation in deposit depths near the lock-
gate. All models show a smaller deposit depth in this region1055

when compared to the experimental results. The reason for
this is unclear and explanations can only be speculative. One
potential cause may be that the sediment in the experimental
set up had already begun to settle before the lock-gate was
released. This may also help to explain the slightly shorter1060

run-out distance resulting from a reduced initial potential en-
ergy. Alternatively, there may be processes occurring in the
laboratory that are not accurately captured by the computa-
tional models.

The results from Fluidty are further from the measured1065

results than the other models in this region. The inclusion
of an erosion algorithm is the likely cause of this. The ex-
perimental measurements show larger deposits than all of
the models upstream, and smaller deposits downstream. Ero-
sional processes will predominately decrease upstream de-1070

posits and increase downstream deposits, and hence would
increase this discrepancy if applied to any of the models. In
addition to this, the erosion algorithm is not configured cor-
rectly to match the De Rooij and Dalziel (2001) experiment.
Rp ≈ 1 for the De Rooij and Dalziel (2001) experiment, in1075

comparison to Rp ≈ 20 in the Fluidity simulation. This will
result in significantly more erosion in the simulation than is
likely to have occurred in the experiment.

7 Conclusions

This paper presents validation of a novel three-dimensional1080

finite element model for simulating particle-laden density
currents. The model is validated by assessing the con-
vergence of key variables in two-dimensional simulations
and by comparison with results from previous DNS three-
dimensional simulations by Necker et al. (2002) and Espath1085

et al. (2014). It has been shown that by using adaptive mesh-
ing the number of required elements in these simulations can
be reduced by between one and two orders of magnitude.
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This makes DNS modelling of particle-laden density currents
at moderate Grashof numbers an achievable goal using finite1090

elements.
In addition, simulations within complex domains can be

achieved fairly trivially using the flexibility afforded by un-
structured finite elements. Future work will study flow of tur-
bidity currents along circular channels and across breaks in1095

slope, and will help answer outstanding questions about the
dynamics of flows in these situations. Using mesh adaptiv-
ity also makes modelling in very large domains achievable.
Large regions of the domain where very little is happening
come at very little cost. This will enable modelling turbidity1100

currents in deep water where the dynamics are not dominated
by the bore created by the overlying fluid. It may also allow
for simulations of turbidity current along sinuous channels
with over-spilling as well as numerous other similar scenar-
ios.1105

The cost of these simulations is still very high. It may
be possible to further reduce the cost of these simulations,
whilst retaining important three-dimensional dynamics, us-
ing Large Eddy Simulation (LES). Future work will focus on
implementation and testing of LES for this simulation with1110

the aim of reducing the simulation cost.
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Table 1: Minimum, maximum, and mean number of elements, N̄e, and interpolation error bounds for sediment concentration,
εc, the x-component of velocity, εu1 , and the y-component of velocity, εu2 , for selected adaptive two-dimensional simulations
from the interpolation error bound parameter sweep.

id εc εu1 εu2 min(Ne) max(Ne) N̄e

A0 4× 10−2 4× 10−2.0 4× 10−2.0 12 924 15 000 14 017
A1 4× 10−2.5 4× 10−2.5 4× 10−2.5 16 025 31 083 24 900
A2 4× 10−3 4× 10−3.0 4× 10−3.0 20 515 71 055 55 031
A3 4× 10−3 4× 10−2.5 4× 10−2.5 19 094 63 767 41 827

Compute the hessian of u and c (Pain et al., 2001)

Convert the hessians to metrics (Chen et al., 2007)

Create the final metric by superpo-
sition of metrics (Pain et al., 2001)

Adjust the metric for: max/min element
size, aspect ratio, number of elements and

metric advection (Hiester et al., 2011)

Adapt the mesh based upon the metric us-
ing: libmba2d in 2D, libadaptivity in 3D

Measure the mesh quality against the metric

Repartition the mesh using Zoltan (Bo-
man et al., 2012). Avoid placing low qual-

ity elements on partition boundaries.

Is the mesh quality high enough

Transfer data from the old mesh to the new mesh
using: consistent interpolation for pressure p, Galerkin
projection for u and c (Farrell and Maddison, 2011)

yes

no

timestep loop

timestep loop

Metric formation

Mesh generation and partitioning

Data transfer

Fig. 1: A description of the high-level algorithm involved in adapting the mesh. This algorithm is invoked repeatedly throughout
the simulation at a fixed interval specified as a number of timesteps.
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L1

L2

L3

L1R

xy z

Fig. 2: Lock-release simulation domain configuration. The grey region indicates the volume of non-zero sediment concentration
at t= 0. The coordinate system defines the origin, x0, y0, z0

104 105 106

10−1

mean number of elements

E
D

fixed

adaptive

A0

A1

A2

A3

Fig. 3: Time integrated energy conservation error, ED, against the mean number of elements for a range of two-dimensional
simulations using fixed and adaptive meshes. Adaptive simulations represent a parameter sweep of interpolation error bounds
with values 4× 10−3, 4× 10−2.5 and 4× 10−2 for velocity and concentration. Fixed meshes are on uniform triangular grids
with edge-lengths 5×10−2, 2.5×10−2, 1.25×10−2, and 6.25×10−3. Four adaptive simulations are highlighted. The settings
for these simulations are detailed in Table 1.
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Fig. 4: Energy budget evolution with time for simulation with adaptivity options A3 (solid lines —) compared against 2-D
results from Espath et al. (2014) (dashed lines - - - ). Values are normalised by the initial potential energy, ET .
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(a) Selected adaptive mesh simulations.
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(b) Fixed mesh simulations. Legend indicates element edge lengths.

Fig. 5: Wall normal velocity profile at the location of the nose of the gravity current at t= 7.5 for the fixed mesh simulations
and selected adaptive simulations. Note that A2 is a higher resolution simulation than A3.
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Fixed mesh

Ne = 2.9 × 104

Fixed mesh

Ne = 1.8 × 106

Adaptive mesh (A3)

N̄e = 4.1 × 104

t = 4 t = 12

0 0.25 0.5 0.75 1
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Fig. 6: Heat map of sediment concentration at t= 4 and t= 12 for the highest resolution fixed mesh simulation the adaptive
simulation with configuration A3, and a fixed mesh simulation with a similar number of elements to the adaptive simulation.
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Fig. 7: Number of elements in the three-dimensional simulation as a function of time.
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(a) t= 3.5
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0
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(b) t= 4

Fig. 8: Images showing concentration c, velocity magnitude |u|, and the adapted mesh at t= 3.5 (a) and t= 4 (b) over the
subdomain, 3.5< x < 3.75, z < 1.25 on a y-normal plane at y = 0.
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Fig. 9: Heat map indicating the size of the elements in x, y and z across a plane at y = 1 for a subset of the domain (−1< x <
12) and times t= 8 (left) and t= 20 (right). Note that the domain extends to x= 18. The region 12< x < 18 had no significant
regions with element sizes smaller than 0.1.
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Fig. 10: Propagation of density interface over time. This figure shows a contour at a concentration 0.25 at times 0, 2, 8, and 14.
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Fig. 11: Position of density current head against simulation time for the Fluidity simulation and the simulations of Necker et al.
(2002) and Espath et al. (2014).
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Fig. 12: Deposition rates for the three-dimensional simulation. Deposition rates from Fluidity (F1), Fluidity with a modified
deposition rate where the erosion rate has been removed (F2), Espath et al. (2014), and Necker et al. (2002).
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Fig. 13: Span-wise averaged deposit profile from the three dimensional simulation at t= 60. Comparisons are made against
numerical results by Necker et al. (2002) and Espath et al. (2014) and experimental results by De Rooij and Dalziel (2001).
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