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Abstract. Emissions of harmful substances into the atmo-
sphere are a serious environmental concern. In order to un-
derstand and predict their effects, it is necessary to esti-
mate the exact quantity and timing of the emissions, from
sensor measurements taken at different locations. There ex-5

ists a number of methods for solving this problem. How-
ever, these existing methods assume Gaussian additive er-
rors, making them extremely sensitive to outlier measure-
ments. We first show that the errors in real-world measure-
ment datasets come from a heavy-tailed distribution, i.e., in-10

clude outliers. Hence, we propose to robustify the existing in-
verse methods by adding a blind outlier detection algorithm.
The improved performance of our method is demonstrated
on a real dataset and compared to previously proposed meth-
ods. For the blind outlier detection, we first use an existing15

algorithm, RANSAC, and then propose a modification called
TRANSAC, which provides a further performance improve-
ment.

1 Introduction

1.1 Motivation20

Emissions of harmful substances into the atmosphere occur
all the time. Examples include nuclear power plant accidents,
volcano eruptions, and releases of greenhouse gases. How-
ever, these emissions are difficult to quantify. Depending on
the scenario, measurement networks on scales from local to25

global may be needed. A robust technical framework to esti-
mate the emissions properly from such measurements is also
necessary.

This technical framework consists of three elements:
measurements, atmospheric dispersion models, and inverse30

methods tailored to this specific linear inverse problem.
There has been a clear effort in deploying more reli-

able, precise, and extended sensor networks (CTBTO, 2014).
Also, there has been an evident development of precise atmo-
spherical dispersion models (Holmes and Morawska, 2006).35

However, inverse methods are still in a relatively early stage
of development.

These inverse methods are technically complex, and re-
quire a multidisciplinary approach; collaboration among re-
searchers from different fields is necessary for further ad-40

vances.

1.2 Related work

Atmospheric dispersion models such as Eulerian or La-
grangian particle dispersion models (LPDMs) (Zannetti,
1990) allow us to relate the source to the measurements in45

a linear way:

y = Āx+n, (1)

where y is the measurement vector, x is the source term, Ā
is the transport matrix, and n is the measurement error.

LPDMs have some advantages with respect to the Eulerian50

ones: they can have infinite temporal and spatial resolution;
they avoid the artificial initial diffusion of a point source in
the corresponding cell and the advection numerical errors;
and they are computationally more efficient (Zannetti, 1990).

There are only a few freely available, open source im-55

plementations of LPDMs. The Flexible Particle dispersion
model (FLEXPART) (Stohl et al., 2005) is one of them. It
has been used and validated in a large number of studies on
long-range atmospheric transport (Stohl et al., 1998). Here
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we use it to derive A, which is an estimate of the true trans-60

port matrix Ā.
It is clear from (1) that estimating the source means solv-

ing a linear inverse problem. Most environmental scientists
use a least-squares approach with the Tikhonov (`2-norm)
regularization, or variants of this method, to recover an esti-65

mate x̂ of the source:

x̂ = argmin
x

‖Ax−y‖2 +λ‖x‖2, (2)

where λ≥ 0 is the regularization parameter.
For example, in Seibert (2001), the Tikhonov regulariza-

tion is combined with a smooth first derivative constraint:70

x̂ = argmin
x

‖Ax−y‖2 +λ‖x‖2 +β‖Dx‖2. (3)

Also, an a priori solution xa can be introduced to the
Tikhonov regularization such as in (Stohl et al., 2012):

x̂ = argmin
x

‖Ax−y‖2 +λ‖x−xa‖2, (4)

In Winiarek et al. (2012), the Tikhonov regularization is75

used with a non-negative constraint. A slightly different ap-
proach is the use of a sparsity constraint together with a non-
negative constraint as in Martinez-Camara et al. (2013). Yet
another point of view is given in Bocquet (2007), where both
the source and the error distributions are estimated at the80

same time.
All these approaches minimize the energy of the disagree-

ment between the model and the observations, while at the
same time keeping the energy of the solution in check. While
this is a reasonable approach, no metrics of real performance85

are (or can be) given in most of these studies, simply because
no knowledge of the ground truth is available. This fact made
it impossible to evaluate the true performance of any of these
approaches.

However, a few controlled tracer experiments have been90

performed - the most important ones in Europe and in the
US (Nodop et al., 1998; Draxler et al., 1991). They present
exceptional opportunities to study model and measurement
errors, as well as to develop and test the various source re-
covery algorithms.95

The European Tracer EXperiment (ETEX) (Nodop et al.,
1998) was established to evaluate the validity of long-range
transport models. Perfluorocarbon (PFC) tracers were re-
leased into the atmosphere in Monterfil, Brittany, in 1994.
Air samples were taken at 168 stations in 17 European coun-100

tries for 72 hours after the release. The data collected in the
ETEX experiment and the correspondent matrix estimated
by FLEXPART are used for several purposes in this paper.
We will refer to this data as the ETEX dataset. In every in-
verse problem, a time window must be defined, during which105

the activity of the source is to be recovered. In this particular
case, we define a window of 5 days (although we in fact know
that the ETEX emissions took place over only 12 hours) or
5 * 24 = 120 hours. Since the time resolution is 1 hour, we
have 120 unknowns in the system.110

1.3 Contributions

In this paper we show that the errors present in a source
estimation problem come from a heavy-tailed distribution,
which implies the presence of outliers in the measurement
dataset. Typical source estimation algorithms like (2) assume115

Gaussian additive errors (Rousseeuw and Leroy (1987)).
This incorrect assumption makes them highly sensitive to
outliers. In fact, if the outliers are removed, the source es-
timation using (2) improves substantially.

Hence, we propose to combine (2) with algorithms to de-120

tect and remove outliers blindly, i,e. without any knowledge
of the ground truth. First we use a well-known algorithm for
this task, RANdom SAmple Consensus (RANSAC) (Fischler
and Bolles, 1981), and study its performance. Next, we pro-
pose a new algorithm which overcomes some of the weak-125

nesses of RANSAC, and test its performance. The efficiency
of both algorithms is demonstrated on a real-world dataset,
and their performance is evaluated and compared to other
existing methods.

Our presented algorithm is generic, in the sense that it is130

suitable for all classes of input signals. Of the four key ele-
ments that constitute our algorithm - the least squares term,
the regularization, the outlier detection, and voting - only
the regularization is affected by the type of input signal. We
chose to use the regularizations given in (2) and (3) because135

they are the most generic, and are known to apply relatively
well to a broad range of realistic signals (impulse, continu-
ous, piece-wise constant, sparse, etc.). As always, improved
performance can be achieved when the structure of the signal
is known, by using an appropriate, more specific regulariza-140

tion suited to that structure. Our approach is in fact indepen-
dent of the regularization that is used, and is applicable to
any regularization found in the literature.

2 Non-Gaussian noise

Given A, the estimate of the transport matrix produced by145

FLEXPART, the forward model (1) now becomes

y = Ax+ e (5)

where e is an additive error term that encompasses both the
model and measurement errors.

In the ETEX experiment we have access to the measure-150

ments y, the true source x, and the estimated transport ma-
trix A. This permits us to study the errors e. Let us model
the components ei of the vector e as random and indepen-
dent and identically distributed. Some degree of correlation
may exist among the errors, but this correlation is unknown.155

Thus it cannot be considered in the problem. We can approx-
imate the empirical probability distribution of e by plotting
the histogram of the elements ei.

Figure 1 shows graphically that the error has a heavy-tailed
distribution. The distribution clearly deviates from a Gaus-160
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sian one. This is confirmed by calculating the excess kurtosis
of the sample distribution. The value of g = 123.64 indicates
that the underlying distribution is strongly super-Gaussian.

Using the `2 norm in the loss function in (2) is optimal
when the additive errors are Gaussian - which is not our165

case. Even worse, this loss function is very sensitive to out-
liers, just like the ones present in the heavy-tailed distribu-
tion shown in Figure 1. Hence, the performance of (2) and its
variants could be improved by additional processing, aimed
at removing and/or marginalizing the outliers. In the present170

paper we propose and demonstrate a novel scheme for this
additional processing.

3 Outlier detection

Imagine that we have an oracle which reveals to us the mea-
surements corresponding to the largest errors (i.e. the out-175

liers). If we remove these measurements from the dataset,
the performance of (2) in terms of the reconstruction error or
mean square error (MSE) improves significantly. 1 In order to
illustrate this, we remove the measurements associated with
the largest errors (sorted by magnitude) and observe the ef-180

fect on the MSE. Figure 2 shows how the MSE decreases as
more and more outliers are removed. Some oscillations may
occur due to outlier compensation effects.

However, in a real-world problem, we do not have such
an oracle. The question becomes: how could one locate the185

outliers blindly?

3.1 RANSAC

One of the simplest and most popular algorithms to local-
ize outliers blindly is RANSAC. RANSAC has been widely
and successfully used, mainly by the computer vision com-190

munity (Stewart (1999)). Figure 3 illustrates the operation of
RANSAC, and Algorithm 1 describes it in pseudocode.

Given a dataset y with m measurements, select randomly
a subset y′ containing p measurements. Typically, n < p <
m, where n is the number of unknowns in the problem. In195

Figure 3, m= 8 and p= 2, and the subset is shown in red
diamonds. Using (2) and y′, estimate x̂, and then compute
the residual r = Ax̂−y. Now we can count how many of the
original samples are inliers. For a given tolerance η, the set
of inliers is defined as L= {q ∈ {1,2, · · · ,m} | η ≥ (r[q])2}.200

Repeat this process N times and declare the final solution
x∗ to be that estimate x̂ which produced the most inliers. In
Figure 3, N = 2.

Note that other regularizations can be used instead of (2).
Here we use the Tikhonov regularization because it is simple,205

general, and most other existing approaches are based on it.
Nevertheless, if some properties of the source are known a

1The MSE is defined as 1
n
‖x− x̂‖22, where x̂ is the estimated

source, x is the real source (ground truth), and n is the number of
elements in x.

priori (e.g., sparsity or smoothness), this step of the algorithm
can be adapted accordingly.

At the stage where the N possible solutions x̂ have been210

generated, what RANSAC actually tries to do is to select the
solution x∗ with the smallest MSE. However, in a real world
problem the ground-truth is unknown, so we do not have ac-
cess to the MSE itself. So, as mentioned above, RANSAC
overcomes this difficulty by using an indirect metric of the215

MSE: it assumes that the number of inliers is inversely pro-
portional to the MSE. Figure 3 depicts the intuition behind
this in a simple 1-D problem: the superior solution (subset
2) produces more inliers than the inferior solution (subset 1).
Thus, RANSAC maximizes the number of inliers, in hopes220

that this also minimizes the estimation error.
As we will see in the following sections, if the optimal

value for the threshold parameter η is known and used, us-
ing RANSAC as a pre-processing stage for outlier removal
before applying (2) significantly improves the overall per-225

formance (compared to using only (2) with no outlier re-
moval pre-processing). Unfortunately, the performance of
RANSAC depends strongly on the parameter η, and finding
the optimal value of η is an open problem.

Furthermore, the assumed inverse proportionality between230

the number of inliers and the MSE does not always hold in
the presence of critical measurements. This is the case in the
ETEX dataset, as we can see in Figure 4(a).

3.2 Critical measurements

We identify critical measurements as those which have the235

largest influence in the source estimation process. A quanti-
tative measure of this influence is the Cook’s distance (Cook,
1977). Figure 5 shows the Cook’s distance of the ETEX mea-
surements. It is easy to observe the peak that identifies the
critical measurements.240

Let us consider again the ETEX dataset, the set of N so-
lutions x̂ that RANSAC generates, and their corresponding
residuals r. It is interesting to note that the solutions x̂ with
most inliers (the superior solutions according to RANSAC)
have high residuals at exactly the critical measurements. This245

is shown in Figure 6. In other words, by considering the crit-
ical measurements as outliers, these solutions achieve more
inliers.

RANSAC assumes that all the measurements have the
same influence: it just wants to maximize the number of in-250

liers, and does not care about which exact measurements are
the inliers. This is why it fails in this case and the inverse
proportionality between the number of inliers and the MSE
does not hold.

In summary, RANSAC operates reliably when all the mea-255

surements are of similar importance, because the inverse pro-
portionality between MSE and the number of inliers holds.
However, when critical measurements are present, this pro-
portionality does not hold, and RANSAC fails.
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3.3 RANdom SAmple Consensus (TRANSAC)260

In order to avoid the weakness of the standard RANSAC
algorithm, we propose an alternative indirect metric to dis-
criminate solutions with small MSE: the total residual ε=
‖Ax̂−y‖2. By replacing the number of inliers by the total
residual metric, we create the first step of the Total residual265

RANdom SAmple Consensus (TRANSAC) algorithm. The
second step consists in a voting stage. Both are described in
Algorithm 2 in pseudocode.

The total residual is directly proportional to the MSE of re-
construction. Unlike the number of inliers, this proportional-270

ity is conserved also when critical measurements are present
in the dataset (Figures 4(c) and 4(d)). In a real-life problem,
where we do not have access to the ground truth, we do not
know if critical measurements are present. Hence, we need
a robust algorithm like TRANSAC. In addition, TRANSAC275

does not depend on the threshold η.
The proportionality between the total residual and the re-

construction error is not perfect, as we can see in the scat-
ter plot of Figure 4(d). Even if a candidate solution has the
smallest total residual, it is not guaranteed to be the solu-280

tion with the smallest MSE. The intention of the voting stage
is, using the candidate solutions with a total residual under
a certain threshold, to come up with the best possible final
solution.

Intuitively, the solutions with the smallest total residual285

(i.e., smallest MSE) are generated using almost outlier-free
random subsets of measurements y′. We refer to these as the
good subsets. Outliers can appear sporadicly in some of these
good subsets, but the same outlier is extremely unlikely to ap-
pear in all of them. Hence, in the voting stage we select the290

measurements that all the good subsets have in common, or
in other words, exclude any measurements that appear very
infrequently.

Thus, we first select the subsets y′ associated with can-
didate solutions with a total residual smaller than a certain295

threshold, ε < β. Then, for each measurement we count how
many times it appears in these good subsets. Finally, we se-
lect the M measurements with the largest frequency of oc-
currence.

4 Results300

4.1 Performance Analysis of TRANSAC

We now perform two experiments to demonstrate various as-
pects of TRANSAC.

4.1.1 Sanity check

In Section 3.3 we confirmed the expected behaviour of the305

first stage of TRANSAC: we showed that the total residual is
directly proportional to the MSE. Let us check now the sec-
ond stage, the voting. To do so, let us suppose that during the

voting we have access to the MSE of every candidate solu-
tion x̂. Then, we would of course select the solutions which310

in fact have the smallest MSE, and use them to build the his-
togram. We run this modified TRANSAC with the dataset
without critical measurements.

Figure 7(a) shows the MSE obtained for different values
of the parameter M. The dashed line on the right indicates315

the maximum possible value of M , such that M =m, which
corresponds to using the whole measurement dataset. The
dashed line on the left indicates the minimum possible value,
M = n, and corresponds to using as many measurements as
unknowns. The red horizontal line indicates the MSE of the320

solution obtained by using just the Tikhonov regularization
without TRANSAC, i.e., when M =m.

We can observe that the MSE of the solution increases
as M increases. This is to be expected: as M grows, more
outliers are included in the dataset that is used to obtain x∗,325

and its MSE increases. We note that the results curve is non-
decreasing, because in this particular experiment we have ac-
cess to the MSE and the histogram h is built from the actual
best candidate solutions.

4.1.2 Actual ETEX330

In this subsection, the performance of the complete
TRANSAC algorithm is examined. Let us consider first the
dataset without critical measurements. As in the sanity check
above, TRANSAC is run for different values of M . The re-
sults are shown in Figure 7(b). We observe that the MSE in-335

creases as M increases, as before, and the maximum MSE
still occurs at M =m. This is reassuring: even if we do not
find the optimal value for the parameter M , we will improve
the solution (with respect to using only the Tikhonov regular-
ization) by taking any n <M <m. Notice that the minimum340

MSE again occurs when M = n.
Figure 7(c) shows the results from the examination of the

whole dataset, including the critical measurements. We can
observe that, again, the maximum MSE occurs at M =m.
On the other hand, the minimum MSE does not occur at n,345

but rather at M = 330. Also, although the exact performance
of the algorithm varies with the value chosen for the param-
eter β, as shown in Figure 8, we note that for practically any
value of β there is an improvement in performance.

These results show that TRANSAC clearly improves the350

performance of the Tikhonov regularization in both cases:
with and without critical measurements.

4.2 Outlier removal

As explained in Section 3, RANSAC and TRANSAC are
blind outlier detection algorithms that can be combined with355

different regularizations in order to improve their results. In
this section we combine RANSAC and TRANSAC with two
different regularizations previously used in the literature, (2)
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and (3), and study their performance. As before, we use the
ETEX dataset with and without the critical measurements.360

The results are shown in Figure 9. It is important to note
that all these results were generated using the optimal values
for all the parameters (λ, η, β, M ) that were found experi-
mentally. The blue bars correspond to the original algorithms
(2, 3). The violet bars indicate that RANSAC is used for out-365

lier removal, and the green ones that TRANSAC is used for
outlier removal. First, we note that with and without critical
measurements, the outlier removal stage improves the perfor-
mance of both regularizations. Hence, our idea of removing
outliers, outlined in Section 2, indeed does lead to improved370

performance, regardless of critical measurements or type of
regularization. Next, in all cases TRANSAC shows higher
performance than RANSAC. Therefore, our proposed modi-
fication of the metric, and the addition of the voting stage re-
sult in improved performance, as expected. Finally, we note375

that the MSE is higher, i.e., the reconstruction is poorer, when
the critical measurements are not used, which is again con-
sistent with our analysis.

Figure 10 gives a more qualitative assessment of these
results by representing the estimated source. We first no-380

tice that the reconstructed sources using (3) are generally
smoother than those reconstructed using (2), due to the added
smoothness (derivative) term in the objective function. Next,
we note that the reconstructions using the critical measure-
ments are closer to the ground truth than the reconstructions385

without the use of the critical measurements, which is consis-
tent with the results shown in Figure 9. Finally, we note that
in all four cases, the recovered source using TRANSAC for
the outlier detection produces the closest match to the ground
truth, as expected.390

5 Conclusions

In this work we showed that the additive errors present in the
ETEX dataset come from a heavy-tailed distribution. This
implies the presence of outliers. Existing source estimation
algorithms typically assume Gaussian additive errors. This395

assumption makes such existing algorithms highly sensitive
to outliers. We showed that, if the outliers are removed from
the dataset, the estimation given by these algorithms im-
proves substantially.

However, in a real life problem, we do not know which400

of the measurements are outliers. Hence, we do have to re-
move them in a blind fashion. For this purpose we proposed
RANSAC, a well-known blind outlier detection algorithm.
We then showed that RANSAC unfortunately strongly de-
pends on the chosen tolerance parameter, and it is sensitive405

to critical measurements. To overcome these difficulties, we
created TRANSAC, a modification of RANSAC which also
includes a voting stage.

To demonstrate the efficiency of these methods in a real-
world problem, we used the ETEX tracer experiment dataset.410

The source was recovered first with two previously proposed
source estimation algorithms that assume Gaussian additive
errors (2), (3). Then it was recovered again with our algo-
rithms that use RANSAC and TRANSAC. The results clearly
display how the source estimation improves if an outlier de-415

tection algorithm is used. They also show that the perfor-
mance of our proposed algorithm TRANSAC clearly exceeds
the performance of RANSAC in every case.
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Algorithm 1 RANSAC
INPUT: y ∈ Rm, A ∈ Rm×n, λ, η, N , p

Require: λ≥ 0,N > 0,η ≥ 0,p≤m
L∗←∅
x∗← 0 ∈ Rn

r← 0 ∈ Rm

k← 0 ∈ Np

y′← 0 ∈ Rp

A′← 0 ∈ Rp×n

for s= 1 to N do
k← p unique random integers from [1,m]
y′← y[k]
A′←A[k, :]
x̂← argmin

x
‖A′x−y′‖22 +λ‖x‖22

r←Ax̂−y
L← {q ∈ {1,2, · · · ,m} | η ≥ (r[q])2}
if #L>#L∗ then
L∗←L
x∗← x̂

end if
end for
return x∗

Algorithm 2 TRANSAC
INPUT: y ∈ Rm, A ∈ Rm×n, λ, N , p, M , β

Require: λ≥ 0,N > 0,p≤m,n≤M ≤m,β ≥ 0
ε← 0 ∈ RN

k← 0 ∈ Np

K← 0 ∈ Np×N

y′← 0 ∈ Rp

A′← 0 ∈ Rp×n

G ← ∅
h← 0 ∈ Rm

b← 0 ∈ RM

for s= 1 to N do
k← p unique random integers from [1,m]
y′← y[k]
A′←A[k, :]
x̂← argmin

x
‖A′x−y′‖22 +λ‖x‖22

ε[s]←‖Ax̂−y‖2
K[ :,s]← k

end for
G ← {q ∈ {1,2, · · · ,N} | ε[q]≤ β}
KG ←K[:,G]
h[k]← how many times k appears in KG , ∀k ∈
{1,2, · · · ,m}
b← indices of the M largest elements of h
y∗← y[b]
A∗←A[b, :]
x∗← argmin

x
‖A∗x−y∗‖22 +λ‖x‖22

return x∗
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Figure 2. MSE of reconstruction obtained using (2). The strongest
outlier measurements (the ones associated with the largest errors)
have been removed manually. Notice that the MSE decreases as
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Step 1

Step 2

Steps 3&4

t t

Figure 3. Visual representation of the functioning of RANSAC.
Subset 1 and 2 represent two RANSAC iterations. The subset of
measurements selected by RANSAC in each iteration is represented
with red diamonds. Subset 1 contains one outlier. Hence, the so-
lution corresponding with this subset generates fewer inliers than
subset 2, which is free of outliers.
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Figure 4. Performance of RANSAC and TRANSAC. (a) and (b) show graphically the correlation between MSE of reconstruction and the
number of inliers. (c) and (d) show graphically the correlation between MSE of reconstruction and the total residual. To build (a) and (c)
the complete dataset was used, to build (b) and (d) the dataset without critical measurements was used. The diamond indicates the solution
obtained by the traditional Tikhonov regularization in (2), the star indicates the solution chosen by TRANSAC before the voting stage, the
square indicates the final solution of TRANSAC, and the hexagon the solution chosen by RANSAC.
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Figure 5. Cook’s distance of the measurements in the ETEX
dataset.
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Figure 6. Residuals of two different source estimations: The blue
peaks correspond to the residual produced by the solution x̂ with
the largest number of inliers in Figure 4(a). The black arrows on the
top indicate where the two most critical measurements are localised.
Clearly, the residual corresponding to these two measurements is
much larger than the rest. The red peaks corresponds to the residual
produced by the solution x̂ with the smallest MSE in 4(a).
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Figure 7. Performance of TRANSAC combined with Tikhonov regularization. In the three plots, the red dashed line indicates the estimation
error given by typical Tikhonov (2). The dashed line on the right indicates M =m, the one on the left indicates M = n. Plot (a) shows
the results of the sanity check. As the selected number of measurements M increases, the MSE of the estimation decreases. Notice that
the maximum MSE corresponds with M =m. Plot (b) shows the results of applying TRANSAC to the ETEX dataset without critical
measurements. Again, the MSE increases in general with M, and the maximum MSE appears in M =m. Plot (c) shows the results of
applying TRANSAC to the whole ETEX dataset, critical measurements included. In this case the MSE not always increases with M, but the
maximum MSE still corresponds with M =m.
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Figure 8. Sensibility of TRANSAC combined with Tikhonov regu-
larization to the parameter β. The red line indicates the estimation
error given by typical Tikhonov (2). The algorithm is sensitive to
beta, but for practically all beta values the performance is improved.
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Figure 9. MSE of source estimated by different algorithms. The blue bars correspond with the original algorithms (2, 3). The violet bars
indicate that RANSAC is used for outlier removal, and the green ones that TRANSAC is used for outlier removal. The plot on the left was
generated using the whole ETEX dataset. The plot on the right was generated using the ETEX dataset without critical measurements.
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Figure 10. Source reconstructions given by the different algorithms. The plots on the left were generated combining (2) with RANSAC and
TRANSAC. The plots on the right were generated combining (3) with TRANSAC and RANSAC. The plots on the top were generated using
the ETEX dataset without critical measurements. The plots on the bottom were generated using the whole ETEX dataset.


