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Abstract. Radiocarbon is an important tracer of the global
carbon cycle that helps to understand carbon dynamics in
soils. It is useful to estimate rates of organic matter cycling as
well as the mean residence or transit time of carbon in soils.
We included a set of functions to model the fate of radiocar-5

bon in soil organic matter within the SoilR package for the R
environment for computing. Here we present the main sys-
tem equations and functions to calculate the transfer and re-
lease of radiocarbon from different soil organic matter pools.
Similarly, we present functions to calculate the mean transit10

time for different pools and the entire soil system. This new
version of SoilR also includes a group of datasets describ-
ing the amount of radiocarbon in the atmosphere over time,
data necessary to estimate the incorporation of radiocarbon
in soils. Also, we present examples on how to obtain pa-15

rameters of pool-based models from radiocarbon data using
inverse parameter estimation. This implementation is general
enough so it can also be used to trace the incorporation of ra-
diocarbon in other natural systems that can be represented as
linear dynamical systems.20

1 Introduction

To study the global carbon cycle and its interaction with
climate, it is necessary to develop models that can accu-
rately represent the size and the amount of transfers among25

different C reservoirs within the Earth system. Soils are
one of the most important C reservoirs, storing between
800 to 1700 PgC in the first 1 m, and exchanging between
53–57 PgCyr−1 with the atmosphere in the form of het-
erotrophic respiration (Schlesinger and Andrews, 2000; Lal,30

2004; Bond-Lamberty and Thomson, 2010; Todd-Brown
et al., 2013). However, there are large uncertainties in these
estimations, which are related to uncertainties in C stocks of
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arctic peatlands, coarse woody debris, and C stocks below
topsoil (Jobbágy and Jackson, 2000; Harmon et al., 2011;35

Todd-Brown et al., 2013). It is also highly debated whether
climate change may destabilize current soil C stocks (Trum-
bore, 1997; Schlesinger and Andrews, 2000; Kirschbaum,
2006; Davidson and Janssens, 2006; von Lützow and Kögel-
Knabner, 2009; Conant et al., 2011; Sierra, 2012).40

Radiocarbon can be used as a tracer of the interactions be-
tween terrestrial ecosystems and the atmosphere, and pro-
vides information about the rates of carbon inputs and losses
from soils (Trumbore, 2009). Radiocarbon is a cosmo-
genic radionuclide that is constantly produced in the up-45

per layers of the stratosphere. In the lower atmosphere, the
amount of radiocarbon at any given time is given by the bal-
ance between cosmogenic production, radioactive decay, and
sources and sinks from oceans, and the terrestrial biosphere.
Atmospheric concentrations of radiocarbon are well known50

for the past 7000–1000 years, and the continuous record even
extends to 50 000 years into the past (Reimer et al., 2009,
2013). Therefore, it is possible to know with good precision
when a C atom entered the terrestrial biosphere and for how
long it has been stored in a terrestrial reservoir.55

Radiocarbon is also used in tracer studies in which known
amounts of radiocarbon label are introduced in vegetation or
soils and its fate is followed as it moves among different com-
partments and subsequently leaves the system. During the
late 1950s and early 1960s nuclear weapon tests consider-60

ably increased the amount of radiocarbon in the atmosphere,
creating a global-scale labeling experiment that allows re-
searchers to follow the fate of this spike in atmospheric ra-
diocarbon concentrations across many different reservoirs of
the biosphere.65

In soils, radiocarbon studies have proved useful for esti-
mating the residence times of carbon in organic matter that
cycles on time-scales ranging from years to millennia (Trum-
bore, 2009). Organic matter is subject to different transfor-
mation processes in soils, it can be quickly consumed by mi-70
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croorganisms once it enters the soil, it can be transformed
into different compounds as a result of microbial-mediated
reactions, or it can also react with soil mineral surfaces
(Sollins et al., 1996; Schmidt et al., 2011; Gleixner, 2013).
These different processes create a heterogeneity of rates of75

organic matter decomposition that are of fundamental impor-
tance in determining long-term carbon stabilization in soils
(Bosatta and Agren, 1991; Sierra et al., 2011). With the aid of
radiocarbon measurements and models of soil organic matter
decomposition, it is possible to assess this heterogeneity of80

decomposition rates in soils (O’Brien and Stout, 1978; Bruun
et al., 2004; Trumbore et al., 1996; Gaudinski et al., 2000;
Baisden and Parfitt, 2007; Brovkin et al., 2008; Trumbore,
2009).

In this manuscript, we present the implementation of the85

radiocarbon component within the SoilR package, a software
tool developed for modeling soil organic matter dynamics
(Sierra et al., 2012a). First, we present the mathematics be-
hind the new implementation. Then, we present some de-
tails about the numerical implementation in R and the par-90

ticular functions implemented in SoilR. At the end of the
manuscript, we present some particular examples about its
use.

2 Mathematical formulation

2.1 General radiocarbon model95

Previously, we have defined a general model of soil organic
matter decomposition as a linear dynamical system of the
form (Sierra et al., 2012a)

dC(t)

dt
= I(t)+A(t)C(t), C(t= 0) =C0 (1)

where the amount of carbon in different pools is represented
as a vector C(t), with total inputs of carbon represented by
the vector I(t). The decomposition operator A(t), a square
matrix of dimension m×m, contains in its main diagonal
the decomposition rates ki for each pool i, and coefficients100

representing the proportion of carbon transferred from one
pool to another in the off-diagonals.

Similarly, the dynamical system for radiocarbon in soil or-
ganic matter can be represented as

d14C(t)

dt
= I14C(t)+A(t)14C(t)−λ14C(t), (2)

where the amount of radiocarbon in each pool i is represented
by the vector 14C(t), with radiocarbon inputs represented
by I14C(t), and λ as the radioactive decay constant. Both105

I14C(t) and 14C(t) represent the total amount of radiocar-
bon in a sample in relation to an international standard (Stu-
iver and Polach, 1977).

The fate of radiocarbon in soils can also be described in
fractional form as

14C(t) =F (t)◦C(t), (3)

where F (t) is a vector of lengthm and ◦ represents the entry-
wise product between the two vectors. The fraction F (t)
represents the activity ratio of a sample with respect to a ref-
erence material (see Sect. 2.2 for details, and Stuiver and Po-
lach, 1977; Mook and Van Der Plicht, 1999). The system of
equations can therefore be expressed as

d(F (t)◦C(t))

dt
=Fa(t)I(t)+A(t)(F (t)◦C(t))−λ(F (t)◦C(t)),

(4)

where Fa(t) is a scalar value that represents the fraction of
radiocarbon in the atmosphere, which is not constant and has110

changed considerably over time due to the action of cosmic
rays, the storage and release of carbon from oceans and the
biosphere, and human activities (Reimer et al., 2009; Levin
et al., 2010; Reimer, 2012).

In SoilR, we compute the time-dependent solution of115

Eq. (4), solving for F (t) using standard numerical methods
(see Sect. 2.4.1). F (t) contains the radiocarbon fraction for
each pool i for a given time (t).

We are also interested in calculating the total radiocarbon
in soil organic matter weighted by its mass FC(t), and the
total amount of released radiocarbon weighted by the total
amount of released carbon FR(t). These weighted averages,
or expectations, can be related to the average radiocarbon
content of a soil sample and the average radiocarbon content
of the released (respired) carbon from a sample, respectively.
Mathematically, both concepts can be expressed as

FC(t) =

∑
(F (t)◦C(t))∑

C(t)
, (5)

and

FR(t) =

∑
(F (t)◦R(t))∑

R(t)
, (6)

respectively. In both equations the sum is over all pools at
each time t.120

2.2 Reporting radiocarbon

In reporting radiocarbon, there are different ways to refer
to the proportion of radiocarbon in a sample. Atmospheric
radiocarbon data for the pre-bomb period is commonly re-
ported as ∆14C (Reimer et al., 2013), which is defined ac-
cording to Stuiver and Polach (1977) as

∆14C=(F−1) ·1000, (7)

with

F =
ASN

AABS
, (8)
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where ASN represents the activity of a sample normalized for
13C fractionation, and AABS the activity of the oxalic acid
standard normalized for 13C fractionation and corrected for
decay since 1950.125

For post-bomb applications, radiocarbon is better ex-
pressed as F14C, which according to Reimer et al. (2004)
is expressed as

F14C=
ASN

AON
, (9)

where AON is the activity of the oxalic acid standard with
13C normalization, but without decay correction; i.e.

AON=AABS ·e−λ(y−1950). (10)

Hua et al. (2013) report atmospheric radiocarbon values for
the post-bomb period as F14C and as ∆14C, the later ex-
pressed as

∆14C=(F14C ·e−λ(y−1950)−1) ·1000, (11)

i.e., the activity of the standard does not change with time
during the post-bomb period.

As both representations of ∆14C (Eqs. 7 and 11) are al-
gebraically similar, we take both types of ∆14C values and
treat them equally in our calculations.130

We define an absolute fraction modern F value as

F =
∆14C

1000
+1, (12)

where ∆14C is expressed as Eq. (7) for radiocarbon data pre-
vious to 1950, and as Eq. (11) after 1950. The system of dif-
ferential equations of Eq. (4) is solved using the values of F
as previously described.

2.3 Mean transit time135

2.3.1 Definitions and assumptions

A commonly used metric to compare different compartment
models is the concept of mean transit time, also known
as mean residence time (Eriksson, 1971; Bolin and Rodhe,
1973; Nir and Lewis, 1975; Thompson and Randerson, 1999;140

Manzoni et al., 2009). In previous studies, the mean transit
time of a system has been defined as the average time a par-
ticle of carbon spends in the system from entry to exit. This
definition however, has been proposed for linear time invari-
ant (LTI) systems in which the solution does not change over145

time and the system is in steady-state. This contrast with the
more general models that SoilR can solve (Eqs. 1 and 2) that
allow time dependent input fluxes and decomposition rates.
In addition, this definition of transit times does not specify
the set of particles whose transit times contribute to the aver-150

age, suggesting an average over all particles in the system.
Here we provide a more general definition of mean transit

time that takes into account the more general models that

SoilR can solve and specifies the set of particles used for
calculating the average. Our formal definition states: Given155

a system described by the complete history of inputs I(t) for
t∈ (tstart,tobs) to all pools until time of observation tobs and
the cumulative output O(tobs) of all pools at time tobs the
mean transit time T̄tobs of the system at time tobs is the average
of the transit times of all particles leaving the system at time160

tobs.
Accordingly, we define the related density distribution:

Given a system described by the complete history of inputs
I(t) for t∈ (tstart,tobs) to all pools until time tobs and the cu-
mulative output O(tobs) of all pools at time tobs the transit
time density ψtobs(T ) of the system at time tobs is the proba-
bility density with respect to T implicitly defined by

T̄tobs =

∫ tobs−tstart

0

T ψtobs(T ) dT. (13)

Methods for calculating the mean transit time and transit
time density for the general case and the models of the form
of Eqs. (1) or (4) will be described in a forthcoming more
detailed publication. Here we will limit to describe the most
common calculation of mean transit time for the LTI case,
i.e. for models in steady-state (total inputs are equal to total
outputs), constant coefficients, and constant inputs. The gen-
eral form of these LTI models, a special case of Eq. (1), is
given by

C =−A−1 ·I. (14)

2.3.2 Implementation

For the LTI case, it has been shown previously that the transit
time density distribution ψ(T ) for a transit time T is identical
to the output O(t) observed at time t= T of a system that165

starts with a normalized impulsive input I
ΣI at time t= 0 (Nir

and Lewis, 1975; Manzoni et al., 2009); where ΣI represents
the sum of all elements of the vector I . This implies that
we can use the numerical solution provided by SoilR for the
output flux as the transit time density function.170

Mathematically, we represent the numerical solution for
the output flux as a function Sr(I/ΣI,t= 0,T ), where the
impulsive input becomes a vector of initial conditions I

ΣI at
time t= 0, and Sr the release flux of the solution of the ini-
tial value problem observed at time t= T . The transit time
density function is then

ψ(T ) =Sr

(
I

ΣI
,0,T

)
. (15)

Note that from the perspective of the ode solver, Sr depends
only on the decomposition operator A (Eq. 14). It is there-
fore possible to implement the transit time distribution as
a function only of the decomposition operator and the fixed
input flux distribution. To insure steady-state conditions the175

decomposition operator is not allowed to be a true function
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of time. We therefore implement the method only for the
subclass ConstantDecompositionOperator, a new
native class of SoilR objects for the time invariant decompo-
sition operator A.180

To compute the mean transit time for the distribution we
need to compute the integral

T̄ =

∫ ∞
0

T ·Sr

(
I

ΣI
,0,T

)
dT. (16)

However, to avoid issues with numerical integration, we do
not use∞ as upper limit of integration, but cut the integration
interval prematurely. For this purpose we calculate a maxi-
mum response time of the system as (Lasaga, 1980)

τcycle =
1

|min(λi)|
(17)

where λi are eigenvalues of the matrix A. The upper limit of
integration in Eq. (16) is replaced by τcycle in our calculations.

In future versions of SoilR, it will be possible to compute
a dynamic, time-dependent transit-time distribution for ob-
jects of class Model with a time argument specifying for185

which time the distribution is sought.

2.4 Implementation of the general radiocarbon model

The implementation of the general model of radiocarbon is
similar to the implementation of the general decomposition
model presented in version 1.0 of SoilR (Sierra et al., 2012a).190

The system of ordinary differential equations is solved using
the deSolve package of Soetaert et al. (2010).

In this new version, we introduced a new set of R classes
to distinguish between the time-dependent (Eq. 1) and time-
invariant (Eq. 14) versions of our general models. In partic-195

ular, we use the virtual super class DecompOp for different
types of decomposition operators, and the virtual super class
InFlux for different types of input fluxes. For radiocarbon
related objects, we use the classes ConstFc and BoundFc
to represent the radiocarbon fractions of time-invariant and200

time-bounded vectors, respectively. These classes must in-
clude an argument about the format of the radiocarbon val-
ues, either Delta14C or AbsoluteFractionModern.

2.4.1 Model initialization

All models that include radiocarbon dynamics are initialized205

in SoilR by the function GeneralModel 14(). The argu-
ments for this function are

– t: a vector containing the points in time where the so-
lution is sought.

– A: a DecompOp object consisting of a matrix valued210

function describing the whole model decay rates for the
m pools, connection and feedback coefficients as func-
tions of time, and a time range for which this function

is valid. The dimensions of this matrix must be equal
to the number of pools. The time range must cover the215

times given in the t argument.

– ivList: a vector containing the initial amount of car-
bon for the m pools.

– initialValF an object of class ConstFc contain-
ing a vector with the initial values of the radiocarbon220

fraction for each pool and a format string describing
in which format the values are given (Delta14C or
AbsoluteFractionModern).

– inputFluxes: an object of class InFlux consisting
of a vector valued function describing the inputs to the225

pools.

– inputFc: an object of class BoundFc consisting of
a function describing the fraction of 14C in per mille of
the input fluxes. Objects of class BoundFc also contain
the argument lag, a value for a time-lag of the atmo-230

spheric radiocarbon curve. This is useful for ecosystems
such as forests where C may stay in the vegetation pool
for a particular amount of time before entering the soil.

– lambda: a scalar with the radiocarbon decay constant.
By default, we use 0.0001209681 yr−1.235

– solverfunc: the function used to solve the
ODE system. This can be SoilR.euler or
deSolve.lsoda.wrapper or any other user pro-
vided function with the same interface.

– pass: if set to TRUE it forces the constructor to create240

the model even if it violates mass balance principles. By
default, it is set ot FALSE.

Once a model of class Model14 has been ini-
tialized, it can be queried with one of the func-
tions described in Table 1. The model can also be245

queried by the functions getC, getReleaseFlux, and
getAccumulatedReleaseFlux.

For models with constant coefficients, the mean
transit time can be calculated with the function
getMeanTransitTime() applied to an object of250

class ConstLinDecompOp.

2.4.2 Radiocarbon datasets

We introduced five new datasets in SoilR to facilitate the rep-
resentation and analysis of soil radiocarbon dynamics. These
datasets contain information on the atmospheric radiocarbon255

concentration over time for different spatial and temporal do-
mains. For the pre-bomb period, IntCal09 (Reimer et al.,
2009) and IntCal13 (Reimer et al., 2013) provide global-
scale atmospheric radiocarbon data on an annual time-scale
for the period 0–50 000 years BP. Although IntCal13 is260

recommended for all current analysis of radiocarbon data,
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IntCal09 is provided in SoilR to reproduce previous anal-
yses performed with this curve.

In SoilR, these datasets are called IntCal09 and
IntCal13, respectively. They are implemented as265

data.frame with 5 variables: calibrated age in years BP,
14C age in years BP, ∆14C value in per mil, and correspond-
ing uncertainty values for each point in time. Details about
the calculations of uncertainties can be found in Niu et al.
(2013). For additional details, see also ?IntCal09 and270

?IntCal13 in SoilR.
For the post-bomb period (after 1950 AD) two additional

datasets were included. The dataset C14Atm NH was as-
sembled for the Northern Hemisphere using data provided
by Levin et al. (2010) and other measurements from North275

America. This dataset contains the atmospheric radiocarbon
concentration in ∆14C for 111 years, from 1900 to 2010 AD.

We also included the dataset compiled by Hua et al.
(2013) for four different zones in the northern and Southern
Hemispheres (Table S3 in Hua et al. (2013)). This dataset,280

Hua2013 in SoilR, was implemented as an R list con-
taining 5 data.frame, each representing an atmospheric
zone with 5 variables. The variables are: the year AD, mean
∆14C value, its standard deviation, mean F14 value, and its
standard deviation.285

We also included a dataset of observations of the
∆14C value of respired CO2 from soils of the Har-
vard Forest, MA, USA (Sierra et al., 2012b). This
dataset, HarvardForest14CO2, was implemented as
a data.frame with the variables: year of observation,290

∆14C value of respired CO2, and the site of measurement
within the Harvard Forest.

2.5 Auxiliary functions

A few functions were also introduced in this version of SoilR
to help with processing of radiocarbon data. These are:295

– bind.C14curves: binds pre- and a post-bomb
∆14C curves together. The result can be expressed in
years BP or AD.

– AbsoluteFractionModern: transforms a ∆14C
value into absolute fraction modern using Eq. (12).300

– Delta14C: transforms an absolute fraction modern
value to ∆14C solving Eq. (12).

– turnoverFit: finds the turnover times of a soil sam-
ple using the ∆14C value measured at a particular year,
the amount of litter inputs to soil, and an initial amount305

of C.

– PlotC14Pool: plots the output from a call to
getF14 along with a radiocarbon curve.

For more details see the documentation of each function.

3 Examples310

3.1 Model structure and transit times

To interpret radiocarbon observations in soil organic mat-
ter, it is common to use models with two or three pools
that capture different cycling rates of carbon (O’Brien and
Stout, 1978; Jenkinson and Rayner, 1977; Bruun et al., 2004;315

Gaudinski et al., 2000; Trumbore, 2000). However, a multi-
pool model may have different connections among pools rep-
resenting processes related to the stabilization and destabi-
lization of organic matter (Sierra et al., 2011). In this ex-
ample, we show how the connections among the pools may320

yield very different outcomes for interpreting soil radiocar-
bon data.

We will look at three different model structures of a three-
pool model (Fig. 1), which are special cases of the general
model of Eqs. (1) and (4). In this example we will ignore325

external environmental effects on decomposition rates, there-
fore we assume ξ(t) = 1.

In the first case, carbon enters the soil and it is split among
the three pools in different proportions (γi). Decomposition
occurs in each pool independently without any transfer of
carbon to other compartments. We call this model three-pool
parallel, and can be written as

dC(t)

dt
= I

 γ1

γ2

1−γ1−γ2

+

−k1 0 0
0 −k2 0
0 0 −k3

C1

C2

C3

.
(18)

In the second case, carbon enters only one of the reservoirs
and it is transferred to other reservoirs in a cascade or series
structure in which the residues of decomposition from one
compartment may transfer to other compartments with lower
decomposition rates (Swift et al., 1979; Manzoni and Por-
porato, 2009; Manzoni et al., 2009). This three-pool series
model can be expressed mathematically as

dC(t)

dt
= I

1
0
0

+

−k1 0 0
a21 −k2 0
0 a32 −k3

C1

C2

C3

. (19)

The third model structure considers a return of carbon
residues to pools that decompose faster, mimicking processes
of carbon destabilization from slowly cycling pools (Man-
zoni et al., 2009). Mathematically, the model can be ex-
pressed as

dC(t)

dt
= I

1
0
0

+

−k1 a12 0
a21 −k2 a23

0 a32 −k3

C1

C2

C3

. (20)

To model radiocarbon dynamics under these three differ-
ent assumptions of model structure, we transform C(t) in
Eqs. (18), (19), and (20) to F (t)◦C(t) and add a radiodecay330

term similarly as in the general models of Eqs. (1) and (4).
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In SoilR, these models are implemented
by the functions ThreepParallel-
Model14, ThreepSeriesModel14, and
ThreepFeedbackModel14. We can run simula-335

tions for the period between the years 1901 and 2009
incorporating the atmospheric radiocarbon record of the
Northern Hemisphere in the provided dataset C14Atm NH.
Using some arbitrary initial conditions and similar decom-
position rates for all model structures (Table 2), we can340

observe differences between the radiocarbon content of the
different pools as well as the radiocarbon content in the bulk
soil and the respired CO2 (Fig. 2).

Code to run these simulation is provided in the example of
the function ThreepFeedbackModel14 of SoilR. To see345

the example simply type ?ThreepFeedbackModel14
in the R command shell. To run the example type
example(‘‘ThreepFeedbackModel14’’).

The simulations show that even with the same amount
of inputs and decomposition rates for the three pools, the350

temporal behavior of radiocarbon may change significantly
(Fig. 2) posing challenges for the interpretation of measured
data.

Furthermore, the mean transit times of carbon obtained
from these three different model structures differ signifi-355

cantly among them. For the parallel model structure the
mean transit time is 21 years, for the series model structure
29 years, and for the feedback model structure 79 years. The
higher the complexity of the model (number of connections
among pools), the longer carbon stays in the system (Bruun360

et al., 2004; Manzoni et al., 2009), which has a direct effect
on the radiocarbon signature of the different pools, the bulk
soil, and the respired CO2 (Fig. 2).

3.2 Inverse parameter estimation: fitting a one pool
model to a radiocarbon sample365

Soil radiocarbon data is commonly used to estimate the
turnover time (τ = 1/k) of a one-pool model. However, this
is generally an ill-defined parameter estimation problem be-
cause the objective is to estimate the value of one parameter
from one radiocarbon value. The problem gets exacerbated370

by the fact that there are always two possible solutions given
the nature of the bomb-radiocarbon curve.

We introduced a function to estimate the two possible val-
ues of turnover time that can be obtained from one radio-
carbon sample. This function, turnoverFit, takes as ar-375

guments the ∆14C value of the soil sample and the year of
measurement, the annual amount of litter inputs to soil ei-
ther as a constant value or as a data.frame of inputs by
year. It also requires an initial amount of carbon for the first
year of the simulation, and a radiocarbon hemispheric zone380

according to Hua et al. (2013).
The function runs an optimization algorithm that mini-

mizes the squared difference between the observation and the
output of OnepModel14. It returns the two possible values

of turnover time (τ = 1/k) that minimizes this difference be-385

tween predictions and observations and a plot that illustrates
the problem (Fig. 3). An example on how to run this func-
tion for a radiocarbon sample taken at a temperate forest soil
is presented below.

turnoverFit(obsC14=115.22, obsyr=2004.5,390

C0=2800, yr0=1900, In=473,
Zone="NHZone2")

The function runs much faster if not plot is produced, i.e.
with the argument plot=FALSE.395

One important limitation of this algorithm is the lack of
uncertainty estimation for the predicted turnover times. We
do not recommend this function for formal scientific analy-
ses and reporting, but rather for preliminary exploration of
laboratory results. A formal estimation of turnover times can400

be achieved by performing Bayesian inverse parameter esti-
mation, which is described in the following example.

3.3 Inverse parameter estimation: fitting multiple-pool
models

The assumption that soil organic carbon can be represented405

as a single, homogeneous pool is generally not supported by
theory and observations of soil organic matter cycling (Swift
et al., 1979; Bosatta and Agren, 1991; Trumbore, 2009; Man-
zoni and Porporato, 2009; Sierra et al., 2011), therefore the
use of turnoverFit is not recommended for heteroge-410

nous organic matter. To account for this heterogeneity, it is
necessary to use multi-pool models such as those in Fig. 2
or even more complex models with more pools and connec-
tions among them (e.g. O’Brien and Stout, 1978; Jenkinson
and Rayner, 1977; Bruun et al., 2004; Gaudinski et al., 2000;415

Trumbore, 2000; Braakhekke et al., 2014). Parameters for
these models can be objectively obtained using inverse pa-
rameter estimation (Schädel et al., 2013; Ahrens et al., 2014;
Braakhekke et al., 2014). SoilR can be coupled with R pack-
age FME (Soetaert and Petzoldt, 2010) to obtain parameter420

values for a specific model. We will present an example on
how to integrate both packages and use Markov chain Monte
Carlo to obtain parameter values for a simple model of soil
organic matter dynamics derived from measured radiocarbon
data from the Harvard Forest, USA.425

Radiocarbon measurements of respired CO2 have been
collected at this site for the past decade as well as data
on soil carbon stocks and proportions of organic matter
in different fractions (Gaudinski et al., 2000; Sierra et al.,
2012b). These radiocarbon data are provided in SoilR as
HarvardForest14CO2. In a previous study, we found
that a six-pool model can reproduce very well the observed
patterns of soil radiocarbon over time (Sierra et al., 2012b).
However, we are interested here in finding whether a simpler
three-pool model containing roots, organic, and mineral car-
bon can reproduce the temporal behavior observed over time.
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This three pool model is expressed as

dC(t)

dt
= I

γ1

γ2

0

+

−k1 0 0
a21 −k2 0
a31 0 −k3

C1

C2

C3

. (21)

To implement this model in SoilR it is necessary to pro-
vide the arguments described in Sect. 2.4.1 to the function
GeneralModel 14. The code for this implementation is
presented in the supplementary material as well as the code
for creating a cost function using package FME with the430

function modCost, and fitting a preliminary model to data
using the function mofFit. The mean squared residuals and
the covariance matrix of the estimated parameters from this
optimization are used to run a Markov chain Monte Carlo
estimation procedure using the function modMCMC.435

The results from this inverse parameter estimation proce-
dure show that the model agrees well with the observed data
(Fig. 4). Furthermore, these predictions include the uncer-
tainty of the estimations expressed as the mean ± the stan-
dard deviation of the posterior distributions and the range of440

the posteriors.
These posterior values indicate possible combinations of

parameter values that agree well with the data. The distri-
bution of the parameters seem to indicate unimodal poste-
rior distributions and some degree of correlation among them445

(Fig. 5). These correlations imply possible parameter combi-
nations that are equally likely and may lead to identifiability
problems. For details about this issue see Soetaert and Pet-
zoldt (2010) and references therein.

3.4 Extrapolation of the atmospheric radiocarbon time450

series

Atmospheric radiocarbon data are only released at irregular
intervals to the scientific community (e.g. Levin et al., 2010;
Hua et al., 2013). For forward modeling of soil radiocar-
bon it is sometimes necessary to extrapolate existing data for455

some time into the future. There are a large number of tools
in R for time series analyses and forecasting. For our spe-
cific problem, the forecast package (Hyndman and Khan-
dakar, 2008) offers a simple and powerful extrapolation rou-
tine.460

The function ets in package forecast automatically
finds the best possible model for the given time series using
exponential smoothing state-space modeling. Based on the
fitted model, the function forecast produces predictions
forward for a given number of periods for forecasting.465

Applying this procedure to the northern-hemisphere zone
1 series in Hua et al. (2013), we can forecast for example the
concentration of radiocarbon in the atmosphere from 2010 to
2020 for this region (Fig. 6). The results from this forecast
can be subsequently merged with the original dataset and run470

simulations using SoilR as described before. However, care
must be taken with the interpretation of results using fore-
casted atmospheric radiocarbon data.

4 Discussion

The new additions described here to the SoilR package can475

potentially improve the identification of model structure for
representing organic matter dynamics in soils. Radiocarbon
is a useful isotope that can inform about the turnover times
and the mean transit time of carbon soils. However, these
concepts can be easily confused and we expect that the defi-480

nitions provided here and the different functions available in
SoilR can potentially help to better use radiocarbon in soil
organic matter research.

Radiocarbon measurements of bulk soil organic matter
contain information about past incorporation of organic mat-485

ter from plant detritus. Given the common use of radiocar-
bon for dating different materials, it is always tempting to in-
terpret soil radiocarbon measurements as the age of organic
matter incorporated in soils. This interpretation is wrong for
open systems such as the soil, which are constantly exposed490

to incorporation of radiocarbon from external sources (Trum-
bore, 2009). Therefore, an average radiocarbon value ex-
presses only the contribution of different sources of organic
matter incorporated at different points in time. To obtain
meaningful interpretations of radiocarbon measurements in495

soil organic matter it is therefore necessary to use models to
account for the heterogeneity of incorporation and cycling
rates of different types of organic matter.

Using optimization algorithms such as the inverse
Bayesian parameter estimation procedure presented here500

helps to find parameter values that minimize the difference
between observed radiocarbon data and predictions from a
specific model. The rates of organic matter cycling and trans-
fers among different pools (elements of the decomposition
operator A) can be obtained from these optimization proce-505

dures. In this sense, radiocarbon is used to estimate turnover
times for different pools, i.e. the inverse of the decomposi-
tion rates for each pool.

To obtain an idea of the overall time that carbon spends
in a system once it reaches steady-state, it is possible to cal-510

culate the overall mean transit time. This is a system- wide
metric that accounts for the entire set of decomposition rates
and transfers among pools. This mean transit time is not di-
rectly comparable with radiocarbon values measured in soils,
but these radiocarbon data can in fact be used to estimate de-515

composition and transfer rates that subsequently are used to
calculate transit times.

We expect that the functions provided with the new version
of the SoilR package can facilitate the interpretation of radio-
carbon in soils and other open heterogeneous systems that520

require compartment-based modeling. For example, systems
such as non-structural carbohydrates in plant tissue (Carbone
et al., 2013), human eye lens crystallines (Lynnerup et al.,
2008), dissolved organic carbon in oceans (Toggweiler et al.,
1989), and many others, can take advantage of the provided525

infrastructure in SoilR to interpret radiocarbon data.
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For these different systems, the functions presented here
to track radiocarbon in different compartments, the interna-
tional standard datasets included in the package, the func-
tions for inverse parameter estimation, the mean transit time530

algorithm, and the functions to extrapolate the bomb radio-
carbon curve, are equally useful. The only requirement is to
express these different systems as a linear dynamic system of
the form of equations (1) and (2).

5 Conclusions535

We introduced a number of functions and datasets within
SoilR to model radiocarbon dynamics in soil organic matter.
With this tool it is possible to model the temporal dynamics
of radiocarbon in soils and respired CO2 using models with
any number of pools and connections among them. These540

models are generalizable to other systems where the incorpo-
ration of bomb radiocarbon is used to infer turnover or transit
times – including human tissues, plants, sediments, etc. Ra-
diocarbon data and other auxiliary information can also be
used for model identification; i.e. to obtain parameter values545

of decomposition and transfer rates in models of soil organic
matter decomposition. This is accomplished in SoilR with
an interface to R package FME, but other inverse parameter
estimation methods could also be used.

Depth profiles of radiocarbon cannot be simulated with550

this current implementation, but this dimension will be added
in a future version of SoilR.

Code availability

SoilR version 1.1 can be obtained from the Com-
prehensive R Archive Network (CRAN) or RForge.555

Source code and test framework can be obtained from
these two repositories. To install, use the function
install.packages(‘‘SoilR’’,repo), specifying
either a CRAN mirror or RForge in the repo argument.
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Table 1. Main functions implemented in SoilR version 1.1 to cal-
culate the radiocarbon fraction in soil organic matter.

Function name Equation Description

getF14 F(t) Calculates the radiocarbon fraction for each pool at each time step.
It returns a matrix of dimension n×m; i.e. n time steps as rows
and m pools as columns.

getF14C FC(t) Calculates the average radiocarbon fraction weighted by the mass
of carbon at each time step. It returns a vector of length n with the
value of FC for each time step.

getF14R FR(t) Calculates the average radiocarbon fraction weighted by the
amount of carbon release at each time step. It returns a vector of
length n with the value of FR for each time step.

Table 2. Parameter values and initial conditions used to simulate
a three-pool model with different structures as represented in Fig. 1
and Eqs. (18)–(20).

Parameter Parallel model Series model Feedback model

I 100 100 100
γ1 0.6 1 1
γ2 0.2 0 0
k1 1/2 1/2 1/2
k2 1/10 1/10 1/10
k3 1/50 1/50 1/50
a21 0 0.9k1 0.9k1
a32 0 0.4k2 0.4k2
a12 0 0 0.4k2
a23 0 0 0.7k3
C1(t= 0) 100 100 100
C2(t= 0) 500 500 500
C3(t= 0) 1000 1000 1000
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Fig. 1. Possible structures for a three-pool model. Each box repre-
sent a pool with a specific decomposition rate, and arrows represent
inputs to or outputs from the pools. In the first case, carbon enters
the system and it is split among the three pools in different propor-
tions without any transfer between pools. In the second case, carbon
enters the system through one reservoirs and it is transferred serially
between compartments. In the third case, carbon is returned back to
donor pools.
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Fig. 2. Predictions of pool radiocarbon, bulk soil radiocarbon, and
respired carbon for three different versions of a three-pool model
(Fig. 1) with parallel (upper panels), series (middle panels), and
feedback structure (lower panels). This figure can be reproduced by
typing example(‘‘ThreepFeedbackModel14’’) in R.
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Fig. 3. Output of the function turnoverFit for a radiocarbon
sample taken at a temperate forest soil subject to annual inputs
of 473 MgCha−1yr−1. The upper panel shows the two possible
curves that can match the observed radiocarbon value. The bottom
curve shows the squared residuals between predictions and obser-
vations for different values of k in a one pool model. See documen-
tation of function turnoverFit for additional details.
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Fig. 4. Predictions of respired radiocarbon values from the model
of Eq. (21) vs. observations. Model predictions include uncer-
tainty range for the mean± standard deviation, and the minimum–
maximum range. Radiocarbon concentration in the atmosphere is
depicted in blue.
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Fig. 6. Forecast of the atmospheric radiocarbon data of the norther-
hemisphere zone 1 (Hua et al., 2013), including 80 and 95% pre-
diction intervals, for the period 2010–2020 using the forecast
package (Hyndman and Khandakar, 2008).
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