
I. Response to Anonymous Referee #1

The authors would like to thank the Referee for the very helpful comments and suggestions. The
comments have been taken into consideration in the revised manuscript. We answer all of them
individually in the following.

1. General comments

1.1 Extrapolation to different climate conditions

The authors optimized parameters for single sites as well as for all sites of a PFT (multi-site).
Then  they  applied  these  parameter  sets  for  global  model  runs  for  global evaluation.
Nevertheless, there is no analysis about how the optimized parameters can be used to predict
NEE under different  temporal,  spatial  or environmental  conditions.  A basic  procedure in
model optimization and evaluation is to optimize the model against one part of the data and
evaluate it against the second part of the data. Specifically, I would like to see an analysis
about how the multi-site parameter sets can predict NEE at sites that were not used during
the optimization. Optimally, these sites should be also selected in a way that climate conditions
are different from the optimization sites. This could provide us confidence how the model with
the optimized parameter set performs under different climate conditions. This is an essential
test for a model that is likely applied for climate change projections.

We  acknowledge  that  “classical  optimization  procedures”  keep  one  part  of  the  dataset  for
validation. However, in our case, multi-site parameters transferability has not been evaluated at the
site  level  given the small  amount  of sites  for most  PFTs (on the order  of 10).  It  prevented to
implement such an evaluation on a systematic and robust basis. The number of site is currently too
small and one objective of the paper is to highlight the need to use all currently available sites. We
acknowledge this limitation, and we thus improved the conclusion discussing the use of a larger set
of site-years of flux data, in this text added to the conclusion (page 2984, line 8):

'[...] would be beneficial. Using more site-years of flux data will also allow a systematic in-situ
evaluation  of  the  multi-site  parameters  across  time  periods,  regions  and  climate  regimes  by
separating training sites from evaluation sites. This procedure was not performed in this study due
to the small number of sites for some PFTs, but remains essential to test a LSM used for climate
projections. More generally, we suggest that the assimilation of FluxNet data […]'

Additionally, the evaluations at the global scale against independent data give some insight on the
ability of the multi-site parameters sets to improve the accuracy of the model at a much larger
scales, likely implying different climate conditions. The time periods considered, 2000-2010 for
NDVI and 1989-2009 for atmospheric CO2 concentrations, go beyond that covered by the flux data
used (from 1996 to 2006) and therefore allow evaluating the parameters sets against periods of time
the model was untrained for.

1.2 Evaluation of inter-annual variability

The authors state an improved model performance regarding inter-annual variability (IAV). I
would be very interested in these results but unfortunately I cannot find any corresponding
figures or tables. Could you please provide figures that demonstrate the improved IAV of
ORCHIDEE regarding the following points? 
- CO2: Demonstrate the improved IAV of CO2.
- NEE: Is there an improved IAV in comparison to sites with long time series?
- NDVI: Do you see improved IAV in mean growing season or peak NDVI? How do simulated



NDVI trends compare with observed NDVI trends?

The stated improvement of IAV in the abstract and conclusion only refer to the global simulation of
atmospheric CO2 concentrations (p. 2962 lines 20-24 and p. 2984 lines 4-5). There is indeed no
associated figure or table in this case, the results summarized over the CO2 records stations are
described and discussed within the text p. 2982 lines 17-26. While no other claim is made in this
study regarding interannual performances at the site level, or for the global simulations of FAPAR,
we agree with the Referee that investigating the IAV of the NEE and the NDVI is also a crucial
point.  However,  for  the  NDVI,  computing  the  growing  season  mean  or  peak  requires  careful
processing (especially over tropical regions with no clear seasonal cycle) that would have led to
substantial new analysis. The same is true also for NEE. We thus decided to focus on the mean
seasonal cycle,  as a thorough analysis  of the IAV is beyond the scope of this paper. It  will  be
considered in a following study.

1.3 Comparison of modelled FAPAR with NDVI

Could you please provide some more details regarding the comparison of simulated FAPAR
with NDVI? NDVI is also affected from non-vegetation changes like soil and snow reflectance.
Especially,  snow melt  in  spring  can  results  in  a  fast  increase  in NDVI.  In  the  computed
FAPAR there is no snow effect and also no factor that accounts for background reflectance.
Thus, the computed correlation is meaningless if one compares modelled FAPAR with NDVI
that is affected by such non-vegetation related seasonal transitions. You should exclude NDVI
observations that are possibly affected from snow or that are at the beginning or end of the
growing season to draw more pure conclusions about model performance. Additionally, as the
title  states  “to  global  simulations”,  I’m  expecting  to  see  some  global  model  results  and
evaluations. Especially the NDVI comparison is highly aggregated into one table that does not
provide  much insight  into  model  performance.  I  would  rather  expect  maps  and  the
corresponding discussion of correlation coefficients between modelled FAPAR and observed
NDVI (weekly data, mean seasonal cycle, mean growing season comparison, trends). In which
regions does the model perform well or why not?

We agree with the Referee that the comparison between model fAPAR and NDVI could be affected
by several biases. In this analysis, observations contaminated by snow have been removed from the
calculation of the correlation factors, using MODIS MOD13's quality filter. Following the Referee's
suggestion, we minimized the effect of soil reflectance by applying a threshold criterion of 0.2 on
NDVI, with little effect on the results except grasslands where the correlation coefficient became
slightly  lower,  both  with  prior  and  multi-site  parameterization.  In  the  revised  manuscript,  the
following sentence has been added page 2971, line 12:

'Observations contaminated with snow cover were removed from the analysis, and we discarded
NDVI observations below 0.2 in order to minimize the impact of bare soil reflectance.'

In addition, Table 3 has been replaced by a boxplot figure were correlation factors are grouped by
dominant PFT, with the following caption:

'Figure  7.  Correlation  factor  between  weekly  time  series  of  modeled  FAPAR and  independent
measurements of NDVI, for the 2000-2010 period. The results are grouped using the dominant PFT
at each pixel, for global simulations with prior (green) and multi-site parameterization (blue). The
central horizontal bar indicates the median value, the top and bottom of the boxes correspond to
the first and last quartile, and the 5- and 95-percentile are given by the 'error bars'.'

The description and discussion of the results in section 3.5.2 has been modified as follows:



'Figure 7 reports  for  each optimized  PFT the correlation  factors  between weekly values  of
measured NDVI and modeled FAPAR during the period 2000-2010 (see sect. 2.4), for both the prior
and optimized model. There is no result for BorDBF whose vegetation fraction never exceeds 40%
in our case. All remaining six PFTs exhibit a  higher median correlation factor when using the
multi-site parameterization, which means that the modeled leaf seasonal cycle better matches the
global scale observations. This median improvement seems to accurately reflect the overall trend
for TempDBF-, BorENF- and C3grass-dominated pixels, while a larger inter-pixel variability is
introduced in the case of temperate evergreen forests. The improved modeled seasonality is related
to the more accurately simulated GPP at FluxNet sites after multi-site optimization, the latter being
in turn partly driven by the improvement of the seasonal variations of simulated LAI. The dominant
feature seems to be a shorter growing season length for TempDBF, which is consistent with the
site-level simulations of GPP seasonality for this PFT (Fig. 5), and an earlier beginning of the
growing season for C3 grasses (not shown). Note that this improvement also explains most of the
change in the correlation factors in temperate and boreal evergreen forests, since these PFTs do not
present  a  climate-driven  leaf  phenology  in  the  current  formulation  of  the  ORCHIDEE model.
Consequently, deciduous and herbaceous PFTs are the only significant contributors to the seasonal
cycle at such a coarse resolution, even when these ecosystems are secondary and/or the understory
within an evergreen-dominated forest.  Lastly, the score for TropEBF remains poor because the
model wrongly simulates the leaf renewal and the hydric stress during the dry season, as discussed
in Sects. 3.1 and 3.4.'

1.4 Global total carbon stocks and fluxes

In optimization experiments, a parameter was introduced that regulates the initial soil and
vegetation carbon pools in order to match the observations. I did not understand how this
information was translated into the global model simulations. Did you account for spatially
varying initial carbon pools? If yes, how? If not, how were carbon pools initialized and how
might  this  affect  model  evaluation  results?  Additionally,  I  would like  to  see  a  table  and
discussion of global total carbon stocks and fluxes from the prior, single-site and multi-site
experiments in comparison with estimated ranges from independent datasets.

This parameter is taken as site-specific, for this reason we did not extrapolate its optimized values
and thus did not use the information for global simulations (page 2966 lines 23-29, page 2967 lines
1-3). The default initial carbon pool content is used in the latter case, obtained after a global spinup
procedure similar to that done at the site level. It allows accounting for spatially-varying carbon
pools since each pixel is spun up independently based on its vegetation, soil type and climate. The
absolute  carbon stocks  could  however  be erroneous and would mostly affect  the  simulation of
ecosystem respiration,  and hence the modeled  net  carbon balance.  For  this  reason,  we did not
analyze the global net carbon fluxes, nor the atmospheric CO2 concentration trend, but focused on
the  seasonal  cycle  and  interannual  variability  of  the  latter.  Global-scale  comparisons  or
optimizations of ORCHIDEE parameter with spatialized carbon pools estimates/measurements and
its use for long-term predictions are beyond the scope of this study. This is, however, a topic of
active research in the context of building Carbon Cycle Data Assimilation Systems (Peylin et al.,
2014,  in  preparation),  where  soil  carbon  pools  might  be  optimized/scaled  for  an  ensemble  of
“large-scale” regions.

1.5 Parameter variability and distributions

The manuscript misses a discussion on parameter uncertainty and variability. What is the
spatial  and within PFT-variability  of  parameters? How does  a multi-site  parameter value
compare with the single-site variability? Which parameters were well constrained? Which are



uncertain? Are posterior parameter values plausible? I’m surprised not to see such results in
a model-data fusion manuscript.

We agree that analyzing the values taken by the parameters would have been valuable. It has been
done in detail in our previous multi-site study focusing on temperate deciduous broadleaf forests
(Kuppel et al., 2012) and for the present PFTs in S. Kuppel's doctoral dissertation (Kuppel, 2012).
However,  we  chose  in  this  study  to  focus  on  analyzing  the  model  outputs  and  model-data
mismatches  across  sites  for  each  considered  PFTs,  and the  evaluation  of  the  multi-site  sets  of
parameters with global simulations. In this context, an in-depth analysis of parameter variability as
performed, for example, in above references, would have made the manuscript very lengthy given
the number of PFTs.

Besides, as stated in the manuscript page 2968 lines 15-17 we carefully prescribed the allowed
parameters  ranges  in  order  to  keep physically-sound posterior  parameter  values,  at  the  risk  of
reducing the leverage the optimization on the modeled fluxes. 

Lastly, the grouped parameter uncertainty is analyzed in section 3.3, from an output perspective.
This analysis does not allow to directly identify which parameters/processes are better constrained,
but it  does provide insight into the weight of parameter uncertainty as a whole in the separate
uncertainty  budget  of  NEE and  LE simulation  within  and  between  PFTs,  and  its  implications
regarding the limits of the current model structure.

1.6 General discussion and significance of the study

The discussion of model limitations is currently distributed over the entire results section. I
would suggest adding another section before the conclusions that summarizes the limitations
and  potential  need  for  improvement  of  the  model  that  were  identified  in optimization
experiments. Additionally, this section should also discuss the relevance of this work for other
modelling  groups  or  for  model-data  fusion  in  general.  This  can potentially  improve  the
importance and impact of this manuscript for other groups.

We agree and thank the Referee for this suggestion. In the revised manuscript, a section 3.6 entitled
'Limitations of the current approach: summary and discussion' has been added (see below). Note
that the emphasis is put on discussing the limitations of our method, as we feel that the relevance of
this work was already stated in our conclusions.

'The limitations to our model-data fusion method highlighted throughout the results section
are of  three  kinds,  somewhat  interlocked:  1)  within  the  limits  of  the  model  structure,  2)  how
adequate the chosen set of optimized parameters was and 3) how close to the optimal values the
optimization algorithm tuned these parameters. 

Taking  these  items  in  reverse  order,  we  first  acknowledge  that  using  a  variational
optimization algorithm with a model with non-linearities might expose to miss the global minimum
of the cost function, and indeed a few obvious convergence failures cases have been found for some
single-site  optimizations  in  TropEBF,  TempENF,  and  boreal  forests.  Some  functions  of  the
ORCHIDEE model  could  potentially  be  linearized  to  generate  a more accurate  tangent  linear
model –and to advantageously avoid to use finite-differences for some phenological parameters
(see Sect. 2.1)–, while remaining coherent with the model's philosophy. It might imply a demanding
effort  of  model  recoding,  but  it  has  already been done for  another  LSM (Knorr  et  al.,  2010).
Alternatively,  stochastic  optimization  approaches  could  yield  better  convergence,  as  they  can
circumvent the linearity constraint. While a single-site model-data fusion study with the same LSM
showed  advantageous  results  for  a  genetic  Monte-Carlo-based  technique  over  its  variational
counterpart (Santaren et al., 2013), no major difference was found by (Ziehn et al., 2012) between



Monte-Carlo and gradient-based approaches when optimizing a simpler LSM with atmospheric
CO2 observations. In the case of a multi-site optimization efforts, we suggest that the cost function
“smoothing” discussed in Sect.  3.2 could make the convergence efficiency less sensitive to the
choice of the minimization approach, while keeping in mind the much lower computational time
required in the variational case.

Second, the number of optimized parameters remains somewhat modest as compared to the
diversity of processes modeled in the ORCHIDEE model. Our choice was partly driven by a model
sensitivity criterion, while the actual leverage of an optimized parameter on model outputs also
depends on the uncertainty associated to this very parameter (Dietze et al., 2014). It can result in
selecting some parameters that are already reasonably well known but that have medium-to-high
model  sensitivity  and  thus  with  low  overall  leverage,  while  poorly  known  parameters  with
mild-to-low model  sensitivity  could have a comparatively  higher value for the optimization.  In
addition, as our focus was on the carbon cycle, only a few water-and-energy-related parameters
were considered. Notably, the correction of LE partly benefited from that of NEE via transpiration,
but  the  soil  evaporation  optimization  was  neglected  despite  being  a  significant  -and debated-
player of the terrestrial water cycle (Schlesinger and Jasechko, 2014).

The third hindering factor to simulating carbon and water fluxes close to their true value is
the  “observation  error”,  i.e.  the  uncertainty  arising  from  the  simplification  needed  to  make
ecosystem  functioning  fit  within  explicit  equations  plus  the  error  made  associated  to  the
measurements, fluxes and meteorological forcing included. Although this error is rarely quantified
in model-data fusion efforts, model-data fit analyses and uncertainty budgets showed in this study
that the relative importance of this observation error greatly varies from one PFT to another –and
is potentially dominated by the model error component in the case simulations at flux towers sites
(Kuppel et al.,  2013). It is the highest in tropical evergreen broadleaf forests, where parameter
optimization  will  likely  be  of  limited  help  until  a  more  realistic  phenological  scheme  is
implemented. Regarding the simulations of LE in general, the small amount of related parameters
optimized makes it difficult to assess to which extent the nearly-unchanged flux uncertainty comes
from the parameter scarcity or structural inaccuracies in the model, stressing again the need for a
better consideration of water and energy cycles together with that of carbon in future model-data
fusion efforts.'

2. Specific comments:

page 2962, line 3-4: Please write “net ecosystem exchange” to introduce the abbreviation NEE.

Corrected.

page 2966, line 27-29: I don’t understand why the multiplier for LAI was not applied for
deciduous  PFTs.  It  should  be  the  same like  for  evergreen  and herbaceous  PFTs that  the
maximum annual coverage of deciduous PFTs depends on the site history. Can you please
clarify this?

The parameter  LAIinit is a multiplier only for the initial LAI value, scaling the initial foliar cover
from the output of the spinup (in a analogous fashion as  KsoilC for the initial soil carbon stock).
While the value of LAI at the first time step of the simulation significantly determines the later
foliar covers of evergreen and herbaceous PFTs, deciduous PFTs have their LAI almost entirely
reinitialized each year when leafs fall. In our view, the initial LAI of deciduous PFTs has thus little
leverage on their  foliar  cover variation,  all  the more that  it  is  very low in early January when
simulations start, which is why we did not optimize LAIinit in these cases. 

page 2968, line 15-17: I don’t understand this sentence. Is this reproducible?



The allowed range of variation for each parameter derives from ecophysiological considerations
when the parameter possesses a direct physical definition (e.g., the maximum carboxylation rate),
while for purely empirical parameter the focus has been set on maintaining the response functions
associated to it within reasonable boundaries. While plant trait databases were used as much as
possible  for  physically-meaningful  parameters,  personal  communications  with  ORCHIDEE
modelers has been essential to adapt literature knowledge to ORCHIDEE specificities. In order to
make the experiment reproducible, a new supplementary Table S1 gives all the parameter intervals
used in the study.

page 2969, line 7-10: How was the optimization done, if the remaining 30% of the grid cell
were covered by another PFT (i.e. understory, grass?). Was the minor PFT represented in the
optimization? If not, what is the risk that the dominant PFT accounts for changes that are due
to the minor PFT? Or were both PFTs optimized at the same time or sequentially?

Only the dominant PFT was considered for optimization, and indeed part of the optimization results
could  be  artifacts  'compensating'  for  an  inadequate  modeling  of  the  minor  PFT.  However,
preliminary tests optimizing minor PFT(s) as well were performed on a subset of sites (at least one
for  each  dominant  PFT)  in  'single-site'  mode  and  showed  no  significant  differences  in  the
model-data  fit  improvements.  Second,  the  aim  of  this  study  is  to  assess  the  robustness  of
PFT-generic approach against a site-specific one within the parameter optimization framework, i.e.
how reasonably realistic it is to consider sites with a same dominant PFT as clustered information,
to ultimately correct the ORCHIDEE model for global-scale simulations. This goal notably implies
having a single parameter set for a given PFT. The C3 grasslands are a minor PFT at many sites
considered in this study, but is also optimized as a dominant PFT -and at most of the corresponding
sites the coverage is 100%, thus yielding several parameters sets for this PFT if all represented PFTs
were to be included in the multi-site optimization. Also, the understory or minor PFT(s) are not
always the same between sites of a same dominant PFT, here again reducing the genericity of a
multi-site  optimization  considering  all  represented  PFTs.  In  our  view,  these  reasons  justify
neglecting the minor PFTs in the optimization as a reasonable approximation.

page 2971, line 19-21: How were snow or albedo changes considered?

Please refer to our response to general comment 1.3.

page 2971, line 25: Does this refer to the coverage of the dominant PFT or if total  coverage of
all PFTs? Did you evaluate also in grid cells that had a mixture of several PFTs? If not, why
not? If yes, how was the model performance?

It refers to the coverage of the dominant PFT (bare soil included), the sentence has been modified
and  now  reads:  '[…]  we  restrict  our  correlation  computation  to the  model  boxes  where  the
dominant PFT’s cover fraction exceeds 50 % and where […]'. In the analysis, the focus is made on
the dominant PFT, regardless if the latter has a fraction equal to 100% or if it shares the pixel with
'secondary' PFTs. We acknowledge some limits to this approach as for example improvements of
the simulated phenology in boreal evergreen forests  might actually reflect improvements of the
secondary deciduous cover and/or the herbaceous under story (page 2983, lines 13-18).

page 2973, line 12-13: Why there were only small improvements in evergreen PFTs? Could
this be linked to the phenology routine?

The inner structure of the phenology routine in ORCHIDEE is indeed a potentially important factor
explaining the poor results in tropical evergreen broadleaf forests, as discussed page 2975 lines
13-29, page 2976 lines 1-15, page 2978 lines 15-2, page 2979 lines 18-21, and page 2983 lines



18-20.  Regarding  boreal  evergreen  needleleaf  forests,  the  reduction  of  model-data  RMSD was
indeed among the lowest for NEE, noting however that the average prior misfit was also the lowest
among  all  the  PFTs (even  after  optimization  of  these  other  PFTs,  Fig.  1a),  as  was  the  prior
model-data  bias  (Fig.  1b).  In  both  cases,  the limited  leverage  of  parameter  optimization might
indicate  that  further  improvements  requires  reconsidering  the  structural  equations  of  the
ORCHIDEE model, among them those linked to phenology.

page 2982, line 17: Please demonstrate this with a corresponding figure or table.

In order not to overload the manuscript with figures, we chose not to show any figures for the 53
records at CO2 stations except for Fig. 6 to discussing a few relevant sites, so that the related results
are directly summarized in the main text. This is even truer now that Figure 7 was added, following
the Referee's suggestion (see response to comment 1.3).

page 2983, line 15-16: Why? Is this because evergreen PFTs don’t have a phenology in your
model and there are no seasonal effects of snow cover?

Indeed,  no  seasonal  effects  of  snow  cover  are  considered,  as  it  will  be  stated  in  the  revised
manuscript (see response to general comment 1.3). Secondly, the Referee is again right in pointing
out the lack of a phenology model for evergreen PFTs. Only winter dormancy is considered, as
photosynthesis  is  not  permitted  if  the  monthly  temperature  remains  below  a  PFT-dependent
threshold (Krinner et al., 2005), and the leaf turnover throughout the year. The sentence has been
modified in the revised manuscript, and now reads:

'Note that this improvement also explains most of the increased correlation factors in temperate and
boreal evergreen forests, since these PFTs do not present a climate-driven leaf phenology in the
current formulation of the ORCHIDEE model. Consequently, deciduous and herbaceous PFTs are
the only significant contributors to the seasonal cycle at such a coarse resolution, even when these
ecosystems are secondary and/or the understory within an evergreen-dominated forest.'

Table 1: There are no values underlined but some are in bold font. Please clarify.

The underlining was replaced by bold font during the manuscript's typesetting, but the caption of
Table  1  had  not  been  updated  accordingly. We have modified  it  in  the  revised  version  of  the
manuscript: 'Parameters of ORCHIDEE optimized in this study. The prior values are given for each
PFT, and multi-site posterior values are in bold font. A hyphen means that the parameter is not
optimized, spinup that the spinup value is taken, and site that the posterior value is site-specific.'

Table 2: This table is very long but not very informative. I would suggest moving this to the
appendix or supplementary material like the table for the CO2 stations.

The table has been moved to the supplementary material as Table S2 with the associated references,
and Table S1 has become Table S3 (a new Table S1 with parameter intervals as been added as well,
see above).

Table  3:  This  table  is  not  very  informative.  The  differences  are  small.  Could  you  please
provide an estimate of the significance of these differences? Even better would be a map of
correlations or boxplots of the global distributions of correlations.

Please see response to comment 1.3

Figures 1 and 2: It is not clear if (a) and (b) refer to the mean seasonal cycle or to the  full



length of the time series. Please add a legend with colours and symbols to the plot to improve
the  readability  of  the  figure.  I  would  not  expect  biases  in  the  posterior  of single  site
optimizations. What are the reasons for these biases? The y-axis scale in Fig. 1 c for TempDBF
is not very different; thus please use the same scale in order not to confuse the reader.

In both Fig. 1 and 2, (A) and (B) refer to the full length of the time series, and we completed the
captions. Besides, color legends have been added to both figures. We finally considered that using
different symbols for each PFT was somewhat unnecessary, as the results are horizontally grouped
by PFT, all the more that a symbol legend would overload the graphics. For these reasons, all the
symbols have been changed to open circles in Figs. 1 and 2, as well as in Fig. 4, The respective
captions have been modified accordingly:

'Figure 1. Model-data  (A) RMSD and  (B) bias for the daily NEE time series at each site (filled
circles),  grouped and averaged by PFT (horizontal  bars),  in  three cases:  prior  model  (green),
multi-site  optimization  (blue)  and  single-site  optimization  (orange). (C) PFT-averaged  mean
seasonal cycle of NEE, for the training observations (black) and the three aforementioned cases,
smoothed with a 15-day-moving-average window.

Figure 2.  Model-data  (A) RMSD and  (B) bias for the daily LE time series at each site (filled
circles),  grouped and averaged by PFT (horizontal  bars),  in  three cases:  prior  model  (green),
multi-site  optimization  (blue)  and  single-site  optimization  (orange). (C) PFT-averaged  mean
seasonal cycle of LE, for the training observations (black) and the three aforementioned cases,
smoothed with a 15-day-moving-average window.

Figure 4. Uncertainty of simulated daily (A) NEE and (B) LE fluxes. For each PFT, the horizontal
lines  give the average of  the individual  site  values (filled circles),  in three cases: prior  model
(green), multi-site optimization (blue) and single-site optimization (orange).'

In the revised version of the manuscript, the y-scale of NEE in TempDBF (Fig 1C), has been evened
with that of the other PFTs. The same has been done in Fig. 5A regarding the y-scale of GPP.

Finally,  a  posterior  model-data  bias  is  not  surprising  in  our  opinion,  even  for  single-site
optimizations, primarily because model-data bias is  not the metrics minimized by the inversion
algorithm, the latter being RMSD (page 2975, lines 1-5). Hence we are not sure why the Referee
would not expect any posterior biases.

Figure 3, 4, 5: Please add colour legends to all figures.

In the revised manuscript, color legends have been added to Figs. 1, 2, (see above comment), as
well as 3, 4, and 5.

Figure 5 and 6: It would be valuable information to have some model performance measures
(RMSD, correlation) included above the cycles for each PFT.

We assume the Referee is referring to Figs. 1 and 2. In our opinion, the discussion on how well the
mean seasonal cycles of NEE and LE simulated by ORCHIDEE compares to the observations, on
PFT average, is quantified in Fig. 3 and the associated analysis (page 2974 lines 8-28, page 2975,
and page 2976 lines 1-15). Note that the phase coefficient (page 2970, Eq. 3) was preferred to the
correlation  in  non-tropical  PFTs,  since  the  focus  was  put  on  evaluating  the  accuracy  of  the
simulated limits of the growing season. For this reason, we do not think necessary to add further
performances metrics to the seasonal cycle of Figs. 1 and 2, considering in addition a potential
overload of these figures. 
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II. Response to David Schimel

The  authors  would  like  to  thank  D.  Schimel  for  his  comments  and  the  profound  perspective
suggested. It has been taken into consideration in the revised manuscript.

This is a very nice contribution and a significant advance in the practice of ecosystem carbon 
data assimilation. The work is well done, conforms to the state of practice, advances the field 
and is clearly presented for the most part.

I have one perspective to add. The approach taken is directly analogous to similar estimation
approaches in meteorology, and is useful but in a sense not informative. Consider the actual
situation being modeled. Ecosystems, far from being a continuous field of "green slime" are in



fact  made  of  up  of  billions  of  individual  plants,  and  even more  bazillions  of  leaves  and
microbes etc. Within a single model plant functional type that can be up to tens of thousands
of  species,  each  with  slightly  or  significantly different  parameter  values  for  the  model
equations.  The  goal  of  assigning  PFTs  and biomes  is  to  reduce  the  unmanageable
dimensionality of this variation to a reasonable degree, and the study presented here shows
that  using  replication  of  flux  sites  –even though  they  do  not  systematically  or  randomly
sample this variability– helps improve overall model performance.

However, this analysis does not take into account any covariance structure associated with the
underlying structure of parameter variation associated with species or functional variation.
Treating parameter variation as a random field is a reasonable first assumption but is almost
certainly not true. It would be interesting to consider or speculate on how such an analysis
would be done if more detailed information on plant parameter distributions were available to
weight extrapolation from a limited set of towers. In any case, adding a description of the
conceptual situation in which this assimilation is taking place would be useful. As ecosystem
data  assimilation  progresses,  making  a transition  to  a  more  biologically  sophisticated
underlying model will be critical.

This comment is indeed very accurate. As the long-term aim of model-data fusion is here to assess
the structural  limits  of  ecosystem models  based on PFT concept  and to  guide later  conceptual
developments,  ignoring  parameter  covariances  will  ultimately  bias  the  results  and  could  for
example wrongly attribute model deficiencies. In the revised manuscript, the conclusions have been
completed to include this idea, as follows:

'[…] maximize this  improvement.  In  parallel,  by using a diagonal  prior  covariance matrix  for
parameter error, within a same PFT and across PFTs, we implicitly assumed that all parameters
could in principle be efficiently corrected as independent random distributions. It ignores the fact
that  a  covariance  structure interlinking  the  optimized  parameterization  would  be  necessary  to
translate the interconnectedness of ecophysiological processes within a given PFT. For instance,
the allocation of carbon within the plant reservoirs depends on specific allometric relations and on
photosynthesis  rate;  these  relations  would  need  to  be  embedded  in  the  prior  parameter  error
covariance  matrix.  Additionally,  the  influence  of  nearby  individuals  of  other  PFTs (e.g.,  the
understory) should be accounted for when correcting parameters of a given PFT. Together with a
simultaneous optimization of  several  PFTs,  building standard spatialized parameter covariance
tables  from databases  of  plant  traits  and  soil  characteristics  (e.g.,  (Kattge  et  al.,  2011))  and
'preliminary'  posterior  multi-site  parameter  error  covariance  matrices  (e.g.,  supplementary
material of (Kuppel et al., 2012)) might soon become necessary to consistently apply model-data
fusion to more sophisticated mechanistic ecosystem models. '
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III. Response to Matthew Smith

The authors would like to thank M. Smith for his helpful comments and suggestions. They have
been taken into consideration in the revised manuscript. We answer all of them individually in the
following, merging the two parts of the posted review.

General comments 

This  study constrains  a  global  ecosystem model  (estimates  of  the most  likely  parameters)
using  multiple  datasets  from  multiple  sites  and  shows  resulting improvements  in  model
predictive performance in predicting the CO2 fluxes as well as other performance metrics at
multiple sites. Investigations of where predictive performance has been improved or made
worse  reveal  insights  into  how the  process  has influenced the  general  applicability  of  the
model – it  has improved at capturing CO2 fluxed at tropical and temperate sites but has
identifiable  weaknesses  in  predicting tropical  evergreen  broadleaf  forest  dynamics  which
leads to the identification of new areas for research. They also illustrate the efficacy of the
model at predicting CO2 flux dynamics for a wider set of test sites and conduct a global scale
evaluation. In sum, this to me is an excellent end-to-end analysis of the costs and benefits of
undertaking this more sophisticated and improved model fitting approach and I recommend
it for publication.

Specific comments 

It is perhaps worth noting in the results and discussion that, as far as I can see, none of your
effects  from parameter estimation lead to qualitative  differences  in the predictions  of  the
model. They simply lead to quantitative improvements. This implies to me that when we are
moving towards a situation that we have multiple data-constrained DGVMs being used in
climate simulations,  each will  demonstrably predict  the present day data better, but their
predictions of the future, and the differences in their predictions of the present, will still vary
widely. This  to  me implies  that while  you are  improving  the  parameterisation  under the
assumed model structure,  you are not improving the assumed model structure to make it
better suited to modelling reality and it is this which needs more focus of the attention of
DGVMers.

Although the improvements are indeed mostly quantitative, note for example that the interannuality
of  the  simulated  atmospheric  CO2 concentrations  has  been  improved,  although modestly. This
results emerges for time series much longer (20 years) than those used for the ORCHIDEE LSM
optimization. It suggests that although parameter optimization always remains by definition within
the limits of the model structure, simulations outside the time periods used for optimization can be
corrected with this tool, to some extent. Further work is needed to assess more accurately how large
exactly the aforementioned extent is,  in the case of the ORCHIDEE model see Santaren et al.,
(2013).
However, we agree with the reviewer that a crucial question is whether applying data assimilation
to all models (used for instance in the CMIP5 exercise for the IPCC report) would decrease or not
the spread in the future predictions of the carbon cycle and, consequently, in climate predictions.
Although  the  differences  after  optimization  of  the  ORCHIDEE  model  lead  to  quantitative
improvement but no large qualitative changes, it is difficult to assess their impact under climate
change. For instance, an ongoing study based on the assimilation of flux tower data (this work) and
satellite NDVI data, with the same model, led to significant changes of the soil carbon stocks after
2050 when used with future climate projections (from CMIP5). The changes appeared when climate
warming  reached  a  certain  level,  where  the  modified  parameters  start  to  induce  large  flux



differences (heterotrophic respiration). The non-linearity of the model is in this case crucial. 

1. Table 1 legend - nothing is underlined, I think you mean bold

Yes, this typesetting mistake has been corrected in the table caption for the revised version:
'Table 1. Parameters of ORCHIDEE optimized in this study. The prior values are given for each
PFT, and multi-site posterior values are in bold font. A hyphen means that the parameter is not
optimized, spinup that the spinup value is taken, and site that the posterior value is site-specific.'

2.  Could  you  please  indicate  for  your  figures  and  tables  (e.g.  Table  3)  whether  these
assessments are for independent evaluation data or for the data the model was trained to.

The legends of Figs. 1 and 2 have been modified to emphasize that we present the training data as
observations, while Figs. 5, 6 and 7 (the latter replacing Table 3 in the revised manuscript) have
been modified state that they present evaluative (and independent for Figs. 5 and 6) data:

'Figure 1. Model-data  (A) RMSD and  (B) bias for the daily NEE time series at each site (filled
circles),  grouped and averaged by PFT (horizontal  bars),  in  three cases:  prior  model  (green),
multi-site  optimization  (blue)  and  single-site  optimization  (orange). (C) PFT-averaged  mean
seasonal cycle of NEE, for the training observations (black) and the three aforementioned cases,
smoothed with a 15-day-moving-average window.

Figure 2.  Model-data  (A) RMSD and  (B) bias for the daily LE time series at each site (filled
circles),  grouped and averaged by PFT (horizontal  bars),  in  three cases:  prior  model  (green),
multi-site  optimization  (blue)  and  single-site  optimization  (orange). (C) PFT-averaged  mean
seasonal cycle of LE, for the training observations (black) and the three aforementioned cases,
smoothed with a 15-day-moving-average window.

Figure 5. PFT-averaged mean seasonal cycles of  (A) the photosynthetic carbon flux and  (B) the
respiration  flux,  smoothed with  a  15-day-moving-average window. The simulations  using  prior
(green), single-site (orange) and multi-site (blue) parameterizations are compared to the evaluative
observation-derived flux estimates (black).

Figure 6. Detrended mean seasonal cycle of the atmospheric CO2 concentrations at (A) Alert, (B)
South  Pole  and  (C) Mauna  Loa  locations  during  the  1989-2009  period:  the
optimization-independent concentrations records (black) are compared to simulations where the
biospheric  contribution  is  calculated  using  the  ORCHIDEE  model  with  default  (green)  and
multi-site  (blue)  parameterization,  with  the  model-data  RMSD  given  between  brackets.  (D)
Regional contributions to the mean seasonal cycle simulated at Alert.

Figure  7.  Correlation  factor  between  weekly  time  series  of  modeled  FAPAR  and  independent
measurements of NDVI, for the 2000-2010 period. The results are grouped using the dominant PFT
at each pixel, for global simulations with default (green) and multi-site parameterization (blue).
The central horizontal bar indicates the median value, the top and bottom of the boxes correspond
to the first and last quartile, and the 5- and 95-percentile are given by the 'error bars'.'

3. ALL FIGs - it is not clear to me whether the figures relate to an average across PFTs, which
specific years were considered or anything. While these fits look good, I have little idea what
places in space and time they specifically relate to. You need to improve the legends to these
figures to explain this.

The distinction between site-level and PFT-averaged values are made in the caption of Figs. 1, 2, 3,
4 and 5. Color legends have been added to Figs. 1, 2, 3, 4, and 5 to better distinguish whether the
displayed quantities relate to prior, multi-site or single-site cases, or to the observations. Finally, to



make clearer whether the full-length of the time series or the mean seasonal cycle of carbon and
water fluxes are considered, the captions of Figs. 1, 2 and 3 have been modified in the revised
manuscript:

Figs. 1 & 2: see above response.

'Figure 3.  PFT-averaged model  phase coefficient  versus  model-to-data amplitude ratio,  for  the
detrended  smooth  seasonal  cycles  of  (A) NEE  and  (B) LE  fluxes.  Simulations  using  prior
parameters (green) are compared to multi-site (blue) and single-site (orange) optimizations, with
the measured reference indicated by the intersection of the dashed lines.'
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