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Abstract

This  study uses  a  variational  data  assimilation  framework to  simultaneously  constrain  a  global

ecosystem model with eddy covariance measurements of daily net ecosystem exchange (NEE) and

latent heat (LE) fluxes from a large number of sites grouped in seven plant functional types (PFTs).

It is an attempt to bridge the gap between the numerous site-specific parameter optimization works

found in the literature and the generic parameterization used by most land surface models within

each  PFT.  The  present  multi-site  approach  allows  deriving  PFT-generic  sets  of  optimised

parameters enhancing the agreement between measured and simulated fluxes at most of the sites

considered,  with  performances  often  comparable  to  those  of  the  corresponding  site-specific

optimizations.  Besides  reducing  the  PFT-averaged  model-data  root-mean-square  difference

(RMSD) and the associated daily output uncertainty, the optimization improves the simulated CO2

balance at tropical and temperate forests sites. The major site-level NEE adjustments at the seasonal

scale are: reduced amplitude in C3 grasslands and boreal forests, increased seasonality in temperate

evergreen  forests,  and  better  model-data  phasing  in  temperate  deciduous  broadleaf  forests.

Conversely, the poorer performances in tropical evergreen broadleaf forests points to deficiencies

regarding  the  modeling  of  phenology  and  soil  water  stress  for  this  PFT. An  evaluation  with

data-oriented estimates of photosynthesis (GPP) and ecosystem respiration (Reco) rates indicates

distinctively  improved simulations  of  both  gross  fluxes.  The multi-site  parameter  sets  are  then
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tested against CO2 concentrations measured at 53 locations around the globe, showing significant

adjustments of the modelled seasonality of atmospheric CO2 concentration, whose relevance seems

PFT-dependent, along with an improved interannual variability. Lastly, a global scale evaluation

with  remote  sensing  NDVI  measurements  indicates  an  improvement  of  the  simulated  seasonal

variations of the foliar cover for all considered PFTs.

1. Introduction

Land surface models  (LSMs) have been tools  of  growing importance in  the continuous

effort  to  develop comprehensive  Earth  system models  which  help  to  understand the  effects  of

changes  in  land  surface  processes  and  land-use  practices  upon  biogeochemical  (carbon,  water,

nutrients) and energy cycles, and more generally upon the Earth’s climate  (Cramer et al.,  2001;

Friedlingstein et al., 2006; Sitch et al., 2008). With the goal of improving accuracy and realism, the

increasing amount and range of scale of the processes included in mechanistic LSMs result in a

growing number of parameters associated with the corresponding model equations (Pitman, 2003).

Some  parameters  are  easily  identified  with  a  given  physical  process  (and  can  sometimes  be

measured); others are purely empirical and account for a variety of processes embodied in a few

equations,  yet  to  be  refined.  In  both  cases,  obvious  computational  and  complexity  limits  have

traditionally  led model  developers  to use broad classes  of  soil  and vegetation types,  for which

typical, generic parameter values are assigned (e.g., (Sellers et al., 1996)). 

One difficulty is in scaling up the leaf- and plant-level measurements of physical parameters for

ecosystem-scale  simulations  (Jarvis,  1995;  Bonan et  al.,  2012).  Besides,  the  variety  of  species

within each of the 10 to 20 plant functional types (PFTs) typically used by most models makes the

choice of a representative parameter value critical, thus adding significant uncertainty to the model

outputs. In this context, parameter optimization methods have been increasingly used to calibrate

model parameters and reduce the associated uncertainty. The criterion is to minimize the misfit

between simulation outputs and observed data  (Raupach et al., 2005). As for ecosystem models,

eddy  covariance  measurements  provide  direct,  near-continuous,  in  situ  observations  of  carbon

dioxide, water and energy exchanges between the canopy and the atmosphere  (Baldocchi et al.,

2001; Baldocchi,  2008). This measurement method has been applied across an extensive global

network  (560  sites  as  of  October  2013),  spanning  a  wide  range  of  ecosystems  and  climates

(http://fluxnet.ornl.gov/). 

Over the last decade, numerous studies with various LSMs have used this available information to

derive  sets  of  parameters  that  significantly  improve  the  model-data  fit,  with  optimization

approaches ranging from simple parameter adjustments to rigorous data assimilation frameworks

(e.g.,  (Wang et al., 2001, 2007; Reichstein et al., 2003; Braswell et al., 2005; Knorr and Kattge,
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2005;  Santaren  et  al.,  2007;  Thum et  al.,  2008;  Williams et  al.,  2009;  Carvalhais  et  al.,  2010;

Keenan  et  al.,  2012)).  However,  most  of  these  efforts  have  focused  on  model  calibration  at

individual sites. It often results in model parameters overly tuned to the specifics of a particular site

given the small spatial footprint of each flux tower (typically a few hectares). Only recently, some

studies started to assess through optimization the generic nature of model parameters within PFTs.

The benefit of a set of parameters derived at one site was evaluated for simulations at a similar site

(Medvigy  et  al.,  2009;  Verbeeck  et  al.,  2011)  and  over  the  surrounding  region  (Medvigy  and

Moorcroft,  2012),  with encouraging results.  In  parallel,  two independent  efforts  simultaneously

used data constraints from several sites to assess the degree of improvement of the simulated fluxes

depending on the “generic criterion” used for the optimised parameters (Groenendijk et al., 2011;

Kuppel et al., 2012). The study of (Groenendijk et al., 2011), conducted at over a hundred locations

across several PFTs, found that the cross-site parameter variability after optimization explained the

poorer performances of grouping sites by PFT, while no such discrepancy appeared in (Kuppel et

al., 2012), a study however limited to temperate deciduous broadleaf forests. 

Building  on  the  optimization  procedure  developed  by  (Kuppel  et  al.,  2012),  the  present  work

assesses the potential of the multi-site assimilation of carbon net ecosystem exchange (NEE) and

latent heat (LE) flux measurements in a process-based terrestrial ecosystem model (ORCHIDEE).

The objective is to improve site-scale simulations of carbon and water fluxes at a large number of

flux towers sites, as well as global scale simulations of vegetation phenology and terrestrial carbon

balance. Specifically, we address the following questions: 1) for each of the seven PFTs considered

(out of 12 in ORCHIDEE, 5 being not covered by the measurements used here), can we find a

generic set of optimised parameters that enhance the model-data fit at all sites? 2) how well does the

multi-site  approach compare to site-specific  optimizations? 3) what are  the main improvements

introduced   by  the  optimization  procedure  from  seasonal  to  annual  time  scales:  daily  error,

model-data bias, seasonal cycle amplitude and/or phase? 4) which processes remain poorly captured

by  the  model  after  optimization?  5)  have  the  eddy-covariance-constrained  sets  of  multi-site

parameters a notable impact on global scale simulations?

Section 2 presents the ecosystem model, the data assimilation system, and the eddy covariance

measurements used in this study, as well the supplementary datasets and models. The results are

presented and discussed in Sect. 3, successively dealing with the model-data fit at the site level

(3.1), the comparison between multi-  and single-site results (3.2), the uncertainties of modelled

NEE and LE (3.3). Then are evaluated the impact of the derived multi-site parameterization upon

the site-scale simulation of photosynthesis and ecosystem respiration rates (3.4), and at the global

scale upon the simulated seasonality and interannual variability of atmospheric CO2 concentration

(3.5.1) and finally upon the seasonality of vegetation activity (3.5.2).
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2. Materials & Methods

2.1 Vegetation model and optimised parameters

The biogeochemical vegetation model used in this study is ORCHIDEE (Organizing Carbon

and Hydrology in Dynamic Ecosystems, (Krinner et al., 2005)). It calculates the water, energy and

carbon fluxes between the land surface and the atmosphere at a half-hourly time step. The exchange

of carbon and water during photosynthesis and the energy balance are treated every 30 minutes,

while  carbon allocation,  autotrophic respiration,  foliar  onset  and senescence,  mortality  and soil

organic matter decomposition are computed on a daily time step. The soil  hydrology follows a

double-bucket scheme (Ducoudré et al., 1993) and its impact on stomatal conductance is described

in (Krinner et al., 2005). The reader is referred to previous publications for the standard equations

of ORCHIDEE (e.g., (Kuppel et al., 2012)). As in most biogeochemical models, the vegetation is

grouped into several  PFTs,  12 in  the case of  ORCHIDEE,  excluding bare  soil.  Except  for  the

modelled phenology (Botta et al., 2000), the equations governing the different processes are generic

across PFTs, but with specific parameter values for each vegetation class. When used in “grid-point

mode”  at  a  given  site,  we  force  the  model  with  the  corresponding  half-hourly  gap-filled

meteorological  data  measured  at  the  flux  towers.  At  the  global  scale,  the  global  ERA-Interim

meteorology (Dee et al., 2011) is used as forcing and the model outputs are calculated at a 0.72 x

0.72 deg² resolution. In this case the global PFT map is computed at the spatial resolution of the

forcing  fields,  from  an  original  vegetation  map  available  at  5km,  which  is  derived  from  a

high-resolution IGBP AVHRR global land dataset (Eidenshink and Faundeen, 1994) and uses 94

ecosystem classes (Olson, 1994). Importantly, the modelled carbon pools are initially brought to

equilibrium before both site- and global-scale simulations by cycling the available meteorological

forcing over several centuries (spin up procedure), with the prior parameterization of the model.

This procedure ensures a net carbon flux close to zero over annual-to-decadal timescales.

Table 1 presents the PFT-generic parameters used in this study. As our emphasis is on adjusting the

carbon cycle, there are significantly more optimised parameters leveraging on photosynthesis and

respiration processes than, for instance, on the energy balance. We also included two additional

parameters to optimise the initial state of the model provided by the spin up procedure, which are 1)

a common multiplier of the initial carbon pool content, by default equal to one, and 2) the initial

leaf  area index (LAI) of non-deciduous PFTs, by default  taken from the spin up outputs.  Both

parameters are considered as site-specific, since the soil organic carbon content is closely related to

the local land-use history, while the foliar cover of evergreen and herbaceous species directly relates

to vegetation history at the site level. One consequence is that they cannot be spatially extrapolated,
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thus the global simulations performed for evaluation (see sect. 2.4) use the default value of these

last two parameters, i.e., using the initial carbon pool content and foliar cover provided by the spin

up procedure.

2.2 Data assimilation system

The model parameters are optimised using the variational data assimilation method described in

(Kuppel et al., 2012). Assuming a Gaussian distribution for errors on the parameters, the model

outputs and the measured data, the optimised set of parameters corresponds to the minimization of

the following Bayesian cost function J(x) (Tarantola, 2005): 

, (1)

which quantifies both the misfit between modelled and observed fluxes, and the misfit between a

priori and optimised parameters. x is the vector of unknown parameters, xb the vector of background

(i.e., here, prior) parameter values, H(x) the model output, y the vector of observed fluxes, while Pb

and R are the prior covariance matrices of parameter errors and observation errors, respectively.

The cost function is  iteratively minimized with the gradient-based algorithm L-BFGS-B, which

allows prescribing boundaries for each variable to optimise (Byrd et al., 1995). At each iteration, the

gradient  of the cost  function  J(x)  is  computed with respect  to all  parameters,  mostly using the

Tangent Linear (TL) model of ORCHIDEE generated with the automatic differentiator tool TAF

(Transformation  of  Algorithms in  Fortran,  see  (Giering  et  al.,  2005)).  Exceptions  concern  two

phenological parameters, Kpheno,crit and cTsenes (see Table 1), where the threshold functions prevent the

use of a linear approximation. In these cases we use a finite-difference approach with prescribed

perturbation steps respectively equal to 4% and 2% of the allowed variation range. The recent work

of  (Santaren  et  al.,  2013)  with  the  same  ecosystem model  highlighted  the  risk  of  converging

towards a local minimum within a site-specific variational optimization. In our case, preliminary

tests  within  three  PFTs  (tropical  and  temperate  evergreen  broadleaf  forests,  and  temperate

deciduous broadleaf forests) allowed us to verify that the convergence of our multi-site approach

barely  depends  on  the  choice  of  the  first-guess  values  assigned  to  the  optimised  parameters.

However,  such  robustness  is  not  guaranteed  with  the  site-specific  approach,  and  potential

convergence issues are discussed in the results section.

Once the cost function reaches the minimum, the posterior parameter error variance/covariance

matrix  Pa is  explicitly  calculated  from the  prior  error  covariance  matrices  (Pb and  R)  and the
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Jacobian of the model H at the minimum of the cost function ( ), using the linearity assumption

(Tarantola, 2005):

. (2)

The prior parameter error covariance matrix Pb is diagonal as prior uncertainties are supposed to be

uncorrelated between parameters. The prior standard deviation for each parameter is equal to 1/6 of

the range between lower and higher boundaries. The latter have been carefully specified following

the physical and empirical expertise of the ORCHIDEE modelers, based on literature reviews or

databases (such as TRY, (Kattge et al., 2011)).

In  the  prior  observation  error  covariance  matrix  R,  we include  both  the  random error  on  the

measurements  and  the  model  error,  the  latter  stemming  from  missing/inadequate  process

representation in the structural equations of the ecosystem model. Although the measurements error

is known not to be constant (e.g. (Richardson et al., 2008)), a previous study using the ORCHIDEE

model suggested that the model component dominates the observation error budget (Kuppel et al.,

2013). The variances in R are chosen constant at a given site for each type of data (NEE and LE),

equal to the mean square difference between the prior model and the observations. We also choose

for simplicity to keep  R diagonal, based on the rapid decline of the model error autocorrelation

beyond the first lag day (Kuppel et al., 2013).

2.3 Assimilated eddy covariance flux data

We use the eddy covariance data provided by 78 flux towers of the FLUXNET global network

(Baldocchi, 2008), representative of seven of the 12 vegetated PFTs defined in the ORCHIDEE

model (supplementary Table S2). All the sites of a given dominant ecosystem are located in the

same geographical hemisphere, which makes seasonal analyses easier. These observations derive

from standard flux data processing methodologies (correction, gap-filling and partitioning) of the

La Thuile dataset (Papale, 2006). From the large amount of available site-years in this dataset, our

selection was driven by several requirements, the first of these being a minimum vegetation cover

of 70% by the dominant PFT within each tower footprint, based on site-level information. Then

were  discarded  the  sites  where  measurements  show  a  significant  disagreement  with  the  prior

simulation  outputs,  as  it  suggests  strong model  structural  deficiencies  that  make the  parameter

optimization pointless. Lastly, we selected at each site the longest data segment of consecutive years

without  gaps  larger  than a few weeks.  Where measurements  of the ground heat  flux (G) were

available,  the  monthly  energy  balance  was  closed  with  a  correction  factor  then

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34



half-hourly-interpolated and applied to the latent heat (LE) and sensible heat (usually called H)

fluxes, according to the Bowen ratio technique (Twine et  al.,  2000). The half-hourly, gap-filled

measured fluxes of net ecosystem exchange (NEE) and LE are then used to compute daily means.

We chose to assimilate daily-averaged observations and not half hourly measurements so as to focus

the optimization on time scales ranging from seasonal to annual variations, and to take advantage of

the rapidly-decreasing autocorrelation  of  gap-filled half-hourly fluxes  (Lasslop  et  al.,  2008).  In

order not to give too much weight to data estimated from gap-filling as compared to measured data,

each  daily  observation  error  is  inflated  by  a  factor  1+0.5k,  where  k is  the  daily  fraction  of

half-hourly data estimated from gap-filling. We also checked that the gaps still remaining after the

gap-filling were distributed evenly over the course of the day. The individual days with more than

20% of these “ultimate” gaps were not included in the assimilation.

The eddy covariance data are compared to the simulated fluxes in terms of RMSD and bias. In

addition, for the six non-tropical PFTs we use a curve fitting procedure (composed of a polynome of

degree 2 and four harmonics) to decompose the fluxes into their trends and mean seasonal cycles

following (Thoning et al., 1989). The detrended smooth seasonal cycle is used to estimate the ratio

between the average annual amplitude of the simulated and observed fluxes, as well as a model

phase coefficient defined as

(3)

Here,  bi and  ei are respectively defined as the days when the detrended smooth curve crosses the

zero line. In tropical evergreen broadleaf forests, the phase and amplitude diagnostics presented

above are not applied, due to the lack of a marked seasonal cycle. Instead, the predictive power of

the  simulations  is  evaluated  using  the  Nash-Sutcliffe  model  efficiency  coefficient  (Nash  and

Sutcliffe, 1970):

, (4)

where is the value of the simulated or observed flux at the time step  t,  and   the mean

observed flux.

2.4 Evaluation tools
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The  model  is  evaluated  at  the  sites  using  the  two  components  of  NEE:  the  gross  primary

productivity (GPP) and the ecosystem respiration rate (Reco), both estimated via the flux-partitioning

method described in (Reichstein et al., 2005). This method extrapolates nighttime measurement of

NEE,  representing  nighttime  Reco,  into  daytime  Reco using  a  short-term-calibrated  temperature

response function. GPP is then derived as the difference between Reco and NEE. We acknowledge

that GPP and Reco are not fully independent data (with respect to the assimilated NEE) and are

essentially model-derived estimates somewhat conditional on our underlying assumptions, and it

will be kept in mind during the analysis.

Additionally, measurements of the Normalized Difference Vegetation Index (NDVI) made by the

MODIS instrument are used to evaluate the simulated phenology at the global scale. From 2000 to

2010, the calculated reflectances (from measured irradiances) have been corrected for atmospheric

absorption and scattering (Vermote et al., 2002) and directional effects (Vermote et al., 2009) in

order to obtain a daily NDVI product with a 5-km spatial resolution. Observations contaminated

with snow cover were removed from the analysis using MODIS' quality filter, and we discarded

NDVI observations below 0.2 in order to minimize the impact  of bare soil  reflectance.  Spatial

averaging is used to match the ERA-Interim resolution (0.72° x 0.72°) used for the global scale

simulations. Because it is directly derived from surface reflectances, we preferred NDVI to other

satellite products such as FAPAR or LAI, the latter requiring intermediate processing steps usually

involving  radiative  transfer  models,  and thus  possibly  adding  uncertainty  to  the  retrieved  data

(Garrigues et al., 2008). Following (Maignan et al., 2011), we then calculate the Pearson correlation

factor between the times series of measured NDVI and the Fraction of Absorbed Photosynthetically

Active Radiation (FAPAR) modelled by ORCHIDEE, at the weekly time scale during the period

2000-2010. FAPAR has been estimated from modelled LAI with a simple Beer’s law:

. (5)

The link between simulations and measurements is made by spatially averaging the latter to reach

the resolution of the vegetation model (i.e. that of the ERA-Interim forcing). For each of the seven

PFTs considered, we restrict our correlation computation to the model boxes where the dominant

PFT’s cover fraction exceeds 50% and where both NDVI and FAPAR time-series exhibit a visible

seasonal cycle (i.e. with a standard deviation larger than 0.04).

Lastly, the simulated global NEE fluxes are output at the daily timescale and spatially averaged

from  the  ERA-Interim  grid  (0.72°x0.72°)  to  a  2.5°x3.75°  resolution  (latitude,  longitude).  The

LMDz atmospheric transport model (Hourdin et al., 2006) was used at this resolution to convert

these terrestrial  fluxes into monthly atmospheric CO2 concentrations,  during the period 1989 to
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2009. In order to complete the carbon balance at the planetary scale, we also transport the global

oceanic and fossil net carbon fluxes respectively taken from a climatology (Takahashi et al., 2009)

and from the EDGAR database (http://edgar.jrc.ec.europa.eu). The contribution of biomass burning

is  neglected,  because  re-growth  of  burnt  vegetation  is  not  accounted  for  in  this  version  of

ORCHIDEE, and so are the evasion of CO2 from aquatic bodies and emissions from harvested

wood and agricultural products. The transported fluxes are evaluated using 53 smoothed record of

atmospheric  CO2 concentrations  (CCO2)  over  the  globe  (supplementary  Table  S3)

(GLOBALVIEW-CO2,  2013).  As  the  optimization  of  the  initial  soil  carbon  content  cannot  be

spatially  extrapolated  for  global  simulations  (see  sect.  2.1),  the  modelled  trend  of  CCO2 is  not

evaluated.  Rather,  we  focus  on  the  seasonal  analysis  and  use  the  curve-fitting  procedures  of

(Thoning et al., 1989) to extract the detrended seasonal signal of CCO2. In addition, we identify the

contributions of 11 sub-continental regions to the simulated atmospheric CO2 concentration at each

station by independently transporting the fluxes from each following area: boreal North America,

temperate  North  America,  tropical  America,  South  America,  Europe,  northern  Africa,  southern

Africa,  boreal  Asia,  temperate  Asia,  tropical  Asia,  and Australia  (e.g.,  Fig.  1 in (Gurney et  al.,

2003)). The simulated interannual variability of the CCO2 is evaluated using the model-data RMSD

of monthly anomaly, from the detrended smooth seasonal signal calculated above:

, (6)

where  is the all-time average, for each month of the year.

3 Results & discussion

3.1 Site-level simulation of carbon and water fluxes

Figure 1 shows the average corrections brought by the optimization to the modelled NEE fluxes

(with negative values meaning carbon uptake), grouped by dominant PFT (see acronyms in Table

1),  in  terms  of  RMSD  and  bias  between  simulations  and  measured  data,  also  showing  the

PFT-averaged mean seasonal  cycles.  The largest  reductions  of  model-data  RMSD are  found in

temperate  and  boreal  broadleaf  forests  (TempEBF,  TempDBF  and  BorDBF),  where  the  two

optimization scenarios (single- and multi-site) decrease the misfit by more than 25% compared with

the  prior  (unoptomized)  model.  In  temperate  needleleaf  forests  (TempENF)  and C3 grasslands

(C3grass), the RMSD reduction exceeds 30% for single-site optimizations, but the corresponding

multi-site  sets  of  parameters  reduce  this  value  to  less  than  20%.  The  improvements  are  less

significant  in  tropical  evergreen  broadleaf  forests  (TropEBF)  and  boreal  evergreen  needleleaf

forests (BorENF), where the reductions of misfit is between 9 and 15%. Figure 1B shows that the
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NEE is on average overestimated by the prior model for all PFTs. This feature is even more striking

in  ecosystems  which  are  marked  sinks  of  carbon  (according  to  the  average  measured  carbon

balance, not shown), here tropical and temperate forests. This positive bias is an artifact from the

model initialization procedure, which brings each simulated site to a near equilibrium (see sect.

2.1). It is significantly corrected by the optimization, notably via the scaling of the initial carbon

pool content at each site (parameter KsoilC in Table 1), one consequence being a clear reduction of

the  respiration  during  the  winter  of  temperate  and  boreal  ecosystems  and  grasslands  sites  in

agreement with the measured data (Fig. 1C). 

Figure 2 shows that the simulation of the latent heat flux (LE) is overall less improved by the

optimizations than that of the net carbon flux, keeping however in mind the problem of energy

balance  closure  discussed  in  sect.  2.3.  The  reduction  of  RMSD  is  the  highest  on  average  at

TempDBF sites with values 24% below the prior value, while decreases of 15 to 19% are found at

TempEBF and BorENF sites.  The effect of the optimization is  the weakest on average at  sites

located  in  TempENF  and  C3grass  ecosystems.  These  weaker  performances  regarding  LE  flux

indicate  that  the  energy  and  water  cycles  in  the  ORCHIDEE  model  involve  other  relevant

parameters not optimised here, and possibly that the structural equations bear a significant error.

Notably,  we  include  in  the  optimization  only  one  parameter  that  directly  controls  the  soil

evaporation (Z0overheight, see Table 1), and there is for example no constraint on the calculation of the

surface temperature, a key component of the energy balance.

 

At the seasonal scale, Fig. 3A shows that large reductions (in relative value) of the simulated

mean seasonal NEE amplitude are found in boreal evergreen needleleaf and deciduous broadleaf

forests and C3 grasslands. The average correction is somewhat exaggerated in the two former cases

and relatively accurate in the latter case. Conversely, the seasonal NEE variations are consistently

amplified by the optimization in temperate evergreen needleleaf and broadleaf forests. However, the

averaged model-data phasing is only weakly modified for the five aforementioned PFTs, with the

exception of the site-specific improvements at TempENF and C3grass sites. Besides, considering

the mild correction of the model-data biases in BorENF, BorDBF and C3grass (Fig. 1B), one can

deduce that most of the reduction of RMSD discussed earlier is for these three PFTs due to an

improvement of the simulated NEE amplitude after the optimization. 

In temperate deciduous broadleaf forests, the simulated pattern of NEE is chiefly improved via a

better phased seasonal cycle, as shown by the increased phase score, which was already close to one

before optimization. An earlier  study at a similar set  of sites of the same PFT showed that the

optimization scheme tends to correct the overall prior model overestimation of the growing season
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length (Kuppel et al., 2012). On the other hand, the simulated seasonal amplitude of NEE is barely

changed after optimization,  as the corrected flux overestimations in winter and summer tend to

cancel out, with a PFT-averaged seasonal amplitude remaining smaller than that of the observed

data (Figs. 1C and 3).

Regarding the latent heat flux, Fig. 3B shows that the optimization has generally a weaker effect

on the simulated LE average phase and amplitude than in  the case of NEE. In most cases the

correction brought by the optimization barely affects the modelled phase, but improves the seasonal

amplitude. We notice that the LE seasonal cycle is most often flattened as compared to the prior

model in agreement with the observations, except for the inconsistent amplification at TempEBF

sites and the over-reduction after the site-specific optimization in C3 grasslands. The weak phase

correction might be related to the soil evaporation component of the latent heat flux, on which the

optimization has a limited leverage as mentioned earlier in this section, while the transpiration rate

is tightly linked to GPP. It would also explain the generally lower phase coefficient in deciduous

ecosystems (Fig. 3), where soil evaporation is a potentially significant component of LE during leaf

onset and senescence.

Besides, applying the Nash-Sutcliffe model efficiency coefficient (NSE, see Eq. 4) to all

sites shows that TropEBF is the only PFT studied here where the PFT-averaged value of this metric

remains  below  zero  after  optimization  for  both  fluxes,  with  NSENEE=[-2.77,  -1.99,  -1.83]  and

NSELE=[-0.64,  -0.35,  -0.52]  in  prior,  multi-site  and  site-specific  cases,  respectively  (other  PFT

values not shown). It means that after optimization the model-data mean square error is still larger

than the variance of the observations, or, in other words, that the observed mean is on average a

better predictor than the model outputs. Figure 1 shows that for TropEBF the prior model simulates

an unobserved increase of NEE from sink to source around July, and the simultaneous decrease of

LE (Fig. 2) points towards an unrealistic simulated drought stress during this period of the year, the

driest at most sites of this PFT. The optimization barely corrects the NEE variations during the dry

season, although a more realistic LE flux is simulated after the multi-site optimization. An earlier

optimization study at a site of the same PFT highlighted the need for a much deeper soil water

reservoir along with a more linear root profile than that parameterized in the prior model, in order to

account  for  the  ability  of  tropical  evergreen  forests  to  maintain  high  photosynthesis  and

transpiration during the dry season (Verbeeck et al., 2011). Our multi-site parameterization of the

processes dealing with soil water availability goes in that direction, with values of soil water depth,

root profile and water stress coefficient respectively adjusted from 2 to 2.38 ± 0.065 m, from 0.8 to

0.72  ±  0.095  m-1 and  from  6  to  6.5  ±  1.06  (Table  1).  These  corrections  from  the  prior

parameterization remain however insufficient, as shown by the poorly realistic optimised seasonal
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cycle of NEE in Fig. 1. On the other hand,  (Verbeeck et al., 2011) also pointed at the structural

inconsistency in the standard ORCHIDEE model for tropical evergreen forests: the phenological

scheme notably neglects the leaf renewal at the transition between wet and dry season (Chave et al.,

2010) and the hydric stress calculation ignores the role of groundwater (Miguez-Macho and Fan,

2012),  while  these  mechanisms  possibly  explain  the  high  subsequent  photosynthesis  and

transpiration rates often observed (Weirdt et al., 2012).  Concerning the LE flux, the optimization

brings somewhat limited, yet consistent changes, while the reduction of daily uncertainty is modest,

indicating a poor level of constraint by the observations used. It suggests either significant errors in

the model equations, or that relevant, poorly known parameters, have not been considered. 

3.2 Single-site versus multi-site

It can be noticed in Figs. 1, 2 and 3 that there is a general consistency across PFTs between

RMSD reductions introduced by multi-site and site-specific optimizations, with some exceptions in

TempENF and most notably C3grass where the average site-specific RMSD reduction is  twice as

large for NEE, while there is almost no average multi-site RMSD decrease for LE. Although the

large number of sites selected for this last PFT and the associated inter-site variability calls for

prudence when considering average seasonal flux variations, it is worth noting that C3 grasslands

are here the only PFT generically spanning such a diversity of climates. The reported discrepancy

might thus indicate a need for additional classes of C3 grasslands in the model, at least with a

climatic regionalization and ideally taking also into account pedologic conditions and management

practices.

More generally, one would expect better  efficiency from a site-specific scheme than with a

multi-site approach, given that grouping sites with different characteristics introduces conflicting

constraints on the model equations, along with the fact that the RMSD is the criterion used in the

optimization procedure (as the prior covariance matrix in the cost function of Eq. (1) is chosen

diagonal, see sect. 2.2). It is true most of the time, except notably for NEE in boreal deciduous

broadleaf  forests  and  LE  at  TropEBF,  TempEBF  and  BorENF  sites  where  the  multi-site

optimization results on average in larger RMSD decreases than the site-specific approach. In these

cases,  Figs.  1  and  2  show  that  it  stems  from  unchanged  local  RMSD  after  the  site-specific

optimization at a few sites of these particular PFTs. As found by (Santaren et al., 2013), it may point

to a failure of the single-site inversion algorithm to converge towards the global minimum of the

cost  function,  possibly  due  to  the  presence  of  local  minima.  Our  hypothesis  is  that  the

corresponding multi-site cost functions avoid this pitfall because they are made more regular by the

larger  amount  of  simultaneous  constraints  on  the  parameters,  “smoothing  out”  some  of  the

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35



problematic local minimums. Preliminary multi-site optimization tests, using a few tens of random

starting points, support this hypothesis, and further investigations will be needed to evaluate if this

behavior is valid for all PFTs. Indeed, we acknowledge some uncertainty regarding whether or not

the optimised sets  of  parameters  correspond to the very minimum of  the  cost  function,  as  the

efficiency  of  the  variational  optimization  approach  employed  is  conditional  on  a  reasonable

compliance with the linearity hypothesis.

 

3.3 Site-scale uncertainty

In  addition  to  improving  the  agreement  between  modelled  and  measured  fluxes,  the

optimization procedure is also useful to reduce the total uncertainty associated with the modelled

output variables at each site, defined as:  

. (7)

σtotal  represents  the  summed  contribution  of  two  errors  arising  in  the  observation  space:  the

measurements error and the error of the equations of the model (see sect. 2.2). It is not directly

altered through parameter optimization, although the model component may in principle vary with

the parameter values. Following (Desroziers et al., 2005), σtotal is diagnosed at each site as the square

root of the covariance between the time series of prior and posterior flux residuals (model minus

observations). σparameters is the parameter error contribution to the simulated fluxes, calculated at each

site, before optimization, as the average daily standard deviation of the projection in observation

space of the prior error covariance matrix  Pb, using the model’s Jacobian matrix  H, based on the

definitions of sect 2.2. The same is done after optimization, respectively using Pa and H∞.

Figure 4 reports the average value of  for simulated daily NEE and LE, showing individual sites

values  and the corresponding PFT means as in  Figs.  1  and 2.  The reduction of the total  NEE

uncertainty varies from one PFT to another, ranging from 6% in tropical evergreen broadleaf forests

to 33% in boreal evergreen needleleaf forests. As  is reduced by 65 to 95% (not shown), we deduce

from Eq. (7) that the weak relative decrease of  indicates a dominance of the observation error in the

total uncertainty budget. This is for example consistent with the reported inaccuracies in the model

structure for TropEBF ecosystems discussed in the previous section. 

Regarding the LE flux, the mild changes from prior to posterior uncertainty means that we might

face a potentially  large observation error  component  (model  + measurements)  –the latter  being

insensitive to parameter optimization, see sect. 2.3– and overall that little statistical information has

been gained from the optimization of the selected water cycle parameters.
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Besides, one can notice that the posterior uncertainties are always slightly lower for multi-site

optimization than with the site-specific approach, which is consistent with the fact that the number

of assimilated data is larger in the former case than in the latter. Finally, we also found that the

optimization suppresses at each site much of the temporal correlation of the flux error, which are

large in the prior ORCHIDEE model (see for instance the time correlogram in the Fig. 1 of (Kuppel

et al., 2013)). It results in a large decrease of the total yearly uncertainty from the prior model for all

PFTs, by 77 to 86% and 43 to 80% for simulated NEE and LE flux, respectively (not shown).

3.4 Simulated GPP and respiration

Figure 5 shows the mean seasonal cycle, averaged over each PFT, for the gross carbon fluxes:

photosynthesis (GPP, Fig. 5A) and ecosystem respiration (Reco, Fig. 5B). The “observed” values are

estimates based on a partition of the measured NEE (see sect. 2.4). These gross carbon fluxes have

not been used as constraints in the optimization procedure, but are useful as indicators of the model

performance. One can first notice that the average increases of GPP at TropEBF and TempEBF sites

are responsible for the NEE decrease observed in Fig. 1. It is worth noting that the results reported

in Fig. 5 also confirm the inability of the model to simulate a sustained high photosynthesis rate

during the dry season at TropEBF sites (see Sect. 3.1), while this feature appears in the observations

estimates. At TempENF sites, the remarkable adjustment of the NEE cycle primarily derives from a

reduced Reco at the peak of the growing season. Both GPP and Reco are consistently decreased in

boreal forests and C3 grasslands sites, although the reduction is still  lower than what would be

needed  to  match  the  estimates.  In  addition,  because  the  respiration  rate  is  the  sole  reducing

component in winter and because the photosynthesis rate is more largely decreased than Reco during

the growing season, the net result is the reduction of the seasonal amplitude of NEE for these three

PFTs. Finally there is a large, yet insufficient, decrease of Reco after the optimization in temperate

deciduous broadleaf forests, notably related to the scaling of the initial carbon pool content (sect 3.1

and  (Kuppel  et  al.,  2012)),  while  GPP is  less  drastically  reduced,  in  close agreement  with the

observations.This  evaluation  at  each  site  with  gross  carbon fluxes  shows that  the  optimization

procedure is able to provide a set of parameters which improves the simulation of both assimilation

and respiration processes in the ORCHIDEE model for six out of the seven PFTs considered here,

suggesting a partial distinction of both gross contributions from the constraint provided by the net

carbon flux.

3.5 Global-scale evaluation

One of the objectives of assimilating flux data from a large number of sites, spanning a wide

range of ecosystems, is to identify generic sets of parameters that improve the simulation of carbon
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and  water  balance  at  the  regional-to-global  scale.  Indeed,  there  is  no  guarantee  that  a  set  of

parameters improving the simulations at an ensemble of individual sites sharing broadly common

biogeochemical and biophysical characteristics, but with a limited spatial  footprint,  will  also be

beneficial for simulations at much larger scales. In this context, global simulations allow evaluation

of how the constraint of eddy covariance data is propagated from one spatial scale to another, and

how transferable the optimised parameterization is from grouped in situ optimizations to gridded

simulations. 

3.5.1 Seasonality of atmospheric CO2 concentrations

Regarding  the  simulated  mean  seasonal  cycle  of  atmospheric  CCO2,  the  optimised  set  of

parameters yields a median reduction of the model-data RMSD of 5.2%. Among the 53 samples

locations used in this study, there is a significant improvement at 27 of them with a RMSD decrease

larger than 5%, a notable degradation at 20 sites with a RMSD increase larger than 5%, and less

than a 5% shift at the remaining 6 locations. In addition, a latitudinal clustering can be identified, as

a large median improvement by 42.2% (RMSD-wise) is found at the 3 northernmost sites (Alert,

Ny-Alesund, and Barrow) and by 33.5% at the 18 locations of the Southern Hemisphere, while

there is a median degradation by 5.6% in the rest of the Northern Hemisphere.

Figure 6 shows the mean seasonal cycle of the simulated CCO2, compared to the extended record

at three locations, one in each of the latitudinal areas defined above: Alert, South Pole, and Mauna

Loa, respectively. We note that using the optimised parameters sets tends to reduce the seasonal

amplitude of CCO2, with in the Northern Hemisphere an earlier phasing for the “breathing of the

biosphere”. At station Alert, there is a significant adjustment of the simulated seasonal cycle, when

changing  from  the  default  to  the  multi-site  parameterization  of  the  ORCHIDEE  model.  This

correction chiefly benefits  the seasonal amplitude,  which is decreased and becomes remarkably

close to that observed. The analysis of the contribution of the 11 sub-continental regions in the

simulated atmospheric signal (see sect. 2.4), grouped in Fig. 6D in larger regions, indicates that the

major  terrestrial  contribution  to  this  result  are  changes  in  CCO2 due  to  the  boreal  Northern

Hemisphere fluxes. It is consistent with the decrease of the NEE seasonal amplitude produced by

the  multi-site  optimization  at  sites  in  boreal  evergreen  needleleaf  forests,  boreal  deciduous

broadleaf forests and C3 grasslands (Figs 1C and 3A), dominant in this region. Separate global

simulations using optimised parameterization for one PFT at a time show that the degraded phasing

at Alert produced by the multi-site approach in Fig. 6A mainly stems from the contributions of

BorENF and C3 grasslands ecosystems (not shown). While a mild multi-site phase deterioration

from the prior parameterization is found at the site level in BorENF (Fig. 3A), it is not the case for
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C3 grassland and it may thus question the representativeness of the flux measurements sites used,

with respect to high-latitudes ecosystems in general.  

At station South Pole, the model-data fit is also mostly enhanced after the optimization by a

significant decrease of the seasonal amplitude of CCO2, which is more than twice as large in the prior

simulation  as  in  the  measured  data.  Besides,  the  “regionalized”  analysis  indicates  that  the

corrections are primarily due to the reduced seasonal amplitude of CCO2 components from temperate

South America and southern Africa, and contributions from the boreal Northern Hemisphere are

also noticeable (not shown). We therefore deduce that the optimization of C3 grasslands parameters

is the most influential factor explaining the improved simulation of CCO2 at this station, but also that

the influence of boreal needleleaf evergreen forests cannot be neglected here.

The reduction of the simulated cycle amplitude is  too strong at  station Mauna Loa,  which,

combined with earlier seasonality, leads to a poorer model-data fit after optimization. The remote

location of Mauna Loa (north Pacific) makes it sensitive to influences from most of the Northern

Hemisphere. We find that the main drivers of the simulated correction are flattened, earlier CCO2

variations in temperate and boreal regions of North America and Asia, and Europe (not shown).

These  results  thus  reflect  part  of  the  reduction  of  the  seasonal  amplitude  of  NEE  in  boreal

ecosystems and C3 grasslands noticed at Alert and South Pole stations. The degraded model-data fit

between optimised CCO2 and data from Mauna Loa also suggests that the boreal correction of NEE

amplitude is  too strong or insufficiently compensated at  large scale by the amplification of the

seasonal cycle at temperate latitudes visible at TempENF and TempDBF sites (Figs. 1C and 3A).

Finally,  using  the  multi-site-optimised  model  overall  brings  a  small  improvement  of  the

modelled interannual variability of CCO2, with a median reduction of 3.9% for the RMSD between

modelled and measured monthly anomaly (not shown). Forty-five locations, out of the 53 used in

this study, display an improvement with RMSD decreases up to 27%, while at the remaining 8 sites

the degradation of the simulated interannual variability remains small with RMSD increases always

smaller than 1.5% (not shown). These results suggest that despite the relative shortness (one to three

years) of most of the FluxNet datasets selected to optimise the ORCHIDEE model, the diversity of

the  covered  weather  situations  gives  a  modest,  yet  consistent  source  of  information  to  better

reproduce interannual variations of carbon fluxes at the global scale.

3.5.2 Global scale phenology index

Figure  7  reports  for  each  optimised  PFT  the  correlation  factor  between  weekly  values  of

measured NDVI and modelled FAPAR during the period 2000-2010 (see sect. 2.4), for both the
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prior and optimised model. There is no result for BorDBF whose vegetation fraction never exceeds

40% in our case. All remaining six PFTs exhibit a higher median correlation factor when using the

multi-site parameterization, which means that the modelled leaf seasonal cycle better matches the

global scale observations. This median improvement seems to accurately reflect the overall trend

for TempDBF-, BorENF- and C3grass-dominated pixels,  while a larger inter-pixel variability is

introduced in the case of temperate evergreen forests. The improved modelled seasonality is related

to the more accurately simulated GPP at FluxNet sites after multi-site optimization, the latter being

in turn partly driven by the improvement of the seasonal variations of simulated LAI. The dominant

feature seems to be a shorter growing season length for TempDBF, which is consistent with the

site-level simulations of GPP seasonality for this PFT (Fig. 5A), and an earlier beginning of the

growing season for C3 grasses (not shown). Note that this improvement also explains most of the

increased correlation factors in temperate and boreal evergreen forests, since these PFTs do not

present  a  climate-driven  leaf  phenology  in  the  current  formulation  of  the  ORCHIDEE model.

Consequently, deciduous and herbaceous PFTs are the only significant contributors to the seasonal

cycle at such a coarse resolution, even when these ecosystems are secondary and/or the understory

within an evergreen-dominated forest.  Lastly, the score for TropEBF remains  poor because the

model wrongly simulates the leaf renewal and the hydric stress during the dry season, as discussed

in Sects. 3.1 and 3.4.  

3.6 Limitations of the current approach: summary and discussion

The limitations to our model-data fusion method highlighted throughout the results section

are  of  three  kinds,  somewhat  interlocked:  1)  within  the  limits  of  the  model  structure,  2)  how

adequate the chosen set of optimised parameters was and 3) how close to the optimal values the

optimization algorithm tuned these parameters. 

Taking  these  items  in  reverse  order,  we  first  acknowledge  that  using  a  variational

optimization algorithm with a model with non-linearities might expose to miss the global minimum

of the cost function, and indeed a few obvious convergence failures cases have been found for some

single-site  optimizations  in  TropEBF,  TempENF,  and  boreal  forests.  Some  functions  of  the

ORCHIDEE model could potentially be linearized to generate a more accurate tangent linear model

–and to advantageously avoid to use finite-differences for some phenological parameters (see Sect.

2.1)–, while remaining coherent with the model's philosophy. It might imply a demanding effort of

model recoding, but it has already been done for another LSM (Knorr et al., 2010). Alternatively,

stochastic  optimization  approaches  could  yield  better  convergence,  as  they  can  circumvent  the

linearity  constraint.  While  a  single-site  model-data  fusion  study  with  the  same  LSM  showed
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advantageous results  for a genetic  Monte-Carlo-based technique over its  variational counterpart

(Santaren et al., 2013), no major difference was found by (Ziehn et al., 2012) between Monte-Carlo

and  gradient-based  approaches  when  optimizing  a  simpler  LSM  with  atmospheric  CO2

observations.  In the case of  a  multi-site  optimization efforts,  we suggest that  the cost  function

“smoothing” discussed in Sect.  3.2 could make the convergence efficiency less sensitive to the

choice of the minimization approach, while keeping in mind the much lower computational time

required in the variational case.

Second, the number of optimised parameters remains somewhat modest as compared to the

diversity of processes modelled in the ORCHIDEE model. Our choice was partly driven by a model

sensitivity criterion,  while the actual leverage of an optimised parameter on model outputs also

depends on the uncertainty associated to this very parameter (Dietze et al., 2014). It can result in

selecting some parameters that are already reasonably well known but that have medium-to-high

model  sensitivity  and  thus  with  low  overall  leverage,  while  poorly  known  parameters  with

mild-to-low model  sensitivity could have a comparatively higher value for the optimization.  In

addition, as our focus was on the carbon cycle, only a few water-and-energy-related parameters

were considered. Notably, the correction of LE partly benefited from that of NEE via transpiration,

but the soil evaporation optimization was neglected despite being a significant -and debated- player

of the terrestrial water cycle (Schlesinger and Jasechko, 2014).

The third hindering factor to simulating carbon and water fluxes close to their true value is

the  “observation  error”,  i.e.  the  uncertainty  arising  from  the  simplification  needed  to  make

ecosystem  functioning  fit  within  explicit  equations  plus  the  error  made  associated  to  the

measurements, fluxes and meteorological forcing included. Although this error is rarely quantified

in model-data fusion efforts, model-data fit analyses and uncertainty budgets showed in this study

that the relative importance of this observation error greatly varies from one PFT to another –and is

potentially dominated by the model error component in the case simulations at flux towers sites

(Kuppel et  al.,  2013).  It  is  the highest  in tropical  evergreen broadleaf forests,  where parameter

optimization  will  likely  be  of  limited  help  until  a  more  realistic  phenological  scheme  is

implemented. Regarding the simulations of LE in general, the small amount of related parameters

optimised makes it difficult to assess to which extent the nearly-unchanged flux uncertainty comes

from the parameter scarcity or structural inaccuracies in the model, stressing again the need for a

better consideration of water and energy cycles together with that of carbon in future model-data

fusion efforts.

4 Conclusions
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Generalizing the results of  (Kuppel et al., 2012) across ecosystems, this study has shown that a

significant  degree  of  improvement  is  introduced to  the  simulation  of  carbon and water  fluxes,

through a generic optimization approach with in situ measurements of NEE and LE fluxes, relying

on the traditional PFT classification used in many land surface models. At the global scale, this

optimization  method  allows  first  a  better  simulation  of  the  seasonal  foliar  cover.  Second,  the

multi-site parameter set has a significant leverage upon the simulated seasonality of atmospheric

CCO2, with performances somewhat spatially heterogeneous and depending on the PFT considered,

while a small, yet encouraging improvement of the simulated interannuality of CCO2 is found. The

remaining discrepancies  in  CCO2 indicate  that  combining atmospheric  CO2 concentration  and  a

larger number of flux towers observations,  in a Carbon Cycle multi-Data Assimilation Systems

(CCDASs, e.g., (Kaminski et al., 2013)), would be beneficial. Using more site-years of flux data

will  also allow a systematic in situ evaluation of the multi-site parameters across time periods,

regions and climate regimes by separating training sites from evaluation sites. Such procedure was

not applied in this study due to the small number of sites for some PFTs, but remains essential to

test  a  LSM  used  for  climate  projections.  More  generally,  we  suggest  that  the  assimilation  of

FluxNet data should be considered as a baseline for the development of multi-data assimilation

systems  where  more  complementary  data  streams  are  combined.  In  particular,  daytime  and

nighttime NEE could replace the daily values used here, and adding measurements of leaf area

index, soil respiration fluxes (e.g. chamber measurements), biomass and litter/soil carbon pools,

would  help  better  separating  the  processes  and constraining  environmental  drivers,  as  would  a

simultaneous  parameter  optimization  of  both  over-  and understory  PFT fractions.  The  FluxNet

multi-site approach can also be used to characterize the structural, parametric and total uncertainties

associated with the simulated annual biospheric carbon balance at regional-to-global scales, and to

compare it  with 1)  the discrepancies  of results  between global  ecosystem models  (Sitch et  al.,

2008), and 2) the error carried by the terrestrial carbon fluxes estimated via inverse modeling with

atmospheric transport models (e.g., (Chevallier et al., 2010)). The underlying problem is thus to

evaluate what  would be gained from simultaneously assimilating various data  streams covering

different  spatial  and  temporal  scales  into  a  terrestrial  ecosystem  model,  and  how  the  PFT

classification should be refined to maximize this improvement. In parallel, by using a diagonal prior

covariance matrix for parameter error, within a same PFT and across PFTs, we implicitly assumed

that all parameters could in principle be efficiently corrected as independent random distributions. It

ignores the fact that a covariance structure interlinking the optimised parameterization would be

necessary to translate the interconnectedness of ecophysiological processes within a given PFT. For

instance, the allocation of carbon within the plant reservoirs depends on specific allometric relations

and on photosynthesis rate; these relations would need to be embedded in the prior parameter error

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35



covariance  matrix.  Additionally,  the  influence  of  nearby  individuals  of  other  PFTs  (e.g.,  the

understory) should be accounted for when correcting parameters of a given PFT. Together with a

simultaneous  optimization  of  several  PFTs,  building  standard  spatialized  parameter  covariance

tables  from  databases  of  plant  traits  and  soil  characteristics  (e.g.,  (Kattge  et  al.,  2011))  and

'preliminary' posterior multi-site parameter error covariance matrices (e.g., supplementary material

of (Kuppel et al., 2012)) might soon become necessary to consistently apply model-data fusion to

more sophisticated mechanistic ecosystem models.

 

5 Code availability

The  source  code  of  the  data  assimilation  system  is  available  at

https://pypi.python.org/pypi/ORCHISM. Regarding the ORCHIDEE vegetation model, the source

files  of  the  Tag  version  1.9.5.2  used  for  this  study  can  be  obtained  upon  request  (see

http://labex.ipsl.fr/orchidee/index.php/contact), while the associated documentation can be found at

https://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation. Note that the tangent linear version of the

ORCHIDEE model has been generated using a commercial software (TAF, see sect. 2.2). For this

reason, only the ‘forward’ version of the ORCHIDEE model is available for sharing, to which only

the finite differences method is employed for parameter optimization. Finally, the source code of the

LMDz atmospheric transport model can be found at http://web.lmd.jussieu.fr/trac.
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Table  1. Parameters of ORCHIDEE optimised in this study. The prior values are given for each

PFT, and multi-site posterior values are in bold font. A hyphen means that the parameter is not

optimised, spinup that the spinup value is taken, and site that the posterior value is site-specific. 

Parameter Description Plant functional typea

Trop

EBF

Temp

ENF

Temp

EBF

Temp

DBF

Bor

ENF

Bor

DBF

C3

grass
Photosynthesis
Vcmax Maximum carboxylation rate 

(µmol.m-2.s-1)

65 

70.28

35

31.94

45

47.84

55

55.83

35

32.36

45

32.97

70

51.10
Gs,slope Ball-Berry slope 9

8.756

9

8.841

9

10.99

9

6.000

9

7.961

9

7.714

9

9.970
cTmax Offset controlling the maximum 

photosynthesis temperature (°C)

55

55.31

38

40.41

48

49.66

38

36.09

38

36.42

38

36.70

41.13

40.20
cTopt Offset controlling the optimal 

photosynthesis temperature (°C)

37

35.93

25

17.49

32

28.82

26

28.44

25

26.48

25

28.71

27.25

29.76
cTmin Offset controlling the minimal 

photosynthesis temperature (°C)

2

1.356

-4

-7.536

-3

-6.062

-2

-0.219

-4

-6.167

-4

-2.563

-3.25

-3.403
Phenology

SLA Specific leaf area (foliar surface per dry 

matter content, m2.g-1) 

0.0154

0.0169

0.0093

0.0200

0.02

0.0252

0.026

0.0400

0.0093

0.0090

0.0260

0.0233

0.0260

0.0345
LAIMAX Maximum LAI (m2.m-2) 7

7.000

5

5.000

5

5.000

5

3.949

4.5

4.500

4.5

4.960

4.5

2.349
Klai,happy Minimum fraction of LAIMAX to stop 

carbohydrate use 

0.5

0.500

0.5

0.500

0.5

0.500

0.5

0.321

0.5

0.500

0.5

0.547

0.5

0.408
Kpheno,crit Multiplicative factor for growing season 

start threshold

- - - 1

1.510

- 1

0.758

1

0.729
cT,senes Offset controlling the temperature 

threshold for senescence (°C) 

- - - 12

14.36

- 7

7.899

-

Lagecrit Critical age for leaves (days) 730

717.9

910

1084

730

709.2

180

165.1

910

790.5

180

163.3

120

113.9
LAIinit Initial LAI (m2.m-2) spinup

site

spinup

site

spinup

site

- spinup

site

- spinup

site
Soil water availability

fstressh Parameter reducing the hydric limitation 

of photosynthesis

6

6.507

6

7.146

6

7.135

6

5.039

6

4.881

6

5.505

6

5.131
Dpucste Total depth of the soil water reservoir (m) 2

2.377

2

2.387

2

1.536

2

0.959

2

2.012

2

2.303

2

1.865
Humcste Parameter describing the exponential root 

profile (m-1)

0.8

0.718

1

1.102

0.8

0.743

0.8

1.577

1

1.874

1

0.676

4

2.800
Autotrophic respiration

MRa Slope of the temperature dependence 0.16

0.105

0.16

0.127

0.16

0.156

0.16

0.094

0.16

0.185

0.16

0.178

0.16

0.174
MRb Offset of the temperature dependence of 1 1 1 1 1 1 1



maintenance respiration 0.929 0.772 0.928 0.622 0.710 1.212 1.140
GRfrac Fraction of biomass available for growth 

respiration

0.28

0.269

0.28

0.250

0.28

0.265

0.28

0.206

0.28

0.303

0.28

0.301

0.28

0.317
Heterotrophic respiration

KsoilC Scaling factor for all initial soil carbon 

stocks after spinup

1

site

1

site

1

site

1

site

1

site

1

site

1

site
Q10 Factor of the temperature control function 1.994

2.119

1.994

1.676

1.994

2.067

1.994

2.182

1.994

2.879

1.994

2.663

1.994

2.778
HRH,b Parameter of the soil/litter moisture 

control function

2.4

2.356

2.4

2.387

2.4

2.343

2.4

2.191

2.4

2.503

2.4

2.457

2.4

2.489
HRH,c Offset of the soil/litter moisture control 

function

-0.29

-0.332

-0.29

-0.272

-0.29

-0.329

-0.29

-0.544

-0.29

-0.192

-0.29

-0.252

-0.29

-0.304
Decomposition

hcrit,litter Total litter height (m) 0.08

0.0697

0.08

0.0434

0.08

0.0613

0.08

0.0200

0.08

0.0213

0.08

0.114

0.08

0.0358
Zdecomp Factor of the exponential profile of soil 

temperature and moisture

0.2

0.371

0.2

0.649

0.2

0.175

0.2

0.142

0.2

0.662

0.2

0.474

0.2
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a TropEBF  =  tropical  evergreen  broadleaf  forest;  TempENF  =  temperate  evergreen  needleleaf  forest;
TempEBF  =  temperate  evergreen  broadleaf  forest;  TempDBF  =  temperate  deciduous  broadleaf  forest;
BorENF = boreal evergreen needleleaf forest; BorDBF = boreal deciduous broadleaf forest; C3grass = C3
grassland.



Figure 1.  Model-data  (A) RMSD and  (B) bias for the daily NEE time series at each site (filled circles),

grouped and averaged by PFT (horizontal bars), in three cases: prior model (green), multi-site optimization

(blue) and single-site optimization (orange). (C) PFT-averaged mean seasonal cycle of NEE, for the training

observations (black) and the three aforementioned cases, smoothed with a 15-day-moving-average window.



Figure 2.  Model-data  (A) RMSD and  (B) bias for the daily LE time series at  each site (filled circles),

grouped and averaged by PFT (horizontal bars), in three cases: prior model (green), multi-site optimization

(blue) and single-site optimization (orange). (C) PFT-averaged mean seasonal cycle of LE, for the training

observations (black) and the three aforementioned cases, smoothed with a 15-day-moving-average window.
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Figure  3.  PFT-averaged  model  phase  coefficient  versus  model-to-data  amplitude  ratio,  for  the

detrended  smooth  seasonal  cycles  of  (A) NEE  and  (B) LE  fluxes.  Simulations  using  prior

parameters (green) are compared to multi-site (blue) and single-site (orange) optimizations, with the

measured reference indicated by the intersection of the dashed lines. 

Figure 4. Uncertainty of simulated daily (A) NEE and (B) LE fluxes. For each PFT, the horizontal

lines  give  the  average  of  the  individual  site  values  (filled  circles),  in  three  cases:  prior  model

(green), multi-site optimization (blue) and single-site optimization (orange).
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Figure 5. PFT-averaged mean seasonal cycles of  (A) the photosynthetic carbon flux and  (B) the

respiration  flux,  smoothed with  a  15-day-moving-average  window. The simulations  using  prior

(green), single-site (orange) and multi-site (blue) parameterizations are compared to the evaluative

observation-derived flux estimates (black).
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Figure 6. Detrended mean seasonal cycle of the atmospheric CO2 concentrations at  (A) Alert,  (B)

South  Pole  and  (C) Mauna  Loa  locations  during  the  1989-2009  period:  the

optimization-independent  concentrations  records  (black)  are  compared to  simulations  where  the

biospheric  contribution  is  calculated  using  the  ORCHIDEE  model  with  default  (green)  and

multi-site  (blue)  parameterization,  with  the  model-data  RMSD  given  between  brackets.  (D)

Regional contributions to the mean seasonal cycle simulated at Alert.



Figure  7.  Correlation  factor  between  weekly  time  series  of  modelled  FAPAR and  independent

measurements of NDVI, for the 2000-2010 period. The results are grouped using the dominant PFT

at each pixel, for global simulations with default (green) and multi-site parameterization (blue). The

central horizontal bar indicates the median value, the top and bottom of the boxes correspond to the

first and last quartile, and the 5- and 95-percentile are given by the 'error bars'.
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