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Abstract 

In this study, a method of numerical weather prediction by ensemble for the South American 

region is proposed. This method takes into account combinations of the numerical predictions 

of various models, assigning greater weight to models that exhibit the best performance. Nine 10 

operational numerical models were used to perform this study. The main objective of the 

study is to obtain a weather forecasting product (short-to-medium range) that combines what 

is best in each of the nine models used in the study, thus producing more reliable predictions. 

The proposed method was evaluated during austral summer (December 2012, and January and 

February 2013) and winter (June, July and August 2013). The results show that the proposed 15 

method can significantly improve the results provided by the numerical models, and 

consequently has promising potential for operational applications in any weather forecasting 

center. 

 

1 Introduction 20 

Numerical weather prediction models are important tools for the understanding of 

meteorological phenomena, as well as for making weather forecasts. The predictability 

provided by these numerical models shows a strong dependence on initial conditions provided 

to the model, and has been widely discussed from the 60s (Lorenz,1965 and 1969) to the 

current decade (Ngan and Eperon 2012; Cintineo and David, 2013). Errors that occur during 25 

the specification of initial conditions may cause large uncertainties in numerical prediction 

systems (Thompson 1957; Zhu and Thorpe, 2006). Other sources of uncertainty may be 

associated with the representation of physical processes in the models (Krishnamurti et al., 



 

 

2 

2004; Walqui - van Lier et al., 2012.). In this sense, knowledge of systematic errors 

occasioned by these uncertainties is of paramount importance in the realization of 

improvements in the forecasting system, with a view to minimizing the errors, and helping 

meteorologists in the preparation of weather forecasts. 

The technique of combining forecasts made by numerical models has been well explored by 5 

various researchers (Tebaldi et al., 2004; Weigel et al., 2010; Chandler et al., 2013). Almost 

all of the articles that have been written on this subject agree that the combination of several 

different forecasts provides significant improvements. The questions that do occur are those 

with having to with the method used to combine the forecasts. Recent research  in climate 

modeling suggests that combination schemes with unweighted means provide better results 10 

than schemes with weighting based on the performance of each model (Christensen et al., 

2010; Déqué and Somot, 2010). And, according to Weigel et al. (2010) and Knutti et al. 

(2010), the combination of models taking into account the concept of weighting must be 

treated with great care, principally when applied to climate change.  

Now in the area of weather forecasting, intercomparisons among forecasts from different 15 

types of numerical models have shown that the performance of each can vary in time as well 

as in space (Saul et al. 2001; Silva Dias et al. 2006). Thus, a combination among the results of 

various types of models, considering the performance of each model can produce forecasts of 

greater reliability (Johnson and Swinbank, 2009; Roy Bhowmik and Durai, 2010; Kotal and 

Roy Bhowmik, 2011). The concept of using the combination of a set of numerical results for 20 

the improvement of the prediction models was first discussed by Krishnamurti et al. (1999, 

2000, 2000b), and has been widely used (Yun et al 2003; Chakraborty et al. 2007; Lenartz et 

al. 2010). 

Roy Bhowmik and Durai (2008, 2010), applying a linear regression technique to a set of 

forecasts, made by four numerical models showed that combining the predictions of each 25 

model and their respective correlation coefficients produces significant improvements in 

predictions of precipitation over India. In other recent studies, addressing the monsoons of 

India - Krishnamurti et al. (2009), Mitra et al. (2011) and Kumar et al. (2012) - assert that 

when predictions are generated from a set of numerical models their quality is improved and 

their mean square errors reduced. 30 
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Currently, the Center for Weather Forecasting and Climate Studies, National Institute for 

Space Research (CPTEC/INPE) operationally incorporates different modalities of numerical 

models (general circulation, oceanic-atmospheric, regional and atmospheric chemistry). In 

order to make use in the best possible way of all of the forecasts integrated within 

CPTEC/INPE models. This paper proposes the development of a product for short and 5 

medium range weather prediction, which will henceforth be called the Super Model Ensemble 

of CPTEC (SMEC). The objective of this product is to weight the prediction of each model by 

the inverse of its own systematic error, so that models with greater error will have less weight 

and vice versa, thus producing more reliable predictions. 

 10 

2 Methodology 

2.1 Dataset 

In the present paper, SMEC will be constructed from four configurations of the 

CPTEC/INPE’s general circulation model (spectral with triangular truncation and gaussian 

grid), three configurations of the Eta regional model and one Brazilian-developed version of 15 

the regional Atmospheric Modeling System (BRAMS). All models use as initial conditions 

the analyses produced at the National Centers for Environmental Prediction (NCEP), and are 

integrated at different spatial resolutions. A bilinear interpolation is applied to all models in 

order to standardize them at a resolution of 20 km (the same as that of the SMEC). More 

details on the models and their configurations can be seen in Table 1. The period of 20 

integration and frequency of outputs used in all models were 7 days and 6 hours, respectively. 

The SMEC product will be generated over an area including South America and adjacent 

oceans (90W-20W, 55S-15N). This restriction is due to the use of regional models that 

provide forecasts covering only this domain. We chose to generate the SMEC at a horizontal 

resolution of 20 km, a resolution that enables detection of mesoscale phenomena and that has 25 

the same grid as the precipitation product from MERGE (Rozante et al. 2010), which will be 

used for validation of SMEC. For the vertical resolution five levels in pressure coordinates 

(1000, 925, 850, 500 and 250 hPa) will be used. These levels were selected in order to 

represent the atmosphere at low, medium and high levels, and also because these are the 

levels most commonly analyzed by meteorologists in preparing weather forecasts. Grid 30 

Analysis and Display System (GrADS) was used to calculate the weights (errors of the 
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models), to obtain SMEC and all figures presented in this document. The GrADS code 

package can be obtained from the Operational Implementation group (IO) at CPTEC/INPE 

(io@cptec.inpe.br). 

The variables available in SMEC are air temperature, zonal and meridional wind, geopotential 

height, relative humidity, vertical velocity at all pressure levels, plus air temperature at 2 5 

meters, zonal and meridional wind at 10 meters, pressure reduced to mean sea level and 

precipitation. These are the variables most used in forecasts and are the basis of many other 

meteorological variables. The length of the SMEC forecast will be 7 days with outputs every 

6 hours. The product will be evaluated for the months of an austral summer (December 2012, 

January and February 2013) and an austral winter (June, July and August 2013) and its 10 

operational forecasts will be made available in a public area, thus enabling the use of SMEC 

in the generation of meteorological reports by any weather center. 

Table 1: Principal characteristics of the models utilized. 

Acronym Model description 
Horizontal

Resolution  

Vertical 

levels 

T062ACO Global – coupled atmosphere-ocean ~ 200 km 28 

T126 Global – control member of ensemble ~ 100 km 28 

T126MED Global – mean member of ensemble ~ 100 km 28 

T213 Global ~ 63 km 42 

T299 Global ~ 44 km 64 

Eta40 Regional – control member 40 km 38 

Eta40ZHAO Regional – physics member 40 km 38 

Eta15 Regional 15 km 50 

BRAMS20 Regional 20 km 38 
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2.2 Calculation of the errors of the SMEC  

The bias or mean error (σ) of the numerical models is expressed by the difference between the 

forecasts and the observations/analyses, given by the following equation: 

               
 

 
∑                             

   

   

              

where F, A and N indicate forecasts, analyses and number of days of forecasts, respectively. 

The errors are calculated as a function of model (M), variable (v), longitude(x), latitude (y), 5 

vertical level (z) and time of integration (t). This difference indicates tendencies of the 

forecasts to underestimate or overestimate the values of the meteorological variables. For the 

case of the precipitation variable, the mean error is obtained utilizing the MERGE product as 

a substitute in the analyses (A). 

The bias of the models varies through the year by virtue of the change of seasons. Taking this 10 

fact into account, it was decided to calculate the mean bias considering integrations of 168 

hours (in 6-hour intervals) through a period of three months. The determination of the mean 

bias (    ̅̅ ̅̅ ̅̅ ) that will be used in a given month (m), for each model and time of integration, is 

given by equation 2:  

    ̅̅ ̅̅ ̅̅ ̅  
 

 
∑       

   

   

                

where D is the total number of days in the three months used in the calculation and nD is the 15 

number of days in each month used, expressed in equation 3 as   

                                          

The diagram below (Fig. 1) illustrates the period used in the calculation of the mean bias to be 

used for the SMEC forecasts in the month of January of 2013.  

                                 (4) 

               20 
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For the calculation of the mean square error (    
 ̅̅ ̅̅ ̅̅   the same methodology as described above 

was applied, given by the following equation: 

    
 ̅̅ ̅̅ ̅̅  

 

 
∑       

 

   

   

               

The SMEC, in general terms, is a product obtained from combinations of numerical 

predictions of various models. In this case, the bias of each model is removed, and then an 

average weighted by the reciprocal of the mean square error of each model is calculated. This 5 

procedure minimizes the systematic errors of the models, and in addition assigns greater 

weight to models that have the lowest values of mean square error. The SMEC can be 

expressed by the following equation: 

                
∑ (

                ̅           

  
 ̅̅ ̅̅            

)   
    

∑ (
 

  
 ̅̅ ̅̅            

)   
   

               

3 Results 

In this section, the results in terms of the contribution of each model to the calculation of the 10 

SMEC will be presented, along with statistics of the performance of the product, both for the 

summer and winter trimesters. The contributions will be shown in terms of the root mean 

square error       √ ̅ ), while the performance of the SMEC will be evaluated using the 

observed data and NCEP analyses. 

3.1 Contribution of the models 15 

Examples of the contribution of each model to the calculation of the SMEC will be given for 

some variables, levels and times of integration. The identification of the regions in which each 

model has its greatest contribution was performed as follows: At each grid point over the 

South American domain, a numeric value has been assigned for the model having lowest 

value of RMSE of all. This characterizes a spatial distribution of the regions where each 20 

model has its greatest contribution to the calculation of the SMEC. 

The figures to follow show the spatial distribution of grid points at which each model has the 

lowest RMSE values, and consequently the greatest contribution to the calculation of the 
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SMEC. The numbers inside the captions indicate the percentage of grid points at which the 

model obtained the lowest values of RMSE. In The right column shows the results for the 

summer period; those for winter are on the left. 

Figure 2 shows the spatial distribution of the grid points with the lowest values of RMSE for 

all models. In the case of the 48-hour integrations for mean sea level pressure in winter (Fig. 5 

2a), it appears that the Eta regional models (Eta15, Eta40 and Eta40ZHAO) have smaller 

errors in comparison to the other models, Eta15 being responsible for almost 30% of these 

grid points in the domain. The major contribution from global models is attributed to the 

T126MED model, totaling almost 20% of the points. The results for 168 hours of integration 

(fig.2b), during the winter, indicate that the global models show more areas of errors that are 10 

smaller than the errors in the regional models, with the T126MED being responsible for over 

42 % of the total area. For 48-hour forecasts of 500-hPa geopotential height (Fig. 2c) during 

the winter, the three Eta models predominate, totaling around 78% of the field, with the Eta40 

responsible for more than 37%. However, for 168-hour forecasts in summer (Fig. 2d), the 

global models stood out, accounting for more than half (around 69%) of the domain having 15 

the lower values of RMSE. In this case among the global models, the T126ME covered the 

largest percentage of area (more than 28%). The remaining fraction was almost entirely 

occupied by the Eta40 forecasts (more than 30%). For the case of 48-hour forecasts of the 

850-hPa temperature during winter (Fig. 2e), the regional models predominate in the 

southwestern part of the domain; the globals, mainly the T126MED, in the northeastern part. 20 

At 168 hours in winter (Fig. 2f), the most striking feature was the predominance on the part of 

the global models over the Atlantic and Pacific Oceans, primarily by the T126MED which 

reached almost 37% . 

Figure 3 shows the time evolution of the mean (over the entire domain) of the percentage of 

grid points where the models showed the lowest values of RMSE. In this case, these points 25 

were computed only in terms of global and regional models, and a combined winter-summer 

average. For the annual mean of sea level pressure (Fig. 3a), as well as for 500-hPa 

geopotential height (Fig. 3b) (and other variables not shown) it is found that regional models 

are responsible for the largest number of grid points with smallest values of RMSE in the first 

72 hours of integration; however for forecasts from 96 hours on, the global models prevailed. 30 
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3.2 SMEC 

In this section the means of some of the variables obtained by the SMEC system for summer 

and winter will be presented. In addition, a comparison between the predictions of the SMEC, 

the NCEP analyses (considered as "truth") and the Eta15 forecasts will be shown. The reason 

for introducing a comparison to only one of the models used in the system is simply to reduce 5 

the quantity of figures to be shown, and the choice of Eta15 model is due to the fact that this 

model usually provides smaller errors than do the other models used, according the 

CPTEC/INPE model assessment system (http://avaliacaodemodelos.cptec.inpe.br/). Also in 

this section a statistical evaluation that includes the SMEC and all models used for producing 

it will be carried out. The root mean square error (RMSE) is the primary statistical parameter 10 

used to assess forecast quality. For the surface variables (temperature at 2 meters, wind at 10 

meters, mean sea level pressure and precipitation) observations at surface stations (METAR 

SYNOP and PCDs) will be used for verification, and due to the scarcity of observed data at 

higher levels, the NCEP analysis will be used as the reference.  

The mean for the summer trimester for some of the variables calculated from the NCEP 15 

analyses, and 168-hour forecasts from the SMEC and Eta15 are shown in Figure 4. The figure 

shows that the predictions produced by SMEC present patterns similar to those of the NCEP 

analyses, indicating that the SMEC provides consistent predictions.  Comparison between the 

NCEP analyses, and 168-hour forecasts from SMEC versus Eta15 indicates that in general the 

SMEC forecasts are closer to the patterns seen in the NCEP analyses than are the Eta15 20 

forecasts . In the case of mean sea level pressure (fig. 4 a,b,c), the main differences are over 

the continent, where the Eta15 tends to underestimate the values. For air temperature at 850 

hPa (Fig. 4 d,e,f) improvements of the SMEC over the Eta15 occur mainly on the east and 

west coasts of the continent, where the Eta15 indicates an average of 2K less than the NCEP 

analysis. The SMEC can predict better than the Eta15 the configuration and magnitude of the 25 

mean geopotential field at 500 hPa (Fig. 4 g,h,i), especially at latitudes north of 30° S. The 

average relative humidity at 850 hPa from NCEP analyses (Fig. 4j) shows a pattern typical of 

this season, i.e., high humidity in the region of convergence of the trade winds, the Amazon 

region, west-central region and the coastal strip of southern/southeastern Brazil . The driest 

region of the domain (less than 20 %) was over the Pacific Ocean, specifically at around 25° 30 

S.  
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The 168-hour forecasts from the SMEC (Fig. 4k) present a pattern consistent with that 

observed in the analysis, but the region with lower humidity is forecast to extend over a 

greater area, while on the northern coast of the continent and the region of the Intertropical 

Convergence Zone (ITCZ), SMEC overestimates the values of humidity. Like the SMEC, the 

Eta15 (Fig. 4l) can also identify the patterns of spatial distribution of relative humidity, 5 

however with a tendency to underestimate the humidity over the Atlantic at locations 

equatorward of southeastern Brazil and the central region of the continent. With respect to the 

meridional wind at 850 hPa (Fig. 4 m,n,o), the analysis indicates (Fig. 4m) the predominance 

of the southerly component of the meridional wind over the southern Pacific Ocean, except in 

the far northern portion of the domain. On the continent, the northerly component of the 10 

meridional wind prevails, the strongest lying along the Andes, characterized by the low level 

jet. Over the Atlantic Ocean, more precisely between latitudes 25° and 30°S, a predominance 

of northerly winds during the summer can also be observed. The meridional component of the 

wind is observed to be from the south in the southern portion of the field, over the Atlantic 

Ocean and northeastern Brazil. The 168-hour forecasts, both from the SMEC (fig. 4n) and the 15 

Eta15 (Fig. 4o), captured well the pattern of the meridional wind, but both tended to 

overestimate wind speed, with this feature more pronounced in the forecasts made by the 

Eta15. 

The means for the winter trimester of the NCEP analyses and of the 168-hour forecasts from 

the SMEC and Eta15 are shown in Figure 5. Mean sea level pressure for  winter, according to 20 

the NCEP analyses (Fig. 5a), indicates the predominance of a region of high pressure between 

latitudes 40º S and 15º S , where the Atlantic and Pacific climatological highs are positioned, 

both having an average strength of around 1025 hPa . In the rest of the domain, the 

predominance of regions with low pressure can be seen, with the most intense in the extreme 

south. The average for the same period of 168-hour forecasts obtained from SMEC (Fig. 5b) 25 

shows patterns very similar to those seen in the NCEP analyses, both in location and in 

magnitude, except for the weakening of the low pressure center south of the area. The average 

forecast for 168 hours of Eta15 (Fig. 5c) shows similar patterns in the positioning of systems, 

but underestimates of the pressure values, i.e., shows weakening of highs and intensification 

of lows. 30 
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The mean air temperature at 850 hPa from the NCEP analyses (Fig. 5d) shows a 

predominance of higher temperatures (291-294 K) mainly over the central region of South 

America. Comparison between this result and the 168-hour forecast from SMEC (Fig. 5e) 

indicates very similar patterns throughout the integration domain, except for a narrow strip 

located on the northeast of the domain, where the average temperature was slightly 5 

underestimated. The average of the Eta15 predictions for the latitudes below 20° S (Fig. 5f) is 

also consistent (position and intensity) with the analyses; however, in regions where the 

highest temperature values occurred, the Eta15 forecasts showed a trend toward 

underestimation. 

As was seen for the summer period, the average of the geopotential field at 500 hPa 10 

forecasted by the SMEC (Fig. 5h) is quite similar to the average of the NCEP analyses (Fig. 

5i), both in terms of intensity and in terms of configuration. The Eta15 can capture the values 

of geopotential reasonably well in the southern portion of the domain, yet north of 40° S it 

tends to underestimate them. In the case of relative humidity (Fig. 5j,k,l) it is observed that in 

general, the SMEC (Fig. 5k) captures very well the distribution of moisture, however the 15 

model overestimates it in the northeast, while Eta15 (Fig. 5j) overestimates it in the northern 

part of the continent. With respect to the meridional wind at 850 hPa (Fig. 5m,n,o), both the 

SMEC (Fig. 5) and the Eta15 (Fig. 5o) can provide good average position of the most intense 

cores, however the magnitude of the meridional wind is better predicted by SMEC, especially 

over the Amazon region northeast of Brazil. 20 

Figure 6a shows total rainfall accumulated during the summer period. The rainfall was 

obtained from the MERGE precipitation product (Rozante et al., 2010) available at 

CPTEC/INPE (ftp://ftp1.cptec.inpe.br/modelos/io/produtos/MERGE/).  

 During the summer, rainfall was concentrated over the Amazon region, southern, 

southeastern and west central Brazil, Peru, Bolivia and the equatorial and subtropical Atlantic. 25 

The 168-hour SMEC forecasts (Fig. 6b) generally manage to capture the patterns of the 

precipitation regime, but show tendencies to underestimate the intensity of rainfall as well as 

to extend the area of precipitation, mainly in the northeastern region of Brazil. Like the 

SMEC, the Eta15 (Fig. 6c) had also captured the pattern of spatial distribution of rainfall, 

however with a tendency to overestimate it, especially in the regions near the Andes 30 

mountains, and the west-central and southeastern regions of Brazil. 

ftp://ftp1.cptec.inpe.br/modelos/io/produtos/MERGE/
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Comparison between the RMSE of summer-period precipitation at 168 hours of integration, 

between the SMEC (Fig.6d) and Eta15 (Fig.6e) shows a reduction of errors by the SMEC 

over practically the whole domain. Similar results (not shown) were also observed for other 

times of integration. 

Although the results for the RMSE have shown a considerable reduction in the magnitude of 5 

the errors, the quantitative analysis presented by the Equitable Threat Score (ETS) (Mesinger, 

2008), indicates that the SMEC performed better only for precipitation thresholds up to 5 mm 

(light rain); for the thresholds for moderate to heavy rain (above 10 millimeters), the 

performance of the SMEC was inferior to that of the Eta15. Figure 7 illustrates this behavior 

at 168 hours of integration. The falloff in the SMEC’s performance for high thresholds is due 10 

to the weighting method; since precipitation is a spatially discrete variable, errors in the 

positioning of the precipitation cores make them appear weaker and more spread out. 

The spatial distributions of the RMSE (calculated with respect to the NCEP analyses) for 48-

hour forecasts for the winter period from SMEC and Eta15 are shown in Figure 8. In the case 

of mean sea level pressure (Fig. 8 a,b), errors are lower for SMEC than Eta15 in almost any 15 

field, except in the southern portion of the ocean. The reduction of errors by the SMEC is 

quite evident, primarily on the mainland (the Andes, Venezuela, southern Argentina and 

northeastern Brazil). The geopotential height at 500 hPa (Fig. 8 c,d ) also indicates smaller 

RMSE values for the SMEC over most of the domain except over the southern Atlantic 

Ocean. The analyses for the variables air temperature, meridional wind and relative humidity 20 

(Fig. 8  e,f,g,h,i,j), all at 850 hPa , show much lower magnitudes of errors in fields related to 

SMEC; only in a few small regions does Eta15 present smaller errors. The analysis for the 

zonal wind at 250 hPa (Fig. 8 k,l) indicates that, in by far the largest portion  of the area north 

of latitude 30° S, errors are smaller in the SMEC than in the Eta15; however, in latitudes 

south of 30° S errors of the SMEC forecasts are larger, especially in the region near the 25 

subtropical jet . Analyses carried out for summer and for other lengths of integration (not 

shown) also showed better quality in the SMEC forecasts as compared with the Eta15. 

Figure 9 shows the temporal evolution of the spatial average RMSE for the winter and 

summer trimesters, where the NCEP analyses were used as “truth” Through the analysis of 

this figure we can affirm that the magnitudes of errors for the winter quarter are generally 30 

higher than those in summer. This fact is due to the larger number of systems that cross the 
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continent during the winter. In general, the errors in SMEC were relatively smaller than those 

in all models used for its calculation, and at all times of integration. 

The calculation of the RMSE for near-surface variables was performed using observational 

data from weather stations from METAR and SYNOP and automatic data collection 

platforms (DCP's). Figure 10 shows the time evolution of the RMSE for the winter and 5 

summer trimesters, including the mean of all existing observations from METAR, SYNOP 

and PCD’s in the domain. Details of this evaluation metric can be found in Moreira et al. 

(2013). In general, just as was observed in the errors obtained by use of the NCEP analyses, 

the magnitudes of the RMSE for the winter trimester are higher than for summer. In the case 

of mean sea level pressure (Fig. 10 a,b) it is observed that throughout the integration, the 10 

SMEC produced errors smaller than those of all the other models considered. The results for 

the temperatures at 2 m (Fig. 10 c,d) indicate that around the time of minimum temperature 

SMEC behaves better than all other models, however in winter the maximum temperatures 

obtained by SMEC had higher errors than the regional models. It can be seen that all global 

models showed very significant errors for forecasts of maximum temperature. Although the 15 

weight of these models was lower in calculating the SMEC, the contribution of all global 

models caused the SMEC to forecast a maximum temperature that was not very accurate 

during the winter. For the zonal wind at 10 meters (Fig. 10 e,f) the SMEC proved far more 

accurate than the other models, except BRAMS20, which showed errors of the same order of 

magnitude as SMEC. In the case of the meridional wind at 10 m (Fig. 10 g,h) the SMEC and 20 

the BRAMS20 also stood out, although in the summer (Fig. 10h) results for the BRAMS20 

beyond 24 hours of integration began to diverge considerably, while the SMEC continued 

with errors smaller than those of  the other models. 

 

4 Conclusions 25 

In this paper a method was proposed (the SMEC) for improving the quality of numerical 

weather forecasts, using an expanded set of forecasts from various numerical models. This 

method was applied to nine models run operationally at CPTEC/INPE with domains over 

South America. Results were analyzed for the summer and winter trimesters, using observed 
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data and NCEP analyses, and compared with the model with the best performance of any in 

the group (Eta15). 

The analysis with respect to the contributions of each of the SMEC’s component models 

showed that regional models make their greatest contributions in the first 72 hours of 

integration; beyond this time the forecasts by global models are more accurate. This fact 5 

makes it clear that a combination of the predictions of all the models in question can produce 

a product that will combine what is best in each model. 

The subjective assessment of the Eta15 and SMEC predictions, considering the NCEP 

analyses as “truth” showed that the forecasts generated from the SMEC behaved more like the 

NCEP analyses then did the Eta15 forecasts, in all situations evaluated. The results with 10 

respect to RMSE, calculated relative to the NCEP analyses and the observed data showed that 

forecasts prepared by SMEC system produced errors of smaller magnitude than those of any 

of the models used, for practically all variables, all levels and for all durations of integration 

evaluated. 

For precipitation, it can be seen that the SMEC succeeded in capturing the patterns of 15 

precipitation, but it shows a tendency to underestimate intense rainfall and increase the area of 

occurrence of light rainfall. This behavior is associated with the weighting method applied in 

the calculation of the SMEC. In this regard it is intended, in future work, to apply special 

methods for obtaining the precipitation field, such as using the ETS itself in the determination 

of weights. 20 

Based on the results presented we can conclude that the method proposed in this paper can 

considerably improve the results provided by numerical models and can be extremely 

important for studies of atmospheric phenomena, as well as assisting with the preparation of 

forecasts. In this sense, the SMEC product shows promising potential for operational 

applications in any weather forecasting center.  25 
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Figure 1. Diagram showing which of the months of forecasts (highlighted in red) will be used 10 

for the calculation of the mean bias for the month of January 2013 (highlighted in green). 
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Figure 2. Spatial distribution of grid points from models with smallest values for RMSE of 

mean sea-level pressure (a,b), 500-hPa height (c,d) and 850-hPa air temperature (e,f), for 

winter (left column) and summer (right column). 
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Figure 3. Evolution with time of the mean (over the whole domain) of the percentage of grid 

points in which the models had the smallest values of RMSE for winter and summer for (a) 

mean sea level pressure and (b) 500-hPa geopotential. 
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Figura 4. Mean for the summer trimester of the NCEP analyses (first column), and 168-hour 

forecasts from the SMEC (second column) and Eta15 (third column) for  mean sea level 

pressure (a,b,c), 850-hPa temperature (d,e,f), 500-hPa geopotential (g,h,i), relative humidity 

(j,k,l) and 850-hPa meridional wind (m,n,o).   5 
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Figura 5. Means for the winter trimester of NCEP analyses (first column); and  168-hour 

forecasts from SMEC (second column) and Eta15 (third column) for the variables mean sea 

level pressure (a,b,c), 850hPa temperature (d,e,f), 500-hPa geopotential height (g,h,i),  and 

850-hPa relative humidity (j,k,l) and meridional wind (m,n,o). 5 
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Figure 6. Precipitation accumulated during the summer period for MERGE (a), forecasts of 

168 hours from SMEC (b) and Eta15 (c), and their respective RMSE (d,e). 
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Figure 7. Equitable threat scores (ETS) to 168 hours forecast. 
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Figure 8. Spatial distribution of the RMSE at 48 hours of integration for the winter period for 

SMEC (left column) and Eta15 (right column), for mean sea level pressure (a,b), 500-hPa 

geopotential height (c,d), 850-hPa air temperature (e,f), 850-hPa meridional wind (g,h), 850-5 

hPa relative humidity (i,j) and 250-hPa zonal wind (k,l). 
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Figura 9. Time evolution of the spatial mean of the RMSE (calculated from the NCEP 

analyses) of 500-hPa geopotential height (a,b), 850-hPa air temperature (c,d), 850- hPa 

meridional wind (e,f), 925-hPa specífic humidity (g,h) and 250-hPa zonal wind (i,j)  for the 

winter (left column) and summer (right column) trimesters.  5 
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Figure 10. Time evolution of the spatial mean of the RMSE (calculated with respect to 

observations) of mean sea level pressure (a,b), temperature at 2 meters (c,d),  zonal wind at 10 

meters (e,f), meridional wind at 10 meters (g,h) for the winter (left column) and summer 

(right column) trimesters. 5 


