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Abstract. In this study, the Weather Research and Forecasting Model (WRF) is coupled with the

Advanced Canopy-Atmosphere-Soil Algorithm (ACASA), a high complexity land surface model.

Although WRF is a state-of-the-art regional atmospheric model with high spatial and temporal res-

olutions, the land surface schemes available in WRF, such as the popular NOAH model, are simple

and lack the capability of representing the canopy structure. In contrast, ACASA is a complex mul-5

tilayer land surface model with interactive canopy physiology and high-order turbulence closer that

allows an accurate representation of heat, momentum, water and carbon dioxide fluxes between the

land surface and the atmosphere. It allows microenvironmental variables such as surface air temper-

ature, wind speed, humidity, and carbon dioxide concentration to vary vertically within and above

the canopy.10

Surface meteorological conditions, including air temperature, dew point temperature, and relative

humidity, simulated by WRF-ACASA and WRF-NOAH are compared and evaluated with observa-

tions from over 700 meteorological stations in California. Results show that the increase in com-

plexity in the WRF-ACASA model not only maintains model accuracy, it also properly accounts for

the dominant biological and physical processes describing ecosystem-atmosphere interactions that15

are scientifically valuable. The different complexities of physical and physiological processes in the

WRF-ACASA and WRF-NOAH models also highlight the impact of different land surface models

on atmospheric and surface conditions.
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1 Introduction

Though the surface layer represents a very small fraction of the planet—only the lowest 10% of20

the planetary boundary layer—it has been widely regarded as a crucial component of the climate

system (Stull, 1988; Mintz, 1981; Rowntree, 1991; de Noblet-Ducoudré et al., 2012). The interaction

between the land surface (biosphere) and the atmosphere is therefore one of the most active and

important aspects of the natural system. Vegetation at the land surface introduces complex structures,

properties, and interactions to the surface layer. Vegetation heavily modifies surface exchanges of25

energy, gas, moisture and momentum, developing the microenvironment in ways that distinguish

vegetated surfaces from landscapes without vegetation. Such influences are known to occur on

different spatial and temporal scales (Chen and Avissar, 1994; Pielke et al., 2002; Zhao et al., 2001;

de Noblet-Ducoudré et al., 2012; Peel et al., 2010). In particular, often near-geostrophically-balanced

wind patterns are disrupted in the lower atmosphere when wind encounters vegetated surfaces, i.e.,30

the winds slow down and change direction as a result of turbulent flows that develop within and near

the vegetated canopies (Wieringa, 1986; Pyles et al., 2004; Queck et al., 2012; Belcher et al., 2012).

Depending in part on the canopy height and structure, wind and turbulent flows also vary consid-

erably across different ecosystems—even when each is presented with the same meteorological and

astronomical conditions aloft. Gradients in heating, air pressure, and other forcings develop across35

heterogeneous landscapes, helping to sustain atmospheric motion. Since the surface layer is the only

physical boundary in an atmospheric model, there is a general consensus that accurate simulations of

atmospheric processes require detailed representations of the surface layer and its terrestrial system.

Models that account for the effects of the surface layer on climatic and atmospheric conditions are

referred to as Land Surface Models (LSMs).40

Current land surface models, i.e., the widely used set of four schemes present in the Weather Re-

search and Forecasting (WRF) model (5-layer thermal diffusion, Pleim-Xiu, Rapid Update Cycle,

and the popular NOAH), often overly simplify the surface layer by using a single layer “big leaf”

parameterization and other assumptions, usually based around some form of bulk Monin-Obukhov-

type similarity theory (Chen and Dudhia, 2001a,b; Pleim and Xiu, 1995; Smirnova et al., 1997, 2000;45

Xiu and Pleim, 2001). None of these LSMs in WRF as well as LSMs in most regional climate mod-

els simulate carbon dioxide flux, even though it is largely recognized as a major contributor to the

current climate change phenomenon and a controller of plant physiology. Plant transpiration in these

models is often based on the Jarvis parameterization, in which the stomatal control of transpiration

is a multiplicative function of meteorological variables such as temperature, humidity, and radiation50

(Jarvis, 1976). However, a large number of studies show that there is a strong linkage between the

physiological process of photosynthetic uptake and the respiratory release of CO2 to plant transpi-

ration through stomata (Zhan and Kustas, 2001; Houborg and Soegaard, 2004; Warren et al., 2011).

As such, physiological processes related to CO2 exchange rates should be included in surface-layer

representation of water and energy exchanges. While a majority of earth system models now use55
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land surface models with interactive carbon cycles, the representation of the land surface is often

simplified in these models (Anav et al., 2013). Oversimplification of surface processes and their

impacts on the atmosphere in these land surface models will likely cause the models to misrepresent

and poorly predict surface–atmosphere interactions. Furthermore, such models often require intense

fine-tuning and optimization algorithms for their results to match observations (Duan et al., 1992).60

Recent computer and model developments have greatly improved atmospheric modeling abilities,

as progressively more complex planetary boundary layer and surface schemes with higher spatial

and temporal resolutions are being implemented. However, the challenges involved in advancing the

robustness of land surface models continue to limit the realistic simulation of planetary boundary

layer forcings from vegetation, topography, and soil.65

Some have argued that the increase in model complexity does not translate into higher accuracy

due to the increase in uncertainty introduced by the large number of input parameters needed by the

more process-based models (Raupach and Finnigan, 1988; Jetten et al., 1999; de Wit, 1999; Perrin

et al., 2001). Even when model complexity does not yield increased accuracy of results, properly

accounting for the dominant biological and physical processes describing ecosystem-atmosphere70

interactions still enhances the systematic understanding, especially if the model is to be used for

simulated climate change. It is best to obtain results that are both accurate and defensible to the

systemic understanding.

This study introduces the novel coupling of the mesoscale WRF model with the complex multi-

layer Advanced Canopy-Atmosphere-Soil Algorithm (ACASA) model, to improve the surface and75

atmospheric representation in a regional context. Beyond the complexity of the land surface scheme

used, WRF-ACASA can simulate carbon dioxide fluxes and water fluxes using a high complexity

turbulence scheme. However, an evaluation of the funda mental representation of the surface me-

teorology in WRF-ACASA (such as temperature, dew point temperature and relative humidity) is

a necessary first step, and the evaluations of the water and carbon dioxide fluxes in WRF-ACASA80

will be presented in future work. For this reason, the objective of this study is to evaluate the newly

coupled WRF-ACASA model’s ability to simulate surface meteorology from the diurnal to seasonal

cycle over a region with complex terrains and heterogeneous ecosystems, namely, California.

2 Models, Methodology and Data

2.1 The Weather Research and Forecasting (WRF) Model85

The mesoscale model used in this study is the Advanced Research WRF (ARW) model Version 3.1.

WRF is a state-of-the-art, mesoscale numerical weather prediction and atmospheric research model

developed by a collaborative effort of the National Center for Atmospheric Research (NCAR), the

National Oceanic and Atmospheric Administration (NOAA), the Earth System Research Labora-

tory (ESRL), and other agencies. The WRF model contains a nearly complete set of compressible90
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and non-hydrostatic equations for atmospheric physics (Chen and Dudhia, 2000) to simulate three-

dimensional atmospheric variables, and its vertical grid spacing varies in height with smaller spacing

between the lower atmospheric layers than the upper atmospheric layers. It is commonly used to

study air quality, precipitation, severe windstorm events, weather forecasts, and other atmospheric

conditions (Borge et al., 2008; Thompson et al., 2004; Powers, 2007; Miglietta and Rotunno, 2005;95

Trenberth and Shea, 2006). The WRF model has flexible spatial and temporal resolutions as well as

domain nesting, and is usually run at resolutions between 1km to 50 km. Compared to the typical

General Circulation Model (GCM) horizontal resolutions, between 1 and 5 degrees (equivalent to

100 and 500 km at the equator), the WRF model is better suited for studying weather and climate at

the regional scale.100

Four different parameterizations of land-surface processes are available in the WRF model. The

more widely used and most sophisticated NOAH employs simplistic physics compared to ACASA,

being more akin to the set of ecophysiological schemes that include the Simple Biosphere model

(SiB, Sellers et al., 1996) and the Biosphere-Atmosphere Transfer Scheme (BATS, Dickinson et al.,

1993). There is only one vegetated surface layer in the NOAH scheme, along with four soil lay-105

ers to calculate soil temperature and moisture. The “big leaf” approach assumes the entire canopy

has similar physical and physiological properties to a single big leaf; in addition, energy and mass

transfers for the surface layer are calculated using simple surface physics (Noilhan and Planton,

1989; Holtslag and Ek, 1996; Chen and Dudhia, 2000). For example, the surface skin temperature is

linearly extrapolated from a single surface energy balance equation, which represents the combined110

surface layer of ground and vegetation (Mahrt and Ek, 1984). Surface evaporation is computed using

modified diurnally dependent Penman-Monteith equation from Mahrt and Ek (1984) and the Jarvis

parameterization (Jarvis, 1976). In all single-layer models such as NOAH, there is no interaction

or mixing within the canopy regardless of the specified vegetation type. The current WRF LSMs

are relatively simple, when compared to the higher-order closure model ACASA, and none of them115

calculate carbon flux. In contrast, the fully coupled WRF-ACASA model is capable of calculating

carbon dioxide fluxes as well as the response of ecosystems to increases in carbon dioxide concen-

trations.

2.2 The Advance Canopy-Atmosphere-Soil Algorithm (ACASA)

Compared to the simple NOAH, the ACASA model version 2.0 is a complex multilayer analyti-120

cal land surface model, which simulates the microenvironmental profiles and turbulent exchange of

energy, mass, CO2 and momentum within and above ecosystems that constitute land surfaces. It rep-

resents the interaction between vegetation, soil and the atmosphere based on physical and biological

processes described from the scale of leaves (microscale), with final output applicable to horizontal

scales on the order of 100 times the ecosystem vegetation height (i.e., hundreds of meters to around125

1 km). The surface layer is represented as a column model with multiple vertical layers extending
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to the lowest planetary boundary. The model has 10 vertical atmospheric layers above-canopy, 10

intra-canopy layers, and 4 soil layers. The complex physically-based model includes intricate sur-

face processes such as canopy structure, turbulent transport and mixing within and above the canopy

and sublayers, and interactions between canopy elements and the atmosphere. Light and precipita-130

tion from the atmospheric layers above are intercepted, infiltrated, and reflected within the canopy

layers. These along with other meteorological and environmental forcings are drivers of plant physi-

ological responses. All model processes, including the ones described below, are linked numerically

in a manner where physics and physiology are dynamically coupled.

For each canopy layer, leaves are oriented in 9 sun-lit angle leaf classes (random spherical ori-135

entation) and 1 shaded leaf class in order to more accurately represent radiation transfer and leaf

temperatures in a simulated variable array. This array aggregates the exchanges of sensible heat, wa-

ter vapor, momentum, and carbon dioxide. The values of fluxes at each layer depend on those from

all other layers, so the long-wave radiative and turbulence transfer equations are iterated until numer-

ical equilibrium is reached. Shortwave radiation fluxes, along with associated arrays (probabilities140

of transmission, beam extinction coefficients, etc.) are not changed, while the sets of turbulence and

physiological equations are iterated to numerical convergence.

Plant physiological processes, such as evapotranspiration, photosynthesis and respiration, are cal-

culated for each of the leaf classes and layers, based on the simulated radiation field and the mi-

crometeorological variables calculated in the previous iteration step. The default maximum rate of145

RuBisCO carboxylase activity, which controls plant physiological processes, is provided for each

of the standardized vegetation types, although specific values of these parameters can be entered.

Temperature, mean wind speed, carbon dioxide concentration, and specific humidity are calculated

explicitly for each layer, using the higher-order closure equations (Meyers and Paw U, 1986, 1987;

Su et al., 1996).150

In addition to accounting for the carbon dioxide flux, a key advanced component of the ACASA

model is its higher-order turbulence closure scheme. The parameterizations of the fourth-order terms

used to solve the prognostic third-order equations are described by assuming a quasi-Gaussian prob-

ability distribution as a function of second-moment terms (Meyers and Paw U, 1987). Included in the

turbulence set is a representation of varying CO2 concentration with height as a part of the model’s155

physiological responses. Compared to lower-order closure models, the higher-order closure scheme

increases model accuracy by improving representations of the turbulent transport of energy, momen-

tum, and water by both small and large eddies. In small-eddy theory or eddy viscosity, energy fluxes

move down a local gradient; however, large eddies in the real atmosphere can transport flux against

the local gradient.160

Such counter-gradient flow is a physical property of large eddies associated with long distance

transport. For example, mid-afternoon intermittent ejection-sweep eddies cycling deep into a warm

forest canopy with snow on the ground, from regions with air temperature values between that of the
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warm canopy and the cold snow surface, would result in overturning of eddies to transport relative

warm air from above and within the canopy to the snow surface below. The local gradient from165

the canopy to the above-canopy air would incorrectly indicate sensible heat going upwards—instead

of the actual heat flow down through the canopy—due to the long turbulence scales of transport.

These potential counter-gradient transports are responsible for much of land surface evaporation,

heat, carbon dioxide and momentum fluxes (Denmead and Bradley, 1985; Gao et al., 1989). The

ACASA model uses higher-order closure transport between multiple layers of the canopy to simulate170

non-local transport, allowing the simulation of counter-gradient and non-gradient exchange. By

comparison, the simple lower-order turbulence closure model NOAH has only one surface layer. It

is limited to only down-gradient transport and cannot mix within the canopy.

In the ACASA model, both rain and snow forms of precipitation are intercepted by the canopy

elements in each layer. Some of the precipitation is retained on the leaf surfaces to modify the175

microenvironment of the layers for the next time step, depending on the precipitation amount, canopy

storage capacity, and vaporization or sublimation rate. The remaining precipitation is distributed

to the ground surface, influencing soil moisture and/or surface runoff as calculated by the layered

soil model. The soil model physics in ACASA are very similar to the diffusion physics used in

NOAH, but ACASA includes enhanced layering of the snowpack for more detailed thermal profiles180

throughout deep snow. This multilayer snow model allows interactions between layers, and more

effectively calculates energy distribution and snow hydrological processes (e.g., snow melt) when

surface snow experiences higher or lower temperatures than the underlying snow layers. This is

especially relevant over regions with high snow depth where snow is a significant source of water,

such as the Sierra Nevada Mountains. The multilayer snow hydrology scheme has been well tested185

during the SNOWMIP project (Etchevers et al., 2004; Rutter et al., 2009), where ACASA performed

at least as well as many snow models by accurately estimating the snow accumulation rate as well

as the timing of snow melt in a wide range of biomes.

The stand-alone version of the ACASA model has been successfully applied to study sites across

different countries, climate systems, and vegetation types. These include a 500-year old growth190

coniferous forest at the Wind River Canopy Crane Research Facility in Washington State (Pyles

et al., 2000, 2004), a spruce forest in in the Fichtelgebirge Mountains in Germany (Staudt et al.,

2011), a maquis ecosystem in Sardinia near Alghero (Marras et al., 2008), and a grape vineyard in

Tuscany near Montelcino, Italy (Marras et al., 2011).

2.3 The WRF-ACASA Coupling195

In an effort to improve the parameterization of land surface processes and their feedbacks with the

atmosphere, ACASA is coupled to the mesoscale model WRF as a new land surface scheme. The

schematic diagram of Figure 1 represents the coupling between the two models. The WRF model

provides meteorological variables as input forcing to the ACASA land surface model at the low-
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est WRF sigma-layer. These variables include solar shortwave and terrestrial (atmospheric thermal200

long-wave) radiation, precipitation, humidity, wind speed, carbon dioxide concentration, and baro-

metric pressure. Radiation is partitioned into thermal IR, visible (PAR) and NIR by the ACASA

model, which treats these radiation streams separately according to the preferential scattering of the

different wavelengths as the radiation passes through the canopy. Part of the radiation is reflected

back to the PBL according to the layered canopy radiative transfer model, with the remaining radia-205

tion driving the canopy energy balance components and photosynthesis.

While both NOAH and ACASA use the same set of LAI values from the WRF model; unlike

the “big leaf” model NOAH, ACASA creates a normalized vertical Leaf Area Index (LAI) or Leaf

Area Density (LAD) for the multiple canopy layers according to vegetation type. Canopy height in

ACASA is also prescribed based on vegetation type. This is crucial because the canopy height and210

distribution of LAD directly influence the interactions of wind, light, temperature, radiation, and

carbon between the atmosphere and the surface layer.

2.4 Model Setup

The WRF model requires input data for prognostic variables including wind, temperature, moisture,

radiation, and soil temperature, both for an initialized field of variables through the domain, and at215

the boundaries of the domain. In this study, these input data are provided by the Northern Amer-

ica Regional Reanalysis (NARR) dataset to drive both the WRF-NOAH and WRF-ACASA models.

Unlike many other reanalysis data sets with coarse spatial resolution such as ERA40 (European Cen-

ter for Medium-Range Weather Forecasts 40 Year Re-analysis) and GFS (Global Forecast System),

NARR is a regional data set specifically developed for the Northern American region. The temporal220

and spatial resolutions of this data set are 3 hours and 32 km, respectively (Mesinger et al., 2006).

Simulations of both the default WRF-NOAH and the WRF-ACASA models were performed for

two year-long simulations (2005 and 2006) with horizontal grid spacing of 8 km x 8 km. These

two years were chosen because they provide the most extensive set of surface observation data. The

model domain covers all of California with parts of neighboring states and the Pacific Ocean to the225

west, as shown in Figure 2. The complex terrain and vast ecological and climatic systems in the

region make this domain ideal for testing the performance of the WRF-NOAH and WRF-ACASA

models. The spatial resolution is chosen in order to resolve the major topographical and ecological

features of the domain. The geological and ecological regions extend eastward from the coastal

range shrublands to the Central Valley grasslands and croplands, then to the foothill woodlands230

before finishing at the coniferous forests along the Sierra Nevada range. Areas further inland to the

east and south include the Great Basin and Range Chaos, an arid and complex mosaic of forests and

chaparral tessellated amid the myriad fossae that erupt between dunes and playas. The contrasting

moist Northern and semiarid Southern California landscapes are also represented in tandem.

Aside from the differences in the land surface model, both WRF-NOAH and WRF-ACASA em-235
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ploy the same set of atmospheric physics schemes stemming from the WRF model. These include

the Purdue Lin et al. scheme for microphysics (Chen and Sun, 2002), the Rapid Radiative Transfer

Model for long wave radiation (Mlawer et al., 1997), the Dudhia scheme for shortwave radiation

(Dudhia, 1989), the Monin-Obukhov Similarity scheme for surface layer physics of non-vegetated

surfaces and the ocean, and the MRF scheme for the planetary boundary layer (Hong and Pan, 1996).240

In this investigation, WRF was configured to run its atmospheric processes at a 60-second time step,

while the radiation scheme and the land surface schemes are called every 30 minutes. Because

ACASA assumes quasi-steady-state turbulent processes, its physics are not considered advisable

for shorter time intervals than 30 minutes. Both NOAH and ACASA calculate surface processes

and update the radiation balance, as well as heat flux, water vapor flux, carbon flux, surface tem-245

perature, snow water equivalent, and other surface variables in WRF. Analytical nudging of four

dimensional data assimilation (FDDA) is applied to the atmosphere above the planetary boundary

layer for all model simulations in order to maintain the large-scale consistency and reduce drifting

of model simulation from the driving field over time. Such nudging (FDDA) is commonly practiced

in limited-area modeling, and current methods active in WRF are widely accepted due to rigorous250

testing (Stauffer and Seaman, 1990; Stauffer et al., 1991). In addition, WRF provides leaf area index

(Figure 2a) and land cover types (Figure 2b) to both land surface models. Since NOAH is a single

layer model, canopy height is only used in ACASA and it is prescribed according to land cover type.

2.5 Data

The main independent observational datasets used to evaluate the model simulations were obtained255

from the Meteorological Section of the California Air Resource Board (ARB). The NARR data were

not used for the evaluation as the dataset was used for FDDA during both model simulations. The

ARB meteorology dataset is compiled from over 2000 surface observation stations in California

from multiple agencies and programs: Remote Automated Weather Stations (RAWS) from the Na-

tional Interagency Fire Center, the California Irrigation Management Information System (CIMIS),260

National Oceanic and Atmospheric Administration (NOAA), Aerometric Information Retrieval Sys-

tem (AIRS), and the Federal Aviation Administration. Potential measurement errors and uncertain-

ties are expected in the ARB data because of the differences in station setups and measurement

standards from the different agencies. For example, ambient surface air temperature is measured at

various heights from 1 to 10 meters above the ground, depending on the measuring agency. Some265

stations are located in urban environments, while the model simulations are structured to study natu-

ral vegetated environments. Therefore, some discrepancies between the observation and simulation

are likely to occur in densely populated areas. However, with hourly data from over 2000 observa-

tion stations within the study domain, the ARB dataset remains valuable. Out of the 2000 surface

stations in the overall current ARB database, there were about 730 stations operational during the270

study period of 2005 and 2006 (Figure 2c).
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The meteorological and surface conditions from the WRF-NOAH and WRF-ACASA model sim-

ulations are evaluated using the ARB data both for the regional scale level performance, as well as

for specific basins and stations for more in-depth analysis. This represents the most rigorous test

of ACASA to date, in terms of the sheer number of ACASA point-simulations and the number of275

ACASA points linked in both space and time. This investigation therefore represents a significant

elaboration upon earlier work (Pyles et al., 2003). Meteorological variables such as surface air tem-

perature, dew point temperature, and relative humidity are evaluated against observational data for

the two model simulations. At the time of the study, there are 13 air basins over California des-

ignated by the California Air Resources Board to represent regions of similar meteorological and280

geographical conditions. In this study, 4 basins are selected for more detailed analysis due to their

distinct meteorological, geographic, as well as ecological attributes: the Northeast Plateau basin

(NEP) is mostly grassland that covers 32% of the landscape; the Mojave Desert basin (MJ) located

at the southeastern California is mostly shrubland with about 14% of vegetation cover; the San

Joaquin Valley basin (SJV) is a major agricultural region, covered by irrigated cropland and pasture285

with about 23% of the land covered by vegetation; and the Sierra Nevada Mountains County basin

(MC) with 60% of the land covered by high-altitude vegetation (mainly evergreen needle leaf forest).

These four basins encompass a total of 240 stations. Measurements from these basins are compared

to the WRF-NOAH and WRF-ACASA simulation outputs for the nearest grid points. From each

basin, one station was identified for further detail analysis (see Table 1 and Figure 2c).290

Observational data and model simulations output are available as hourly, and this study uses

hourly, daily and monthly analyses for model evaluations. Due to the nature of continuous in-

strument network operations, however, data gaps are inevitable in surface observations. To avoid

missing data biases, only the days with complete 24-hour data sets are used for statistical analyses.

For example, a significant amount of missing data from daytime observation for the Mojave Desert295

station during June 2006 could skew the monthly mean temperature toward the cooler nighttime

temperature if no data filter is applied and it could result in a cold bias. By using only days with

complete 24 hours of measurement for statistical analyses, the temperature bias toward any certain

period of the day is avoided.

Some of the challenges in making a comparison between WRF-ACASA simulations and the ob-300

servations are that (1) the observation heights were frequently different than the simulated grid point

height, and (2) the station landscape type was often different than that of the simulation grid point.

Some stations are within patches of specific landscape types that may differ significantly from the

overall grid point landscape. Because the WRF-ACASA has multiple canopy layers, the 2-meter

height (surface) simulations may lie within the canopy or understory for taller plant ecosystems305

(such as forests), although it never does for WRF-NOAH as the single layer big-leaf model does not

have understory; yet the measurements may be made at different heights and likely not within the

canopy. It is, however, not feasible to use the WRF-ACASA simulated above-canopy temperature to
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emulate 2-meter observed temperatures because the tall canopy turbulent transfer makes such physi-

cal analogies to shorter canopies inaccurate. Despite these shortcomings, the ARB data were chosen310

because of the large number of stations throughout the simulation domain. The results from year

2005 and year 2006 are similar, so only year 2006 is presented here.

3 Results and Discussion

3.1 Air Temperature

The spatial analysis of monthly mean surface temperatures in California from both model simula-315

tions are compared against the surface observations in Figure 3. The top panel shows the ARB data

(measured at approximately 2 to 10 m above the ground); the white areas represent regions with

missing observations. The WRF-NOAH and WRF-ACASA outputs are represented in the middle

and lower panels, respectively. The aggregation of the high number of surface observations provides

a regional scale analysis of air temperature over California. The region’s geographical complexity is320

highlighted by the spatial and temporal variations in the surface temperature. The warm summer and

cool winter are typical of a Mediterranean-type climate. In addition to the seasonal variation, both

WRF-ACASA and WRF-NOAH models are able to capture the distinct characteristics of the warm

Central Valley (which includes the Sacramento Valley and San Joaquin Valley air basins from Fig-

ure 2b) and semiarid region of Southern California. The cold temperatures over the mountain regions325

are also visible from the surface temperature field. The model simulations from WRF-ACASA and

WRF-NOAH generally agree well with surface observations throughout the year. However, there

are seasonal differences between the WRF-ACASA and the WRF-NOAH simulations.

During the month of February, the WRF-ACASA model simulates a slightly warmer region sur-

rounding the Central Valley than the WRF-NOAH model. The temperature contrast of this region330

is mostly due to differences in land cover type, as well as LAI (Figure 2). While both NOAH and

ACASA use the same LAI and land cover data as WRF, ACASA distributes the LAI into multiple

canopy layers of different vertical profiles according to canopy heights and vegetation types. These

two variables highly influence plant physiological processes in the WRF-ACASA model such as

photosynthesis, respiration, and evapotranspiration. Lower LAI in the area immediately surround-335

ing the Central Valley has less leaf surface area for transpiration, therefore, it has higher partitioning

of available energy to sensible heat.

On the other hand, the surface processes in WRF-NOAH rely heavily on the prescribed minimum

canopy resistance for each vegetation type. As a result, the contrast in temperature between regions

of different vegetation covers and LAI is more pronounced in the WRF-ACASA model than the340

WRF-NOAH model. Although WRF-ACASA is slightly cooler over the high LAI region in the

Central Valley during August, close examination in the Central Valley reveals that the prescribed

LAI values in WRF are significantly higher than the remote sensing LAI values during the summer
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months. This discrepancy in LAI causes WRF-ACASA to overestimate evapotranspiration over the

region and to create a cold bias. In contrast, the WRF-NOAH model is less sensitive to the LAI bias345

because of its simpler plant physiological processes. This highlights the conundrum of advancing

model physics—more sophisticated models become more susceptible to errors in input data quality

as they become more representative of variations in land cover type.

An in-depth analysis at basin and station levels is presented next for the two models simula-

tions. Figure 4 shows the comparisons between the two model simulations and observations for350

daily surface air temperatures at four different stations (from the selected air basins from Table 1)

during the months of February, May, August, and November 2006. Overall, both WRF-ACASA and

WRF-NOAH perform well in simulating the day-to-day variations of temperature changes across

the seasons and stations with the exception of the Mojave Desert station. Even short-term weather

events are clearly detectible in the simulated temperature changes. One such example is the North-355

east Plateau station during the month of November, when it experiences a warming of 7-8◦C in

temperature followed by a 15◦C plunge between day 5 and day 10. Both models are able to sim-

ulate this short-term weather event. However, the WRF-ACASA model is better in simulating air

temperature over the Mojave Desert station during August, where WRF-NOAH overestimates the

temperature by 5◦C for the entire month.360

Figure 5 examines the differences in diurnal patterns from each station between the two land

surface models over the four seasons. While the diurnal temperatures simulated by the two models

fall mostly within the ±1 standard deviation range, the two models show small differences depending

on the season and location. The figure shows that during the summer, the WRF-ACASA model tends

to underpredict temperature during the early morning in the Mojave Desert. On the other hand, the365

WRF-NOAH model systematically overpredicts temperature during most of the day, beyond one

standard deviation, resulting in a significant warm bias. The differences between the two model

simulations are likely the results from differences in the representation of land cover types, as well

as canopy structure. While both WRF-ACASA and WRF-NOAH assign a Shrubland plant functional

type to the Mojave Desert site, the WRF-ACASA model also prescribes a 3-meter canopy height to370

the Shrubland vegetation type. Therefore, the surface of the Mojave Desert site takes longer to heat

up in the morning in the WRF-ACASA model, because it is assumed to be within the canopy. This

results in a lag of daytime temperature rise compared to the observed values. As the summer ends,

the diurnal patterns of the WRF-ACASA model once again compare well with the observations,

falling within the ±1 standard deviation. Because NOAH is a single-layer model, there is no canopy375

height or shading from canopy. As a result of its canopy structure or rather lack of it, WRF-NOAH

experiences rapid overheating at the Mojave Desert site during the summer.

Figure 6 shows scatter plots of monthly surface air temperature simulated by the WRF-ACASA

and WRF-NOAH models versus observations, sorted by seasons, and for the same four basins de-

fined previously (with a total of 240 stations). Each of the points represents a monthly average for380
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one station in the specified basin, and the colors indicate seasons. Least squares regression of the sea-

sonal data shows that both model simulations approach a 1:1 line relationship with the observations.

There are some small differences in performance between the two models depending on seasons and

locations. This collective analysis of all stations from the four basins shows that although there are

some biases at station level, both models generally perform well across the entire basin. A more385

detailed analysis of air temperature for all 13 ARB air basins is given in the Supplement.

3.2 Dew Point Temperature and Relative Humidity

Similar to Figure 4, Figure 7 shows daily variations of surface dew point temperature over the same

four stations (NEP, MD, SJV, MC) during the months of February, May, August, and November

2006. The dew point temperature influences land surface interaction with the atmosphere by indi-390

cating conditions for condensation. While both models perform well with the surface temperature

simulation, the WRF-ACASA model outperforms the WRF-NOAH in simulating the dew point tem-

perature, especially during the summer months for MC, NEP, and SJV stations. A possible explana-

tion is the complex physiological processes in the WRF-ACASA model that allow a more accurate

simulation of the humidity profile and physiological interactions. The multilayer canopy structure395

in the WRF-ACASA model is likely to retain moisture longer within the canopy. These details put

the dew point temperature calculated by WRF-ACASA closer to observations than the WRF-NOAH

model, which can only account for a single canopy layer. Both models have difficulty over the Mo-

jave Desert station, where they underestimate the dew point temperature as much as 15◦C during

August. Similar to the surface temperature analysis, both models perform well over the Northeast400

Plateau station with well-matched land cover types (WRF-ACASA) and simple canopy structure of

short grass (WRF-NOAH). In general, the dew point temperature simulated by the WRF-ACASA

model displays better agreement with the observations than for the WRF-NOAH model.

Figure 8 presents diurnal patterns of surface dew point temperature for the four stations and four

seasons. Unlike for the surface air temperature, there is relatively little diurnal variation in the405

surface dew point temperature throughout the seasons and locations. The dew point temperatures

simulated by the two models are functions of surface pressure and surface water vapor mixing ratio.

Since the surface pressure does not change dramatically throughout the day, changes in dew point

temperature are mainly due to fluctuations in water vapor mixing ratio. Once again, the dry arid and

low vegetated Mojave Desert site is problematic for both models during the summer. The disparities410

between the WRF-ACASA and WRF-NOAH models are more distinct in the diurnal dew point

temperature than in the surface temperature: the dew point temperature simulated by WRF-ACASA

is within the ±1 standard deviation of observations, whereas WRF-NOAH tends to underestimate

daytime dew point temperature.

Similar to Figure 6, Figure 9 shows scatter plots of monthly surface dew point temperature simu-415

lated by the WRF-ACASA and WRF-NOAH versus observations, separated by seasons and basins.
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The dew point temperature simulated by the two models exhibit more scatter than the simulated sur-

face air temperature. In addition, while the previous analyses of dew point temperature indicate that

WRF-ACASA outperforms WRF-NOAH for specific stations (e.g., the MD and NEP stations), Fig-

ure 9 shows that both models display similar performance at the basin scale. This suggests that the420

choice of land surface model has a substantial impact on individual stations, but not on the overall

basin-wide biases. This decreased performance in the simulation of surface dew point temperature

in both models could be the result of the assumption of horizontal homogeneity in each of the 8 km x

8 km grid cells, which is used in both WRF-ACASA and WRF-NOAH. A single homogeneous grid

cell could be representing several observation stations with different microclimatic conditions. This425

is especially important when, for example, the shrublands in the Mojave Desert Basin have different

degrees of canopy openness.

Figure 10 compares the relative humidity simulated by WRF-ACASA and WRF-NOAH with sur-

face observations at four different stations for the each season. Except for the Mojave Desert station

during summer and fall, WRF-ACASA simulations generally fall within the ±1 standard deviation430

range of measured values for all stations and seasons. On the other hand, the WRF-NOAH model

underestimates the relative humidity for both the Mojave Desert and San Joaquin Valley stations

throughout the year. The higher relative humidity values in WRF-ACASA compared with WRF-

NOAH during the warm season for these two stations reinforce the notion that the multilayer canopy

structure and the higher-order turbulence closure scheme enable the simulation of the retention of435

more moisture within the canopy layers.

Figure 11 shows a Taylor diagram of monthly mean surface air temperature, dew point temper-

ature, relative humidity, wind speed, and solar radiation simulated by WRF-ACASA and WRF-

NOAH for all 730 stations in California. The Taylor diagram shows that simulations with both

models agree well with surface measurements for every variable except wind speed. The surface air440

temperature, with high correlations, low RMSEs, and matching variability, is the most accurately

simulated variable by both models. The WRF-NOAH model shows slightly better performance

for surface air temperature, while the WRF-ACASA model simulates more accurately dew point

temperature and relative humidity. Both models simulate solar radiation with the same level of

performance, mostly because the impact of the land surface model is limited on the atmospheric445

circulation and cloud cover. Finally, both models show low correlations and high root mean square

errors for wind speed. These high root mean square errors and poor correlations could be attributed

to the models’ assumption of homogenous vegetation and the low resolution, which cannot capture

local scale turbulence at the station level.
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4 Conclusions450

In an effort to better represent land surface processes, the high complexity land surface model

ACASA is coupled with the state-of-art mesoscale model WRF. This study compares and evaluates

the WRF model with two different land surface models, namely, the high complexity WRF-ACASA

and the widely used, lower complexity WRF-NOAH. The evaluation focuses on the surface mete-

orological conditions over California, from a regional to local scale. With vast differences in land455

cover, ecological and climatological conditions, and with a complex terrain, California provides an

ideal region to test and evaluate both models. Simulations for both WRF-ACASA and WRF-NOAH

at 8km x 8km spatial resolution are compared with surface observations from over 700 stations of

the ARB network for years 2005 and 2006.

Results show that the WRF-ACASA model is able to soundly simulate surface meteorological460

conditions. The simulation of temperature, dew point temperature, and relative humidity all agree

well with the surface observations throughout various scales of analysis ranging from diurnal cycles,

day-to-day variability, to seasonal patterns.

Both model simulations agree well with the surface observations; however, there are small vari-

ations in model performance among land surface representations, depending on surface and atmo-465

spheric conditions. Overall, the WRF-NOAH model displays a slightly better ability to simulate sur-

face air temperature than WRF-ACASA; nonetheless, WRF-ACASA can outperform WRF-NOAH

at the station level, such as over the Mojave Desert station during the summer season. At the same

time, WRF-ACASA show a more accurate simulation of dew point temperature and relative humid-

ity compared to WRF-NOAH, especially during summer and fall seasons. The more complex and470

detailed canopy and plant physiological process parameterizations in ACASA appear to allow the

retention of more moisture within the canopy layers as well as the distribution of moisture within

and above the canopy. As a result, WRF-ACASA may be better suited to simulate understory mi-

croclimate, as WRF-NOAH’s “big leaf” has no understory.

While the analysis presented in this study does not show any significant improvement in model475

performance from the simpler NOAH to the more complex ACASA model, this result echoes the re-

sults from Jin et al. (2010), which compares the sensitivity of four different LSM in WRF: the simple

soil thermal diffusion (STD) scheme, the Noah scheme, the Rapid Update Cycle (RUC) scheme, and

the more sophisticated NCAR Community Land Model version 3 (CLM3). Jin et al. (2010) shows

that all four models perform similarly on Snow Water Equivalence (SWE), temperature, and precip-480

itation. In comparison, the high complexity ACASA model presents a more detailed picture to prop-

erly account for the important biological and physical processes describing ecosystem-atmosphere

interactions—including ecophysiological activities such as photosynthesis and respiration—without

decreasing the quality of the output when compared to an extensive set of observation. Without

tuning the ACASA model to any region, the model performs well and quantitatively similarly to485

the highly tuned and lower complexity NOAH model. The physical and physiological processes
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in WRF-ACASA also highlight the effect of different land surface components and their feedbacks

to atmospheric processes. In particular, the high-order turbulence closure scheme in WRF-ACASA

provides more detailed representation of eddy transport, and therefore it would better simulate ex-

changes of energy and fluxes between the atmosphere and the biosphere, as well as within the canopy490

layers. Beyond model complexity, the novel and exciting features of the WRF-ACASA model is its

capability to simulate carbon dioxide and water fluxes at the regional scale. While this is not pre-

sented in this particular study, with focus on the more fundamental meteorological aspect of the

land surface model, further evaluation of the carbon dioxide and water fluxes in WRF-ACASA is

underway.495

While this particular study focuses on California, the WRF-ACASA model can be used for any

region of the world. As a result, the WRF-ACASA model provides opportunities for more studies

on the topics of ecosystem response to human and natural disturbances, such as the contribution of

irrigation to evapotranspiration and energy budget (see Falk et al., 2014), land use transformations,

climate change, and other dynamic and biosphere-atmosphere interactions.500

5 Code availability

The source code of the WRF-ACASA can be obtained upon request. The code can be compiled

and run with platforms that support the WRF model. For code request, please contact Liyi Xu,

liyixm@mit.edu.
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Perrin, C., Michel, C., and Andréassian, V.: Does a large number of parameters enhance model performance?

17



Comparative assessment of common catchment model structures on 429 catchments, J. Hydrol., 242, 275–590

301, 2001.

Pielke, R., Marland, G., Betts, R., Chase, T., Eastman, J., Niles, J., Running, S., et al.: The influence of land-

use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the

radiative effect of greenhouse gases, Philos. Trans. Roy. Soc. London A, 360, 1705–1719, 2002.

Pleim, J. and Xiu, A.: Development and testing of a surface flux and planetary boundary layer model for595

application in mesoscale models, J. Appl. Meteor., 34, 16–32, 1995.

Powers, J.: Numerical prediction of an Antarctic severe wind event with the Weather Research and Forecasting

(WRF) model, Mon. Wea. Rev., 135, 3134–3157, 2007.

Pyles, R., Weare, B., and Paw U, K.: The UCD Advanced Canopy-Atmosphere-Soil Algorithm: comparisons

with observations from different climate and vegetation regimes, Quart. J. Roy. Meteor. Soc., 126, 2951–600

2980, 2000.

Pyles, R., Weare, B., Paw U, K., and Gustafson, W.: Coupling between the University of California, Davis,

Advanced Canopy-Atmosphere-Soil Algorithm (ACASA) and MM5: Preliminary results for July 1998 for

western North America, J. Appl. Meteor., 42, 557–569, 2003.

Pyles, R., Paw U, K., and Falk, M.: Directional wind shear within an old-growth temperate rainforest: observa-605

tions and model results, Agric. For. Meteor., 125, 19–31, 2004.

Queck, R., Bienert, A., Maas, H.-G., Harmansa, S., Goldberg, V., and Bernhofer, C.: Wind fields in hetero-

geneous conifer canopies: parameterisation of momentum absorption using high-resolution 3D vegetation

scans, European Journal of forest research, 131, 165–176, 2012.

Raupach, M. and Finnigan, J.: ’Single-layer models of evaporation from plant canopies are incorrect but useful,610

whereas multilayer models are correct but useless’: Discuss, Aust. J. Plant Physiol., 15, 705–716, 1988.

Rowntree, P.: Atmospheric parameterization schemes for evaporation over land: Basic concepts and climate

modeling aspects, in: Land Surface Evaporation: Measurement and Parameterization, edited by Schmugge,
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Table 1. Selected sites from the Air Resources Board meteorological stations network.

Basin Station id Latitude Longitude PFT

MC 5714 38.754 –120.732 Evergreen Needleleaf Forest

MD 5796 33.532 –114.634 Shrubland

NEP 5750 41.433 –120.479 Grassland

SJV 5805 37.440 –121.139 Irrigated Cropland and Pasture
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Fig. 1. The schematic diagram of the WRF-ACASA coupling.
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a) LEAF AREA INDEX b) DOMINANT VEGETATION CATEGORY

d) ARB AIR BASINSc) ARB OBSERVATIONAL STATIONS

Fig. 2. The complex topography and land cover of the study domain is represented here: (a) Leaf Area Index

(LAI) from USGS used by the WRF model, (b) Dominant vegetation type, (c) ARB observational stations with

the four selected stations in colors, and (d) map of the 13 ARB air basins.
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Fig. 3. Monthly mean surface air temperature simulated by WRF-ACASA and WRF-NOAH and for the surface

observations during the months of February, May, August and November 2006.
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Fig. 4. Time series of surface air temperature simulated by WRF-ACASA and WRF-NOAH and for the surface

observations for four different stations and during the months of February, May, August and November 2006.

Observations are in black, the WRF-ACASA results are in blue and the WRF-NOAH results are in red. From

top to bottom: Mountain County station, Mojave Desert station, Northeast Plateau station, San Joaquin Valley

station.
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Fig. 5. Diurnal cycle of surface air temperature for each season by station. The solid and the two dash black

lines represent the surface observation and ±1 standard deviation from the mean respectively. The WRF-

ACASA results are in blue and the WRF-NOAH results are in red. From top to bottom: Mountain County

station, Mojave Desert station, Northeast Plateau station, San Joaquin Valley station.; Left to right: winter

(DJF), spring (MAM), summer (JJA), fall (SON)
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Fig. 6. Scatter plots for monthly air temperature simulated by WRF-ACASA (top) and WRF-NOAH (bottom)

for the all stations in the 4 basins: (left to right) Northeast Plateau station, Mojave Desert station, San Joaquin

Valley station, Mountain County station. Each color simple represents different season: Blue cross = winter

(DJF), Green circle = spring (MAM), Yellow triangle = summer (JJA), Red asterisk = fall (SON)
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Fig. 7. Time series of dew point temperature simulated by WRF-ACASA and WRF-NOAH and for the surface

observations for four different stations and during the months of February, May, August and November 2006.

Observations are in black, the WRF-ACASA results are in blue and the WRF-NOAH results are in red. From

top to bottom: Mountain County station, Mojave Desert station, Northeast Plateau station, San Joaquin Valley

station.
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Fig. 8. Diurnal cycle of dew point temperature for each season by station. The solid and the two dash black lines

represent the surface observation and ±1 standard deviation from the mean respectively. The WRF-ACASA

results are in blue and the WRF-NOAH results are in red. From top to bottom: Mountain County station,

Mojave Desert station, Northeast Plateau station, San Joaquin Valley station.; Left to right: winter (DJF),

spring (MAM), summer (JJA), fall (SON)
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Fig. 9. Scatter plots for monthly dew point temperature simulated by WRF-ACASA (top) and WRF-NOAH

(bottom) for the all stations in the 4 basins: (left to right) Northeast Plateau station, Mojave Desert station, San

Joaquin Valley station, Mountain County station. Each color simple represents different season: Blue cross =

winter (DJF), Green circle = spring (MAM), Yellow triangle = summer (JJA), Red asterisk = fall (SON)
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Fig. 10. Diurnal cycle of relative humidity for each season by station. The solid and the two dash black lines

represent the surface observation and ±1 standard deviation from the mean respectively. The WRF-ACASA

results are in blue and the WRF-NOAH results are in red. From top to bottom: Mountain County station,

Mojave Desert station, Northeast Plateau station, San Joaquin Valley station.; Left to right: winter (DJF),

spring (MAM), summer (JJA), fall (SON)
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Fig. 11. Taylor diagram of monthly mean surface air temperature, dew point temperature, relative humidity,

wind speed, and solar radiation for both WRF-ACASA and WRF-NOAH for all ARB stations. WRF-ACASA

is represented by blue dots and WRF-NOAH by red dots.
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