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Abstract. The development and validation of the vertical dif-

fusion module of IL-GLOBO, a Lagrangian transport model

coupled online with the Eulerian General Circulation Model

GLOBO, is described. The module simulates the effects

of turbulence on particle motion by means of a Lagrangian5

Stochastic Model (LSM) consistently with the turbulent dif-

fusion equation used in GLOBO. The implemented LSM in-

tegrates particle trajectories, using the native σ-hybrid co-

ordinates of the Eulerian component, and fulfills the Well

Mixed Condition (WMC) in the general case of a variable10

density profile. The module is validated through a series of

1D offline numerical experiments by assessing its accuracy

in maintaining an initially well mixed distribution in the ver-

tical. A dynamical time-step selection algorithm with con-

straints related to the shape of the diffusion coefficient profile15

is developed and and discussed. Finally, the skills of a lin-

ear interpolation and a modified Akima spline interpolation

method are compared, showing that both satisfy the WMC

with significant difference in computational time. A prelim-

inary run of the fully 3D integrated model confirms the re-20

sult only for the Akima interpolation scheme while the linear

interpolation does not satisfy the WMC with a reasonable

choice of the minimum integration timestep.

1 Introduction25

Global (or hemispheric) scale transport is recognized as an

important issue in air pollution and climate change studies.

Pollutants can travel across continents and have an influence

even far from their source (see, e.g., Fiore et al., 2011; Yu

et al., 2013, among the most recent). Moreover, transport30

of volcanic emissions (e.g., the recent Eyjafjallajökull erup-

tion) or accidental hazardous releases (like the Fukushima
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and Chernobyl nuclear accidents) are also important at the

global scale.

The natural framework for the description of tracer trans-35

port in flows is the Lagrangian approach (see, for exam-

ple, the seminal works by Taylor, 1921, and Richardson,

1926). In the Lagrangian framework, the tracer transport is

described by integrating the kinematic equation of motion

for fluid “particles” in a given flow velocity field, provided40

by, e.g., a meteorological model. The turbulent motion unre-

solved by Eulerian equations for averaged quantities (in the

Reynolds or volume-filtered sense) can be accounted for by

including a stochastic component into the kinematic equa-

tion.45

The stochastic component can be added to the particle

position, to give the Lagrangian equivalent of the Eulerian

advection-diffusion equation. This kind of model is usually

called a Random Displacement Model (RDM) and is suit-

able for dispersion over long time scales. When the stochas-50

tic component is added to the velocity, the model is usually

called a Random Flight Model (RFM), which is more suit-

able for shorter time dispersion. In both cases, the stochas-

tic model formulation has to be consistent with some basic

physical requirements (Thomson, 1987, 1995).55

Various Lagrangian transport models exist, which can be

used at the global scale. Some are designed specifically for

the description of atmospheric chemistry (see, e.g., Reith-

meier and Sausen, 2002; Wohltmann and Rex, 2009; Pugh

et al., 2012), while others focus on the transport of tracers.60

In the latter class, two of the most widely used models are

FLEXPART (Stohl et al., 2005) and HYSPLIT (Draxler and

Hess, 1998), which are highly flexible and can be easily used

in a variety of situations. Both are compatible with different

input types (usually provided by meteorological services like65

ECMWF), relying on their own parameterization for fields

not available from the meteorological model output. Models

of this kind are suited for both forward and backward disper-

sion studies.
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An alternative approach is to couple the Eulerian and La-70

grangian parts online. On one hand, this makes the Eule-

rian fields available to the Lagrangian model at each Eulerian

time-step, increasing the accuracy for temporal scales shorter

than the typical meteorological output interval. On the other

hand, it also allows the consistent parameterization of pro-75

cesses in the Eulerian and Lagrangian frameworks (e.g., the

vertical dispersion in the boundary layer). Moreover, where

the considered tracer may have an impact on meteorology

(e.g., on radiation or cloud micro-physics), online integra-

tion provides a natural way to include these effects (Baklanov80

et al., 2014). Online coupling also ensures the consistency of

a mixed Eulerian-Lagrangian analysis of the evolution of at-

mospheric constituents (e.g., water or pollutants) along a tra-

jectory (see, e.g., Sodemann et al., 2008; Real et al., 2010).

Malguzzi et al. (2011) recently developed a new global nu-85

merical weather prediction model, named GLOBO, based on

a uniform latitude-longitude grid. The model is an extension

to the global scale of the Bologna Limited Area Model (BO-

LAM) (Buzzi et al., 2004), developed and employed starting

from the early 90s. GLOBO is used for daily forecasting90

at the Institute of Atmospheric Sciences and Climate of the

National Research Council of Italy (ISAC-CNR) and is also

used to produce monthly forecasts. Online integration with

BOLAM family models has already yielded interesting re-

sults in the development of the meteorology and composi-95

tion model BOLCHEM (Mircea et al., 2008). Considering

that experience, the GLOBO model constitutes the natural

basis for the further development of an Integrated Lagrangian

model.

In the following, the development of the vertical diffusion100

module is presented, focusing in particular on its compliance

with basic theoretical requirements (the Well Mixed Condi-

tion, see Thomson, 1987, 1995) in connection with different

numerical issues. In Section 2 the theoretical basis of the

model formulation is given, while Section 3 describes dif-105

ferent aspects of the numerical implementation. Finally, the

model verification is presented and discussed in Section 4.

2 Lagrangian stochastic model formulation

In application to dispersion in turbulent flows, Lagrangian

stochastic models (LSMs), Markovian at order M (M =110

0,1,...), are described by a set of stochastic differential equa-

tions (SDEs). The equation for the derivative of order M is:

dX
(M)
i = aidt+bijdWj , (1)

where i and j indicate the components and X
(k)
i is the k-th

order time-derivative of the Lagrangian Cartesian coordinate115

component Xi ≡X
(0)
i . Coefficients ai and bij are called drift

and Wiener coefficients, respectively. The remaining equa-

tions of the set (1≤ k≤M ) are described by:

dX
(k−1)
i =X

(k)
i dt. (2)

The set of equations is equivalent to the Fokker-Planck120

equation:

∂p

∂t
=−

M
∑

k=0

∂

∂x
(k)
i

(Ak
i p)+

∂2

∂x
(M)
i ∂x

(M)
j

(Kijp), (3)

where Ak
i =1 for k <M and Ak

i = ai for k=M , xi is the

Eulerian equivalent of Xi and Kij ≡ bikbjk/2 (Thomson,

1987). Equation (3) describes the evolution of the prob-125

ability density function p(x(0),...,x(M),t), where x
(k) =

(x
(k)
1 ,x

(k)
2 ,x

(k)
3 ). For the evolution of (X(0),...,X(M)) to be

approximated by a Markov process, the time correlation of

the variable X
(M+1) has to be much shorter than the charac-

teristic evolution time of X(M). If the model has to describe130

the evolution of dispersion at time t≫ τ , where τ is the cor-

relation time of turbulent velocity fluctuations, the process is

well captured at order M =0. When shorter times are con-

sidered, as in the case of dispersion from a single point source

before the Taylor (1921) diffusive regime occurs (t≤ τ ), or-135

der M must be increased to 1. The model of lowest order

(M =0) is referred to as random displacement model (RDM)

and is sufficiently accurate to describe transport and mixing

of particles at time and space resolution typical of a global

model.140

The correct formulation of a RDM in a variable density

flow was first obtained by Venkatram (1993) and then refined

and generalized by Thomson (1995) and is briefly recalled

here. Equation (3) is valid for the pdf p of particle position

with the initial condition p((x),t)|t=t0 = p((x),t0). Since145

the ensemble average concentration 〈c〉 is proportional to p,

Equation (3) can be rewritten as

∂〈c〉
∂t

=− ∂

∂xi
(ai 〈c〉)+

∂2

∂xi∂xj
(Kij〈c〉). (4)

If 〈c〉 ∝ 〈ρ〉 at some time t′, where 〈ρ〉 is the ensemble aver-

age of air density, then for all t > t′ the two quantities must150

remain proportional. This condition, called well mixed con-

dition (WMC) after Thomson (1987), implies that 〈ρ〉 is also

a solution of Equation (4). Substituting c with ρ in Equa-

tion (4) and using the continuity equation

∂〈ρ〉
∂t

=− ∂

∂xi
(ui〈ρ〉) , (5)155

where ui is the density weighted mean velocity, defined as

(Thomson, 1995):

ui =
〈uiρ〉
〈ρ〉 = 〈ui〉+

〈u′
iρ

′〉
〈ρ〉 , (6)

the following expression is obtained:

− ∂

∂xi
(ui〈ρ〉)=− ∂

∂xi
(ai 〈ρ〉)+

∂2

∂xi∂xj
(Kij〈ρ〉) . (7)160

Then, integrating both sides and rearranging gives

ai =
∂Kij

∂xj
+

Kij

〈ρ〉
∂〈ρ〉
∂xj

+ui . (8)
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where the non-uniqueness implied by the integration is re-

moved considering that in the well mixed state, the mixing

ratio flux must be proportional to ui〈ρ〉. Substituting Equa-165

tion (8) into Equation (4) gives the equivalent of Equation (2)

in Thomson (1995).

At the coarse resolution typical of global models, verti-

cal motions can be considered decoupled from the horizontal

ones. Therefore, only the vertical coordinate x3 ≡ z (and170

X3 ≡ Z in Lagrangian terms) need to be considered. In

this case, the RDM reduces to a single differential stochastic

equation

dZ =

(

w+
∂K

∂z
+

K

〈ρ〉
∂〈ρ〉
∂z

)

dt+
√
2KdW , (9)

where w≡u3 and K ≡K33.175

3 Numerical implementation of the vertical diffusion

module

In its final form, IL-GLOBO is designed to be a fully online

integrated model (or, at least an online-access model, accord-

ing to Baklanov et al., 2014), where the different compo-180

nents share the same “view” of the atmosphere, i.e., use the

same discretization, parameterizations, etc. . The develop-

ment of the vertical diffusion module is based on this princi-

ple.

3.1 Vertical coordinate185

Within IL-GLOBO, the Lagrangian equations are integrated

in the same coordinate system used in the Eulerian Model.

This choice maintains the consistency between the La-

grangian and Eulerian components and reduces the interpo-

lation errors and computational cost.190

GLOBO uses a hybrid vertical coordinate system in which

the terrain-following coordinate σ (0 < σ < 1) smoothly

tends, with height above the ground, to a pressure coordinate

P , according to:

P =P0σ−(P0−PS)σ
α , (10)195

where P0 is a reference pressure (typically 1000 hPa), PS is

the surface pressure and α is a parameter that gives the clas-

sical σ coordinate for α=1 (Phillips, 1957). The parameter

α depends on the model orography and, therefore, on resolu-

tion. It is limited by the condition ∂
∂pσ≥ 0 that results in the200

relationship:

α≤ P0

P0−min(PS)
, (11)

which is satisfied by the typical setting α=2, used for a wide

range of resolutions in GLOBO applications (Malguzzi et al.,

2011).205

The vertical Lagrangian coordinate is identified by Σ, cor-

responding to the vertical coordinate σ, and is connected to

the Lagrangian vertical position Z above the ground through

Equation (10) and the hydrostatic relationship. In the me-

teorological component, the height above the ground z is a210

diagnostic quantity that can be derived from the geopotential

Φ through z(σ) = (Φ(σ)−Φg)g
−1, where Φg is the geopo-

tential at the height of roughness length. Since the determi-

nation of the different terms in Equation (9) involves discrete

Eulerian fields and their numerical derivatives, the choice215

to employ σ has also the advantage of making interpolation

straightforward and consistent with the Eulerian part.

Because σ(z) is not linear (σ is not a Cartesian coordi-

nate system), the stochastic chain rule (see, e.g. Kloeden and

Platen, 1992, p. 80) must be used to derive the correct form220

of Equation (9) for Σ, giving:

dΣ=

[

ω+

(

∂σ

∂z

)2
1

〈ρ〉
∂

∂σ
(〈ρ〉K)+K

∂2σ

∂z2

]

dt+
∂σ

∂z
(2K)

1/2
dW ,(12)

where ω is the vertical velocity in the σ coordinate system

and z is the Cartesian vertical coordinate. The last term in

square brackets stems from the Itô-Taylor expansion of order225

dW 2, which must be included for the correct description at

order dt (Gardiner, 1990, p. 63).

3.2 Discretization and interpolation

The GLOBO prognostic variables are computed on a Lorenz

(1960) vertical grid: all the quantities are on “integer” lev-230

els σi, except vertical velocity, turbulent kinetic energy and

mixing length and, consequently, diffusion coefficients, lo-

cated at “semi-integer” levels σh
i (see, Figure 1). In typical

applications, the GLOBO vertical grid is regularly spaced in

σ (Malguzzi et al., 2011), although it is possible to use a235

variable grid spacing, as in its limited area version BOLAM

(Buzzi et al., 1994).

Σ being a continuous coordinate, the quantities needed

to compute the terms of Equation (12) must be interpolated

from the Eulerian fields given at discrete levels. The compu-240

tation of first and second order derivatives of Eulerian model

quantities is also required in the implementation of the LSM.

Interpolation and derivation algorithms can influence both

the accuracy and the computational cost of the Lagrangian

model and thus require careful assessment.245

For density ρ and geopotential Φ linear interpolation and

central differences derivative are used assuming that those

fields are regular enough. At the lower boundary, it is re-

quired that:

∂2ρ

∂σ2

∣

∣

∣

∣

NLEV+1

=
∂2ρ

∂σ2

∣

∣

∣

∣

NLEV

, (13)250

which implies:

∂ρ

∂σ

∣

∣

∣

∣

NLEV+1

=
∂ρ

∂σ

∣

∣

∣

∣

NLEV

+
∂2ρ

∂σ2

∣

∣

∣

∣

NLEV

(σNLEV+1−σNLEV), (14)
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Fig. 1. Schematic representation of field value distributions be-

tween integer (continuous lines) and semi integer (dashed lines) lev-

els in the GLOBO model.

for the first order derivative. Following the same consider-

ations made for ρ, the derivatives of σ with respect of z are

computed from relationships similar to Eq. (13) and Eq. (14).255

For the highly varying K profiles, two different methods

are tested, the first with two variants. The first method in-

terpolates the function linearly at the particle position, and

uses finite differences derivatives. In the first variant (labeled

D), the first order two-points derivative is computed and kept260

constant between two grid points. In order to give a smoother

description of the derivatives, a variant (labeled D′) is also

tested in which the three-points centered derivative is com-

puted and interpolated linearly at the particle position. For

D′, the values of first order derivative at the lowest boundary265

is computed as:

∂K

∂σ

∣

∣

∣

∣

NLEV+1

=
KNLEV+1−KNLEV

σNLEV+1−σNLEV

. (15)

This is assumed because K is expected to be linear near

the surface, according to Monin-Obukhov similarity theory

where:270

K(z)=κu∗z, (16)

for the neutral case, with proper modifications for diabatic

cases.

The second method (labeled A) is based on the Akima

(1991) cubic spline. For each interval it considers the pre-275

vious and the next two adjacent intervals (for a total number

of 6 grid points) to compute the coefficients of the interpo-

lating cubic polynomial. This algorithm reduces the number

of oscillations in the interpolating function compared to reg-

ular cubic splines and enforces the linearity when 4 points280

are collinear (Akima, 1991). Using this property, a linear

profile near the ground is imposed to the interpolating func-

tion by adding two fictitious points below the ground that are

collinear with the two lower grid points of the domain. In ad-

dition, to ensure the positivity of the interpolating functions,285

the local algorithm of Fischer et al. (1991) is used, which

also preserves the continuity of first order derivatives.

3.3 Integration scheme and time-step selection

The most common integration scheme for SDE in atmo-

spheric transport models is the Euler-Maruyama forward290

scheme:

Σt+∆t =Σt+a∆t+b∆W . (17)

The coefficients a and b come from Equation (12). The

Euler-Maruyama forward scheme is the simplest strong Tay-

lor approximation and turns out to be of order of strong con-295

vergence γ=0.5 (Kloeden and Platen, 1992, p. 305).

By a rather simple modification of the Euler-Maruyama

scheme, i.e. adding the term:

1

2
bb′(∆W 2−∆t), (18)

where b′ is the first-order derivative of b, the Milstein scheme300

is obtained, which is of order of strong convergence γ = 1.

It is worth noting that the strong order γ =1 of the Milstein

scheme corresponds to the strong order γ=1 of the Euler de-

terministic scheme. Therefore, Milstein can be regarded as

the correct generalization of the deterministic Euler scheme305

(Kloeden and Platen, 1992, p. 345). The additional term

uses only already computed quantities involved in the deter-

mination of the drift term of Equation (12). Preliminary ide-

alized tests do not show any appreciable accuracy improve-

ment with respect to the Euler-Maruyama scheme. However,310

because they confirm the negligible extra computational cost

of this method, the Milnstein scheme will be used to integrate

the model.

In the meteorology component of IL-GLOBO, the Eule-

rian equations are solved with a macro time-step ∆T , which315

depends basically on the horizontal resolution due to the

limitations imposed by the Courant number. Other time-

steps are involved in the Eulerian part but are not relevant

here. In typical implementations, ∆T ranges from 432 s for

362×242 point resolution (used for monthly forecasts1) to320

150 s for 1202×818 point resolution (used for high resolu-

tion weather forecasts2). The macro time-step is taken as the

upper limit for the solution of Equation (12). The time-step

needed to reach the required accuracy depends on the quan-

tities involved in determining the various elements in Equa-325

tion (17).

1http://www.isac.cnr.it/dinamica/projects/forecast dpc/month
2http://www.isac.cnr.it/dinamica/projects/forecasts/glob
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First, a straightforward constraint is that the time-step

must satisfy the relationship

√

2K∆t1 ≪K

∣

∣

∣

∣

∂K

∂σ

∣

∣

∣

∣

−1

, (19)

(see, e.g., Wilson and Yee, 2007), which expresses the re-330

quirement that the average root-mean square step length must

be much smaller than the scale of the variations of K. This

gives rise to a limitation that is consistent with the surface

layer behavior of the diffusion coefficient, Eq. (16). The

condition expressed by Equation (19) makes ∆t1 vanish for335

z→ 0. Such behavior ensures the WMC is satisfied theoret-

ically, but clearly poses problems for numerical implemen-

tation (Ermak and Nasstrom, 2000; Wilson and Yee, 2007).

However, in the application of a global model, where parti-

cles can be distributed throughout the troposphere, this prob-340

lem affects only a small fraction of particles in the vicinity

of the surface. Therefore, it can be dealt with by selecting

a ∆tmin small enough for the solution to be within the ac-

cepted error and, at the same time, large enough to not impact

on the overall computational cost.345

In addition to Equation (19), another constraint is needed

to account also for the presence of maxima in the K pro-

file, which must be present if one considers the whole at-

mosphere. At maxima (or minima), Equation (19) gives an

unlimited ∆t1, which is not suitable for the integration of the350

model as it could cause the trajectory to cross the maximum

(or minimum), with a significant change in K(z) associated

to a change in ∂zK sign. To avoid this problem, a further

constraint is introduced, based on the normalized second-

order derivative, which gives an estimation of the width of355

the maximum. The constraint reads:

2K∆t2 ≪K

∣

∣

∣

∣

∂2K

∂σ2

∣

∣

∣

∣

−1

. (20)

The above Equation has the property of limiting ∆t2 accord-

ing to the sharpness of the K peak.

Taking the minimum among ∆T , ∆t1 and ∆t2 (and re-360

placing “≪” by “=CT ” in Equations (19) and (20)), gives:

∆t=min

[

∆T,
CT

2
K

(

∂K

∂σ

)−2

,
CT

2

∣

∣

∣

∣

∂2K

∂σ2

∣

∣

∣

∣

−1
]

, (21)

where the parameter CT quantifies the “much less” condition

and, therefore, must be than at least 0.1 or smaller.

Figure 2 shows the application of Eq. (21) for a K profile365

representative of GLOBO (see Section 4) and a CT =0.01.

The ∆t decreases in the presence of K gradients thanks to

condition (19), and is limited around the K maximum (where

∂K/∂σ=0) by condition (20). The maximum of ∆t=∆T
is attained at higher levels.370

It should be beared in mind that the method is based on

local quantities and may fail in case strong variations of K
occur in one time step along the particle path. To overcome
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Fig. 2. Values of integration time-step ∆t for the diffusivity profile

shown by the red curve. The green line shows the contribution of

Eq. (19), the blue line the contribution of Eq. (20), and the black line

the combined condition (Eq. 21, with ∆T =432 s and CT =0.01).

the problem, an additional constraint is used to make the al-

gorithm non-local (or less local). Using the ∆t0 computed at375

the particle position at time t, two other time-step (∆t+ and

∆t−) are evaluated at the positions:

Σ± =Σt+a∆t0±b∆t
1/2
0 . (22)

The minimum ∆t among ∆t0, ∆t+ and ∆t− is then used to

advance the particle position Σt+∆t.380

3.4 Boundary conditions

The necessary boundary condition for the conservation of

the probability (and therefore of the mass) is the reflective

boundary (Gardiner, 1990, p. 121). Wilson and Flesch

(1993) show that the elastic reflection ensures the WMC if385

the integration time-step is small enough. However, in cases

of non-homogeneous K, numerical implementation requires

that ∆t vanishes as the particle approaches the boundary. For

models that focus on near surface dispersion, the time-step

needed to achieve the required accuracy can become very390

small. Ermak and Nasstrom (2000) describe a theoretically

well founded method to speed-up (roughly by a factor of 10)

simulations of this kind.

In the case of IL-GLOBO, it will be shown that the elastic

reflection condition at σ=1, coupled with the adaptive time395

step algorithm described in Section 3.3, can ensure a good

approximation of the solution while maintaining affordable

the computational cost.

4 Model verification: the well-mixed condition

In order to verify the vertical diffusion module of IL-400

GLOBO, a series of experiments was performed with a 1-D

version of the code and then tested in a preliminary version
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of the full 3-D model. Input profiles were obtained by run-

ning the low-resolution version of GLOBO (horizontal grid

of 362×242 cells and 50 vertical levels evenly spaced in σ)405

starting at 2011-03-11 00:00 UTC. After 36 hours of simula-

tion (12:00 UTC), averages on σ= const surfaces were per-

formed for K, ρ and Φ, obtaining vertical profiles as a func-

tion of σ. Fields of ρ and Φ were averaged over the whole

domain. As far as K is concerned, averages were performed410

for latitude between +60◦ and -60◦ North in daytime (longi-

tude between -45◦ and +45◦ East) and nighttime (longitude

between +135◦ and -135◦ East) conditions, over land and

sea separately. The most intense K profile is selected, which

corresponds to the daytime conditions over land. Profiles of415

ρ and z are rather smooth and regular over space and time,

while K displays a large variability. The profiles were fitted

with analytical functions derived combining the hydrostatic

equation and the perfect gas law. The following analytical

expressions were used:420

ρ(σ)= ρ0σ
(RdΓ/g+1) , (23)

and:

z(σ)=
(σ−RdΓ/g−1)T0

Γ
, (24)

with T0 =288.0 K, ρ0 =1.2 kgm−3 and Γ=−0.007 K m−1.

As a consequence of the hydrostatic perfect gas assump-425

tion, by expressing the density ρ in sigma vertical units

(ρσ = ρ
∣

∣

dz
dσ

∣

∣) and using Equations (24) and (23), the follow-

ing constant value is obtained:

ρσ =
ρ0RdT0

g
. (25)

Figure 3 shows the GLOBO averaged profiles and their fit-430

ting functions for the density ρ and the geopotential height

Φg−1 as function of σ.
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Fig. 4. Diffusivity profiles used in the experiments. The symbols

represents the data from GLOBO and the lines their fitting function.

The ‘average’ profile is shown in red, while the ‘peaked’ profile is

shown in green. The functional form of both profiles is described

by Eq. (26).

As far as the K profile is concerned, the function

K(z)=Azexp
[

−(Bz)C
]

, (26)

is used to account for the specific K features: it should dis-435

play a linear behavior near the surface, must tend to zero

near the boundary layer top3 and, therefore, must display a

maximum at some height. In Equation (26), A=0.29ms−1

was first determined according to average surface-layer prop-

erties (the first GLOBO vertical level), and corresponds to440

a friction velocity u∗ ≃ 0.7 ms−1. Then, the other two pa-

rameters were let to vary to fit the average profile giving

B = 1.3×10−3 m−1 and C = 1.6.

Although the above profile is representative of the typi-

cal GLOBO diffusivity, real profiles can be remarkably less445

regular, creating challenging conditions for the model. For

this reason, a profile was selected among those showing iso-

lated strong maximum near the ground. This is typical of

strong convective conditions just after sunrise. Fitting Equa-

tion (26) on this second profile gives A= 0.3 ms−1, B =450

4.0×10−3 m−1 and C =4.5. Figure 4 reports the GLOBO

‘averaged’ and ‘peaked’ K profiles as function of σ.

4.1 Determination of the optimal setting for the adap-

tive time-step selection algorithm

The first series of experiments concerns the optimization of455

the adaptive scheme for ∆t, i.e., the selection of the best

suited value for the coefficient CT in Equation 21.

Simulations were performed in flow conditions described

by Equations (23), (24) and (26), distributing particles with

number concentration proportional to ρ. For the WMC to be460

3In GLOBO, K also accounts for a part of the instability gen-

erated by moist convection and therefore it may not vanish at the

boundary layer top.
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Fig. 5. Dispersion experiment with different choices of parame-

ter CT . Top panel: diffusivity profile (black line) and ∆t profiles

for CT =0.5 (light blue), CT =0.1 (green), CT =0.01 (red) and

CT = 0.001 (blue). Bottom panel: normalized concentration pro-

files for different CT (Line colors as in the top panel).

satisfied, this distribution must remain constant as the time

evolves. Equation (12) was integrated for 4×105 particles

and for 200 macro time-steps, each 432 s long, for a total of

T = 86400 s = 24 h. The actual time-step used is given by

Equation (21) with the additional lower limit ∆tmin =0.01.465

Simulations were performed using 12 cores of an Intel Xeon

machine. Since the initial condition was already well-mixed

(C ∝ ρ), the simulation time was considered sufficient to as-

sess the skill of the model in satisfying the WMC. At the end

of the simulation, final concentration profiles were computed470

in “σ volume”, i.e., c(σ)=N(σ)(∆σ)−1, where N(σ) is the

number of particles between σ and σ+∆σ. The skill of the

model in reproducing the WMC was evaluated using the root

mean square error (RMSE) of the final normalized concen-

tration profile with respect to the normalized density profile475

(derived using Equation 25).

Figure 5 reports the different profiles of concentration af-

ter 24 hours of simulation computed using different values

of CT . The shaded region represents the interval between 3

standard deviations from the expected value. RMSE values480

for each simulation are reported in Table 1 along with the

computation time. The RMSE error becomes comparable to

the statistical error for CT = 0.01, which is selected as the

optimal value. In order to evaluate the possible dependency

of CT on the number of particles, two additional sets of runs485

were performed with 105 and 16×105 particles that corre-

spond to halving and doubling, respectively, the statistical

error of the base experiment. Results are reported in Figure 6

which shows that, in the considered range, the optimal CT is

quite independent of the number of particles.490

It is worth noting that the time-step selection algorithm

with the proper choice of CT ensures that the WMC is also

satisfied at the reflective boundary too, as mentioned in Sec-

tion 3.4.

CT RMSE Time [s]

0.5 0.044 76

0.1 0.037 238

0.01 0.021 1172

0.001 0.021 7317

Table 1. RMSE and execution time for different CT .
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Fig. 6. RMSE obtained from experiments made with 10
5 (red),

4×10
5 (green) and 16×10

5 (blue) particles as a function of CT .

4.2 Evaluation of the interpolation algorithms495

In the subsequent set of experiments, the model skill in re-

producing the WMC was evaluated for the interpolation tech-

niques D, D′ and A described in Section 3.2.

In the first experiment, the analytical fields described by

Equations (23), (24) and (26) with the parameters of the ‘av-500

erage’ diffusivity profile were resampled on a 50 point reg-

ular grid. This provides a discrete version of the experiment

described in the previous section, with the same vertical res-

olution of the GLOBO original fields.

The particle number, initial distribution and simulation505

time are the same as in the experiment described in section

4.1. The integration time-step is selected using the local al-

gorithm. The time-step selection algorithm requires the com-

putation of the second order derivative of K, which is not

possible for the D interpolation scheme. Therefore, it is es-510

timated using finite differences of the first order derivative.

The results of this experiment are shown in Figure 7. In the

upper panel, the integration time-step profiles of the three

simulations and the Akima interpolated diffusion coefficient

profile, are displayed. The lower panel shows the normalized515

distribution of the particle after 24 hours of simulation along

with the expected value. Table 2 displays the integration time

and RMSE obtained for the various experimental settings.

The time-step profiles are similar, except for the A profile

around the region of maximum of K, where it shows strong520

variations and, on the average, is longer than the others.

Looking at the distribution of particles (lower panel), it re-
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Fig. 7. Experiments with the sampled ‘average’ diffusivity distri-

bution for the interpolation algorithms D (blue), D′ (green) and A

(red). Top panel: Diffusivity profile as interpolated by A (black) and

∆t profiles for the different interpolation settings. Bottom panel:

Normalized final concentration and expected distribution (black).

Interpolation algorithm exec. time RMSE

A 237 s 0.025

D 155 s 0.023

D′ 162 s 0.044

Table 2. Execution time and RMSE for experiments made with

the sampled ‘averaged’ diffusivity distribution, varying interpola-

tion method.

sults that simulations with A and D interpolation algorithms

both satisfy the WMC within the statistical limit, while the

simulation with the D′ algorithm fails to maintain the well525

mixed state, in particular near the ground. Additional ex-

periments (not reported) show that in order to obtain a well

mixed solution with D′, resolution must be doubled, at least.

The problem is probably related to the definition of deriva-

tives of K between grid points. In fact, although D′ computes530

derivatives at higher order of approximation than D, they are

not consistent with a linear variation of K. Although the use

of D′ can be appropriate for slowly varying and monotone

functions like ρ and z, it turns out to be unsuitable for the

more complex K profile which, in addition, affects both the535

Wiener stochastic term and the drift term. For these reasons,

the D′ interpolation scheme is not used in the following ex-

periments.

The second experiment concerns the ‘peaked’ profile. In

this case, the K profile is used directly, without the resam-540

pling of the fitting function. Simulations with A and D algo-

rithms were performed with both local and non-local time-

step selection algorithm. Figure 8 reports the time-step and

concentration profiles, while execution times and RMSEs are

shown in Table 3. Although the integration time-step profiles545

look very similar for the local and non-local algorithms, the

small differences have large impact on the results: the local

algorithm strongly fails in reproducing the WMC for both

Interpolation algorithm ∆t selection exec. time RMSE

A local 313 s 0.042

D local 181 s 0.065

A non-local 1122 s 0.016

D non-local 593 s 0.022

Table 3. Execution time and RMSE for experiments made with the

‘peaked’ diffusivity distribution, varying interpolation method and

∆t selection algorithm.
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Fig. 8. Same as in Fig. 7 for experiments with the ‘peaked’ diffusiv-

ity distribution. Results obtained using the local (left) or non-local

(right) ∆t selection algorithm.

interpolation schemes, especially for D. Conversely, the non-

local algorithm turns out to be effective in selecting the ap-550

propriate time-step even in presence of strong gradients and

isolated maxima. This is reflected on its higher computa-

tional cost (see Table 3).

4.3 Implementation on the 3-D model

A preliminary test of the algorithms on the 3-D model has555

been performed. The interpolation algorithm has been imple-

mented in a simplified quasi-1-D form, where the diffusion

coefficient has been considered to be horizontally constant

between grid points. IL-GLOBO uses the same paralleliza-

tion of GLOBO, with particle exchanged between processes560

at each macro time-step. Particles are first advected horizon-

tally for a macro time-step using their deterministic velocity,

and then ‘diffused’ in the vertical according to Equation (12).

After 12 h of spinup, 5×105 particles are released with a

vertical distribution proportional to the average density pro-565

file, and randomly and homogeneously distributed in the hor-

izontal. Particle statistics are computed after 24 h from the

release.

A and D interpolation algorithm were tested using the non-

local time-step selection. It is found that, while interpolation570

scheme A maintains the WMC reasonably (RMSE=0.024),

the time-step selection algorithm for scheme D requires ex-

tremely short time-steps ( ≪∆tmin, see Section 4.1) in the
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lation scheme (blue). Dashed lines show the limit of 3 standard

deviation around the initial distribution.

region between σ = 0.9 and the lowest boundary (see Fig-

ure 9). Figure 10 shows the result of an experiment where575

the WMC compliance of schemes A and D was tested with

the lower limit for ∆t changed to ∆tmin = 10−5 for D. It

can be observed that, for the D scheme, strong fluctuations

are still present in the same region where the required time-

step exceeds the lower limit. This is likely to be caused by the580

occurrence of strong gradients that can be even larger than in

the ‘peaked’ case, near points with extremely small values of

K. In these cases, the A scheme interpolates with a smoother

function which reduces the problem.

5 Conclusions585

The development of a vertical Lagrangian diffusion model

is presented. This constitutes the first step in building IL-

GLOBO, a Lagrangian particle model integrated in the Eule-

rian global circulation model GLOBO. Critical details of the

implementation have been analyzed and discussed.590

The model is developed including the variable density

term and the proper coordinate transformation term. The

numerical scheme selected to integrate the SDE is the Mil-

stein scheme, which is of order of strong convergence γ=1.

Therefore, it should be regarded as the natural extension of595

the deterministic Euler scheme, in contrast to the so-called

Euler-Maruyama scheme, which is merely the “transcrip-

tion” of the deterministic Euler scheme, but not its equiva-

lent.

An adaptive time-step scheme is proposed to ensure the600

consistency of the model implementation with the WMC re-

quirements. The time-step selection algorithm is limited not

only by the condition imposed by the spatial scale of gra-

dients, but also takes into account the scale of the width of

maxima and minima of the diffusion coefficient, where the605

former criterium fails. It is shown that this algorithm ensures

that the error is within an acceptable range also at the reflect-

ing boundaries. However, in case of isolated maxima, this

scheme may fail. The implementation of a non-local algo-

rithm, which evaluates ∆t in 2 additional points, is proposed610

in order to solve the problem.

Two numerical interpolation and derivation schemes are

implemented and tested. The first is based on the linear in-

terpolation of K and it is presented in two versions: one

(D) keeps a constant first order derivative between two grid615

points, while the other (D′) uses linearly interpolated deriva-

tives in the same interval. The second scheme (A) is based

on a modified Akima (1991) interpolation algorithm with a

local algorithm that ensures the positivity of the interpolating

function (Fischer et al., 1991).620

It is found that, although the method D′ uses derivatives

of higher order of approximation, it creates a local incon-

sistency between the linearly interpolated function and its

derivatives and prevents the model from fulfilling the WMC.

The other two schemes (D and A) both satisfy the WMC but625

extremely peaked profiles of K may require the use of the

non-local time-step selection algorithm.

A test with a preliminary implementation of the fully 3D

model (IL-GLOBO) shows that, while the A scheme display

a correct behavior, the D interpolation scheme requires and630

extremely strong reduction of the integration time-step that

prevents the WMC to be satisfied in reasonable time.

Code availability

The numerical code of the vertical diffusion module (Fortran

90) is released under the GNU Public Licence and is avail-635

able at the BOLCHEM website4.

The software is packed as a library using autoconf,

automake and libtools which allows for configuration

4http://bolchem.isac.cnr.it/source code
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and installation in a variety of systems. The code is devel-

oped in a modular way, permitting the easy improvement of640

physical and numerical schemes.

The GLOBO model is available upon the signature of

an agreement with the CNR-ISAC Dynamic Meteorology

Group (contact: p.malguzzi@isac.cnr.it).
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