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Abstract. The development and validation of the vertical dif-
fusion module of IL-GLOBO, a Lagrangian transport model
coupled online with the Eulerian General Circulation Model
GLOBO, is described. The module simulates the effects
of turbulence on particle motion by means of a Lagrangian
Stochastic Model (LSM) consistently with the turbulent dif-
fusion equation used in GLOBO. The implemented LSM in-
tegrates particle trajectories, using the native o-hybrid co-
ordinates of the Eulerian component, and fulfills the Well
Mixed Condition (WMC) in the general case of a variable
density profile. The module is validated through a series of
1D offline numerical experiments by assessing its accuracy
in maintaining an initially well mixed distribution in the ver-
tical. A dynamical time-step selection algorithm with con-
straints related to the shape of the diffusion coefficient profile
is developed and and discussed. Finally, the skills of a lin-
ear interpolation and a modified Akima spline interpolation
method are compared, showing that both satisfy the WMC
with significant difference in computational time. A prelim-
inary run of the fully 3D integrated model confirms the re-
sult only for the Akima interpolation scheme while the linear
interpolation does not satisfy the WMC with a reasonable
choice of the minimum integration timestep.

1 Introduction

Global (or hemispheric) scale transport is recognized as an
important issue in air pollution and climate change studies.
Pollutants can travel across continents and have an influence
even far from their source (see, e.g., Fiore et al., 2011; Yu
et al., 2013, among the most recent). Moreover, transport
of volcanic emissions (e.g., the recent Eyjafjallajokull erup-
tion) or accidental hazardous releases (like the Fukushima
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and Chernobyl nuclear accidents) are also important at the
global scale.

The natural framework for the description of tracer trans-
port in flows is the Lagrangian approach (see, for exam-
ple, the seminal works by Taylor, 1921, and Richardson,
1926). In the Lagrangian framework, the tracer transport is
described by integrating the kinematic equation of motion
for fluid “particles” in a given flow velocity field, provided
by, e.g., a meteorological model. The turbulent motion unre-
solved by Eulerian equations for averaged quantities (in the
Reynolds or volume-filtered sense) can be accounted for by
including a stochastic component into the kinematic equa-
tion.

The stochastic component can be added to the particle
position, to give the Lagrangian equivalent of the Eulerian
advection-diffusion equation. This kind of model is usually
called a Random Displacement Model (RDM) and is suit-
able for dispersion over long time scales. When the stochas-
tic component is added to the velocity, the model is usually
called a Random Flight Model (RFM), which is more suit-
able for shorter time dispersion. In both cases, the stochas-
tic model formulation has to be consistent with some basic
physical requirements (Thomson, 1987, 1995).

Various Lagrangian transport models exist, which can be
used at the global scale. Some are designed specifically for
the description of atmospheric chemistry (see, e.g., Reith-
meier and Sausen, 2002; Wohltmann and Rex, 2009; Pugh
et al., 2012), while others focus on the transport of tracers.
In the latter class, two of the most widely used models are
FLEXPART (Stohl et al., 2005) and HYSPLIT (Draxler and
Hess, 1998), which are highly flexible and can be easily used
in a variety of situations. Both are compatible with different
input types (usually provided by meteorological services like
ECMWF), relying on their own parameterization for fields
not available from the meteorological model output. Models
of this kind are suited for both forward and backward disper-
sion studies.
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An alternative approach is to couple the Eulerian and La- 120
grangian parts online. On one hand, this makes the Eule-
rian fields available to the Lagrangian model at each Eulerian
time-step, increasing the accuracy for temporal scales shorter
than the typical meteorological output interval. On the other
hand, it also allows the consistent parameterization of pro-
cesses in the Eulerian and Lagrangian frameworks (e.g., the
vertical dispersion in the boundary layer). Moreover, where
the considered tracer may have an impact on meteorology '
(e.g., on radiation or cloud micro-physics), online integra-
tion provides a natural way to include these effects (Baklanov
et al., 2014). Online coupling also ensures the consistency of
a mixed Eulerian-Lagrangian analysis of the evolution of at-
mospheric constituents (e.g., water or pollutants) along a tra- 120
jectory (see, e.g., Sodemann et al., 2008; Real et al., 2010).

Malguzzi et al. (2011) recently developed a new global nu-
merical weather prediction model, named GLOBO, based on
a uniform latitude-longitude grid. The model is an extension
to the global scale of the Bologna Limited Area Model (BO- 125
LAM) (Buzzi et al., 2004), developed and employed starting
from the early 90s. GLOBO is used for daily forecasting
at the Institute of Atmospheric Sciences and Climate of the
National Research Council of Italy (ISAC-CNR) and is also
used to produce monthly forecasts. Online integration with 140
BOLAM family models has already yielded interesting re-
sults in the development of the meteorology and composi-
tion model BOLCHEM (Mircea et al., 2008). Considering
that experience, the GLOBO model constitutes the natural
basis for the further development of an Integrated Lagrangian 14
model.

In the following, the development of the vertical diffusion
module is presented, focusing in particular on its compliance
with basic theoretical requirements (the Well Mixed Condi-
tion, see Thomson, 1987, 1995) in connection with different
numerical issues. In Section 2 the theoretical basis of the
model formulation is given, while Section 3 describes dif- 150
ferent aspects of the numerical implementation. Finally, the
model verification is presented and discussed in Section 4.

2 Lagrangian stochastic model formulation

In application to dispersion in turbulent flows, Lagrangian
stochastic models (LSMs), Markovian at order M (M =
0,1,...), are described by a set of stochastic differential equa-
tions (SDEs). The equation for the derivative of order M is:

AXM = g;dt +b;;dW;, (1)

where ¢ and j indicate the components and X i(k) is the k-th
order time-derivative of the Lagrangian Cartesian coordinate
component X; = X Z.(O). Coefficients a; and b;; are called drift 0
and Wiener coefficients, respectively. The remaining equa-
tions of the set (1 < k < M) are described by:

dx* = xMa. 2)
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The set of equations is equivalent to the Fokker-Planck
equation:

M

op 0 & 0?2
== — A D+ ——7a5—an (Ki;p),

T
where A¥ =1 for k < M and A¥ = a; for k=M, z; is the
Eulerian equivalent of X; and K;; = b;xb;1/2 (Thomson,
1987). Equation (3) describes the evolution of the prob-
ability density function p(x(©,....x) ), where x(*) =
(:vgk),xgk),a:gk)). For the evolution of (X(®,.... X)) to be
approximated by a Markov process, the time correlation of
the variable X(™*1) has to be much shorter than the charac-
teristic evolution time of X (™). If the model has to describe
the evolution of dispersion at time £ >> 7, where 7 is the cor-
relation time of turbulent velocity fluctuations, the process is
well captured at order M = 0. When shorter times are con-
sidered, as in the case of dispersion from a single point source
before the Taylor (1921) diffusive regime occurs (¢t < 7), or-
der M must be increased to 1. The model of lowest order
(M = 0) is referred to as random displacement model (RDM)
and is sufficiently accurate to describe transport and mixing
of particles at time and space resolution typical of a global
model.

The correct formulation of a RDM in a variable density
flow was first obtained by Venkatram (1993) and then refined
and generalized by Thomson (1995) and is briefly recalled
here. Equation (3) is valid for the pdf p of particle position
with the initial condition p((x),t)|t=¢, = p((z),to). Since
the ensemble average concentration {c) is proportional to p,
Equation (3) can be rewritten as
o(c 0 0?

e == () g ().

3)

“4)

If (c) o< {p) at some time t’, where (p) is the ensemble aver-
age of air density, then for all ¢ > ¢’ the two quantities must
remain proportional. This condition, called well mixed con-
dition (WMC) after Thomson (1987), implies that {p) is also
a solution of Equation (4). Substituting ¢ with p in Equa-
tion (4) and using the continuity equation

op) 0
ot _5’% (@i(p)) ,

where w; is the density weighted mean velocity, defined as
(Thomson, 1995):

®)

—_ (uip) (uip')
u; = ={u) + ) (6)
W )
the following expression is obtained:
0 0 02
— s ——— (a: (K. . 7
Then, integrating both sides and rearranging gives
0K;; K;; 0{p) _
a; = +Uu; . (8)
dz; — (p) Ox;
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where the non-uniqueness implied by the integration is re-
moved considering that in the well mixed state, the mixing
ratio flux must be proportional to @;(p). Substituting Equa- 210
tion (8) into Equation (4) gives the equivalent of Equation (2)
in Thomson (1995).

At the coarse resolution typical of global models, verti-
cal motions can be considered decoupled from the horizontal
ones. Therefore, only the vertical coordinate x3 = z (and2is
X3 =7 in Lagrangian terms) need to be considered. In
this case, the RDM reduces to a single differential stochastic
equation

az = (w25 L K 90) At +V2KdW,
0z (p) 0z

where w =3 and K = K33.

(9) 220

3 Numerical implementation of the vertical diffusion
module

In its final form, IL-GLOBO is designed to be a fully online "
integrated model (or, at least an online-access model, accord-
ing to Baklanov et al., 2014), where the different compo-
nents share the same “view” of the atmosphere, i.e., use the
same discretization, parameterizations, etc. . The develop-
ment of the vertical diffusion module is based on this princi-
ple.

3.1 Vertical coordinate 20

Within IL-GLOBO, the Lagrangian equations are integrated
in the same coordinate system used in the Eulerian Model.
This choice maintains the consistency between the La-
grangian and Eulerian components and reduces the interpo-**
lation errors and computational cost.

GLOBO uses a hybrid vertical coordinate system in which
the terrain-following coordinate o (0 < o < 1) smoothly
tends, with height above the ground, to a pressure coordinate
P, according to: 240

P=Pyo—(Py—Ps)o”, (10)

where F, is a reference pressure (typically 1000 hPa), Pg is
the surface pressure and « is a parameter that gives the clas- s
sical o coordinate for o =1 (Phillips, 1957). The parameter

« depends on the model orography and, therefore, on resolu-
tion. It is limited by the condition a%a > () that results in the
relationship:

Py

A
= P _min(Ps)’

an
250
which is satisfied by the typical setting o = 2, used for a wide
range of resolutions in GLOBO applications (Malguzzi et al.,
2011).
The vertical Lagrangian coordinate is identified by %, cor-
responding to the vertical coordinate o, and is connected to

the Lagrangian vertical position Z above the ground through
Equation (10) and the hydrostatic relationship. In the me-
teorological component, the height above the ground z is a
diagnostic quantity that can be derived from the geopotential
® through z(0) = (®(0) — ®,)g~*, where @, is the geopo-
tential at the height of roughness length. Since the determi-
nation of the different terms in Equation (9) involves discrete
Eulerian fields and their numerical derivatives, the choice
to employ o has also the advantage of making interpolation
straightforward and consistent with the Eulerian part.

Because o(z) is not linear (o is not a Cartesian coordi-
nate system), the stochastic chain rule (see, e.g. Kloeden and
Platen, 1992, p. 80) must be used to derive the correct form
of Equation (9) for ¥, giving:

1 0 0%c

w+<gj)2<p>aa<<p>

where w is the vertical velocity in the o coordinate system
and z is the Cartesian vertical coordinate. The last term in
square brackets stems from the It6-Taylor expansion of order
dW?2, which must be included for the correct description at
order dt¢ (Gardiner, 1990, p. 63).

I3 — oo

072 0z

3.2 Discretization and interpolation

The GLOBO prognostic variables are computed on a Lorenz
(1960) vertical grid: all the quantities are on “integer” lev-
els o;, except vertical velocity, turbulent kinetic energy and
mixing length and, consequently, diffusion coefficients, lo-
cated at “semi-integer” levels o (see, Figure 1). In typical
applications, the GLOBO vertical grid is regularly spaced in
o (Malguzzi et al., 2011), although it is possible to use a
variable grid spacing, as in its limited area version BOLAM
(Buzzi et al., 1994).

Y being a continuous coordinate, the quantities needed
to compute the terms of Equation (12) must be interpolated
from the Eulerian fields given at discrete levels. The compu-
tation of first and second order derivatives of Eulerian model
quantities is also required in the implementation of the LSM.
Interpolation and derivation algorithms can influence both
the accuracy and the computational cost of the Lagrangian
model and thus require careful assessment.

For density p and geopotential ® linear interpolation and
central differences derivative are used assuming that those
fields are regular enough. At the lower boundary, it is re-
quired that:

Op _ % (13)
802 NLEV+1 802 NLEV’

which implies:

dp dp 0?%p

== = -t Ll (w1 —ouw),  (14)
80 NLEV+1 60' NLEV 802 NLEV e o

K)+ K= | dt+= (2K)"2dw ,(12)
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Fig. 1. Schematic representation of field value distributions be-
tween integer (continuous lines) and semi integer (dashed lines) lev-
els in the GLOBO model.

for the first order derivative. Following the same consider-
ations made for p, the derivatives of o with respect of z are
computed from relationships similar to Eq. (13) and Eq. (14). 500

For the highly varying K profiles, two different methods
are tested, the first with two variants. The first method in-
terpolates the function linearly at the particle position, and
uses finite differences derivatives. In the first variant (labeled
D), the first order two-points derivative is computed and kept sos
constant between two grid points. In order to give a smoother
description of the derivatives, a variant (labeled D’) is also
tested in which the three-points centered derivative is com-
puted and interpolated linearly at the particle position. For
D', the values of first order derivative at the lowest boundary s1o
is computed as:

0K

o KNLEV+1 — KNLEV
0o

s5)

NLEV-1 Oniev+1 — Oniev

This is assumed because K is expected to be linear near*"®
the surface, according to Monin-Obukhov similarity theory
where:

K(2) =kusz, (16)

320
for the neutral case, with proper modifications for diabatic

cases.
The second method (labeled A) is based on the Akima
(1991) cubic spline. For each interval it considers the pre-
vious and the next two adjacent intervals (for a total number _,,
of 6 grid points) to compute the coefficients of the interpo-
lating cubic polynomial. This algorithm reduces the number
of oscillations in the interpolating function compared to reg-
ular cubic splines and enforces the linearity when 4 points
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are collinear (Akima, 1991). Using this property, a linear
profile near the ground is imposed to the interpolating func-
tion by adding two fictitious points below the ground that are
collinear with the two lower grid points of the domain. In ad-
dition, to ensure the positivity of the interpolating functions,
the local algorithm of Fischer et al. (1991) is used, which
also preserves the continuity of first order derivatives.

3.3 Integration scheme and time-step selection

The most common integration scheme for SDE in atmo-
spheric transport models is the Euler-Maruyama forward
scheme:
Et+At:Et+aAt+bAW. (17)
The coefficients a and b come from Equation (12). The
Euler-Maruyama forward scheme is the simplest strong Tay-
lor approximation and turns out to be of order of strong con-
vergence v = 0.5 (Kloeden and Platen, 1992, p. 305).

By a rather simple modification of the Euler-Maruyama
scheme, i.e. adding the term:

%bb’(AWz —At), (18)
where b’ is the first-order derivative of b, the Milstein scheme
is obtained, which is of order of strong convergence v = 1.
It is worth noting that the strong order v =1 of the Milstein
scheme corresponds to the strong order v = 1 of the Euler de-
terministic scheme. Therefore, Milstein can be regarded as
the correct generalization of the deterministic Euler scheme
(Kloeden and Platen, 1992, p. 345). The additional term
uses only already computed quantities involved in the deter-
mination of the drift term of Equation (12). Preliminary ide-
alized tests do not show any appreciable accuracy improve-
ment with respect to the Euler-Maruyama scheme. However,
because they confirm the negligible extra computational cost
of this method, the Milnstein scheme will be used to integrate
the model.

In the meteorology component of IL-GLOBO, the Eule-
rian equations are solved with a macro time-step AT, which
depends basically on the horizontal resolution due to the
limitations imposed by the Courant number. Other time-
steps are involved in the Eulerian part but are not relevant
here. In typical implementations, AT ranges from 432 s for
362 x 242 point resolution (used for monthly forecasts') to
150 s for 1202 x 818 point resolution (used for high resolu-
tion weather forecasts?). The macro time-step is taken as the
upper limit for the solution of Equation (12). The time-step
needed to reach the required accuracy depends on the quan-
tities involved in determining the various elements in Equa-
tion (17).

"http://www.isac.cnr.it/dinamica/projects/forecast_dpc/
http://www.isac.cnr.it/dinamica/projects/forecasts/gla
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First, a straightforward constraint is that the time-step
must satisfy the relationship

v 2K Aty <<K‘al{
Oo

(see, e.g., Wilson and Yee, 2007), which expresses the re-
quirement that the average root-mean square step length must
be much smaller than the scale of the variations of K. This
gives rise to a limitation that is consistent with the surface
layer behavior of the diffusion coefficient, Eq. (16). The
condition expressed by Equation (19) makes At¢; vanish for
z — 0. Such behavior ensures the WMC is satisfied theoret-
ically, but clearly poses problems for numerical implemen-
tation (Ermak and Nasstrom, 2000; Wilson and Yee, 2007).
However, in the application of a global model, where parti-
cles can be distributed throughout the troposphere, this prob-
lem affects only a small fraction of particles in the vicinity
of the surface. Therefore, it can be dealt with by selecting
a Atpin small enough for the solution to be within the ac-
cepted error and, at the same time, large enough to not impact
on the overall computational cost. 375

In addition to Equation (19), another constraint is needed
to account also for the presence of maxima in the K pro-
file, which must be present if one considers the whole at-
mosphere. At maxima (or minima), Equation (19) gives an
unlimited At;, which is not suitable for the integration of the
model as it could cause the trajectory to cross the maximum
(or minimum), with a significant change in K (z) associated %°
to a change in 0, K sign. To avoid this problem, a further
constraint is introduced, based on the normalized second-
order derivative, which gives an estimation of the width of
the maximum. The constraint reads:

—1
)

19)

-1
(20)

385

2K
sk AL < K| 2K
Oo?

The above Equation has the property of limiting Aty accord-
ing to the sharpness of the K peak.

Taking the minimum among AT, At; and At, (and re-
placing “<” by “= C7p” in Equations (19) and (20)), gives: 54

Cr (OK\ 2 Cr
AT’zK(aa> >3

2K |t

At =min —_—
Oo?

. 2

where the parameter C'r quantifies the “much less” condition
and, therefore, must be than at least 0.1 or smaller.

Figure 2 shows the application of Eq. (21) for a K profile
representative of GLOBO (see Section 4) and a C'p = 0.01.
The At decreases in the presence of K gradients thanks to
condition (19), and is limited around the X maximum (where
0K /do = 0) by condition (20). The maximum of At =AT
is attained at higher levels.

It should be beared in mind that the method is based on 40
local quantities and may fail in case strong variations of K
occur in one time step along the particle path. To overcome
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Fig. 2. Values of integration time-step At for the diffusivity profile
shown by the red curve. The green line shows the contribution of
Eq. (19), the blue line the contribution of Eq. (20), and the black line
the combined condition (Eq. 21, with AT =432 s and Cr = 0.01).

the problem, an additional constraint is used to make the al-
gorithm non-local (or less local). Using the Aty computed at
the particle position at time ¢, two other time-step (At and
At _) are evaluated at the positions:

St =% +alty£bALY % (22)

The minimum At among Aty, Aty and At_ is then used to
advance the particle position X4 A¢.

3.4 Boundary conditions

The necessary boundary condition for the conservation of
the probability (and therefore of the mass) is the reflective
boundary (Gardiner, 1990, p. 121). Wilson and Flesch
(1993) show that the elastic reflection ensures the WMC if
the integration time-step is small enough. However, in cases
of non-homogeneous K, numerical implementation requires
that At vanishes as the particle approaches the boundary. For
models that focus on near surface dispersion, the time-step
needed to achieve the required accuracy can become very
small. Ermak and Nasstrom (2000) describe a theoretically
well founded method to speed-up (roughly by a factor of 10)
simulations of this kind.

In the case of IL-GLOBO, it will be shown that the elastic
reflection condition at o = 1, coupled with the adaptive time
step algorithm described in Section 3.3, can ensure a good
approximation of the solution while maintaining affordable
the computational cost.

4 Model verification: the well-mixed condition
In order to verify the vertical diffusion module of IL-

GLOBO, a series of experiments was performed with a 1-D
version of the code and then tested in a preliminary version



405

410

415

420

425

430

6
45000 1.2
40000 |
11
35000 |
30000 - 108
'E 25000 ‘e
=] 106 =
Y | \+ -2
& 20000 1\, =
15000 | 104
10000 +
102
5000 |-
O 02 0.4 0.6 0.8 70
o

Fig. 3. Average GLOBO profiles of p (green symbols) and ¢/g
(blue symbols) as a function of vertical coordinate o, and their ana-
lytical fits (Eq. 23 and Eq. 24, lines of the same colors).

of the full 3-D model. Input profiles were obtained by run-
ning the low-resolution version of GLOBO (horizontal grid
of 362 x 242 cells and 50 vertical levels evenly spaced in o)
starting at 2011-03-11 00:00 UTC. After 36 hours of simula-
tion (12:00 UTC), averages on ¢ = const surfaces were per-
formed for K, p and ®, obtaining vertical profiles as a func- .
tion of o. Fields of p and & were averaged over the whole
domain. As far as K is concerned, averages were performed
for latitude between +60° and -60° North in daytime (longi-
tude between -45° and +45° East) and nighttime (longitude
between +135° and -135° East) conditions, over land and ,,,
sea separately. The most intense K profile is selected, which
corresponds to the daytime conditions over land. Profiles of

p and z are rather smooth and regular over space and time,
while K displays a large variability. The profiles were fitted
with analytical functions derived combining the hydrostatic ,s
equation and the perfect gas law. The following analytical
expressions were used:

p(o) = pooFa/oth), (23)

and: 40
—Ral'/9 _1)T,

2(0) = u (24)

F )
with Tp = 288.0 K, po = 1.2kgm~3and ' = —0.007 K m .
As a consequence of the hydrostatic perfect gas assump-
tion, by expressing the density p in sigma vertical units4ss
(po=p ] % ‘) and using Equations (24) and (23), the follow-
ing constant value is obtained:

T
_ poRaTy ] (25)
g 460

o

Figure 3 shows the GLOBO averaged profiles and their fit-
ting functions for the density p and the geopotential height
®g~! as function of 0.
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Fig. 4. Diffusivity profiles used in the experiments. The symbols
represents the data from GLOBO and the lines their fitting function.
The ‘average’ profile is shown in red, while the ‘peaked’ profile is
shown in green. The functional form of both profiles is described
by Eq. (26).

As far as the K profile is concerned, the function

K(z)=Azexp[—(B2)“], (26)

is used to account for the specific K features: it should dis-
play a linear behavior near the surface, must tend to zero
near the boundary layer top® and, therefore, must display a
maximum at some height. In Equation (26), A =0.29 ms~!
was first determined according to average surface-layer prop-
erties (the first GLOBO vertical level), and corresponds to
a friction velocity u, ~0.7 ms~!. Then, the other two pa-
rameters were let to vary to fit the average profile giving
B =13x10"%m 'and C = 1.6.

Although the above profile is representative of the typi-
cal GLOBO diffusivity, real profiles can be remarkably less
regular, creating challenging conditions for the model. For
this reason, a profile was selected among those showing iso-
lated strong maximum near the ground. This is typical of
strong convective conditions just after sunrise. Fitting Equa-
tion (26) on this second profile gives A =0.3ms™!, B =
4.0x 1073 m~! and C =4.5. Figure 4 reports the GLOBO
‘averaged’ and ‘peaked’ K profiles as function of .

4.1 Determination of the optimal setting for the adap-
tive time-step selection algorithm

The first series of experiments concerns the optimization of
the adaptive scheme for At, i.e., the selection of the best
suited value for the coefficient Cr in Equation 21.
Simulations were performed in flow conditions described
by Equations (23), (24) and (26), distributing particles with
number concentration proportional to p. For the WMC to be

3In GLOBO, K also accounts for a part of the instability gen-
erated by moist convection and therefore it may not vanish at the
boundary layer top.
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Fig. 5. Dispersion experiment with different choices of parame-
ter Cr. Top panel: diffusivity profile (black line) and At profiles
for C'r = 0.5 (light blue), C7 = 0.1 (green), C'r = 0.01 (red) and
Cr =10.001 (blue). Bottom panel: normalized concentration pro-
files for different C'r (Line colors as in the top panel).

satisfied, this distribution must remain constant as the time
evolves. Equation (12) was integrated for 4 x 10° particles
and for 200 macro time-steps, each 432 s long, for a total of
T =86400 s =24 h. The actual time-step used is given by
Equation (21) with the additional lower limit Atmin =0.01.
Simulations were performed using 12 cores of an Intel Xeon ,o
machine. Since the initial condition was already well-mixed
(C x p), the simulation time was considered sufficient to as-
sess the skill of the model in satisfying the WMC. At the end
of the simulation, final concentration profiles were computed
in “o volume”, i.e., c(c) = N(o)(Ac) !, where N(o) is the
number of particles between o and o + Ac. The skill of the 4,
model in reproducing the WMC was evaluated using the root
mean square error (RMSE) of the final normalized concen-
tration profile with respect to the normalized density profile
(derived using Equation 25).

Figure 5 reports the different profiles of concentration af- ss
ter 24 hours of simulation computed using different values
of Cr. The shaded region represents the interval between 3
standard deviations from the expected value. RMSE values
for each simulation are reported in Table 1 along with the
computation time. The RMSE error becomes comparable to sio
the statistical error for C'7 = 0.01, which is selected as the
optimal value. In order to evaluate the possible dependency
of Cr on the number of particles, two additional sets of runs
were performed with 10° and 16 x 10° particles that corre-
spond to halving and doubling, respectively, the statistical ss
error of the base experiment. Results are reported in Figure 6
which shows that, in the considered range, the optimal C'r is
quite independent of the number of particles.

It is worth noting that the time-step selection algorithm
with the proper choice of Cp ensures that the WMC is also sz
satisfied at the reflective boundary too, as mentioned in Sec-
tion 3.4.

7
Cr | RMSE | Time [s]
0.5 0.044 76
0.1 0.037 238
0.01 | 0.021 1172
0.001 | 0.021 7317

Table 1. RMSE and execution time for different C'r.
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Fig. 6. RMSE obtained from experiments made with 10° (red),
4x10° (green) and 16 x 10° (blue) particles as a function of C'r.

4.2 Evaluation of the interpolation algorithms

In the subsequent set of experiments, the model skill in re-
producing the WMC was evaluated for the interpolation tech-
niques D, D’ and A described in Section 3.2.

In the first experiment, the analytical fields described by
Equations (23), (24) and (26) with the parameters of the ‘av-
erage’ diffusivity profile were resampled on a 50 point reg-
ular grid. This provides a discrete version of the experiment
described in the previous section, with the same vertical res-
olution of the GLOBO original fields.

The particle number, initial distribution and simulation
time are the same as in the experiment described in section
4.1. The integration time-step is selected using the local al-
gorithm. The time-step selection algorithm requires the com-
putation of the second order derivative of K, which is not
possible for the D interpolation scheme. Therefore, it is es-
timated using finite differences of the first order derivative.
The results of this experiment are shown in Figure 7. In the
upper panel, the integration time-step profiles of the three
simulations and the Akima interpolated diffusion coefficient
profile, are displayed. The lower panel shows the normalized
distribution of the particle after 24 hours of simulation along
with the expected value. Table 2 displays the integration time
and RMSE obtained for the various experimental settings.

The time-step profiles are similar, except for the A profile
around the region of maximum of K, where it shows strong
variations and, on the average, is longer than the others.
Looking at the distribution of particles (lower panel), it re-
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Fig. 7. Experiments with the sampled ‘average’ diffusivity distri-
bution for the interpolation algorithms D (blue), D’ (green) and A
(red). Top panel: Diffusivity profile as interpolated by A (black) and
At profiles for the different interpolation settings. Bottom panel:
Normalized final concentration and expected distribution (black).

Interpolation algorithm | exec. time | RMSE
A 237 s 0.025
D 155s 0.023
D’ 162's 0.044

Table 2. Execution time and RMSE for experiments made with
the sampled ‘averaged’ diffusivity distribution, varying interpola-
tion method.

sults that simulations with A and D interpolation algorithms sso
both satisfy the WMC within the statistical limit, while the
simulation with the D’ algorithm fails to maintain the well
mixed state, in particular near the ground. Additional ex-
periments (not reported) show that in order to obtain a well
mixed solution with D’, resolution must be doubled, at least.
The problem is probably related to the definition of deriva-
tives of K between grid points. In fact, although D’ computes sss
derivatives at higher order of approximation than D, they are
not consistent with a linear variation of K. Although the use
of D’ can be appropriate for slowly varying and monotone
functions like p and z, it turns out to be unsuitable for the
more complex K profile which, in addition, affects both the s
Wiener stochastic term and the drift term. For these reasons,
the D’ interpolation scheme is not used in the following ex-
periments.

The second experiment concerns the ‘peaked’ profile. In
this case, the K profile is used directly, without the resam- ses
pling of the fitting function. Simulations with A and D algo-
rithms were performed with both local and non-local time-
step selection algorithm. Figure 8 reports the time-step and
concentration profiles, while execution times and RMSEs are
shown in Table 3. Although the integration time-step profiles sz
look very similar for the local and non-local algorithms, the
small differences have large impact on the results: the local
algorithm strongly fails in reproducing the WMC for both

Rossi and Maurizi: IL-GLOBO: vertical diffusion module

Interpolation algorithm ‘ At selection ‘ exec. time ‘ RMSE

A local 313s 0.042
D local 181s 0.065
A non-local 1122 s 0.016
D non-local 593 s 0.022

Table 3. Execution time and RMSE for experiments made with the
‘peaked’ diffusivity distribution, varying interpolation method and
At selection algorithm.

1000 40
100 1
AR TANE R TN
3 1 N TN 20 E

01 \ g
E
=}
a
o)
0.9 0.95 1.0 0.9 0.95 1.0
o (e}

Fig. 8. Same as in Fig. 7 for experiments with the ‘peaked’ diffusiv-
ity distribution. Results obtained using the local (left) or non-local
(right) At selection algorithm.

interpolation schemes, especially for D. Conversely, the non-
local algorithm turns out to be effective in selecting the ap-
propriate time-step even in presence of strong gradients and
isolated maxima. This is reflected on its higher computa-
tional cost (see Table 3).

4.3 Implementation on the 3-D model

A preliminary test of the algorithms on the 3-D model has
been performed. The interpolation algorithm has been imple-
mented in a simplified quasi-1-D form, where the diffusion
coefficient has been considered to be horizontally constant
between grid points. IL-GLOBO uses the same paralleliza-
tion of GLOBO, with particle exchanged between processes
at each macro time-step. Particles are first advected horizon-
tally for a macro time-step using their deterministic velocity,
and then ‘diffused’ in the vertical according to Equation (12).

After 12 h of spinup, 5 x 10° particles are released with a
vertical distribution proportional to the average density pro-
file, and randomly and homogeneously distributed in the hor-
izontal. Particle statistics are computed after 24 h from the
release.

A and D interpolation algorithm were tested using the non-
local time-step selection. It is found that, while interpolation
scheme A maintains the WMC reasonably (RMSE=0.024),
the time-step selection algorithm for scheme D requires ex-
tremely short time-steps ( << Atin, see Section 4.1) in the
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Fig. 9. Distribution of At requirement for the condition on the first
order derivative (Eq. 19) as a function of o for interpolation algo-
rithms A (left) and D (right).
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Fig. 10. Normalized distribution of particles for the 3D experiment.
The initial distribution  (p) (black) and the final distributions ob-
tained using the A interpolation scheme (red) and the D interpo-
lation scheme (blue). Dashed lines show the limit of 3 standard
deviation around the initial distribution.

region between o = 0.9 and the lowest boundary (see Fig-
ure 9). Figure 10 shows the result of an experiment where
the WMC compliance of schemes A and D was tested with
the lower limit for At changed to At,;, =107° for D. It
can be observed that, for the D scheme, strong fluctuations
are still present in the same region where the required time-
step exceeds the lower limit. This is likely to be caused by the
occurrence of strong gradients that can be even larger than in
the ‘peaked’ case, near points with extremely small values of
K. In these cases, the A scheme interpolates with a smoother
function which reduces the problem.

5 Conclusions

The development of a vertical Lagrangian diffusion model
is presented. This constitutes the first step in building IL-
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GLOBO, a Lagrangian particle model integrated in the Eule-
rian global circulation model GLOBO. Critical details of the
implementation have been analyzed and discussed.

The model is developed including the variable density
term and the proper coordinate transformation term. The
numerical scheme selected to integrate the SDE is the Mil-
stein scheme, which is of order of strong convergence v = 1.
Therefore, it should be regarded as the natural extension of
the deterministic Euler scheme, in contrast to the so-called
Euler-Maruyama scheme, which is merely the “transcrip-
tion” of the deterministic Euler scheme, but not its equiva-
lent.

An adaptive time-step scheme is proposed to ensure the
consistency of the model implementation with the WMC re-
quirements. The time-step selection algorithm is limited not
only by the condition imposed by the spatial scale of gra-
dients, but also takes into account the scale of the width of
maxima and minima of the diffusion coefficient, where the
former criterium fails. It is shown that this algorithm ensures
that the error is within an acceptable range also at the reflect-
ing boundaries. However, in case of isolated maxima, this
scheme may fail. The implementation of a non-local algo-
rithm, which evaluates At in 2 additional points, is proposed
in order to solve the problem.

Two numerical interpolation and derivation schemes are
implemented and tested. The first is based on the linear in-
terpolation of K and it is presented in two versions: one
(D) keeps a constant first order derivative between two grid
points, while the other (D) uses linearly interpolated deriva-
tives in the same interval. The second scheme (A) is based
on a modified Akima (1991) interpolation algorithm with a
local algorithm that ensures the positivity of the interpolating
function (Fischer et al., 1991).

It is found that, although the method D’ uses derivatives
of higher order of approximation, it creates a local incon-
sistency between the linearly interpolated function and its
derivatives and prevents the model from fulfilling the WMC.
The other two schemes (D and A) both satisfy the WMC but
extremely peaked profiles of K may require the use of the
non-local time-step selection algorithm.

A test with a preliminary implementation of the fully 3D
model (IL-GLOBO) shows that, while the A scheme display
a correct behavior, the D interpolation scheme requires and
extremely strong reduction of the integration time-step that
prevents the WMC to be satisfied in reasonable time.

Code availability

The numerical code of the vertical diffusion module (Fortran
90) is released under the GNU Public Licence and is avail-
able at the BOLCHEM website*.

The software is packed as a library using autoconf,
automake and 1ibtools which allows for configuration

“http://bolchem.isac.cnr.it/source_code
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and installation in a variety of systems. The code is devel- ess
oped in a modular way, permitting the easy improvement of
physical and numerical schemes.

The GLOBO model is available upon the signature of
an agreement with the CNR-ISAC Dynamic Meteorology

Group (contact: p.malguzzi@isac.cnr.it). 700
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