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Abstract 5 

Fire is an important global ecological process that influences the distribution of biomes, with 6 

consequences for carbon, water, and energy budgets. Therefore it is impossible to appropriately 7 

model the history and future of the terrestrial ecosystems and the climate system without including 8 

fire. This study incorporates the process-based prognostic fire module SPITFIRE into the global 9 

vegetation model ORCHIDEE, which was then used to simulate burned area over the 20th century. 10 

Special attention was paid to the evaluation of other fire regime indicators such as seasonality, fire 11 

size and fire length, next to burned area. For 2001–2006, the simulated global spatial extent of fire 12 

agrees well with that given by satellite-derived burned area datasets (L3JRC, GLOBCARBON, 13 

GFED3.1); and 76–92% of the global burned area is simulated as collocated between the model 14 

and observation, depending on which dataset is used for comparison. The simulated global mean 15 

annual burned area is 346 Mha yr-1, which falls within the range of 287-384 Mha yr-1 as given by 16 

the three observation datasets; and is close to the 344 Mha yr-1 by the GFED3.1 data when crop 17 

fires are excluded. The simulated long-term trend and variation of burned area agree best with the 18 

observation data in regions where fire is mainly driven by climate variation, such as boreal Russia 19 

(1930–2009), and Canada & US Alaska (1950–2009). At the global scale, the simulated decadal 20 

fire variation over the 20th century is only in moderate agreement with the historical 21 

reconstruction, possibly because of the uncertainties of past estimates, and because land-use 22 

change fires and fire suppression are not explicitly included in the model. Over the globe, the size 23 

of large fires (the 95th quantile fire size) is underestimated by the model for the regions of high 24 

fire frequency, compared with fire patch data as reconstructed from MODIS 500-m burned area 25 

data. Two case studies of fire size distribution in Canada & US Alaska, and southern Africa 26 

indicate that both number and size of big fires are underestimated, which could be related with 27 

short fire patch length and low daily fire size. Future efforts should be directed towards building 28 
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consistent spatial observation datasets for key parameters of the model in order to constrain the 1 

model error at each key step of the fire modelling.  2 

1 Introduction 3 

 Fire is an important process in the Earth system, that existed long before the large-scale 4 

appropriation of natural ecosystems by humans (Bowman et al., 2009; Daniau et al., 2013). Fires 5 

have multiple biophysical and ecological consequences, and they are also an important source of 6 

atmospheric trace gases and aerosol particles (Langmann et al., 2009; van der Werf et al., 2010). 7 

By damaging some plant types and concurrently promoting others, fires play an important role in 8 

shaping vegetation structure and function (Bond et al., 2005; Pausas and Keeley, 2009). Fire 9 

changes the surface albedo, aerodynamic roughness, and the sensible and latent heat fluxes (Liu et 10 

al., 2005; Liu and Randerson, 2008). These fire-induced ecosystem changes could further 11 

influence the surface energy budget and boundary-layer climate (Beck et al., 2011; Randerson et 12 

al., 2006; Rogers et al., 2013). In addition, gas and aerosol species emitted to the atmosphere from 13 

biomass burning modify atmospheric composition and the radiative forcing balance (Tosca et al., 14 

2013; Ward et al., 2012). Fire aerosols also degrade air quality and cause increased health risk 15 

(Marlier et al., 2013). Thus fire process and biomass burning emissions need to be included in the 16 

Earth system models, which are often used to investigate the role of fire in past, present and future 17 

biophysical and biogeochemical processes. 18 

 The type of fire model embedded in global vegetation models has evolved from simple fire 19 

hazard models (Thonicke et al., 2001) to the current state-of-the-art process-based fire models 20 

(Andela et al., 2013; Kloster et al., 2010; Lasslop et al., 2014; Li et al., 2013; Pfeiffer et al., 2013; 21 

Prentice et al., 2011) and empirical models with optimization by observation (Knorr et al., 2014; 22 

Le Page et al., 2014). The majority of fire models explicitly simulate ignitions from natural and 23 

human sources, fire propagation, fuel combustion and vegetation mortality, ideally at daily or even 24 

finer time steps. Recently, Pfeiffer et al. (2013) have incorporated multi-day burning, 25 

"coalescence" of fires and interannual lightning variability in the LPJ-LMfire model. Li et al. 26 

(2013) incorporated social and economic factors in the human ignition scheme. Lasslop et al. 27 
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(2014) investigated the model sensitivity to the climate forcing and a number of spatial parameters. 1 

Evaluation of fire models in these studies at the global scale has mainly focused on models’ 2 

capability in broadly reproducing the large-scale distribution of fire activity during the past decade 3 

as revealed by satellite observations. Less attention was paid to the simulation of long-term 4 

historical fire trend and variation, and fire regimes, which may include the number, size and 5 

intensity of fires -- essential variables governing fire-climate-vegetation feedbacks (Archibald et 6 

al., 2013; Barrett et al., 2011; Hoffmann et al., 2012).  7 

 It is well known that across all fire-prone ecosystems, the magnitude and trend of burned area 8 

depend strongly on large fire events that represent only a low fraction in total number of fires 9 

(Kasischke and Turetsky, 2006; Keeley et al., 1999; Stocks et al., 2002). These large fires have 10 

profound impacts on landscape heterogeneity (Schoennagel et al., 2008; Turner et al., 1994), 11 

biological diversity (Burton et al., 2008) and may also induce a higher rate of carbon emissions 12 

compared with small fires (Kasischke and Hoy, 2012). Besides, the social and economic 13 

consequences of extreme big fires are more severe (Richardson et al., 2012). In some ecosystems, 14 

past climate warming was shown to have increased the occurrence of large fires (Kasischke et al., 15 

2010; Westerling et al., 2006), and fire regimes were projected to even further deviate from 16 

historical range given the future climate change (Pueyo, 2007; Westerling et al., 2011). Given the 17 

importance of these big fires, it is essential that we should evaluate the ability of fire models to 18 

simulate their occurrence.       19 

 In this study, we have incorporated the SPITFIRE fire model (Thonicke et al., 2010) into the 20 

global land surface model ORCHIDEE (Krinner et al., 2005). This allowed us to simulate global 21 

fire activity during the 20th century, and to perform an in-depth model evaluation. In present study, 22 

we focus on evaluating the ORCHIDEE-SPITFIRE model performance in simulating fire 23 

behaviours and regimes, including ignitions, fire spread rate, fire patch length, fire size 24 

distribution, fire season and burned area. Quantification of fire carbon emission as a component of 25 

the terrestrial carbon balance will be presented in a companion paper (Part 2). Specifically, the 26 

objectives of the present study are: (1) to evaluate simulated burned area using multiple datasets 27 

including that from satellite observation, government fire agency, and historical reconstruction 28 
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over the 20th century (Sect. 3.1, 3.2, 3.3, 3.4. 3.5); (2) to compare simulated fire size distribution 1 

with observations; in order to investigate especially the model’s ability to simulate large fire 2 

occurrence (Sect. 3.6); and (3) to examine potential sources of model error in order to identify 3 

future research need and potential model improvements (Sect. 4.2).  4 

2 Data and methods  5 

2.1 Model description  6 

 The processes and equations of the fire model SPITFIRE, as described by Thonicke et al. 7 

(2010), were implemented in the vegetation model ORCHIDEE (Krinner et al., 2005). The 8 

SPITFIRE model operates on a daily time step, consistent with the STOMATE sub-module in 9 

ORCHIDEE, which simulates vegetation carbon cycle processes (photosynthates allocation, 10 

litterfall, litter and soil carbon decomposition). The major processes within SPITFIRE are briefly 11 

described below with applicable minor modifications (see Thonicke et al., 2010 for more detailed 12 

description). 13 

   1. Daily Potential ignition includes ignitions from lightning and human activity. Remotely 14 

sensed lightning flashes (Cecil et al., 2012) were obtained from the High Resolution Monthly 15 

Climatology of lightning flashes by the Lightning Imaging Sensor–Optical Transient Detector 16 

(LIS/OTD) (http://gcmd.nasa.gov/records/GCMD_lohrmc.html). The LIS/OTD dataset provides 17 

annual mean flashes over 1995–2000 on a 0.5o grid at monthly time step. This single annual data 18 

was repeated each year throughout the simulation. Following Prentice et al. (2011), the proportion 19 

of lightning flashes that reach the ground with sufficient energy to ignite a fire is set as 0.03. This 20 

value differs from that in the original SPITFIRE model as implemented in LPJ-DGVM (Thonicke 21 

et al., 2010); there a cloud-to-ground (CG) flashing ratio of 0.2 was used, followed by a further 22 

ignition efficiency of 0.04.  23 

 To estimate potential ignitions by humans, the original equations (3) and (4) in Thonicke et al. 24 

(2010) were modified for the purpose of unit adjustment, as below: 25 

IH = PD × 30.0 × e−0.5×√PD × a(ND)/10000       Eq. (1) 26 

where IH is the daily ignition number (1 day-1 km-2), PD is population density (individuals km-2). 27 
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The parameter a(ND) (ignitions individual-1 day-1) represents the propensity of people to produce 1 

ignition events; and is a spatially explicit parameter as in Thonicke et al. (2010) (Supplement Fig. 2 

S1).  3 

 2. Daily Fire numbers are derived by scaling the potential ignitions (which include human 4 

and lightning ignitions) with the fire danger index (FDI), which is derived by comparing simulated 5 

daily fuel moisture to a Plant Functional Type (PFT) dependent moisture of extinction. All fires 6 

with a fireline intensity less than 50 kW m-1 are assumed unable to propagate and are suppressed 7 

as stated by Thonicke et al. (2010).  8 

 3. Daily mean fire size is calculated by assuming an elliptical shape of fire, with the major 9 

axis length being the product of fire spread rate and daily fire active burning time (i.e., the time 10 

that fires actively burn during that day). Fire spread rate is obtained using the Rothermel equation 11 

(Rothermel, 1972; Wilson, 1982). Fire active burning time is modelled to increase as a logistic 12 

function of daily fire danger index, with a maximum of 241 minutes (4 hours). Fire frontline 13 

intensity is calculated following Byram (1959), as a product of fuel heat content, fuel consumption, 14 

and fire spread rate. Note that over a grid cell of 0.5 degree, the model simulates a set of 15 

homogeneous fires with all their characters (including fire size) being identical among each other, 16 

i.e., the model represents the temporal but not the spatial heterogeneity over a given grid cell. 17 

Daily grid cell burned area is calculated as the product of fire number and mean fire size.  18 

 4. Fire-induced tree mortality is determined from the combined fire damage of tree crown 19 

and cambium. Crown damage depends on the fraction of tree crown that is affected by crown 20 

scorch, which further depends on tree crown length, tree height and fire flame height. Fire flame 21 

height is derived from surface fire intensity. Cambial damage depends on fire residence time and a 22 

prescribed PFT-dependent critical time. Note that SPITFIRE simulates only crown scorch, but not 23 

active crown fires that could propagate through crown fire spread.  24 

 5 Fire carbon emissions include emissions from surface fuel and crown combustion. Surface 25 

fuels are divided into four classes (1-h, 10-h, 100-h, 1000-h), whose designation in terms of hours 26 

describes the order of magnitude of time required to lose (or gain) 63% of its difference with the 27 

equilibrium moisture content under defined atmospheric conditions (Thonicke et al., 2010). Fuel 28 
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combustion completeness is simulated as a function of daily fuel moisture, with a smaller fraction 1 

of fuel being consumed at higher fuel moisture. Crown fuel consumption is related to the fraction 2 

of crown that is scorched by fire flame. The values of all PFT-dependent parameters follow Table 3 

1 in Thonicke et al. (2010).  4 

2.2 Further modifications made to the SPITFIRE equations 5 

 Fires in dry climate regions are limited by the availability of fuel on the ground (Krawchuk 6 

and Moritz, 2010; Prentice et al., 2011; van der Werf et al., 2008b). This constraint is implicitly 7 

included in SPITFIRE equations because fire occurrence is limited by a fireline intensity of 50 kW 8 

m-1. However during model testing, we found that this threshold is not enough to limit fires in 9 

low-productivity regions (with modelled annual Net Primary Productivity or NPP of 0 – 400 g C 10 

m-2 yr-1, corresponding to an annual precipitation of 0 – 400 mm); and too much burned area was 11 

simulated for arid and semi-arid regions (see Supplement Fig. S2). Following Arora and Boer 12 

(2005), we therefore introduced a new factor that limits the ignition efficiency, depending on the 13 

availability of ground fuel. Ignition efficiency varies linearly between zero when ground fuel is 14 

lower than 200 g C m-2, to unity when ground fuel is above 1000 g C m-2. Here, ground fuel 15 

includes aboveground litter and live biomass for grassland PFTs and aboveground litter only for 16 

tree PFTs.  17 

 The equations for surface fuel combustion completeness given by Thonicke et al. (2010) 18 

follow Peterson and Ryan (1986), which allow combustion completeness to decrease with 19 

increasing fuel wetness and level out when fuel wetness drops below a threshold (Fig. 1). During 20 

model testing, we found that because fuel wetness frequently approaches zero, simulated fuel 21 

combustion completeness is much higher than field experiment values reported by van Leeuwen et 22 

al. (2014). We therefore modified the maximum combustion completeness for fuel classes of 23 

100-hr and 1000-hr to be the same as mean combustion completeness by van Leeuwen et al. (2014) 24 

depending on different biomes (PFTs). This biome-dependent maximum combustion completeness 25 

is 0.48 for tropical broadleaf evergreen and seasonal forests, 0.45 for temperate forest, 0.41 for 26 

boreal forest, 0.85 for grassland, and 0.35 for cropland. These values are based on a preliminary 27 
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version of results by van Leeuwen et al. (2014). 1 

2.3 Input dataset and the simulation protocol 2 

 The six-hourly climate fields used to drive the model were from the CRU-NCEP dataset 3 

(http://nacp.ornl.gov/thredds/fileServer/reccapDriver/cru_ncep/analysis/readme.htm). Population 4 

density for the 20th century was retrieved from the History Database of the Global Environment 5 

(HYDE) as compiled by the Netherlands Environmental Assessment Agency 6 

(http://themasites.pbl.nl/tridion/en/themasites/hyde/download/index-2.html). From 1850 till 2005, 7 

the HYDE gridded data are available for the beginning of each decade and for 2005. Annual data 8 

were linearly interpolated within each decade, and further re-gridded to 0.5o resolution. For 9 

2006–2009, population density was set constant at the 2005 value.  10 

  A three-step simulation protocol was used. For the first two steps, the atmospheric CO2 was 11 

fixed at the pre-industrial level (285 ppm) and climate forcing data of 1901-1930 were repeated in 12 

loop. The first step was a without-fire spin-up from bare ground lasting for 200 years (including a 13 

3000-year run of soil-only processes to speed up the equilibrium of mineral soil carbon). The 14 

second step was a fire-disturbed spin-up lasting for 150 years, with fire being switched on to 15 

account for fire disturbances in the pre-industrial era. Fire ignitions from human activity were 16 

included in the fire-disturbed spin-up, with the human population density being fixed at 1850 level. 17 

This procedure assumes that the model reached an equilibrium state under conditions of 18 

pre-industrial atmospheric CO2 and climate and fire disturbance. 19 

 The third step was a transient simulation from 1850 to 2009 with increasing atmospheric CO2, 20 

climate change, and varying human population density. The climate data used for the transient 21 

simulation of 1850–1900 are a repeat of 1901–1910, for the sake of stability. Before entering the 22 

transient simulation, the mineral soil carbon stock was verified to vary within 0.1% (with a slight 23 

global carbon sink of 0.13 Pg C yr-1 and a negligible annual trend of 0.003 Pg C yr-1 during the 24 

last 50 years of the fire-disturbed spin-up, excluding all crops, for which fires are not simulated). 25 

For the current simulation, the vegetation dynamics module of ORCHIDEE was turned off, i.e., 26 

the simulation used a static current-day vegetation distribution map (converted into the 13-PFT 27 

http://themasites.pbl.nl/tridion/en/themasites/hyde/download/index-2.html
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map in ORCHIDEE based on the IGBP 1-km vegetation map, 1 

http://webmap.ornl.gov/wcsdown/dataset.jsp?ds_id=930), and no land cover change was included. 2 

This static land cover could affect the model-observation agreement in terms of long-term trend 3 

and variation of burned area for regions where land use change fires dominated the burned area.   4 

 Fires on croplands are not simulated in ORCHIDEE, even though the model has two PFTs 5 

that approximately represent C3 and C4 crops (but without realistic species-specific phenology). 6 

Magi et al. (2012) show that cropland fire seasons differ significantly from those of natural fires, 7 

warranting a special treatment of cropland fires in global fire modelling (Li et al., 2012). Cropland 8 

fires make up a rather small proportion of the total global amount in terms of both burned area (4.3% 9 

according to the GFED3.1 dataset) and carbon emissions (less than 2% according to GFED3.1), 10 

given that the "small" fires (Randerson et al., 2012) are not formally included and recommended 11 

in the GFED dataset (http://www.globalfiredata.org/data.html).  12 

 Further, deforestation fires are not explicitly simulated. Evidences show that deforestation 13 

fires occur during the "time window" when climate is dry enough to allow complete burning of 14 

deforested fuels (van der Werf et al., 2008a). We expect the simulated daily fire danger index (i.e., 15 

an indicator of suitable climate conditions for burning) is able to partly capture this "fire climate 16 

window" that's necessary for deforestation fires to happen. Thus the model is able to implicitly 17 

account for some deforestation fire activity in tropical and subtropical forests, but not for all of 18 

them, because the use of a static land cover map. Preliminary analysis shows that the model could 19 

capture ~67% of the deforested area by fires as given by the GFED3.1 data for closed-canopy 20 

forests in the region of 20oS-20oN for 2000-2005 (2.7 Mh yr-1 vs. 4.0 Mha yr-1) (Fig. S3), with the 21 

seasonal variation being moderately represented (Fig. S4).  22 

2.4 Datasets used to evaluate model performance 23 

  Several datasets were prepared and used to compare simulated burned area and fire regimes 24 

with various observations. 25 
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2.4.1 Spatially gridded burned area data 1 

2.4.1.1 Satellite-derived burned area data 2 

 The GFED3.1 dataset provides monthly burned area data at 0.5o resolution for 1997–2009 3 

with global coverage (Giglio et al., 2010). The GFED3.1 burned area was mainly generated using 4 

MODIS imagery with additional images from TRMM VIRS and ERS ATSR. The fire carbon 5 

emissions were also provided which are model simulation results by applying a modified version 6 

of the CASA model (van der Werf et al., 2010).  7 

 L3JRC dataset provides daily global burned area data at 1-km resolution for April 2000 to 8 

March 2007; these data were generated from the 1-km SPOT VEGETATION satellite imagery 9 

(Tansey et al., 2008). This dataset was assembled at 0.5o resolution at monthly time step for use in 10 

the present study.  11 

 GLOBCARBON burned area data was produced from a combination of SPOT 12 

VEGETATION and ERS2–ATSR2/ENVISAT AATSR data as one of the four land products of the 13 

ESA GLOBCARBON initiative (Plummer et al., 2007). Global burned area data were provided at 14 

monthly resolution with four different spatial resolutions (1-km/10-km/0.25°/0.5°) covering 15 

1998-2007.  16 

2.4.1.2 Historical burned area reconstruction for the 20th century 17 

 To evaluate the simulated burned area for the 20th century, historical burned area data were 18 

used. These data, which cover the period 1900–2000, were compiled by Mouillot and Field (2005) 19 

at 1o resolution and monthly time step (hereafter referred to as the Mouillot data). The data were 20 

generated by first synthesizing the burned area information from published data at national or 21 

regional scale for the periods of the 1980s or 1990s, further interpolated spatially at the global 22 

scale at 1o resolution using the available satellite-derived active fire distribution. Then national fire 23 

statistics, historical land-use practices and other fire-relevant quantitative information (such as tree 24 

ring reconstruction) were used to build the historical fire temporal trend to interpolate historical 25 

burned area. 26 

 When comparing the burned area given by GFED3.1 and the Mouillot data for their 27 
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overlapping period of 1997–2000, the global total burned area given by Mouillot and Field (2005) 1 

is 52% higher than GFED3.1 with significant regional discrepancies. As the satellite-derived data 2 

is considered to be more reliable than the national or regional statistical data at a large spatial scale, 3 

a bias correction was performed on the Mouillot data. We calculated the ratio of burned area by 4 

the Mouillot data to GFED3.1 for 1997–2009 for each region (Fig. 2b) and also the globe. This 5 

ratio was then applied to correct for each decade the burned area data in the Mouillot dataset.  6 

 Note that the regional breakdowns of the globe by GFED3.1, and Mouillot and Field (2005) 7 

are different (Fig. 2). For comparison of burned area for the 20th century, the regional breakdown 8 

by Mouillot and Field (2005) was adopted as it is based on maximum temporal stability (error 9 

consistency), a highly important factor when comparing long-term data. 10 

2.4.2 Fire patch data 11 

   Alaskan and Canadian fire management agencies have maintained historical fire monitoring 12 

for a relatively long time (dating back to 1950s). The historical fire information for the US Alaska 13 

was retrieved from the Alaska Interagency Coordination Center (AICC, 14 

http://afsmaps.blm.gov/imf_firehistory/imf.jsp?site=firehistory). The fire information for Canada 15 

was from the Canadian Wildland Fire Information System (http://cwfis.cfs.nrcan.gc.ca/ha/nfdb). 16 

These datasets contain information on fire location, fire size (burned area), fire cause, and for 17 

some fires the fire report and out date. Note, in these two datasets fires with all sizes are included.  18 

 Archibald et al. (2010) classified the MCD45A1 500-m MODIS fire burned area data into 19 

individual fire patches for the southern African region (Africa south to the Equator). This fire 20 

patch information includes location and patch size (with minimum fire size of 0.25 km2). The fire 21 

patch data for Canada & US Alaska, and southern Africa are used to evaluate simulated fire size 22 

distribution.  23 

2.4.3 Fire season length and the 95th quantile fire size 24 

 The global fire season length and the 95th quantile fire size data are provided by Archibald et 25 

al. (2013). The fire season length was quantified as the number of months required to reach 80% 26 
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of the annual burned area using GFED3.1 data. The MCD45A1 burned area product at 500-m 1 

resolution was used to derive the individual fires by applying a flood-fill algorithm, and the 95th 2 

quantile fire size in each grid cell was extracted to represent the size of large fires.  3 

2.5 Methods to compare model simulation with observation 4 

2.5.1 Metrics used to evaluate modelled burned area against GFED3.1 data 5 

 As the GFED3.1 data is most widely used by the fire modelling community, the model results 6 

are evaluated against GFED3.1 data for 1997–2009. Three aspects were examined: mean annual 7 

burned area, interannual variability (IAV) and seasonality in burned area. The evaluation was done 8 

for each GFED3.1 region (Fig. 2). 9 

 For the model error in terms of mean annual burned area (BA), we use the relative difference: 10 

    EBA = BAmodel−BAGFED
BAGFED

            Eq. (2) 11 

where BAmodel  is the simulated burned area averaged over 1997–2009, and BAGFED  is 12 

GFED3.1 mean annual burned area for the same period. The similarity in IAV (Sinterannual) is 13 

estimated by the correlation coefficient of the two linearly detrended annual burned area time 14 

series by model and GFED3.1 data. Finally, the seasonality similarity (Sseason) is given by: 15 

Sseason = ∑ min(frac_modeli, frac_GFEDi)12
i=1       Eq. (3) 16 

where frac_modeli and frac_GFEDi are the fraction of burned area for the ith month relative to 17 

the annual burned area (i.e., monthly BA normalized by the annual BA). Sseason represents the 18 

overlapping area of the two normalized monthly BA series and indicates the fraction of burned 19 

area in temporal coincidence. The statistical significance of Sseason was examined by using a 20 

bootstrapping method. First, normalized monthly BA from all 14 regions by the model and 21 

GFED3.1 data were pooled together. Second, 100,000 pairs of monthly normalized BA were 22 

randomly sampled from the pooled data in order to derive a probability distribution function (PDF) 23 

of Sseason. Third, the single-sided probability (p-value) that the calculated Sseason is from random 24 

distribution is obtained for each region; and a p-value less than 0.05 indicates the model could 25 

moderately capture the seasonality of burning (i.e., significantly different from a random 26 
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distribution). 1 

 The peak fire month, which is defined as the month with maximum monthly burned area, is 2 

compared between the model and GFED3.1 data. The difference between simulated and observed 3 

peak month is quantified by the following index, after Prentice et al. (2011): 4 

       Eq. (4) 5 

where  is the angle between vectors representing the simulated and observed peak fire month 6 

(with January to December resembling one to twelve on a clock), is the total number of grid 7 

cells and Aj is the burned area by GFED3.1 data. According to Eq. (4), the value of D2 is zero 8 

when simulated peak month is perfectly in phase with the observation, 0.5 if the timing is off by 3 9 

months in either direction, and one (the maximum) if the timing is off by 6 months. 10 

2.5.2 Coalescence of consecutive daily fires into multi-day fire patches 11 

 The fire patch data for Canada & US Alaska and the southern Africa contain fires that span 12 

multiple days. In the model, fires occurring within different days are simulated as separate events, 13 

with the number of fires and their size during each day being strongly associated with the fire 14 

danger index (Fig. 3 upper panel). Pfeiffer et al. (2013) introduced a mechanism to allow fires to 15 

span several days when the weather is suitable, and the fire active burning time within each day 16 

remains limited by the 241-minute maximum time (as in Thonicke et al. 2010 and our model). 17 

Inspired by Pfeiffer et al. (2013), we developed an approach to group fires that are simulated to 18 

occur during consecutive days into "multi-day fire patches", with the size of each "multi-day fire 19 

patch" being the cumulative daily fire size over its corresponding period of duration. The size of 20 

modelled multi-day fire patches can thus be compared with observation as both were allowed to 21 

span multiple days. For clarity, the period of multiple days that a fire spans is hereafter referred to 22 

as "fire patch length".  23 

 The approach to group separated fires into multi-day fire patches is illustrated in Fig. 3. First, 24 

fires were simulated in the model to occur for different periods of consecutive days, i.e., in most 25 

cases when the simulated fire danger index remains above zero and the fuel amount and simulated 26 

2 1, 1,
[1 ( cos / )] / 2j j jj n j n

D A Aθ
= =

= − ∑ ∑

jθ

n
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fire intensity exceeds the given thresholds (Fig. 3 upper panel). Rather than viewing the fires 1 

occurring on a given day as being separate from the previous day, now we consider some of these 2 

fires "persist" from the previous day, and only the extra fires are considered as "new fires". For the 3 

example shown in Fig. 3 lower panel, the two fires starting at the Day740 (since 2000-01-01) were 4 

assumed to last until Day764, with the fire patch size as the cumulative sum of the simulated daily 5 

fire size over Day740~764. Two extra fires started at Day741 and were assumed to extend until 6 

Day764, with the fire patch size as the cumulative sum of the simulated daily fire size over 7 

Day741~764. The remaining fire patches were constructed similarly until all fires were exhausted. 8 

This procedure was repeated for all the grid cells (excluding those with <10 days of fire 9 

occurrence during the 1997-2009) over 1997-2009 across the globe.  10 

3 Results 11 

3.1 Comparison of model simulation to satellite observation for the spatial and temporal pattern of 12 

burning  13 

 Fig. 4 shows the spatial distribution of mean annual burned fraction by the model and the 14 

three satellite-derived datasets (GFED3.1, GLOBCARBON, L3JRC) for 2001–2006. L3JRC and 15 

GLOBCARBON show similar spatial patterns of burning, which is different from the GFED3.1 16 

data. Generally, L3JRC and GLOBCARBON have less burned area in the southern hemisphere 17 

than GFED3.1 (see also Fig. 5a), with smaller spatial extent of burning in the savanna systems in 18 

Africa and Australia. By contrast, in the middle to high latitudes of the northern hemisphere, 19 

L3JRC and GLOBCARBON show more burned area than GFED3.1. All three datasets capture the 20 

grassland burning in central and eastern Asia.  21 

 ORCHIDEE coupled with SPITFIRE is generally able to reproduce the spatial distribution 22 

and magnitude of satellite-observed burned fraction. The simulated mean annual global burned 23 

area for 2001–2006 is 346 Mha yr-1, which falls within the range of 287–384 Mha yr-1 given by 24 

the satellite observation data, and close to the 344 Mha yr-1 by the GFED3.1 dataset when crop 25 

fires are excluded.  26 

 Fires in grassland-dominated systems are well captured by the model, including steppe fires 27 
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in central and eastern Asia, savanna fires in northern Africa, northern Australia and central to east 1 

South America. Two regions could be identified where model simulation is different from all the 2 

three observation datasets. One is the woodland savanna (miombo) in southern Africa, where 3 

burned area is underestimated by the model (simulated annual burned fraction is ~4%, but 14-24% 4 

is observed). The other is western and central continental US (dominated by C3 and C4 grass in 5 

the land-cover map used by ORCHIDEE) where fires are overestimated (simulated annual fraction 6 

is ~6%, but 1–2% is observed). For the fires in high-latitude (>45oN) boreal forest, sparsely 7 

forested area and tundra, the magnitude of burned fraction by ORCHIDEE falls between that 8 

found in the GFED3.1 and in the L3JRC/GLOBCARBON datasets (Fig. 4).  9 

 The simulation pixels are divided into five classes according to their simulation quality, as 10 

shown in Fig. 4. Table 1 shows the mean burned area for each category and dataset. The grid cells 11 

with burning collocated between model and observation data (labelled as ORC-good, ORC-max, 12 

ORC-min in Fig. 4) cover the majority of global burned area (76~92% depending on different 13 

datasets), indicating that the model can reproduce the major spatial extent of burning. However, 14 

discrepancy still remains, in that 50% of the modelled global burned area is classified as 15 

ORC-max (i.e., overestimation of burned fraction by the model), whereas observation datasets 16 

have half of the global burned area labelled as ORC-min (i.e., underestimation of burned fraction 17 

by the model). 18 

 Fig. 4 also illustrates the lower burned area found in L3JRC and GLOBCARBON in 19 

comparison with GFED3.1 for the Southern Hemisphere and subtropical Northern Hemisphere, in 20 

contrast to the higher burned area in the middle-to-high latitude region in the Northern 21 

Hemisphere. The simulated latitudinal distribution of burned area generally falls within the 22 

minimum-maximum range of the three observation products. Exceptions are the regions of 23 

~5–15oS and 30–40oN, corresponding to the underestimated burning in southern African savanna 24 

and the overestimate in western and central US, discussed above. The annual time series of burned 25 

area are shown in Fig. 5b. The correlation coefficient between ORCHIDEE and the GFED3.1 data 26 

is highest (0.48; linearly detrended correlation coefficient of 0.59), compared that of 0.26 between 27 

GLOBCARBON and the GFED3.1; and -0.59 between L3JRC and the GFED3.1.  28 
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3.2 Model evaluation against GFED3.1 burned area data 1 

 The simulated burned area for 1997-2009 is evaluated against the GFED3.1 data for each 2 

region in terms of mean annual burned area, and similarity in interannual variability and 3 

seasonality (see metrics in Sect. 2.5). The results are presented in Table 2; and the annual burned 4 

areas for different regions are shown in Fig. 6.  5 

 The model error for annual burned area (BA) is highest for Middle East (MIDE, by a factor 6 

of 41.9, occupying 0.1% vs. 5.6% of global BA by GFED3.1 vs. ORCHIDEE) and lowest for 7 

Boreal Asia (BOAS, by a factor of -0.1, occupying 1.6% vs. 1.4% of global BA). The model 8 

underestimates burned area in the three biggest fire regions (Northern hemisphere Africa, Southern 9 

Hemisphere Africa and Australia, together occupying 86% vs. 46.8% of global BA) by on average 10 

45.6%. Prominent model overestimation is found in Central Asia (CEAS, by a factor of 3.8, 11 

occupying 3% vs. 14.9% of global BA), and Southern Hemisphere South America (SHSA, by a 12 

factor of 1.6, occupying 5.5% vs. 15.7% of global BA). 13 

 The correlation coefficient for the linearly detrended global annual burned area between 14 

ORCHIDEE and GFED3.1 is 0.59, indicating that the model moderately captures the IAV of 15 

burned area (although it fails to reproduce the 1998 El Niño peak burning), because errors are 16 

compensated among regions (Fig. 5b). On regional scale, the model performs best at regions 17 

where the IAV of burned area is known to be mainly driven by climate, such as Boreal North 18 

America (BONA), Boreal Asia (BOAS), and the Equatorial Asia (EQAS). However, the model 19 

performs rather poor at regions where burned area shows little IAV such as Africa (NHAF and 20 

SHAF, see also Fig. 6), or the burned area is unrealistically simulated by the model (such as TENA 21 

and MIDE). For most regions the model captures the fire seasonality rather well (Table 2), with 22 

Sseason being significantly different from that of a randomly distributed seasonality, except in 23 

NHAF, BOAS and SEAS.   24 

3.3 Fire and precipitation relationship 25 

 The model captures well the empirical relationship between burned area and precipitation 26 

found in tropical and subtropical regions (Fig. 7; see also Prentice et al., 2011; van der Werf et al., 27 
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2008b). In low-precipitation regions (<400 mm yr-1), the climate is favourable for fire but burning 1 

is limited by the available fuel. In contrast, regions with higher precipitation (>2000 mm yr-1) 2 

always support sufficient fuel amount but fires are limited by the duration of dry season when fires 3 

can occur. Burned area is maximal for regions with intermediate precipitation and productivity 4 

(Krawchuk and Moritz, 2010).  5 

 Maximum burning occurs around an annual precipitation of 1000 mm according to model 6 

simulation, compared to 1200 mm by GFED3.1, and 1400 mm by the GLOBCARBON and 7 

L3JRC datasets. GLOBCARBON and L3JRC show the lowest burning in this tropical/subtropical 8 

belt, followed by the model simulation, with the burned area by GFED3.1 being the highest. The 9 

fire and precipitation relationship was further divided into four sub-regions of America, Africa, 10 

Asia and Australia following van der Werf et al (2008b) and the results are shown in Supplement 11 

Fig. S5. The model-observation agreement in fire-precipitation pattern is moderate in Africa and 12 

Australia, but low-precipitation fires are overestimated in America and Asia.  13 

3.4 Peak fire month and fire season length 14 

 The spatial distributions of fire peak months by ORCHIDEE and GFED3.1 are compared in 15 

Fig. 8. The spatial pattern of simulated peak fire month is in general agreement with GFED3.1 16 

data. The model simulation gives  = 0.3, indicating that simulated and observed peak fire 17 

month differ by on average two months. At regional scale, simulated peak fire months for most 18 

regions are within one month of those by GFED3.1 data, except MIDE and SHAF (see the far 19 

right-hand column of Table 2). Refer to Supplement Fig. S6 for more detailed information of 20 

modelled and observed seasonal pattern of burning for different GFED3.1 regions.  21 

 Fig. 9 compares simulated fire season length with the GFED3.1-derived fire season length 22 

from Archibald et al. (2013). The spatial pattern of fire season length by model simulation agrees 23 

well with that given by Archibald et al. (2013), with fire season length lasting 1–3 months in 24 

boreal regions, and 4–7 months in semi-arid grasslands and savannas. The fire season length in the 25 

eastern Africa, South Africa, Botswana, Namibia, Argentina and Mexico is overestimated by the 26 

model by 2–4months; and underestimated in Southeast Brazil by 1–2 months.   27 

2D
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3.5 Long-term trends of burned area during the 20th century 1 

 Over the 20th century, the historical trend of modelled global total burned area generally 2 

follows the Mouillot reconstruction data (Mouillot and Field, 2005) as corrected by GFED3.1 data 3 

(see Sect 2.4.1), with increasing burned area after the 1930s until the 1990s-2000s, after which 4 

global burned area began to decrease (Fig. 10). However, the inter-decadal variability of burned 5 

area is underestimated. Regionally, simulated decadal burned area agrees relatively well with the 6 

Mouillot data in boreal Russia (beginning from 1930s), although the observation data is subject to 7 

great uncertainty, especially before 1950s (Mouillot and Field, 2005). The simulated burned area 8 

also agrees well with fire agency data for Canada & US Alaska (Supplement Fig. S7). The 9 

correlation coefficient for annual BA between model and fire agency data is 0.44 after 1950, and 10 

0.57 between model and Mouillot data, when the observation data are considered to be more 11 

reliable. This reflects the model capability to capture fire variability driven by climate variation 12 

relatively well. The model fails, however, to capture burned area variation for regions where fires 13 

from changed land use likely played a bigger role in the earlier 20th century according to the 14 

Mouillot data (Mouillot and Field, 2005), for example, in Australia and New Zealand, USA and 15 

southern South America, mainly because the static land cover was used in the simulation. Strong 16 

model-observation disagreement also occurs for regions where the implementation of modern fire 17 

prevention has drastically reduced the burned area, as occurred in the 1960s in boreal North 18 

America, because the general implicit inclusion of human suppression on ignitions in Eq. (1) on 19 

the global scale does not accommodate regional uniqueness.  20 

3.6 Compare simulated fire size with observation  21 

 In this section we compare the simulated fire size distribution against observation over two 22 

regions: Canada and US Alaska combined, and southern Africa. The number and size of 23 

reconstructed "multi-day fire patches" by the model were used (see Sect. 2.5.2). For both 24 

simulated and observed fires, all fires within the test region were pooled together. Fires were 25 

binned according to fire patch size in an equal logarithmic distance manner (with the 26 

minimum–maximum size range being divided into 100 bins). The mean annual number of fires on 27 
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an area basis for each bin was calculated. For the fire patches in Canada for which fire start date 1 

and fire out date were reported, fire length was calculated and compared with model simulation as 2 

well.  3 

 Fig. 11 shows the fire size and the corresponding number of fires for each size bin over US 4 

Alaska + Canada, and the southern Africa. The modelled fire size distribution reaches a maximum 5 

at intermediate fire sizes. This is because when the climate is less favourable for fire occurrence, 6 

both number of fires and fire size are limited (corresponding to the low fire size end in Fig. 11a & 7 

b). While the size and number of fires could be large during the period when climate is dry and big 8 

fires are possible (corresponding to the high fire size end in Fig. 11 a & b), the frequency of 9 

high-fire period itself might be rare. The similar pattern is shown by the fire agency data of 10 

Canada and US Alaska, but not by the satellite-derived fire patch data in the southern Africa, 11 

which might be due to that the minimum fire size (25ha) is limited by the satellite resolution there. 12 

However, for both regions, the frequency and size of extreme big fires were underestimated by the 13 

model. Further comparison of fire lengths for Canada (Fig. 11c) reveals that the model 14 

underestimated fire length by as much as 60 days for the extreme big fires.  15 

 We further calculated the cumulative fraction of total burned area by fires below a given 16 

quantile of fire size (the minimum size, every tenth quantile from 10th to 90th quantile, and the 17 

maximum size) (Fig. 12). According to observation, in boreal Canada & US Alaska, the total 18 

burned area is mainly dominated by a few big fires, with the top 10% of fires (90th quantile to the 19 

maximum size) accounting for 99.8% of the total burned area. By contrast, the same group of fires 20 

(i.e., the highest 10% big fires) account for ~80% of the simulated total burned area, with the 21 

remaining being accounted for by many small fires. For the southern Africa, the model distribution 22 

follows rather relatively well of the observation. The top 30% of fires (70th quantile to the 23 

maximum size) make up 90% of the total burned area by satellite data and 85% by the model 24 

simulation.  25 

 Figure 13 compares the simulated 95th quantile fire size with the global observation by 26 

satellite. According to observation, fires with biggest fire size (500–10,000 km2) are 27 

grassland-dominated fires in central and eastern Asia, African savanna and northern Australia; 28 



20 
 

followed by fires (50–500 km2) in Russian and Alaskan boreal forest (and sparsely forested area) 1 

or tundra, and savanna-woodland fires in Africa and central South America. Fires in the rest of the 2 

world are relatively small (<50 km2). In terms of spatial fire size distribution, the model could 3 

reproduce the biggest fires in grassland-dominated systems in central and eastern Asia (200–1000 4 

km2), northern Australia (50-200 km2), as well as fires in Russian boreal forest (and sparsely 5 

forested area) or tundra (50–200km2; note that tundra is treated as C3 grassland in the model), but 6 

fire size for these regions is generally smaller than observation by up to one magnitude. The fire 7 

size in central South America tends to be underestimated, and overestimated in western to central 8 

U.S. Fire size for the rest of the world is comparable between model and the observation, with 9 

general small fire size (<50km2) and low fire frequency.  10 

4 Discussion 11 

4.1 General model performance 12 

 The SPITFIRE module was first presented by Thonicke et al. (2010). It was later adapted in 13 

LPX by Prentice et al. (2011), notably with the removal of ignition sources created by humans, 14 

and further by Pfeiffer et al. (2013) and Lasslop et al. (2014). Pfeiffer et al. (2013) developed a 15 

scheme to allow fire span of multiple days and fire coalescence, explored the role of lightning 16 

interannual variability in the model, and included terrain effects on fire at a broad scale. Lasslop et 17 

al. (2014) investigated model sensitivity to climate forcing and to the spatial variability of a 18 

number of fire relevant parameters. In the current study, the SPITFIRE module was fully 19 

integrated into the global process-based vegetation model ORCHIDEE for the first time. 20 

Simulated burned area, fire season and fire patch size distribution were evaluated in a 21 

comprehensive way against observation for the recent period (1997–2009), and against 22 

reconstructed burned area for the 20th century.  23 

 The simulated global mean annual burned area for 2001–2006 agrees with the satellite 24 

observation data and is most close to the GFED3.1 data. The model could moderately capture the 25 

interannual variability in burned area as revealed by GFED3.1 data with the exception of the peak 26 

burning of 1998, probably because deforestation and tropical peat fires in the 1997–98 El Niño 27 
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event (van der Werf et al., 2008a) were not represented. Model-observation discrepancy remains at 1 

regional scale, with underestimation mainly in the savanna of Africa and Australia, and 2 

overestimation in central Asia, Middle East, the temperate North America, and southern 3 

hemisphere South America.  4 

 The model can reproduce the maximal burned area for the intermediate range of precipitation 5 

for tropical and subtropical regions (S35-N35) (also shown by Prentice et al., 2011; van der Werf 6 

et al., 2008b). For boreal regions where climate plays a dominant role in driving the temporal 7 

variation of burned area, simulated burned area generally agrees well with the historical 8 

reconstruction data (boreal Russia for 1930-2009) and government fire agency data (US state of 9 

Alaska and Canada for 1950–2009), indicating that the model is capturing the climate as a driver 10 

of fire. However, on the global scale because fire trend is determined by multiple factors including 11 

climate, land-use practice and fire suppression (Mouillot and Field, 2005), simulated burned area 12 

trend only agrees moderately well with the reconstruction data for the 20th century, given that the 13 

static land cover and the simple human ignition equation were used in the model.   14 

4.2 Potential sources of systematic errors 15 

 Fire is a complex, regional process that involves diverse dimensions of vegetation, climate 16 

and human activity (Bowman et al., 2009). Uncertainties in all these factors will contribute to the 17 

overall uncertainty in simulated fire activities. Because SPITFIRE simulates fire occurrence 18 

through a complex chain that includes from potential ignition to fire climate, to fire spread rate 19 

and fire size and tree mortality, identifying contributions of each modelling step to the ultimate 20 

error in simulated fire regime is problematic. A complete error analysis involving all model 21 

parameters is beyond the scope of this study, but following sections are intended to serve as 22 

preliminary investigation of model errors. 23 

4.2.1 Ignition sources  24 

 On the global scale, due to the limitation of fire by fuel load on the arid and semi-arid regions, 25 

modelled annual burned area is more closely related to the total fire numbers rather than the fire 26 
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danger index (Fig. S8). This might lead to speculation that the potential ignition source is the first 1 

identified source of error for simulated burned area. One possible error in ignition is that potential 2 

lightning ignitions are not suppressed by human in densely populated areas, which cause 3 

lightning-ignited fires being overestimated. We have tested this possibility by applying a 4 

population density dependent human suppression of lightning-ignited fires following Li et al. 5 

(2012), and the result showed that part of the overestimation of burned fraction in western US and 6 

central South America could be reduced (Fig. 4, Fig. S9), but the burned area in Africa and over 7 

the whole globe were further underestimated.  8 

 Published fire models (Kloster et al., 2012; Li et al., 2012; Pechony and Shindell, 2009; 9 

Venevsky et al., 2002) generally include ignitions from lightning and human sources, together 10 

with explicit or implicit human suppression of fires. However, one common challenge is to 11 

properly calibrate ignition parameters. One option is to use active fire counts (as in case of Li et al., 12 

2012; Pechony and Shindell, 2009), but fire counts are not exactly real fire numbers, because a 13 

single widespread fire could be seen as many fire counts and the burned area per hotspot vary by 14 

an order of magnitude depending on vegetation composition (Hantson et al., 2013). Simulated 15 

burned area on the global scale might be comparable with the satellite observation data. However, 16 

very little is known on how this agreement was achieved; nor on whether each step of the 17 

modelling process was correctly captured, or the ultimate agreement in burned area is mainly 18 

thanks to error compensation among different steps. Two recent modelling studies (Lasslop et al., 19 

2014; Yang et al., 2014) used some scaling factor to adjust either directly burned area or the 20 

ignitions to match simulated global burned area with observation.  21 

 Pfeiffer et al. (2013) argued that interannual lightning variability was critical for their model 22 

to capture the interannual trend and variation of burned area; especially for regions where burned 23 

area is dominated by lightning fires, such as boreal forests in Alaska and Canada. Currently, a 24 

single dataset of monthly lightning flashes was repeated each year in our model; however we have 25 

tested the possibility to include the interannual lightning variability by following their approach.  26 

 The historical lightning variability during the 20th century was reconstructed by using the 27 

convective potential available energy (CAPE) output variable from the 20th Century Reanalysis 28 
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Project (http://portal.nersc.gov/project/20C_Reanalysis/), following Equation 1 on Page 649 of 1 

Pfeiffer et al. (2013). A test simulation was run for 1901-2009 over the whole globe with the 2 

variable lightning input. We found that shifting from repeated lightning data to CAPE-derived data 3 

decreased the Pearson correlation coefficient between simulated decadal burned area and the 4 

Mouillot reconstruction for half of the 14 regions and for the globe, but increased the correlation 5 

for other regions. Over 1997-2009 with observation data by GFED3.1 more credible than the 20th 6 

century reconstruction, using the CAPE-derived data decreased the Pearson correlation coefficient 7 

between annual simulated burned area and GFED3.1 for the globe and for most of the regions. 8 

This surprising result could be due to the fact that model internal errors may compensate for 9 

possible benefits of using the CAPE-derived data, or because CAPE-derived lightning data does 10 

not reflect the real lightning variability everywhere. For more detailed results and discussions, 11 

refer to the "Response supplement material" at the discussion stage of this paper 12 

(http://www.geosci-model-dev-discuss.net/7/2377/2014/gmdd-7-2377-2014.html). 13 

4.2.2 Fire number, size and fire patch length 14 

 The comparison of simulated "multi-day fire patches" against the observation in Canada & 15 

US Alaska, and the southern Africa shows that the model underestimated the frequency and size of 16 

extreme big fires. Given that annual burned area in US Alaska and Canada is slightly 17 

overestimated by the model compared with the fire agency data (2.8 Mha yr-1 by model during 18 

1960-2009 against 2.2 Mha yr-1 by fire agency and 1.9 Mha yr-1 by the Mouillot data, also refer to 19 

Fig. S7 in Supplement), the total number of (the small- and medium-sized) fires must be 20 

overestimated (i.e., making compensation for the too small fire size). However, the compensation 21 

by fire numbers does not occur for the southern Africa, where, given the underestimation of large 22 

fire size, the total burned area remains underestimated (Fig. 4, Table 2). Over the globe, despite 23 

the fact that the model correctly identifies some regions where large fires occur (mainly with 24 

grassland fraction higher than ~70% by the land cover map used in the model), the large fire size 25 

remains underestimated -- by approximately one magnitude (Fig. 13).  26 

 The fire size of reconstructed "multi-day fire patches" is defined as the cumulative daily fire 27 



24 
 

size over the corresponding fire patch length, and the underestimation of big fires could be due to 1 

underestimation in either fire patch length or daily fire size (i.e., fire patch size grows too slowly 2 

over its length). The comparison of simulated fire length with fire agency data in Canada suggests 3 

that model generally underestimated fire length. For extreme big fires larger than 10,000 ha, the 4 

underestimation is as large as 40~60 days, if we trust the fire agency data on the fire start and end 5 

date. Given similar underestimation of big fire sizes in other ecosystems that are characterized by 6 

large-size fires (Fig. 13), the fire length underestimation in Canada is likely to happen elsewhere, 7 

though this could not be completely tested mainly because of the lack of fire length observation 8 

across the world (the satellite-derived fire size data used in this study does not include the 9 

corresponding fire length yet, which is difficult to estimate from remote sensed data because of 10 

abundant data gaps due to cloud cover etc.).  11 

 In Pfeiffer et al. (2013), fires were simulated to span multiple days and extinguish when the 12 

cumulative precipitation exceeds some threshold, with the daily fire size remaining limited by the 13 

daily maximum fire active burning time (241 minutes). As our model development is similar to 14 

their work, multi-day burning was not mechanistically included in our model. However, our 15 

approach of coalescence of daily fires into "multi-day fire patches" is somewhat similar with the 16 

multi-day burning in Pfeiffer et al. (2013). Note one significant difference remains: Pfeiffer et al. 17 

(2013) allows the "coalescence" of fires, i.e., essentially, fires starting on a given day were 18 

considered as "new fires" to be added on the existing fires during the previous day (so that there 19 

are more fires on this day than on the previous day). While in our approach, they were considered 20 

to extend from the fires during the previous day, except the fire number on this day is bigger than 21 

the existing fire number so new fire patch needs to be initiated (or smaller than the existing 22 

number so a multi-day fire patch has to be claimed as extinguished). Thus the total fire patch 23 

number by our approach is the maximum daily fire number during the given consecutive days of 24 

burning. However, it is rather difficult to show the implication of this difference in the fire patch 25 

number simulation between the two models, as in Pfeiffer et al. (2013), lightning ignited fires 26 

were simulated in a way that the lightning flashes finally lose their numeric meaning and provide 27 

only a 1/0 answer to allow a single fire over the whole 0.5-degree grid cell, which is very different 28 
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from ours.  1 

4.2.3 Daily fire size, active burning time and fire spread rate  2 

 The underestimation of big fire sizes in Canada is partly due to underestimation of fire patch 3 

length. A closer comparison of Fig. 11a and c suggests that, while fire length was underestimated 4 

by a factor of 2~3 for fires between 104~105 ha, given the same fire number (shown as the vertical 5 

axis of Fig. 11a), the fire size was underestimated by roughly an order of magnitude (10 times). 6 

This implies the (mean) daily fire size is likely underestimated as well (roughly 3~5 times).  7 

 Within the model, daily fire size is determined by daily fire active burning time and fire 8 

spread rate. Evidences show that wildfires display a characteristic diurnal cycle, with the most 9 

active time being around midday and early afternoon when the humidity is at a minimum and 10 

wind speeds are higher (Pyne et al., 1996). Outside this active burning time, fires could persist but 11 

propagate at a rather low speed (especially at night) or even turn into smoldering and burn with 12 

flame later again when the weather is feasible. For extremely big fires, the active burning period 13 

could be longer because these fires often occur when the fuel is extremely dry as a consequence of 14 

extended drought weather. Currently, this active burning time is simulated to exponentially 15 

increase with the fire danger index (i.e., indicator of daily fire weather) with a maximum time of 16 

241 minutes. This limit might not be feasible for all ecosystems and fire sizes; however, a full 17 

exploration of this issue is currently limited by the scarcity of observations.   18 

 A global map of simulated 95th quantile fire spread rate is provided in Supplement Fig. S10. 19 

Li et al. (2012) compiled fire spread information from the literature and reported typical fire 20 

spread rates of 12 m min-1 for grasslands, 10.2 m min-1 for shrubs, 9 m min-1 for needle-leaved 21 

trees and 6.6 m min-1 for other trees. The simulated fire spread in grasslands in central and eastern 22 

Asia (20–40 m min-1) is much higher than the observed range. Considering that daily fire sizes are 23 

likely underestimated, the limit of 241-minute maximum daily active burning time might be too 24 

short to correctly simulated big fire sizes in these grassland ecosystems. By contrast, simulated 25 

fire spread rate in savanna vegetation (1–5 m min-1) is lower than the reported value (10–12 m 26 

min-1), and this could help to explain the underestimation of fire size and the broad 27 
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underestimation of burned area in this region.  1 

 Fire spread in the northern high-latitude boreal forest, sparsely forested area and tundra is 2 

modelled to be extremely high (>10 m min-1). This is mainly because herbaceous plants in these 3 

regions are simulated as C3 grasslands in the model with relatively low bulk density. However the 4 

likely high daily burned area due to the high fire spread rate was compensated by simulated short 5 

fire patch length in the model (Fig. 11c), so that simulated burned area for the region of 50~75oN 6 

agrees well with GFED3.1 data (Fig. 5a). Pfeiffer et al. (2013) proposed to relate the grass fuel 7 

bulk density with the annual sum of degree-days over 5oC. We have tested their approach and 8 

found that this new approach decreased the simulated burned area for the high-latitude region 9 

(50~70oN) and for the globe, and thus was not included in the current version of model.  10 

 To gain more insights into the model’s behaviour, the simulated 95th quantile fire patch size 11 

was related with other parameters (grassland fraction, fuel bulk density). As shown in Fig. S11, the 12 

size of large fires exponentially depends on the fire spread rate. The fire spread rate is very 13 

sensitive to the fuel bulk density and grass fraction beyond some threshold (e.g., fire spread rate 14 

surges when grass coverage exceeds ~70%), with the fuel bulk density being inversely dependent 15 

on the grass fraction. Thus the simulated fire size could be sensitive to the land cover map 16 

(especially grass fraction) used in the simulation. Besides, as a static land cover map is used in our 17 

simulation, the grassland fraction is not allowed to vary as a response to fire disturbance and thus 18 

a full fire-climate-vegetation feedback is limited, and this could probably help to explain the 19 

underestimation of fire size.  20 

4.2.4 Influence of fire-climate-vegetation feedback 21 

 In the current simulation the dynamic vegetation module of ORCHIDEE was switched off 22 

and a static land cover map was used. Tree mortality was affected by fire-induced tree damage, but 23 

tree coverage within a given grid cell was static and not allowed to vary with fire occurrence. A 24 

test simulation has been done for Southern Hemisphere Africa following the same simulation 25 

protocol as in Sect. 2.3 but with the dynamic vegetation module being switched on, in order to 26 

investigate the simulated fire behaviour with dynamic vegetation. Figure S12 compares the 27 
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simulated annual burned area, grass and tree coverage change and the fire danger index for 1 

1901–2009 with the model in dynamic and static vegetation modes.  2 

 In dynamic vegetation mode, the simulated burned area suddenly begins to increase around 3 

1965, in response to increased fire danger index. The increase in fire activity further increases the 4 

grass coverage and reduces tree coverage, causing a positive feedback to finally induce a peak of 5 

burned area around 1975, after which the burned area decreases. In static vegetation mode, the 6 

simulated burned area shows a similar peak in response to the peak in the fire danger index, 7 

however, with a much smaller peak of burned area than that simulated in dynamic vegetation 8 

mode because of the lack of fire-vegetation-climate feedback. Simulated burned area by both 9 

simulations is still lower than that given by the GFED3.1 data for the period of 1997–2009, 10 

although the peak burned area in the dynamic vegetation mode is comparable with GFED3.1 data.  11 

 This test indicates that including the fire-climate-vegetation feedback could improve the 12 

simulation when the climate is favourable for fire occurrence. At the same time, it also suggests 13 

that other factors like climate, and the model mechanisms determining the competitiveness of trees 14 

versus grass might also play a role in the error of fire modelling. 15 

4.2.5 Potential error sources for regional bias 16 

 Given that burned area is simulated in the model as a result of several sequential steps 17 

(lightning and human ignitions, fire number & fire size distribution, fire patch length, daily fire 18 

size, daily active burning time and fire spread rate), and the scarcity of global coverage 19 

observation data, we are not able to give a quantitative estimation of the role of each of these 20 

factors in determining the final model error for each GFED region. Rather, here we select several 21 

typical regions and briefly discuss the possible reasons for model performance (either good 22 

simulation, or over/under-estimation).  23 

 The model agrees with the GFED3.1 burned area for 50~75oN relatively well (Fig. 5); and 24 

burned area for Canada and US Alaska for 1950-2009 was overestimated by ~27% compared with 25 

fire agency data. However for the GFED region of BONA (Fig. 2), the model overestimates BA by 26 

60% (Table 2). This is mainly because spatial extent of BONA includes part of the grassland 27 
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systems in northern US, where the burned area is overestimated (Fig. 4), same for TENA. The 1 

relatively good simulation of boreal burned area (note in Table 2, EBA for BOAS is -0.1) is mainly 2 

because underestimated big fire sizes are compensated by overestimated fire patch numbers. 3 

Though simulated fire spread rate for some regions is extremely big, however the daily fire sizes 4 

are still likely underestimated, possibly due to too short daily active burning time. 5 

  The burned area for the northern hemisphere temperate regions is systematically 6 

overestimated by the model, including EURO, CEAS, TENA, CEAM, MIDE, and SEAS. Two 7 

reasons are suspected to contribute to this overestimation. First, extensive grassland coverage is 8 

found in some regions (CEAS, MIDE, TENA, CEAM, part of MIDE), where simulated fire spread 9 

rate is much higher than observation, likely creating high daily fire size. Note this is not in 10 

contradiction with the underestimated big fire patch sizes (Fig. 13) because fire patch length could 11 

be underestimated. Second, for regions where human population density is high and active fire 12 

suppression is implemented, such as India in SEAS, China Inner Mongolia in CEAS and Europe, 13 

ignitions seem to be excessive and make over-compensation for the simulated small fire size, 14 

leading to larger burned area. This is partly because the lightning ignitions are not suppressed in 15 

the current model version, and because the global human-ignition relationship is not feasible 16 

everywhere and the spatial a(ND) dataset used in the model is not able to efficiently handle the 17 

spatial heterogeneity.  18 

  Finally, burned area in the three biggest fire regions of NHAF, SHAF and AUST, which are 19 

dominated by savanna and woodland savanna, is underestimated by the model. This 20 

underestimation is primarily due to underestimated big fire size, which are not compensated by the 21 

ignitions. The simulated fire spread rate in Australia (7.5~15 m min-1) seems comparable with 22 

observation (10-12 m min-1), however it's underestimated in Africa. The underestimation of 23 

burned area in SHAF is likely also related with its low grassland coverage, given that the 24 

simulated fire size is rather sensitive to the grassland fraction (Fig. S11, Fig. S13).  25 

Further, Archibald et al. (2013) showed that two major fire types dominate the burned area of 26 

Africa (frequent intense large fires and frequent cool small fires) and their correlation with 27 

environmental factors seems to be clearly distinguished by the human impact index. This implies 28 
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that the a(ND) values should ideally differ as well among these two fire types, which currently 1 

share the same value (Fig. S1). 2 

 The regional pattern of model-observation disagreement in our study is also shared by 3 

another SPITFIRE implementation in the JSBACH land surface model by Lasslop et al. (2014), 4 

who modified a scalar in the human-ignition equation to match the simulated global burned area 5 

with observation. It remains somewhat a common challenge for processed-based fire models to 6 

correctly represent the global burned area and its spatial distribution; and in some cases ignitions 7 

need to be adjusted or optimized according to the observation data (Lasslop et al., 2014; Yang et 8 

al., 2014). Li et al. (2013) included the social economic factors in simulating fires for some 9 

vegetation types, which could be incorporated in the future development of our model.   10 

4.2.6 Uncertainty/error summary 11 

 The preliminary investigation of modelling error reveals that big fire size is underestimated 12 

over regions of high fire frequency; and the ignition error is playing an important role in 13 

determining the ultimate simulated burned area. On the regional scale, ignition numbers (fire 14 

numbers) are either overestimated to compensate fire size underestimation to cause a moderate or 15 

overestimated burned area, or are not enough that the simulated burned area is underestimated as 16 

well. The underestimation of big fire patch size is likely due to underestimation in both fire patch 17 

length and the daily fire size, which could further be limited by the daily active burning time. 18 

Overall, the moderate model-agreement on global burned area could be achieved only when errors 19 

among different regions are compensated.  20 

4.3 Future model improvement directions and needed datasets 21 

 Currently many efforts in global fire modelling are directed at reproducing the temporal and 22 

spatial pattern of burned areas (Kloster et al., 2010; Li et al., 2012; Pfeiffer et al., 2013; Prentice et 23 

al., 2011; Thonicke et al., 2010). Total burned area is determined by ignition frequency and fire 24 

size, which itself is controlled by fire spread rate (fire intensity) and fire duration. More work is 25 

needed to investigate if a model can reproduce the mechanisms that drive burned area: i.e. the rate 26 
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of spread, fire patch length, daily active burning time, fire size, ignition frequency, and fireline 1 

intensity. Comparing observed and simulated fire regimes, which combine information on fire 2 

timing (fire season), size, numbers and intensity (Gill and Allan, 2008) will help to reveal gaps in 3 

this understanding. The present study is a step in this direction, bringing new in-depth model 4 

evaluation.  5 

 In summary, the fire processes in the SPITFIRE model are complex enough to include many 6 

aspects of wildland and human-caused fire processes in nature. However, little is known about the 7 

parameter sensitivities and their contribution to model error. The simulated intermediate model 8 

parameters (e.g., fire numbers, fire patch length, fire size, daily active burning time, fire spread 9 

rate, fire intensity) are poorly constrained by the observation data. As a result, error compensation 10 

could be prevalent in the model and a wider application of the model is impeded.  11 

 To advance model development, global measurement datasets of the key fire-relevant 12 

parameters, including fire size, fire patch length, fire diurnal variability, fire spread rate, fuel bulk 13 

density, wind speed, fire intensity etc., should be established and used to calibrate fire models. On 14 

the other hand, the complexity of fire model parameters and the regional nature of fire processes 15 

make it unlikely that these parameters could be calibrated in a parameter-by-parameter and 16 

site-by-site way, but some more advanced techniques such as data assimilation or model-data 17 

fusion could be helpful. Finally, some more mechanistic fire processes should be considered to be 18 

included into the model, such as crown fire spread and the mechanistic process of fire extinction. 19 

5 Conclusions 20 

 We have integrated the SPITFIRE model into a global process-based vegetation model 21 

ORCHIDEE. The historical burned area for the 20th century was simulated and the modelled fire 22 

regimes were evaluated against observation data. The model was able to capture well the historical 23 

climatic drivers of burned area for the 20th century. However, parameter uncertainties such as 24 

number of fire ignitions, daily active burning time and fire spread rate result in considerable 25 

regional discrepancies. Big fire sizes are generally underestimated, with the error in simulated 26 

burned area being partly compensated by overestimated fire numbers. Future model development 27 
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requires a complete parameter sensitivity analysis for the key processes represented in fire 1 

modeling. To constrain the model error, consistent spatial observational datasets should be 2 

established for validating the key variables in the model at different modelling steps. 3 
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 13 

Figures and Tables 14 

Fig. 1 Surface-fuel combustion completeness as a function of fuel wetness in (a) original 15 

SPITFIRE model by Thonicke et al., (2010) and (b) as modified in the present study, , taking the 16 

tropical forests as an example. The combustion of live grass biomass is assumed to follow that of 17 

1-h dead fuel. 18 

 19 

Fig. 2 The regional breakup of the globe according to (a) the GFED3.1 dataset: BONA, Boreal 20 

North America; TENA, Temperate North America; CEAM, Central America; NHSA, Northern 21 

Hemisphere South America; SHSA, Southern Hemisphere South America; EURO, Europe; MIDE, 22 

Middle East; NHAF, Northern Hemisphere Africa; SHAF, Southern Hemisphere Africa; BOAS, 23 

Boreal Asia; CEAS, Central Asia; SEAS, Southeast Asia; EQAS, Equatorial Asia; AUST, 24 

Australia and New Zealand. And (b) Mouillot and Field (2005): (1) Australia and New Zealand; (2) 25 

Boreal North America; (3) Boreal Russia; (4) India; (5) South East Asia; (6) Central Asia; (7) USA 26 

(West Mississippi); (8) USA (East Mississippi); (9) East Asia; (10) Middle East and Northern 27 

Africa; (11) Africa (sub-Saharian); (12) Central South America; (13) Southern South America; (14) 28 

Europe.  29 

 30 

Fig. 3 Schematic diagram of coalescence of fires within consecutive days into multi-day fire 31 

patches. Example is given for a 0.5o grid cell in the northern Africa. The upper panel: fires in 32 
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different periods of consecutive days as simulated by the model. The number of fires occurring 1 

each day (subplot b) and their size (subplot c) are strongly associated with fire danger index 2 

(subplot a). The lower panel: zooming for the period of Day740~766 since 2000-01-01. Fires 3 

within consecutive days were grouped into different fire patches: The two fires starting on Day740 4 

were assumed to last until Day764, with fire size as the cumulative daily fire size over 5 

Day740~764. Two extra fires started at Day741 and were assumed to extend until Day764, with 6 

the fire size as the cumulative daily fire size over Day741~764. The remaining fire patches were 7 

constructed similarly until all fires were exhausted.  8 

 9 

Fig. 4 Mean annual burned fraction (in percentage) over 2001–2006 (a) as simulated by 10 

ORCHIDEE, and by the satellite-derived burned area datasets: (b) GFED3.1, (c) L3JRC and (d) 11 

GLOBCARBON. The subplot (e) shows for each grid cell the quality flag of 12 

ORCHIDEE-simulated burned fraction in comparison with observation datasets. ORC-err-burn, 13 

where ORCHIDEE shows burning but the other three observation datasets do not; 14 

ORC-err-noburn, where at least two of the three observation datasets do show burning, but 15 

ORCHIDEE does not; ORC-min, where ORCHIDEE simulates lower burned fraction than the 16 

other three datasets; ORC-max, where ORCHIDEE simulates higher burned fraction; ORC-good, 17 

where ORCHIDEE-simulated burned fraction falls within the range given by the three observation 18 

datasets. When calculating the minimum and maximum burned fraction of the observation datasets, 19 

an arbitrary tolerance margin of 25% was applied around the min/max value to take into account 20 

the observation uncertainty. 21 

 22 

Fig. 5 (a) Latitudinal distribution of burned area (Mha yr-1) according to GFED3.1 (blue), 23 

ORCHIDEE (thick black), GLOBCARBON (orange) and L3JRC (green). Data are shown for the 24 

mean annual value for 2001-2006. (b) Annual burned area time series for different datasets.  25 

 26 

Fig. 6 Annual burned area by ORCHIDEE (grey) and GFED3.1 data (black) for 1997–2009 for the 27 

14 GFED regions. 28 

 29 

Fig. 7 Burned fraction distribution as a function of annual precipitation according to: the model 30 
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simulation (black), GFED3.1 (blue), GLOBCARBON (orange) and L3JRC (green) for the tropical 1 

and subtropical regions (S35-N35). The annual precipitation data are from CRU data and binned 2 

in 200-mm intervals.  3 

 4 

Fig. 8 Spatial pattern of the peak fire month by (a) ORCHIDEE and (b) GFED3.1 data over 5 

1997–2009. Only grid cells with fire collocated in both datasets are shown.  6 

 7 

Fig. 9 Fire season length (months) by (a) Archibald et al. (2013) derived from GFED3.1 data, and 8 

(b) ORCHIDEE simulation for 1997–2009. 9 

 10 

Fig. 10 The annual burned area for 1901–2009 as simulated by ORCHIDEE (grey bar), reported 11 

by the Mouillot data (Mouillot and Field, 2005, black bar), and by GFED3.1 data (dashed white 12 

bar). Data are shown for the mean values over each decade for 1901–2000, and for 2001–2005 13 

(2000sA) and 2006–2009 (2000sB). Refer to Sect. 2.4.1 for the correction of the Mouillot data by 14 

using GFED3.1 data. 15 

 16 

Fig. 11 Fire size distribution as simulated by the model and derived from (a) fire agency data for 17 

US Alaska and Canada, and (b) MODIS 500-m burned area data by Archibald et al. (2010) for 18 

southern Africa. The horizontal axis indicates fire size (ha) and the vertical axis indicates the 19 

corresponding number of fires (in units of ha-1 yr-1) for the given fire size. (c) The fire patch size 20 

and corresponding mean fire patch length (in unit of days) by the model simulation and Canadian 21 

fire agency data (using only the fire patches for which fire report and out date are available).  22 

 23 

Fig. 12 Fire size and the corresponding cumulative fraction of the total burned area by fires below 24 

a given fire size for (a) Canada & US Alaska, and (b) southern Africa. Data are shown for a series 25 

of equally distanced 10th quantile fire sizes. Numbers in the curves show the location of every 26 

10th quantile fire size from 0th quantile (the minimum fire size) to 100th quantile (the maximum 27 

fire size). 28 

 29 

Fig. 13 Map of the 95th quantile fire patch size (km2) as given by (a) Archibald et al. (2013) from 30 
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MCD45A1 MODIS 500-m burned area data, and (b) ORCHIDEE simulation.  1 

 2 
 3 
 4 
 5 

Fig. 1 6 

 

 7 

Fig. 2 8 

 9 

Fig. 3 10 



40 
 

 1 
Fig 4. 2 

 3 



41 
 

 1 

Fig. 5 2 

 3 

Fig. 6 4 



42 
 

 1 

Fig. 7 2 

 3 



43 
 

Fig. 8 1 

 2 

Fig. 9 3 

 4 



44 
 

Fig. 10 1 

 2 



45 
 

Fig. 11 1 

 2 

 3 

Fig. 12 4 

 5 
 6 



46 
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 5 

Table 1 Mean annual burned area (Mha yr-1) for 2001-2006 for different ORCHIDEE simulation 6 
quality flags as shown in Fig. 4. 7 

 ORCHIDEE GFED3.1 GLOBCARBON L3JRC 

ORC-err-burn 29 - - - 

ORC-err-noburn - 27 57 92 

ORC-good 93 135 73 96 

ORC-max 194 32 23 30 

ORC-min 30 150 167 167 

Global (Total) 346 344 287 384 

 8 

Table 2 Model error characterization in comparison with the GFED3.1 data for 1997–2009. EBA, 9 
the model error of mean annual burned area in relative to the GFED3.1 data; Sinterannual, the 10 
correlation coefficient of linearly detrended annual simulated and GFED3.1 burned area series; 11 
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Sseason, the seasonal similarity of burned area by the model and the GFED3.1 data (see Sect. 2.5 1 
for the definition of each metrics). 2 

Region 

(in 

Fig. 

2a) 

EBA Sinterannual Sseason
* Burned 

area by 

GFED3.1 

(ha yr-1) 

Percentage of 

the global 

total burned 

area 

(GFED3.1) 

Percentage of 

the global 

total burned 

area 

(ORCHIDEE) 

Peak fire  

month 

(GFED3.1, 

model) 

BONA 0.6  0.53 0.7 2.1 0.6 1.0 (7,7) 

TENA 18.1  0.52 0.75 1.3 0.4 7.4 (8,7) 

CEAM 4.4  0.55 0.63 1.2 0.3 1.8 (5,4) 

NHSA 3.2  -0.12 0.96 2.1 0.6 2.6 (2,2) 

SHSA 1.8  0.41 0.71 19.2 5.5 15.7 (8,8) 

EURO 4.9  0.01 0.86 0.4 0.1 0.7 (8,8) 

MIDE 41.9  0.22 0.73 0.4 0.1 5.6 (8,6) 

NHAF -0.3  0.01 0.59 125.1 35.8 24.9 (12,12) 

SHAF -0.6  0 0.68 123.2 35.2 14.4 (8,6) 

BOAS -0.1  0.43 0.55 5.6 1.6 1.4 (7,7) 

CEAS 3.8  0.08 0.75 10.5 3.0 14.9 (8,7) 

SEAS 0.5  -0.12 0.52 4.7 1.3 2.0 (3,4) 

EQAS -0.8  0.97 0.73 1.7 0.5 0.1 (9,9) 

AUST -0.5  0.37 0.75 52.4 15.0 7.5 (10,11) 

* A bootstrapping method was used to derive a probability distribution function of Sseason by 3 

randomly sampling from the normalized monthly burned area of GFED3.1 and the model for 4 

100,000 times. The underlined number indicates that the Sseason is not significantly different from a 5 

randomized monthly distribution of burned area at a significant level of 0.05.  6 
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