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Abstract

This paper explores the feasibility of an experimentation strategy for investigating sen-
sitivities in fast components of atmospheric general circulation models. The basic idea
is to replace the traditional serial-in-time long-term climate integrations by represen-
tative ensembles of shorter simulations. The key advantage of the proposed method5

lies in its efficiency: since fewer days of simulation are needed, the computational cost
is less, and because individual realizations are independent and can be integrated si-
multaneously, the new dimension of parallelism can dramatically reduce the turnaround
time in benchmark tests, sensitivities studies, and model tuning exercises. The strategy
is not appropriate for exploring sensitivity of all model features, but it is very effective in10

many situations.
Two examples are presented using the Community Atmosphere Model version 5.

The first example demonstrates that the method is capable of characterizing the model
cloud and precipitation sensitivity to time step length. A nudging technique is also ap-
plied to an additional set of simulations to help understand the contribution of physics-15

dynamics interaction to the detected time step sensitivity. In the second example, mul-
tiple empirical parameters related to cloud microphysics and aerosol lifecycle are per-
turbed simultaneously in order to explore which parameters have the largest impact on
the simulated global mean top-of-atmosphere radiation balance.

Results show that in both examples, short ensembles are able to correctly reproduce20

the main signals of model sensitivities revealed by traditional long-term climate simula-
tions for fast processes in the climate system. The efficiency of the ensemble method
makes it particularly useful for the development of high-resolution, costly and complex
climate models.
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1 Introduction

Climate, by definition, is the statistical characterization of the state of the Earth’s atmo-
sphere, land and ocean on time scales longer than a few months (e.g., IPCC, 2013).
Because of the strong natural variabilities resulting from nonlinear interactions between
relevant processes, atmospheric general circulation models (AGCMs) used in sensitiv-5

ities studies need to be integrated for multiple years, usually decades, in order to obtain
statistically meaningful and robust signals. However, state-of-the-art AGCMs are com-
putationally expensive to integrate when resolution is high, or when a large number
of simulations are needed. Recent examples of such studies include those of Wehner
et al. (2013); Zhao et al. (2013); Yang et al. (2012, 2013) and Qian et al. (2014), to10

name but a few.
The high computational costs have motivated researchers to look for alternative

methods to facilitate extracting signals from noise in climate models. For example,
Kooperman et al. (2012) showed that anthropogenic aerosol indirect effects could be
estimated from substantially shorter simulations if temperature and horizontal winds in15

the AGCM are relaxed (nudged) towards prescribed conditions to reduce variability in
those fields, while allowing the model to calculate the responses to aerosol emissions
in cloud, water, and aerosol fields. For more general applications, however, nudging
can hide sensitivities in the constrained fields, as well as in feedbacks that involve
these quantities.20

In the climate modeling community, it has been widely recognized that fast processes
(those that produce a model response to a perturbation on a timescale of days when
surface temperature is fixed, such as those related to clouds) are important sources of
discrepancies between the observed and simulated climate, and between the future cli-
mate projections provided by different models (Cess et al., 1990; Colman, 2003; Soden25

and Held, 2006; Ringer et al., 2006; Dufresne and Bony, 2008). In addition, it has been
noticed that when climate models are used in short-range weather prediction experi-
ments starting from realistic initial conditions, many of the key model biases form within
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a very short time period (hours to a few days, see, e.g., Phillips et al., 2004; Williamson
et al., 2005; Boyle et al., 2005; Rodwell and Palmer, 2007; Martin et al., 2010; Xie et al.,
2012; Ma et al., 2013, 2014; Klocke and Rodwell, 2013). There has been increasing
interests in running climate models in weather prediction mode to diagnose model er-
rors. The most well-known examples include the Climate Change Prediction Program –5

Atmospheric Radiation Measurement (CCPP-ARM) Parameterization Testbed (CAPT)
initiative of the US Department of Energy (Phillips et al., 2004), and the phase II exper-
iment of the Transpose-Atmospheric Model Intercomparison Project (Transpose-AMIP
II, Williams et al., 2013) that was run alongside phase 5 of the Coupled Model Inter-
comparison Project (CMIP5, Taylor et al., 2012).10

In this study we demonstrate that the important role of fast processes in the climate
system can be exploited in more general ways to provide an alternative strategy to ef-
ficiently carry out model sensitivity experiments and tuning exercises. The basic idea
is to replace the traditional serial-in-time long-term climate integrations by generating
representative ensembles of shorter simulations. (Details are discussed in later sec-15

tions). Significant gain in computational efficiency can be expected for two reasons:
first, unlike a serial-in-time multi-year simulation, the ensemble of realizations can be
integrated simultaneously. This introduces an additional dimension of parallelism to
better exploit modern supercomputer systems that consist of order 105–106 cores,
leading to substantial reduction of the turnaround time in sensitivity experiments. Sec-20

ond, in comparison to a long-term integration which can be understood as an ensemble
with auto-correlated realizations, the use of independent members increases the effec-
tive sample size. One can thus expect equally robust statistics to be obtained from
a smaller number of simulation days, resulting in an reduction of total CPU time.

While the Transpose-AMIP-type evaluation focuses on comparison against obser-25

vation to understand the initial development of model biases, in this study we are in-
terested in model sensitivities to parametric and structural changes near the model’s
equilibrium climate. Using the Community Atmosphere Model version 5 (CAM5, Neale
et al., 2010, cf. Sect. 2), we present two examples to elaborate the ensemble strategy
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and evaluate its effectiveness (Sects. 3 and 4). Further discussions and conclusions
are given in Sect. 5.

2 Model and initial conditions

The climate model used here is CAM5.1 (Neale et al., 2010) with a finite volume dy-
namical core that use the numerical schemes of Lin and Rood (1996) and Lin (2004)5

to represent the hydrostatic adiabatic fluid dynamics and large-scale tracer transport.
Deep convection is treated with the mass-flux-type parameterization of Zhang and Mc-
Farlane (1995), with further modifications by Richter and Rasch (2008). Shallow con-
vection is parameterized as in Bretherton and Park (2009). Large-scale condensation
and stratiform cloud fraction are handled by the parameterization of Park et al. (2014).10

The stratiform cloud microphysics is represented by a two-moment scheme that ex-
plicitly calculates the mass and number concentrations of cloud liquid, cloud ice, rain
and snow (Morrison and Gettelman, 2008; Gettelman et al., 2008, 2010). The ver-
tical transport of heat, momentum, and moisture by turbulent eddies is represented
following the work of Park and Bretherton (2009). Solar and terrestrial radiation calcu-15

lations are performed using the Rapid Radiative Transfer Model for GCMs (RRTMG,
Iacono et al., 2008; Mlawer et al., 1997). The lifecycle of aerosols is represented with
a comprehensive module that describes the aerosol size distribution with 3 log-normal
modes (MAM3, Liu et al., 2012). Land surface processes, including hydrological and
biogeochemical processes, dynamical vegetation and biogeophysics, are handled by20

the Community Land Model version 2 (CLM2, Bonan et al., 2002). A detailed descrip-
tion of the CAM5 model can be found in Neale et al. (2010). All simulations in the
present paper use the tropospheric version of CAM5 with 30 vertical layers, at a hor-
izontal resolution of 1.9◦ latitude × 2.5◦ longitude. The default model time step for this
configuration is 30 min.25

As mentioned in the introduction, the motivation for exploring a new experimentation
strategy is to reduce the wall-clock time and CPU time spent on model integration.
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We thus intend to perform as few as possible simulations that are as short as pos-
sible. This requires the ensemble members to be appropriately sampled so that the
ensemble average is representative of the long-term climate. Based on the viewpoint
that climate is the “average weather”, we initialize individual realizations using atmo-
spheric states representing different synoptic patterns of the large-scale circulation.5

The source of such initial conditions could be global weather analyses, as done in
CAPT and Transpose-AMIP, which would require interpolation and adjustments to take
into account the different grids and topography used for the analysis data and by the
CAM5 model. Initialization of the aerosol module would remain an issue because de-
tailed information about aerosol concentrations in different size ranges is not normally10

provided by the analyses. Considering that our focus here is not to compare with obser-
vation, it is not necessary to have a realistic initialization of model state variables that
matches particular meteorological events. We therefore chose to use initial conditions
generated by the GCM itself using an inexpensive model configuration. For the appli-
cation examples discussed in the present paper, the CAM5 model was integrated for15

20 years at 1.9◦ latitude × 2.5◦ longitude resolution using the default choices for model
parameters and model time step, driven by annually cycled monthly mean climato-
logical sea surface temperature distributions and sea ice concentrations. Emissions of
aerosols and reactive gases are specified at their year 2000 values following Lamarque
et al. (2010). Model state variables, including the meteorological fields, aerosol concen-20

trations, and land surface variables, are archived at 5 day intervals in the “native” format
of the initial condition files.

This initialization procedure requires minimal effort because output from a prior simu-
lation can be used directly in the ensemble simulations, or conveniently interpolated for
studies that involve different spatial resolutions. Also, the same archive can be used in25

different sensitivity studies. When the model configuration (e.g., parameters, resolution,
or time step) changes, the simulated climate can change accordingly, in which case the
integrations starting from the above-mentioned initial conditions will need some time to
adjust before entering the new quasi-equilibrium. Identification of the spin-up phase is
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one of the issues we attempt to address in the following sections, and we will demon-
strate that the initial adjustment is indeed short in the examples shown in Sects. 3
and 4.

3 Example I: time step sensitivity of clouds

In this section the utility of the ensemble approach is demonstrated using simulations5

in which the model time step used in CAM5 is reduced from the default value of 30 min
to 4 min. We focus on cloud and precipitation related model variables. Our example is
motivated by the desire (in a seperate study with a focus on scientific issues) to char-
acterize the time step sensitivities of the atmospheric water cycle in CAM5 and assess
numerical convergence. Since we also want to distinguish different climate regimes,10

the analysis here focuses on a particular season (boreal winter) to avoid the additional
complexity introduced by seasonal variations in geographic locations.

For evaluation purposes, two simulations (with 30 and 4 min time steps respectively)
were first performed for 5 years (plus 1 yr spin-up) in the conventional way. Sensitivi-
ties in the simulated climate were identified by by comparing fields from the multi-year15

December–January–February (DJF) averages of the two simulations. This pair of sim-
ulations are regarded hereafter as the reference simulations.

We also performed ensembles of short simulations with the two time step lengths.
Within an ensemble, all realizations were assigned an intial start time of 1 January
using different initial conditions drawn from the 20 yr archive (cf. Sect. 2) of dates in20

the DJF season that were at least 10 days apart, in order to ensure independence and
representativeness. The same set of initial conditions were used for the 30 min and
4 min ensembles.

Other aspects of the simulation set-up were identical for the long-term and short en-
semble simulaitions. For example, both were forced by yearly cycled climatological sea25

surface temperature and sea ice concentrations, as well as the year 2000 emissions
for aerosols and their precursors (Lamarque et al., 2010).
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In the analysis we concentrate on the geographical distribution and radiative proper-
ties of clouds. We focus on whether:

I. ensemble averages of a moderate number of realizations can reasonably repre-
sent the long-term climate;

II. integrations of a few days are sufficient to produce reliable statistics;5

III. responses to time step change detected with the ensemble approach agree quan-
titatively well with those revealed by the conventional long-term simulations;

IV. there is a clear gain of computational efficiency.

For evaluation purposes, the ensemble simulations were integrated for an extended
period of 20 days.10

3.1 Representing the mean state

Our evaluation of the ensemble strategy starts with question (I) by examining the mean
state simulated with the default time step (30 min). Because the initial conditions were
generated using the same model configuration and experimental setup (in other words,
sampled from the same climate), there is no spin-up issue here. The question is how15

many realizations do we need to average out the “weather noise” and obtain the “cli-
mate signal”.

In Fig. 1, the vertically integrated total cloud amount is shown for the two different ex-
perimentation methods, where the 5 yr DJF average in the long simulation is compared
with the day 1 average of a 50-member ensemble. The agreement with the reference20

simulation is remarkable. High cloud fractions associated with the Intertropical Conver-
gence Zone (ITCZ), the South Pacific Convergence Zone (SPCZ), mid-latitude storm
tracks, and high latitude regions in the winter hemisphere are well captured. Less fre-
quent occurrences of clouds over the subtropical ocean high pressure systems and
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desert areas are also well represented. It is worth noting that not only these basic fea-
tures in the geographical distribution, but also the magnitude of total cloud amount at
most grid points, are well captured by the moderately sized ensemble.

The same can be said for other key aspects of the model climate, as can be seen in
Table 1. Global mean values in the 5 yr simulation and the one-day ensemble differ only5

by a few percent at most, and the pattern correlations are high (> 0.9). This suggests
that, at least for the default model configuration, the ensemble average of very short
integrations is a good representation of the long-term climatology. In the following, we
demonstrate that the ensemble simulations are also able to accurately reproduce the
response of cloud-related fields to parameterization changes (in this case time step10

length).

3.2 Fast response of clouds

Our ensemble simulations with 4 min time step are initialized using snapshots of at-
mospheric and land-surface conditions sampled from the model climate resulting from
a 30 min time step. Because cloud processes operate on short timescales, we expect15

quick responses to changes in model time step. This is indeed observed in the simula-
tions.

The 5 yr simulations indicate that a reduction from 30 to 4 min time step leads to an
overall increase of total cloud cover. The most prominent signals occur in the shallow
cumulus regions where the absolute changes range from about 10 % to more than 40 %20

in boreal winter (Fig. 2a), corresponding to typical relative changes from 20 % to more
than 100 % (not shown). Such characteristic patterns are apparent in the ensemble
simulations in the first model day (Fig. 2b). Although the differences are somewhat
smaller than the 5 yr DJF averages, statistical tests suggest they are significant at the
95 % confidence level. By the third day, the magnitudes of the differences between 425

and 30 min simulations are close to those seen in the 5 yr average.
The ensembles simulations can also capture changes in vertical structures. Figure 3

shows the zonally averaged stratiform cloud ice mass concentration as an example.
2181
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According to the 5 yr simulations (Fig. 3b), shorter time step leads to higher ice con-
centrations throughout the troposphere. The largest increases occur in the lower lev-
els over the storm tracks, and in the tropical upper troposphere between 300 and
400 hPa where deep convection detrains condensate into the environment. There is
a secondary center of large increase near 150 hPa, corresponding to frequent homo-5

geneous ice nucleation. The close resemblance between the 5 yr DJF average (Fig. 3b)
and the day 3 average of the ensemble results (Fig. 3c) indicates that the characteristic
distributions of cloud ice are well established within a couple of model days.

We reinforce the conclusion of fast spin-up by showing the day-to-day variation of
global mean cloud cover (Fig. 4a), vertically integrated liquid and ice water path (LWP10

and IWP, Fig. 4b–c), longwave and shortwave cloud forcing (LWCF and SWCF, Fig. 4d–
e) and large-scale precipitation rate (PRECL, Fig. 4f) from the ensemble simulations.
The 95 % confidence intervals of the ensemble averages are shown by the filled boxes,
with the ensemble mean indicated by the horizontal bar in each box. Lower and up-
per ends of the whiskers, corresponding to the 10th and 90th percentiles, depict the15

ensemble spread. The 5 yr DJF and January averages, as well as the year-to-year vari-
ations, are shown in the right part of each panel for comparison. Figure 4 indicates that
during the 20 day integration period of the ensemble simulations, there is no obvious
trend either in the 50-member averages of the 30 min and 4 min ensembles or in their
differences; in addition, the ensemble averages agree reasonably well with the 5 yr av-20

erages. Therefore, for detecting fast changes in cloud properties and distribution, it is
sufficient to perform simulations that are only a few days in length. The additional com-
puting time spent on longer integration does not provide significantly more information.

Figure 4 also provides a quantification of the time step sensitivity in the depicted
variables with respect to their natural variability. Comparing differences between the25

4 min and 30 min ensemble averages with the ensemble spreads, one can conclude
that the total cloud fraction, LWP and IWP (Fig. 4a–c) are more sensitive to the time
step change than SWCF, LWCF and PRECL are (Fig. 4d–f). On the other hand, al-
though individual members from the 30 min and 4 min ensembles can have the same
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globally averaged SWCF, LWCF, or PRECL, the 95 % confidence intervals of the en-
semble mean do not overlap on any day during the integration period, suggesting that
the time step sensitivities are nevertheless statistically significant.

3.3 Ensemble size

So far we have shown the effectiveness of the short simulations using results from 50-5

member ensembles. We now demonstrate the robustness of the method and discuss
the choice of ensemble size. The essence of the experimentation method we propose
in this paper is to approximate the long-term temporal average by the ensemble aver-
age over a short period. The accuracy of this approximation naturally depends on the
ensemble size and properties of the state variable in question.10

3.3.1 Global averages

In Fig. 5 the accuracy of estimated global averages is analyzed for the ice water path
and large-scale precipitation rate. Results are shown for 10, 20, 50, 90, and 180 en-
semble members. At each ensemble size, the day-to-day variability of the ensemble
mean daily average is indicated by the vertical extent of a filled box, with its top and15

bottom showing the maximum and minimum values during the 20 day simulation pe-
riod. The 20 day averages are denoted by the black dot in each box. Based on the
conclusion drawn from Fig. 4 about fast spin-up, it is reasonable to assume when
a sufficiently large number of realizations are obtained, the ensemble mean values
averaged over 20 days will indicate the long-term climatological mean within a small20

uncertainty induced by natural variability. Thus the vertical size of a colored box in Fig. 5
can be used as a measure of approximation error in the global averages estimated from
a single-day simulation at the corresponding ensemble size. In panels Fig. 5b and d,
the 4 min/30 min differences are normalized by the 20 day average of the 180-member
ensemble mean, in order to indicate the uncertainties in relative terms.25
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Figure 5 conveys several messages. First, the 20 day averages change very little
with ensemble size (Fig. 5a and c), suggesting that the sampling method is represen-
tative in capturing the impact of time step change. Second, as the number of indepen-
dent realizations increases, variances in the daily average decrease, producing more
accurate approximations of the long-term climatology (Fig. 5a and c). Third, different5

model variables are associated with different variability, thus require different numbers
of realizations. Last but not least, good estimates of the time step sensitivities can be
obtained with rather small ensembles. With 20 independent members, the global mean
∆IWP (∆PRECL) calculated from a one-day simulation agrees within 10 % (25 %) with
the 180-member 20 day average (Fig. 5b and d). Similar accuracies are obtained in10

our experiments for the other variables shown in Fig. 4 for global averages. To cap-
ture regional differences, some highly variable fields may need more realizations, as
discussed below.

3.3.2 Climate regimes

When assessing model sensitivities, it is often necessary to examine not only global15

averages, but also regional features and climate regimes. Because clouds are highly
variable in their occurrence and properties, regional patterns are sometimes difficult
to detect due to the low signal-to-noise ratio. For example, Kooperman et al. (2012)
showed that to get a clear signature of the anthropogenic aerosol indirect effect, it is
necessary to run CAM5 for multiple decades in conventional climate simulations.20

Figure 6 shows the SWCF changes (∆SWCF) caused by a reduction of model time
step in the 5 yr integrations (Fig. 6a) and at day 3 in the ensemble simulations (Fig. 6b
and c). Both methods reveal a systematic increase of SWCF in the trade cumulus re-
gions, while the reduction of cloud forcing in the ITCZ and SPCZ are more clearly seen
in the ensemble results. It is remarkable that the convergence zones emerge clearly in25

Fig. 6b with only 50 ensemble members, a result attributable to our initialization method
that uses the same set of initial conditions for the 4 min and 30 min simulations. In the
early stage of the integration (first ∼ 5 days), the large-scale environmental conditions
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remain similar in each pair of ensemble members, resulting in the synoptic systems
and convective activities occurring at similar locations, thus avoiding strong noise in
∆SWCF associated with synoptic scale variabilities in the circulation.

In Fig. 6b, ∆SWCF in the shallow cumulus and deep convection regions have similar
magnitudes, but those in the latter regime do not pass the statistical test because of5

the large natural variability of deep convection in the convergence zones. The evalua-
tion procedure can be made more robust using regime compositing, e.g., by assessing
the SWCF changes over tropical (20◦ S–20◦ N) ocean grid points where the convective
precipitation is important, in this case defined to be where the convective precipitation
rate exceeds 3 mmday−1. Figure 7 indicates that for such a “deep convection SWCF”,10

ensembles of 20 members are sufficient to distinguish the difference between the 4 min
and 30 min simulations. For the purpose of verification, we performed additional simu-
lations and present them in Fig. 6c. The 360-member results confirm that the ∆SWCF
patterns and magnitudes detected by the 50-member ensembles are not incidental.

3.4 Combining ensembles with nudging15

The nudging technique has been repeatedly used in model evaluation and intercom-
parison studies as a method for constraining model meteorology, reducing uncertain-
ties induced by natural variability, and facilitating comparison with observations (e.g.,
Jeuken et al., 1996; Feichter and Lohmann, 1999; Machenhauer and Kirchner, 2000;
Ghan et al., 2001; Kooperman et al., 2012). Here we briefly show that nudging can be20

applied in combination with ensembles to assess the contribution of physics-dynamics
interaction to the model’s time step sensitivity.

Two sets of ensemble simulations, each with 50 members, were performed with the
30 min and 4 min time steps, respectively, with the horizontal wind and temperature
relaxed towards those from the unconstrained 30 min time step simulations. Each pair25

of control (30 min time step) and sensitivity (4 min) experiments starting from the same
initial conditions were nudged to the same temperature and wind fields, while different
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pairs were relaxed towards different large-scale conditions. As in Kooperman et al.
(2012), a 6 h relaxation time was used.

Figure 8 compares the globally/regionally averaged total cloud fraction, IWP and
SWCF in the free-running and nudged simulations. SWCF in the deep and shallow
convection regions are presented separately because the two regimes are associated5

with opposite sensitivities to time step (cf. Fig. 6). As expected, the unconstrained and
nudged 30 min simulations give very similar results. The ensemble averages are not
distinguishable in a statistical sense, the 95 % confidence intervals are comparable,
and the ensemble spreads are also similar. The 4 min simulations, on the other hand,
are significantly different. When wind and temperature are constrained, the differences10

between 4 min and 30 min simulations are reduced by about 30 % for the variables
shown in the figure, suggesting that fast interactions (feedbacks) between resolved
dynamics and parameterized physics increase the time step sensitivity of the CAM5
model.

3.5 Computational efficiency15

The results presented above provide clear answers to the questions posed at the be-
ginning of this section. To detect time step sensitivities in cloud-related fields, it is suffi-
cient to perform 20 to 50 independent 3 day simulations. The ensemble method reveals
signals that agree well with those detected by 5 yr simulations performed in the tradi-
tional way, but costs substantially less total CPU time, and dramatically less in terms of20

the experiment “completion time” in situations where there are more processors avail-
able than a single job can use effectively, or is allowed to use without a long queuing
time, and many realizations can be run simultaneously. Our experience showed that on
the Yellowstone supercomputer (Computational and Information Systems Laboratory,
2012) at the National Center for Atmospheric Research (NCAR) Computational and25

Information System Lab (CISL), a 5 yr simulation with 4 min time step typically takes
about 4 to 7 days of wall-clock time to finish with 64 processes running in parallel. (The
actual duration depends on the amount of model output as well as traffic in the queuing
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system.) For the ensemble simulations, a set of fifty 3 day simulations usually takes
less than 20 min to finish, counting from the instant when the jobs are submitted till
the point when the last job is completed, resulting in a reduction of turnaround time by
a factor of several hundred. Such fast turnaround will be particularly helpful when addi-
tional simulations are conducted with varied model configurations to identify the source5

of the time step sensitivity, and when even smaller time steps are used to assess the
convergence properties of the model behavior.

From the results above, we conclude that the ensemble method as applied is both
effective and efficient for the investigation of time step sensitivity. In the next section,
we use an additional example to show that the method can also be very useful in other10

sensitivity studies.

4 Example II: parametric sensitivity of the global mean top-of-atmosphere
radiation balance

The parameterization schemes of sub-grid scale processes in AGCMs include various
empirical, uncertain constants whose values are often adjusted to obtain desired radi-15

ation balance at the top of the model atmosphere (TOA), and to achieve good fidelity
when evaluated against observations (e.g., Mauritsen et al., 2012; Golaz and Levy,
2013). There is a large volume of literature discussing the sensitivities of model be-
havior to empirial parameters. In the context of global climate change, there is also
increasing interest in assessing the impact of such parameters on the uncertainties20

in future climate projections (e.g., Murphy et al., 2004; Stainforth et al., 2005; Collins
et al., 2006).

Because there are a large number of adjustable parameters in AGCMs, and many
of them have wide ranges of possible values, systematic investigations of model sen-
sitivity inevitably require numerous simulations. Earlier studies that varied the value of25

one parameter at a time (e.g., Lohmann and Ferrachat, 2010) only covered very small
portions of the full parameter space. In recent years, the use of advanced sampling

2187

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/2173/2014/gmdd-7-2173-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/2173/2014/gmdd-7-2173-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 2173–2216, 2014

Experimentation
strategy for climate

models

H. Wan et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

approaches such as Latin hypercube (McKay et al., 1979) and quasi-Monte Carlo
method (Caflisch, 1998) have allowed more extensive explorations of the parameter
space (e.g., Lee et al., 2012, 2013; Zhao et al., 2013). Perturbing multiple parameters
simultaneously not only allows for a dramatic reduction of the number of simulations
needed for the sensitivity study, but also provides the opportunity to investigate param-5

eter interactions, leading to a more comprehensive understanding of model sensitivity.
On the other hand, even with efficient sampling approaches applied, systematic in-

vestigations of parametric sensitivity are still inherently expensive because of the high
dimensionality of the parameter space. For instance, to simultaneously perturbe O(101)
parameters, one needs to sample O(102 ∼ 103) points from the parameter space to10

ensure sufficient coverage. Performing long-term climate simulations with this many
model configurations requires a substantial amount of computer time. In this section,
we demonstrate that there are circumstances in which a very good characterization of
the parametric sensitivity can be obtained with small ensembles of short integrations,
resulting in a significant reduction in the computational cost.15

4.1 Reference simulations

A recent study by Zhao et al. (2013) investigated the sensitivity of TOA radiative fluxes
in present-day climate simulations to the values of 16 parameters in CAM5. The 16
parameters included 5 adjustable constants related to stratiform cloud microphysics
(indices 1–5 in Table 2), 3 parameters related to the physical properties of aerosols20

(indices 6–8 in Table 2), and 8 scale factors for aerosol emissions (indices 9–16 in
Table 2). To efficiently explore the high-dimensional parameter space, the quasi-Monte
Carlo sampling method (Caflisch, 1998) was chosen for its good performance in terms
of sample dispersion. From the 16-dimensional parameter space, 256 sample points
were drawn. Each sample point corresponds to one set of values for the 16 parameters,25

which we refer to as a “parameter combination” in the following. For each parameter
combination, an AMIP (Atmospheric Model Intercomparison Project, Gates et al., 1998)
simulation was conducted for the years 2000 to 2004. The average of the last 4 years
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(2001–2004) was used in their sensitivity analysis to identify which parameters have
the largest impact on the model’s radiation budget.

4.2 Short ensembles

In this study we demonstrate that it is possible to use short ensembles to reproduce
the results of Zhao et al. (2013). The same 256 parameter combinations were used in5

our simulations, while each of their 4+1-year AMIP runs were replaced by an ensemble
of short simulations started in each month of the year, so that the ensemble averages
characterize the annual averages examined in the reference study. As in Sect. 3, the
initial conditions were taken from a prior long-term simulation. The same set of 12 initial
conditions were used for all 256 ensembles.10

4.3 Spin-up time

It is worth noting that 11 out of the 16 perturbed parameters (indices 6 through 16
in Table 2) directly affect the concentrations of aerosols. How these aerosol-related
parameters affect the TOA radiative fluxes is a key question to be answered by the
sensitivity analysis. The AMIP simulations of Zhao et al. (2013) were initialized with15

zero aerosol mass and number concentrations. Such an initialization in CAM5 usually
requires a spin-up of several months (or longer) before the aerosol concentrations have
evolved and approach the climatological values. Therefore the first simulation year was
discarded in the study of Zhao et al. (2013).

For our ensembles, all simulations were started with aerosol concentrations that were20

spun-up under the default model configuration and were consistent with the corre-
sponding meteorological fields. This set-up is expected to require shorter spin-up than
the zero-aerosol conditions. On the other hand, after the aerosol emissions, solubility
factors, and cloud parameters were perturbed (Table 2), we expect an initial adjustment
by at least a few days, considering that the global mean aerosol lifetime is about 4 days25

in MAM3 (cf. Tables 3, 5–8 in Liu et al., 2012). To get a quantitative assessment of the
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spin-up time, we monitored the time evolution of the aerosol optical depth (AOD) in the
ensemble simulations. In Fig. 9 the global mean AOD is shown for the first 60 days.
The daily mean values averaged over the 256 ensembles are indicated by the thick
curve. Variations among the ensemble averages are shown by the vertical bars, with
the lower and upper ends indicating the minimum and maximum, respectively. As ex-5

pected, the globally averaged AOD of different ensembles are similar at the beginning
of the integration. They quickly diverge in the next few days and then stabilize. After
about 10 days, there is no substantial changes in either the average or the spread of
the 256 ensembles. We thus use the day-10 average for the sensitivity analysis below.
In other words, we compare the parametric sensitivities derived from the 12-member10

ensemble averages at day 10 with the results in Zhao et al. (2013) which were based
on 4 yr averages.

4.4 Global mean radiation budget

Our analysis starts with the TOA net radiative flux (FNET). To give a first sense of
the model’s response to the parameter perturbation, Table 3 lists the mean and stan-15

dard deviation of the 256 simulations/ensembles. Similar statistics are presented in the
same table for the total cloud forcing (CF), as well as for the shortwave and longwave
cloud forcing (SWCF and LWCF). The mean FNET obtained with the two methods dif-
fer by about 3 % (0.11 Wm−2), while the discrepancies in CF, SWCF and LWCF are
smaller in terms of relative differences. Variations among the 256 experiments tend to20

be somewhat smaller in the 4 yr AMIP simulations, probably because the substantially
larger number of days involved in the temporal average leads to a stronger smoothing
effect.

The sensitivities of global mean FNET to individual parameters are shown in Fig. 10.
In each panel, the global mean 4 yr averages (Fig. 10, upper row) or day-10 ensemble25

averages (Fig. 10, lower row) corresponding to the 256 parameter combinations are
sorted into 8 bins according to the value of one perturbed parameter. The square mark
associated to each bin indicates the FNET anomaly (relative to the average of 256
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experiments) averaged within that bin. The vertical bars depict the spread (minimum to
maximum) caused by the perturbation of other parameters.

The 4 yr AMIP simulations (Fig. 10, upper row) indicate that the global mean FNET
increases with dcs (the size threshold between cloud ice and snow) and factic (sol-
ubility factor of aerosols in convective clouds). It decreases with ai (a fall-speed pa-5

rameter for cloud ice), cdnl (the minimum concentration of cloud droplet number),
wsubmin (the minimum sub-grid vertical velocity for droplet activation), and e_sst
(tuning factor for sea salt emission). FNET is less sensitive to the other parameters.

As discussed in Zhao et al. (2013), the detected sensitivities in FNET are mainly at-
tributable to clouds, while the contribution of clear-sky areas is relatively small. There-10

fore, in Fig. 11 we present the responses of SWCF and LWCF to the parameter pertur-
bation. The longwave cloud forcing is primarily affected by cloud microphysics param-
eters ai , as , cdnl , and dcs . The shortwave cloud forcing is additionally affected by
wsubmin , and the aerosol-related parameters factic (solubility factor of aerosols in
convective clouds) and e_so2 (tuning factor for the emission of anthropogenic SO2).15

Comparing the upper and lower rows of Figs. 10 and 11, we see that not only the
qualitative conclusions drawn in the previous paragraphs, but also the quantitative de-
tails of the functional relationships between FNET/SWCF/LWCF and the perturbed
parameters, are correctly reproduced by the short ensembles. Considering that the
ensemble results used to derive these relationships were averaged over only 12 real-20

izations and one model day, the agreement with the 4 yr climate simulations is rather
remarkable.

In Figs. 10 and 11, the relative contributions of individual parameters to the total vari-
ation of FNET, SWCF and LWCF are noted above the corresponding panels. These
numbers were obtained by applying the generalized linear model (GLM) which as-25

sumes the relationships between the output variables (i.e., FNET, SWCF and LWCF)
and input parameters are polynomial functions that include linear, quadratic, and inter-
action terms. Percentages given in red in the figures are statistically significant at the
95 % confidence level. Details of the GLM fitting are described in Sect. 2.3.3 in Zhao
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et al. (2013), and are not repeated in this paper. Here we only point out that the GLM
provides a quantitative way to rank the relative importance of the empirical parameters
in determining the total variation in the output variables. The rankings derived from
the 4 yr simulations and the day-10 ensembles agree quite well. For example, dcs ,
wsubmin , e_sst and factic are identified by both methods as the most influential5

parameters for FNET. In terms of the percentage contribution of individual parameters
to the total variance, the results derived from the 4 yr simulations and the short ensem-
bles are also similar. There are a few cases in which the percentage is regarded as
significant in the 4 yr simulations but insignificant in the ensembles (e.g., e_soag for
FNET, facti and e_acnum for LWCF), but these are typically associated with small10

contributions, thus should not be considered as large discrepancies.

4.5 Computational efficiency

The twelve 10 day simulations cost about 1/15 of the total CPU time in comparison
to the original 5 yr (4 years plus 1 year spin-up) simulations, a substantial reduction in
computational cost. As for the turnaround time, on Yellowstone at NCAR CISL, the15

256×12 simulations submitted as separate jobs finished within 8 h of wall-clock time.
Typically the queuing system allowed 50 to 100 jobs running in parallel. These numbers
were smaller than the total number of parameter combinations (256), therefore in this
case, the reduction of turnaround time was mainly achieved from the smaller number of
simulation days required by the ensemble strategy. On larger computing facilities that20

could allow more than 256 simultaneous jobs from a single user, it would be possible
to make fuller use of the available resources using the ensemble strategy, but not with
the long-term simulations. On a dedicated system that could accommodate O(103)
concurrent simulations, it would be possible to complete all our ensemble simulations
within an hour. Such fast turnaround can be very useful in systematic sensitivity studies,25

where influential parameters can be identified from a large number of candidates within
a reasonable time period, and more attention can subsequently be paid to the most
important parameters.
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Furthermore, during the development of climate models, it is often necessary to
adjust empirical parameters after major updates of model components, so that the
long-term global mean TOA radiative flux stays close to zero. Since the global mean
FNET, SWCF and LWCF are among the most important metrics for model tuning, our
results suggest that short ensembles can be useful in such exercises as well.5

5 Discussion and conclusions

We have demonstrated that ensembles of short simulations can be used to estimate
the fast responses of a climate model to perturbations. The strategy can produce sig-
natures that agree quantitatively and qualitatively with those produced by traditional
multi-year brute force simulation strategies, at a fraction of the computational and wall-10

clock cost.
Our first example explored the response of simulated clouds to a change in model

time step. The results suggest that 3 day integrations are sufficient to reproduce the
time step sensitivities seen in the commonly used 5 yr climate simulations due to the
rapid response in cloud fields. For the global mean total cloud fraction, liquid water path15

and ice water path, the time step induced changes can be clearly detected with 20 en-
semble members. For the global mean large-scale precipitation rate which has higher
natural variability, and for the regional features of cloud forcing, robust signals can be
detected from ensembles of 50 members. A combined use of ensemble and nudging
led to the finding that interactions between the resolved dynamics and parameterized20

physics provide positive feedbacks that enhances the model’s time step sensitivity.
The second example demonstrated that the strategy is capable of characterizing

sensitivities of the global mean TOA radiation budget to 16 empirical parameters re-
lated to stratiform cloud microphysics and aerosol lifecycle. This type of investigation is
inherently expensive in terms of computational cost, because a large number of simula-25

tions are needed to sufficiently sample the high-dimensional parameter space. Follow-
ing a previous study by Zhao et al. (2013), we used the quasi-Monte Carlo method to
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obtain 256 sample points (parameter combinations) from the 16-dimensional param-
eter space. For each parameter combination, ensemble simulations were conducted
with one realization starting from each month of the year 2001. We showed that para-
metric sensitivities of the global mean TOA net radiative flux and cloud forcing derived
from 12-member ensemble averages at day 10 agree very well with results obtained by5

Zhao et al. (2013) who used 4 yr AMIP simulations in their analysis. The short ensem-
bles correctly identified the most influential parameters for the net radiative flux and
cloud forcing, and successfully reproduced the functional relationships between these
quantities and the perturbed parameters.

These results indicates that although climate is by definition a long-term average,10

and is associated with strong natural variability, there exist fast processes and robust
features that do not need very long simulations to characterize. This fact is already
widely known, and has formed the foundation for the CAPT and Transpose-AMIP ac-
tivities in which climate models are run in weather forecast mode to reveal the bi-
ases with respect to observations. Here we have shown that the philosophy behind15

the Transpose-AMIP-type evaluation can be applied in more general ways to carry out
sensitivity studies. Using short ensembles instead of traditional multi-year climate sim-
ulations, sensitivity studies can be carried out more efficiently, benefitting from a sub-
stantial reduction of the total CPU time spent on numerical integration, as well as much
faster turnaround in the investigation because the independent ensemble members20

introduce an additional dimension of parallelism that can be exploited with current flag-
ship supercomputers.

The strategy discussed in this paper using few day simulations certainly has limita-
tions. It cannot be used as formulated here to investigate modes of climate variability
or feedback mechanisms that operate on time scales of months to years, and so could25

not replace long-term simulations when long time scales are important. Nevertheless,
since fast processes are important contributors to the sensitivities and uncertainties
in current climate models, short ensembles can help to obtain a first-order estimates
of rapid responses in the climate system rather quickly. Such economical, approximate
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answers can be useful in various situations. For example, in systematic studies of para-
metric uncertainties, short ensembles can be used in preliminary investigations to pre-
select influential parameters from a large number of candidates, and to narrow down
possible ranges of parameter values. In convergence studies, short ensembles may
be the only way to conduct simulations at ultra-high spatial and/or temporal resolutions5

that would otherwise be impractical to complete. As the climate modeling community
actively pursues higher resolutions, more physically based parameterizations, and in-
clusion of new, highly sophisticated processes, wide applications can be anticipated
for the experimentation method discussed here. It should be noted that in this paper
we are advocating the ensemble method as a general strategy, not a recipe. As can be10

seen from the two examples, for different variables and physical processes, one must
generate ensembles differently, and may need different spin-up time and/or ensemble
sizes. The most beneficial experimentation design for a particular research question
needs to be figured out on a case-by-case basis. Whenever affordable, one should first
evaluate the short ensembles against traditional climate simulations. If it is impractical15

to do so, we recommend testing the experimental design using a range of integration
lengths and ensemble sizes, so as to obtain a better understanding of the robustness
of the results.

An additional remark worth making here is that the definitions of fast and slow pro-
cesses need to be understood in relative terms. In this paper where an atmosphere-20

only GCM was used, we considered time scales of a few days as “short”, and sim-
ulations of multiple years as “long”. In other situations, fast and slow processes can
be reclassified. For example, if one were interested in identifying how seasonal fea-
tures such as the Asian summer monsoon responded to anthropogenic emissions of
aerosols, it might be possible to generate realizations of few month simulations, and25

use ensemble averages to remove multi-year and multi-decade scale noise that would
otherwise require hundreds of years of simulations. As such, the ensemble strategy
may have much wider applications than demonstrated in the present paper.
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Table 1. Global mean values and pattern correlations of the atmospheric mean state in a multi-
year climate integration and an ensemble of short simulations. The 5 yr mean climatology of
December–January–February (DJF) is compared to the 50-member mean of day one average.
All simulations are performed with a 30 min model time step. Further details are explained in
Sect. 3.1.

Global Mean

5 yr Day 1 Relative Pattern
DJF Avg. Ensemble Avg. Difference Correlation

Sea level pressure (hPa) 1011.77 1011.76 −0.0 % 0.99
Planetary boundary layer height (m) 486.57 478.58 −1.6 % 0.98
10 m wind speed (m s−1) 5.98 5.96 −0.3 % 0.99
Temperature at reference height (K) 285.02 285.05 0.0 % 1.00
Relative humidity at reference height (%) 79.59 80.13 0.7 % 0.98
Total precipitable water (kg m−2) 24.34 24.30 −0.1 % 1.00
Vertically integrated total cloud fraction 0.65 0.66 1.3 % 0.96
Low-level cloud fraction 0.46 0.47 2.3 % 0.98
Mid-level cloud fraction 0.28 0.28 0.0 % 0.95
High-level cloud fraction 0.38 0.38 0.7 % 0.94
Liquid water path (g m−2) 42.24 41.92 −0.8 % 0.98
Ice water path (g m−2) 17.62 17.66 0.2 % 0.97
Shortwave cloud forcing (Wm−2) −54.00 −53.91 −0.2 % 0.98
Longwave cloud forcing (Wm−2) 23.08 23.06 −0.1 % 0.98
Large-scale precipitation rate (mmday−1) 0.89 0.88 −0.9 % 0.93
Convective precipitation rate (mmday−1) 2.06 2.07 0.2 % 0.98
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Table 2. Empirical parameters in the cloud microphysics and aerosol lifecycle parameteriza-
tions in CAM5 that are perturbed in the sensitivity analysis descripbed in Sect. 4. Adapted from
Table 1 in Zhao et al. (2013).

Index Parameter Description Unit Default value Investigated
range

1 ai Fall-speed parameter for cloud ice s−1 700 350–1400
2 as Fall-speed parameter for snow m0.59 s−1 11.72 5.86–23.44
3 cdnl Lower bound of grid-box mean cloud droplet number m−3 0 0–1e7

concentration
4 dcs Size threshold assumed for the autoconversion of cloud µm 400 100–500

ice to snow
5 wsubmin Minimum sub-grid vertical velocity assumed for cloud m s−1 0.2 0–1

droplet activation
6 facti Solubility factor for the removal of cloud-borne – 1.0 0.5–1

aerosols in stratiform clouds
7 factic Solubility factor for the removal of interstitial aerosols – 0.4 0.2–0.8

in convective clouds
8 ref_dust Imaginary part of the refractive index of dust in visible – 0.005 0.001–0.01

bands of the solar radiation
9 e_dust Emission tuning factor for dust – 0.35 0.21–0.86
10 e_sst Emission tuning factor for sea salt – 1.0 0.5–2.0
11 e_soag Emission tuning factor for secondary organic aerosols – 1.5 0.5–2.0
12 e_so2 Emission tuning factor for anthropogenic SO2 – 1.0 0–2
13 e_bc Emission tuning factor for anthropogenic black carbon – 1.0 0–3
14 e_pom Emission tuning factor for anthropogenic particulate – 1.0 0–3

organic matter
15 e_acnum Emission tuning factor for aerosol number concen- – 1.0 0.3–5.0

tration in the accumulation mode
16 e_so4f Tuning factor for the fraction of SO2 emitted as sulfate – 0.025 0–0.05
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Table 3. Global mean TOA net radiative flux (FNET), total cloud forcing (CF), shortwave cloud
forcing (SWCF), and longwave cloud forcing (LWCF) in the parametric sensitivity simulations
described in Sect. 4. The numbers given are the average of 256 simulations/ensembles ± one
standard deviation (unit: Wm−2).

Variable 4 yr average 12-member average at day 10

FNET −3.73±2.36 −3.84±2.63
CF −33.70±5.64 −34.07±7.07
SWCF −56.20±2.13 −56.42±2.12
LWCF 22.49±2.14 22.35±2.56
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Wan et al.: Experimentation strategy for climate models 3

model time step, driven by annually cycled monthly mean175

climatological sea surface temperature distributions and sea
ice concentrations. Emissions of aerosols and reactive gases
are specified at their year 2000 values following Lamarque
et al. (2010). Model state variables, including the meteoro-
logical fields, aerosol concentrations, and land surface vari-180

ables, are archived at 5-day intervals in the “native” format
of the initial condition files.

This initialization procedure requires minimal effort be-
cause output from a prior simulation can be used directly
in the ensemble simulations, or conveniently interpolated185

for studies that involve different spatial resolutions. Also,
the same archive can be used in different sensitivity studies.
When the model configuration (e.g., parameters, resolution,
or time step) changes, the simulated climate can change ac-
cordingly, in which case the integrations starting from the190

above-mentioned initial conditions will need some time to
adjust before entering the new quasi-equilibrium. Identifica-
tion of the spin-up phase is one of the issues we attempt to ad-
dress in the following sections, and we will demonstrate that
the initial adjustment is indeed short in the examples shown195

in Sects. 3 and 4.

(a)

(b)

Fig. 1. Total cloud cover (unit: %) in CAM5 simulations using the
default model time step (30 minutes). (a) 5-yr December-January-
February (DJF) average from a long-term climate simulation. (b)
50-member ensemble average of the first model day in a set of short
simulations. Further details are explained in Sect. 3.1.

3 Example I: time step sensitivity of clouds

In this section the utility of the ensemble approach is demon-
strated using simulations in which the model time step used

(a)

(b)

(c)

Fig. 2. Differences in total cloud cover (unit: %) between simula-
tions using 4-minute and 30-minute time steps. (a) 5-yr DJF average
from a climate simulation performed in the traditional way; (b) 50-
member ensemble average of the first simulation day; (c) As in (b)
but for the third simulation day. Stippling in panels (b) and (c) in-
dicates where the differences are statistically significant at the 95%
confidence level. Further details are explained in Sect. 3.2.

in CAM5 is reduced from the default value of 30 minutes200

to 4 minutes. We focus on cloud and precipitation related
model variables. Our example is motivated by the desire (in
a seperate study with a focus on scientific issues) to char-
acterize the time step sensitivities of the atmospheric water
cycle in CAM5 and assess numerical convergence. Since we205

also want to distinguish different climate regimes, the anal-
ysis here focuses on a particular season (boreal winter) to
avoid the additional complexity introduced by seasonal vari-
ations in geographic locations.

For evaluation purposes, two simulations (with 30- and 4-210

minute time steps respectively) were first performed for 5
years (plus 1-yr spin-up) in the conventional way. Sensitiv-
ities in the simulated climate were identified by by compar-
ing fields from the multi-year December-January-February
(DJF) averages of the two simulations. This pair of simula-215

Fig. 1. Total cloud cover (unit: %) in CAM5 simulations using the default model time step
(30 min). (a) 5 yr December–January–February (DJF) average from a long-term climate sim-
ulation. (b) 50-member ensemble average of the first model day in a set of short simulations.
Further details are explained in Sect. 3.1.
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Wan et al.: Experimentation strategy for climate models 3

model time step, driven by annually cycled monthly mean175

climatological sea surface temperature distributions and sea
ice concentrations. Emissions of aerosols and reactive gases
are specified at their year 2000 values following Lamarque
et al. (2010). Model state variables, including the meteoro-
logical fields, aerosol concentrations, and land surface vari-180

ables, are archived at 5-day intervals in the “native” format
of the initial condition files.

This initialization procedure requires minimal effort be-
cause output from a prior simulation can be used directly
in the ensemble simulations, or conveniently interpolated185

for studies that involve different spatial resolutions. Also,
the same archive can be used in different sensitivity studies.
When the model configuration (e.g., parameters, resolution,
or time step) changes, the simulated climate can change ac-
cordingly, in which case the integrations starting from the190

above-mentioned initial conditions will need some time to
adjust before entering the new quasi-equilibrium. Identifica-
tion of the spin-up phase is one of the issues we attempt to ad-
dress in the following sections, and we will demonstrate that
the initial adjustment is indeed short in the examples shown195

in Sects. 3 and 4.

(a)

(b)

Fig. 1. Total cloud cover (unit: %) in CAM5 simulations using the
default model time step (30 minutes). (a) 5-yr December-January-
February (DJF) average from a long-term climate simulation. (b)
50-member ensemble average of the first model day in a set of short
simulations. Further details are explained in Sect. 3.1.

3 Example I: time step sensitivity of clouds

In this section the utility of the ensemble approach is demon-
strated using simulations in which the model time step used

(a)

(b)

(c)

Fig. 2. Differences in total cloud cover (unit: %) between simula-
tions using 4-minute and 30-minute time steps. (a) 5-yr DJF average
from a climate simulation performed in the traditional way; (b) 50-
member ensemble average of the first simulation day; (c) As in (b)
but for the third simulation day. Stippling in panels (b) and (c) in-
dicates where the differences are statistically significant at the 95%
confidence level. Further details are explained in Sect. 3.2.

in CAM5 is reduced from the default value of 30 minutes200

to 4 minutes. We focus on cloud and precipitation related
model variables. Our example is motivated by the desire (in
a seperate study with a focus on scientific issues) to char-
acterize the time step sensitivities of the atmospheric water
cycle in CAM5 and assess numerical convergence. Since we205

also want to distinguish different climate regimes, the anal-
ysis here focuses on a particular season (boreal winter) to
avoid the additional complexity introduced by seasonal vari-
ations in geographic locations.

For evaluation purposes, two simulations (with 30- and 4-210

minute time steps respectively) were first performed for 5
years (plus 1-yr spin-up) in the conventional way. Sensitiv-
ities in the simulated climate were identified by by compar-
ing fields from the multi-year December-January-February
(DJF) averages of the two simulations. This pair of simula-215

Fig. 2. Differences in total cloud cover (unit: %) between simulations using 4 min and 30 min
time steps. (a) 5 yr DJF average from a climate simulation performed in the traditional way; (b)
50-member ensemble average of the first simulation day; (c) as in (b) but for the third simulation
day. Stippling in panels (b) and (c) indicates where the differences are statistically significant at
the 95 % confidence level. Further details are explained in Sect. 3.2.
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Wan et al.: Experimentation strategy for climate models 5

(a)

(b)

(c)

Fig. 3. (a) Zonally averaged, 5-yr DJF mean mass concentration of
stratiform cloud ice (unit: mg kg−1) simulated by CAM5 using a
30-minute time step. (b) 5-yr DJF mean cloud ice mass concentra-
tion differences between simulations using 4-minute and 30-minute
time steps (unit: mg kg−1). (c) As in panel (b) but showing the 50-
member ensemble mean at day 3. Stippling in panel (c) indicates
locations where the differences are statistically significant at 95%
confidence level. Further details are explained in Sect. 3.2.

is a good representation of the long-term climatology. In
the following, we demonstrate that the ensemble simulations
are also able to accurately reproduce the response of cloud-275

related fields to parameterization changes (in this case time
step length).

3.2 Fast response of clouds

Our ensemble simulations with 4-minute time step are initial-
ized using snapshots of atmospheric and land-surface condi-280

tions sampled from the model climate resulting from a 30-
minute time step. Because cloud processes operate on short
timescales, we expect quick responses to changes in model
time step. This is indeed observed in the simulations.

The 5-yr simulations indicate that a reduction from 30 to285

4-minute time step leads to an overall increase of total cloud
cover. The most prominent signals occur in the shallow cu-
mulus regions where the absolute changes range from about
10% to more than 40% in boreal winter (Fig. 2a), correspond-
ing to typical relative changes from 20% to more than 100%290

(not shown). Such characteristic patterns are apparent in the
ensemble simulations in the first model day (Fig. 2b). Al-
though the differences are somewhat smaller than the 5-yr
DJF averages, statistical tests suggest they are significant at
the 95% confidence level. By the third day, the magnitudes295

of the differences between 4 and 30-minute simulations are
close to those seen in the 5-yr average.

The ensembles simulations can also capture changes in
vertical structures. Fig. 3 shows the zonally averaged strati-
form cloud ice mass concentration as an example. According300

to the 5-yr simulations (Fig. 3b), shorter time step leads to
higher ice concentrations throughout the troposphere. The
largest increases occur in the lower levels over the storm
tracks, and in the tropical upper troposphere between 300
and 400 hPa where deep convection detrains condensate into305

the environment. There is a secondary center of large in-
crease near 150 hPa, corresponding to frequent homogeneous
ice nucleation. The close resemblance between the 5-yr DJF
average (Fig. 3b) and the day 3 average of the ensemble re-
sults (Fig. 3c) indicates that the characteristic distributions of310

cloud ice are well established within a couple of model days.
We reinforce the conclusion of fast spin-up by show-

ing the day-to-day variation of global mean cloud cover
(Fig. 4a), vertically integrated liquid and ice water path (LWP
and IWP, Fig. 4b-c), longwave and shortwave cloud forc-315

ing (LWCF and SWCF, Fig. 4d-e) and large-scale precipi-
tation rate (PRECL, Fig. 4f) from the ensemble simulations.
The 95% confidence intervals of the ensemble averages are
shown by the filled boxes, with the ensemble mean indicated
by the horizontal bar in each box. Lower and upper ends of320

the whiskers, corresponding to the 10th and 90th percentiles,
depict the ensemble spread. The 5-yr DJF and January aver-
ages, as well as the year-to-year variations, are shown in the
right part of each panel for comparison. Fig. 4 indicates that
during the 20-day integration period of the ensemble simula-325

tions, there is no obvious trend either in the 50-member av-
erages of the 30-minute and 4-minute ensembles or in their
differences; In addition, the ensemble averages agree reason-
ably well with the 5-yr averages. Therefore, for detecting fast
changes in cloud properties and distribution, it is sufficient to330

perform simulations that are only a few days in length. The
additional computing time spent on longer integration does
not provide significantly more information.

Fig. 4 also provides a quantification of the time step sen-
sitivity in the depicted variables with respect to their natu-335

Fig. 3. (a) Zonally averaged, 5 yr DJF mean mass concentration of stratiform cloud ice (unit:
mgkg−1) simulated by CAM5 using a 30 min time step. (b) 5 yr DJF mean cloud ice mass con-
centration differences between simulations using 4 min and 30 min time steps (unit: mgkg−1).
(c) As in panel (b) but showing the 50-member ensemble mean at day 3. Stippling in panel (c)
indicates locations where the differences are statistically significant at 95 % confidence level.
Further details are explained in Sect. 3.2.
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6 Wan et al.: Experimentation strategy for climate models

Fig. 4. Global mean values of some cloud-related variables from the 50-member ensembles and from the 5-yr climate simulations. Blue
and green indicate simulations performed with 30-minute and 4-minute time steps, respectively. Left part of each panel show the daily mean
global averages in the first 20 days of the ensemble simulations. Lower and upper ends of the whiskers denote the 10th and 90th percentiles.
The hinges in the middle indicate ensemble mean. The filled boxes show the 95% confidence interval of the mean. In the right part of each
panel, the January and DJF averages of the 5-yr climate simulations are shown. The bottom and top of each box correspond to the minimum
and maximum January or DJF averages in the simulation period. Hinges in the middle indicate the 5-yr average. Further details are explained
in Sect. 3.2.

Fig. 5. Impact of ensemble size on the estimated (a) global mean ice water path, (c) global mean large-scale precipitation rate, and (b,d) their
sensitivity to model time step. In panels (a) and (c), blue and green correspond to simulations performed with 30-minute and 4-minute time
steps, respectively. The dots inside filled boxes are ensemble mean values averaged over the entire integration period (20 days). Top and
bottom of the boxes denote the maximum and minimum daily averages. Similarly, the 4-minute/30-minute differences are shown in panels
(b) and (d), except that all values are normalized by the 20-day average of the 180-member ensemble mean, in order to show the relative
differences among the estimates associated with different ensemble sizes. Further details are explained in Sect. 3.3.

ral variability. Comparing differences between the 4-minute
and 30-minute ensemble averages with the ensemble spreads,
one can conclude that the total cloud fraction, LWP and IWP
(Fig. 4a–c) are more sensitive to the time step change than
SWCF, LWCF and PRECL are (Fig. 4d–f). On the other340

hand, although individual members from the 30-minute and
4-minute ensembles can have the same globally averaged
SWCF, LWCF, or PRECL, the 95% confidence intervals of
the ensemble mean do not overlap on any day during the inte-
gration period, suggesting that the time step sensitivities are345

nevertheless statistically significant.

3.3 Ensemble size

So far we have shown the effectiveness of the short simu-
lations using results from 50-member ensembles. We now
demonstrate the robustness of the method and discuss the350

choice of ensemble size. The essence of the experimenta-
tion method we propose in this paper is to approximate the
long-term temporal average by the ensemble average over a
short period. The accuracy of this approximation naturally
depends on the ensemble size and properties of the state vari-355

able in question.

Fig. 4. Global mean values of some cloud-related variables from the 50-member ensembles
and from the 5 yr climate simulations. Blue and green indicate simulations performed with
30 min and 4 min time steps, respectively. Left part of each panel show the daily mean global
averages in the first 20 days of the ensemble simulations. Lower and upper ends of the whiskers
denote the 10th and 90th percentiles. The hinges in the middle indicate ensemble mean. The
filled boxes show the 95 % confidence interval of the mean. In the right part of each panel, the
January and DJF averages of the 5 yr climate simulations are shown. The bottom and top of
each box correspond to the minimum and maximum January or DJF averages in the simulation
period. Hinges in the middle indicate the 5 yr average. Further details are explained in Sect. 3.2.
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6 Wan et al.: Experimentation strategy for climate models

Fig. 4. Global mean values of some cloud-related variables from the 50-member ensembles and from the 5-yr climate simulations. Blue
and green indicate simulations performed with 30-minute and 4-minute time steps, respectively. Left part of each panel show the daily mean
global averages in the first 20 days of the ensemble simulations. Lower and upper ends of the whiskers denote the 10th and 90th percentiles.
The hinges in the middle indicate ensemble mean. The filled boxes show the 95% confidence interval of the mean. In the right part of each
panel, the January and DJF averages of the 5-yr climate simulations are shown. The bottom and top of each box correspond to the minimum
and maximum January or DJF averages in the simulation period. Hinges in the middle indicate the 5-yr average. Further details are explained
in Sect. 3.2.

Fig. 5. Impact of ensemble size on the estimated (a) global mean ice water path, (c) global mean large-scale precipitation rate, and (b,d) their
sensitivity to model time step. In panels (a) and (c), blue and green correspond to simulations performed with 30-minute and 4-minute time
steps, respectively. The dots inside filled boxes are ensemble mean values averaged over the entire integration period (20 days). Top and
bottom of the boxes denote the maximum and minimum daily averages. Similarly, the 4-minute/30-minute differences are shown in panels
(b) and (d), except that all values are normalized by the 20-day average of the 180-member ensemble mean, in order to show the relative
differences among the estimates associated with different ensemble sizes. Further details are explained in Sect. 3.3.

ral variability. Comparing differences between the 4-minute
and 30-minute ensemble averages with the ensemble spreads,
one can conclude that the total cloud fraction, LWP and IWP
(Fig. 4a–c) are more sensitive to the time step change than
SWCF, LWCF and PRECL are (Fig. 4d–f). On the other340

hand, although individual members from the 30-minute and
4-minute ensembles can have the same globally averaged
SWCF, LWCF, or PRECL, the 95% confidence intervals of
the ensemble mean do not overlap on any day during the inte-
gration period, suggesting that the time step sensitivities are345

nevertheless statistically significant.

3.3 Ensemble size

So far we have shown the effectiveness of the short simu-
lations using results from 50-member ensembles. We now
demonstrate the robustness of the method and discuss the350

choice of ensemble size. The essence of the experimenta-
tion method we propose in this paper is to approximate the
long-term temporal average by the ensemble average over a
short period. The accuracy of this approximation naturally
depends on the ensemble size and properties of the state vari-355

able in question.

Fig. 5. Impact of ensemble size on the estimated (a) global mean ice water path, (c) global
mean large-scale precipitation rate, and (b, d) their sensitivity to model time step. In panels (a)
and (c), blue and green correspond to simulations performed with 30 min and 4 min time steps,
respectively. The dots inside filled boxes are ensemble mean values averaged over the entire
integration period (20 days). Top and bottom of the boxes denote the maximum and minimum
daily averages. Similarly, the 4 min/30 min differences are shown in panels (b) and (d), except
that all values are normalized by the 20 day average of the 180-member ensemble mean, in
order to show the relative differences among the estimates associated with different ensemble
sizes. Further details are explained in Sect. 3.3.

2210

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/2173/2014/gmdd-7-2173-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/2173/2014/gmdd-7-2173-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 2173–2216, 2014

Experimentation
strategy for climate

models

H. Wan et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Wan et al.: Experimentation strategy for climate models 7

(a)

(b)

(c)

Fig. 6. Shortwave cloud forcing differences (unit: W m−2) between
simulations using 4-minute and 30-minute time steps. (a) 5-yr DJF
average from a climate simulation performed in the traditional way;
(b) Day 3 average from ensemble simulations with 50 independent
members; (c) Day 3 average from ensemble simulations with 360
independent members. In panels (b) and (c), stippled regions are
associated with differences significant at the 95% confidence level.

3.3.1 Global averages

In Fig. 5 the accuracy of estimated global averages is an-
alyzed for the ice water path and large-scale precipitation
rate. Results are shown for 10, 20, 50, 90, and 180 ensemble360

members. At each ensemble size, the day-to-day variabil-
ity of the ensemble mean daily average is indicated by the
vertical extent of a filled box, with its top and bottom show-
ing the maximum and minimum values during the 20-day
simulation period. The 20-day averages are denoted by the365

black dot in each box. Based on the conclusion drawn from
Fig. 4 about fast spin-up, it is reasonable to assume when a
sufficiently large number of realizations are obtained, the en-
semble mean values averaged over 20 days will indicate the
long-term climatological mean within a small uncertainty in-370

duced by natural variability. Thus the vertical size of a col-

ored box in Fig. 5 can be used as a measure of approximation
error in the global averages estimated from a single-day sim-
ulation at the corresponding ensemble size. In panels Fig. 5b
and 5d, the 4-minute/30-minute differences are normalized375

by the 20-day average of the 180-member ensemble mean,
in order to indicate the uncertainties in relative terms.

Fig. 5 conveys several messages. First, the 20-day aver-
ages change very little with ensemble size (Fig. 5a,c), sug-
gesting that the sampling method is representative in captur-380

ing the impact of time step change. Second, as the number
of independent realizations increases, variances in the daily
average decrease, producing more accurate approximations
of the long-term climatology (Fig. 5a,c). Third, different
model variables are associated with different variability, thus385

require different numbers of realizations. Last but not least,
good estimates of the time step sensitivities can be obtained
with rather small ensembles. With 20 independent mem-
bers, the global mean ∆IWP (∆PRECL) calculated from a
one-day simulation agrees within 10% (25%) with the 180-390

member 20-day average (Fig. 5b,d). Similar accuracies are
obtained in our experiments for the other variables shown in
Fig. 4 for global averages. To capture regional differences,
some highly variable fields may need more realizations, as
discussed below.395

3.3.2 Climate regimes

When assessing model sensitivities, it is often necessary to
examine not only global averages, but also regional features
and climate regimes. Because clouds are highly variable in
their occurrence and properties, regional patterns are some-400

times difficult to detect due to the low signal-to-noise ratio.
For example, Kooperman et al. (2012) showed that to get a
clear signature of the anthropogenic aerosol indirect effect,
it is necessary to run CAM5 for multiple decades in conven-
tional climate simulations.405

Fig. 6 shows the SWCF changes (∆SWCF) caused by a re-
duction of model time step in the 5-yr integrations (Fig. 6a)
and at day 3 in the ensemble simulations (Fig. 6b, c). Both
methods reveal a systematic increase of SWCF in the trade
cumulus regions, while the reduction of cloud forcing in the410

ITCZ and SPCZ are more clearly seen in the ensemble re-
sults. It is remarkable that the convergence zones emerge
clearly in Fig. 6b with only 50 ensemble members, a result
attributable to our initialization method that uses the same set
of initial conditions for the 4-minute and 30-minute simula-415

tions. In the early stage of the integration (first ~5 days), the
large-scale environmental conditions remain similar in each
pair of ensemble members, resulting in the synoptic systems
and convective activities occurring at similar locations, thus
avoiding strong noise in ∆SWCF associated with synoptic420

scale variabilities in the circulation.
In Fig. 6b, ∆SWCF in the shallow cumulus and deep con-

vection regions have similar magnitudes, but those in the
latter regime do not pass the statistical test because of the

Fig. 6. Shortwave cloud forcing differences (unit: Wm−2) between simulations using 4 min and
30 min time steps. (a) 5 yr DJF average from a climate simulation performed in the traditional
way; (b) day 3 average from ensemble simulations with 50 independent members; (c) day 3
average from ensemble simulations with 360 independent members. In panels (b) and (c),
stippled regions are associated with differences significant at the 95 % confidence level.
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8 Wan et al.: Experimentation strategy for climate models

Fig. 7. Shortwave cloud forcing (SWCF) associated with tropical
deep convection in simulations performed with 30-minute (blue)
and 4-minute (green) time steps. The SWCF is averaged over tropi-
cal ocean grid points where the daily mean convective precipitation
rate exceeds 3 mm day−1. Like in Fig. 4, horizontal bars in the
middle of filled boxes indicate the mean value of each ensemble.
Lower and upper ends of the whiskers correspond to the 10th and
90th percentiles, respectively. Filled boxes show the 95% confi-
dence interval of the ensemble mean. Further details are explained
in Sect. 3.3.

large natural variability of deep convection in the conver-425

gence zones. The evaluation procedure can be made more ro-
bust using regime compositing, e.g., by assessing the SWCF
changes over tropical (20◦S–20◦N) ocean grid points where
the convective precipitation is important, in this case de-
fined to be where the convective precipitation rate exceeds430

3 mm day−1. Fig. 7 indicates that for such a “deep convec-
tion SWCF”, ensembles of 20 members are sufficient to dis-
tinguish the difference between the 4-minute and 30-minute
simulations. For the purpose of verification, we performed
additional simulations and present them in Fig. 6c. The 360-435

member results confirm that the ∆SWCF patterns and mag-
nitudes detected by the 50-member ensembles are not inci-
dental.

3.4 Combining ensembles with nudging

The nudging technique has been repeatedly used in model440

evaluation and intercomparison studies as a method for con-
straining model meteorology, reducing uncertainties induced
by natural variability, and facilitating comparison with ob-
servations (e.g., Jeuken et al., 1996; Feichter and Lohmann,
1999; Machenhauer and Kirchner, 2000; Ghan et al., 2001;445

Kooperman et al., 2012). Here we briefly show that nudging
can be applied in combination with ensembles to assess the
contribution of physics-dynamics interaction to the model’s
time step sensitivity.

Two sets of ensemble simulations, each with 50 mem-450

bers, were performed with the 30-minute and 4-minute time
steps, respectively, with the horizontal wind and tempera-
ture relaxed towards those from the unconstrained 30-minute
time step simulations. Each pair of control (30-minute time

step) and sensitivity (4-minute) experiments starting from455

the same initial conditions were nudged to the same tem-
perature and wind fields, while different pairs were relaxed
towards different large-scale conditions. As in Kooperman
et al. (2012), a 6-hour relaxation time was used.

Fig. 8 compares the globally/regionally averaged total460

cloud fraction, IWP and SWCF in the free-running and
nudged simulations. SWCF in the deep and shallow convec-
tion regions are presented separately because the two regimes
are associated with opposite sensitivities to time step (cf.
Fig. 6). As expected, the unconstrained and nudged 30-465

minute simulations give very similar results. The ensem-
ble averages are not distinguishable in a statistical sense, the
95% confidence intervals are comparable, and the ensemble
spreads are also similar. The 4 minute simulations, on the
other hand, are significantly different. When wind and tem-470

perature are constrained, the differences between 4-minute
and 30-minute simulations are reduced by about 30% for the
variables shown in the figure, suggesting that fast interac-
tions (feedbacks) between resolved dynamics and parameter-
ized physics increase the time step sensitivity of the CAM5475

model.

3.5 Computational efficiency

The results presented above provide clear answers to the
questions posed at the beginning of this section. To detect
time step sensitivities in cloud-related fields, it is sufficient480

to perform 20 to 50 independent 3-day simulations. The en-
semble method reveals signals that agree well with those de-
tected by 5-yr simulations performed in the traditional way,
but costs substantially less total CPU time, and dramatically
less in terms of the experiment “completion time” in situa-485

tions where there are more processors available than a single
job can use effectively, or is allowed to use without a long
queuing time, and many realizations can be run simultane-
ously. Our experience showed that on the Yellowstone su-
percomputer (Computational and Information Systems Lab-490

oratory, 2012) at the National Center for Atmospheric Re-
search (NCAR) Computational and Information System Lab
(CISL), a 5-yr simulation with 4-minute time step typically
takes about 4 to 7 days of wall-clock time to finish with 64
processes running in parallel. (The actual duration depends495

on the amount of model output as well as traffic in the queu-
ing system.) For the ensemble simulations, a set of fifty 3-
day simulations usually takes less than 20 minutes to finish,
counting from the instant when the jobs are submitted till the
point when the last job is completed, resulting in a reduc-500

tion of turnaround time by a factor of several hundred. Such
fast turnaround will be particularly helpful when additional
simulations are conducted with varied model configurations
to identify the source of the time step sensitivity, and when
even smaller time steps are used to assess the convergence505

properties of the model behavior.

Fig. 7. Shortwave cloud forcing (SWCF) associated with tropical deep convection in simulations
performed with 30 min (blue) and 4 min (green) time steps. The SWCF is averaged over tropical
ocean grid points where the daily mean convective precipitation rate exceeds 3 mmday−1. Like
in Fig. 4, horizontal bars in the middle of filled boxes indicate the mean value of each ensemble.
Lower and upper ends of the whiskers correspond to the 10th and 90th percentiles, respectively.
Filled boxes show the 95 % confidence interval of the ensemble mean. Further details are
explained in Sect. 3.3.
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Wan et al.: Experimentation strategy for climate models 9

Fig. 8. Comparison of the free-running (“F”) and nudged (“N”) simulations performed with 30-minute (blue) and 4-minute (green) time
steps. Meanings of the whiskers, boxes and hinges are the same as in Figs. 4 and 7. Each ensemble consists of 50 independent members. In
the nudged simulations, temperature and horizontal wind are relaxed towards those from the 30-minute time step unconstrained simulations,
using a nudging time scale of 6 hours. Panels (a) and (b) show the globally averaged, vertically integrated total cloud fraction and ice water
path, respectively. Panels (c) and (d) show the shortwave cloud forcing (SWCF) averaged over the shallow and deep convection regions.
SWCF associated with shallow convection is the average over ocean grid points between 30◦N and 30◦S where the frequency of occurrence
of shallow convection is larger than 0.5, and the daily mean convective precipitation rate is lower than 1 mm day−1. SWCF associated with
deep convection is calculated in the same way as in Fig. 7 (cf. Sect. 3.3.2). All results are shown for the third simulation day.

From the results above, we conclude that the ensemble
method as applied is both effective and efficient for the in-
vestigation of time step sensitivity. In the next section, we
use an additional example to show that the method can also510

be very useful in other sensitivity studies.

Fig. 9. Time evolution of the global mean aerosol optical depth
(AOD, at 550 nm wavelength) in the ensemble simulations de-
scribed in Sect. 4. The thick curve shows the AOD averaged over
256 ensembles that used different values for 16 empirical param-
eters in the CAM5 model (cf. Table 2). Vertical bars indicate the
spread (minimum to maximum) among the 256 ensembles.

4 Example II: parametric sensitivity of the global mean
top-of-atmosphere radiation balance

The parameterization schemes of sub-grid scale processes
in AGCMs include various empirical, uncertain constants515

whose values are often adjusted to obtain desired radiation
balance at the top of the model atmosphere (TOA), and to
achieve good fidelity when evaluated against observations
(e.g., Mauritsen et al., 2012; Golaz and Levy, 2013). There
is a large volume of literature discussing the sensitivities of520

model behavior to empirial parameters. In the context of
global climate change, there is also increasing interest in as-
sessing the impact of such parameters on the uncertainties in
future climate projections (e.g., Murphy et al., 2004; Stain-
forth et al., 2005; Collins et al., 2006).525

Because there are a large number of adjustable parameters
in AGCMs, and many of them have wide ranges of possi-
ble values, systematic investigations of model sensitivity in-
evitably require numerous simulations. Earlier studies that
varied the value of one parameter at a time (e.g., Lohmann530

and Ferrachat, 2010) only covered very small portions of the
full parameter space. In recent years, the use of advanced
sampling approaches such as Latin hypercube (McKay et al.,
1979) and quasi-Monte Carlo method (Caflisch, 1998) have
allowed more extensive explorations of the parameter space535

(e.g., Lee et al., 2012, 2013; Zhao et al., 2013). Perturbing
multiple parameters simultaneously not only allows for a dra-
matic reduction of the number of simulations needed for the
sensitivity study, but also provides the opportunity to investi-
gate parameter interactions, leading to a more comprehensive540

understanding of model sensitivity.
On the other hand, even with efficient sampling ap-

proaches applied, systematic investigations of parametric
sensitivity are still inherently expensive because of the high
dimensionality of the parameter space. For instance, to545

simultaneously perturbe O(101) parameters, one needs to
sampleO(102∼ 103) points from the parameter space to en-
sure sufficient coverage. Performing long-term climate sim-
ulations with this many model configurations requires a sub-
stantial amount of computer time. In this section, we demon-550

strate that there are circumstances in which a very good char-
acterization of the parametric sensitivity can be obtained with
small ensembles of short integrations, resulting in a signifi-
cant reduction in the computational cost.

Fig. 8. Comparison of the free-running (“F”) and nudged (“N”) simulations performed with
30 min (blue) and 4 min (green) time steps. Meanings of the whiskers, boxes and hinges are the
same as in Figs. 4 and 7. Each ensemble consists of 50 independent members. In the nudged
simulations, temperature and horizontal wind are relaxed towards those from the 30 min time
step unconstrained simulations, using a nudging time scale of 6 h. Panels (a) and (b) show
the globally averaged, vertically integrated total cloud fraction and ice water path, respec-
tively. Panels (c) and (d) show the shortwave cloud forcing (SWCF) averaged over the shal-
low and deep convection regions. SWCF associated with shallow convection is the average
over ocean grid points between 30◦ N and 30◦ S where the frequency of occurrence of shallow
convection is larger than 0.5, and the daily mean convective precipitation rate is lower than
1 mmday−1. SWCF associated with deep convection is calculated in the same way as in Fig. 7
(cf. Sect. 3.3.2). All results are shown for the third simulation day.
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Wan et al.: Experimentation strategy for climate models 9

Fig. 8. Comparison of the free-running (“F”) and nudged (“N”) simulations performed with 30-minute (blue) and 4-minute (green) time
steps. Meanings of the whiskers, boxes and hinges are the same as in Figs. 4 and 7. Each ensemble consists of 50 independent members. In
the nudged simulations, temperature and horizontal wind are relaxed towards those from the 30-minute time step unconstrained simulations,
using a nudging time scale of 6 hours. Panels (a) and (b) show the globally averaged, vertically integrated total cloud fraction and ice water
path, respectively. Panels (c) and (d) show the shortwave cloud forcing (SWCF) averaged over the shallow and deep convection regions.
SWCF associated with shallow convection is the average over ocean grid points between 30◦N and 30◦S where the frequency of occurrence
of shallow convection is larger than 0.5, and the daily mean convective precipitation rate is lower than 1 mm day−1. SWCF associated with
deep convection is calculated in the same way as in Fig. 7 (cf. Sect. 3.3.2). All results are shown for the third simulation day.

From the results above, we conclude that the ensemble
method as applied is both effective and efficient for the in-
vestigation of time step sensitivity. In the next section, we
use an additional example to show that the method can also510

be very useful in other sensitivity studies.

Fig. 9. Time evolution of the global mean aerosol optical depth
(AOD, at 550 nm wavelength) in the ensemble simulations de-
scribed in Sect. 4. The thick curve shows the AOD averaged over
256 ensembles that used different values for 16 empirical param-
eters in the CAM5 model (cf. Table 2). Vertical bars indicate the
spread (minimum to maximum) among the 256 ensembles.

4 Example II: parametric sensitivity of the global mean
top-of-atmosphere radiation balance

The parameterization schemes of sub-grid scale processes
in AGCMs include various empirical, uncertain constants515

whose values are often adjusted to obtain desired radiation
balance at the top of the model atmosphere (TOA), and to
achieve good fidelity when evaluated against observations
(e.g., Mauritsen et al., 2012; Golaz and Levy, 2013). There
is a large volume of literature discussing the sensitivities of520

model behavior to empirial parameters. In the context of
global climate change, there is also increasing interest in as-
sessing the impact of such parameters on the uncertainties in
future climate projections (e.g., Murphy et al., 2004; Stain-
forth et al., 2005; Collins et al., 2006).525

Because there are a large number of adjustable parameters
in AGCMs, and many of them have wide ranges of possi-
ble values, systematic investigations of model sensitivity in-
evitably require numerous simulations. Earlier studies that
varied the value of one parameter at a time (e.g., Lohmann530

and Ferrachat, 2010) only covered very small portions of the
full parameter space. In recent years, the use of advanced
sampling approaches such as Latin hypercube (McKay et al.,
1979) and quasi-Monte Carlo method (Caflisch, 1998) have
allowed more extensive explorations of the parameter space535

(e.g., Lee et al., 2012, 2013; Zhao et al., 2013). Perturbing
multiple parameters simultaneously not only allows for a dra-
matic reduction of the number of simulations needed for the
sensitivity study, but also provides the opportunity to investi-
gate parameter interactions, leading to a more comprehensive540

understanding of model sensitivity.
On the other hand, even with efficient sampling ap-

proaches applied, systematic investigations of parametric
sensitivity are still inherently expensive because of the high
dimensionality of the parameter space. For instance, to545

simultaneously perturbe O(101) parameters, one needs to
sampleO(102∼ 103) points from the parameter space to en-
sure sufficient coverage. Performing long-term climate sim-
ulations with this many model configurations requires a sub-
stantial amount of computer time. In this section, we demon-550

strate that there are circumstances in which a very good char-
acterization of the parametric sensitivity can be obtained with
small ensembles of short integrations, resulting in a signifi-
cant reduction in the computational cost.

Fig. 9. Time evolution of the global mean aerosol optical depth (AOD, at 550 nm wavelength)
in the ensemble simulations described in Sect. 4. The thick curve shows the AOD averaged
over 256 ensembles that used different values for 16 empirical parameters in the CAM5 model
(cf. Table 2). Vertical bars indicate the spread (minimum to maximum) among the 256 ensem-
bles.
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10 Wan et al.: Experimentation strategy for climate models

Table 2. Empirical parameters in the cloud microphysics and aerosol lifecycle parameterizations in CAM5 that are perturbed in the sensitivity
analysis descripbed in Sect. 4. Adapted from Table 1 in Zhao et al. (2013).

Index Parameter Description Unit Default value Investigated range

1 ai Fall-speed parameter for cloud ice s−1 700 350–1400
2 as Fall-speed parameter for snow m0.59 s−1 11.72 5.86–23.44
3 cdnl Lower bound of grid-box mean cloud droplet number

concentration
m−3 0 0–1e7

4 dcs Size threshold assumed for the autoconversion of cloud
ice to snow

µm 400 100–500

5 wsubmin Minimum sub-grid vertical velocity assumed for cloud
droplet activation

m s−1 0.2 0–1

6 facti Solubility factor for the removal of cloud-borne
aerosols in stratiform clouds

- 1.0 0.5–1

7 factic Solubility factor for the removal of interstitial aerosols
in convective clouds

- 0.4 0.2–0.8

8 ref dust Imaginary part of the refractive index of dust in visible
bands of the solar radiation

- 0.005 0.001–0.01

9 e dust Emission tuning factor for dust - 0.35 0.21–0.86
10 e sst Emission tuning factor for sea salt - 1.0 0.5–2.0
11 e soag Emission tuning factor for secondary organic aerosols - 1.5 0.5–2.0
12 e so2 Emission tuning factor for anthropogenic SO2 - 1.0 0–2
13 e bc Emission tuning factor for anthropogenic black carbon - 1.0 0–3
14 e pom Emission tuning factor for anthropogenic particulate or-

ganic matter
- 1.0 0–3

15 e acnum Emission tuning factor for aerosol number concentra-
tion in the accumulation mode

- 1.0 0.3–5.0

16 e so4f Tuning factor for the fraction of SO2 emitted as sulfate - 0.025 0–0.05

✲�✁✂

✵✁✵

�✁✂

✽✁✄

❋
☎
✆
✝
✞✟

✠
✡☛
✮

✸☞✌ ✶✍✌✌

❛✎

✥✏✑✒

☞✺✓✔ ✷✸✺✍✍

❛✕

✖✏✗✒

✌ ✶✌

❝✘✙✚

✗✏✛✒

✶✌✌ ☞✌✌

✘❝✕

✜✖✏✖✒

✌ ✶

✇✕✢✣✤✎✙

✥✦✏✜✒

✌✺✷ ✌✺✓

❢❛❝✧✎❝

✖✖✏✥✒

✌✺☞ ✶✺✌

❢❛❝✧✎

★✏✑✒

✌✺✌✌✶ ✌✺✌✶

r✩❢✪✘✢✕✧

★✏✥✒
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Fig. 10. Sensitivities of the global mean top-of-atmosphere net radiative flux (FNET, unit: W m−2) to the empirical parameters listed in
Table 2. CAM5 simulations were carried out using 256 different model configurations corresponding to 256 sampling points drawn from
the 16-dimentional parameter space (cf. Table 2 and Sect. 4.1). In each panel, the global mean FNET corresponding to the 256 model
configurations are sorted into 8 bins according to the values of one perturbed parameter. The spread (minimum to maximum) of FNET
within a bin is shown by a vertical bar, while the mean value is indicated by a square mark. Note that the FNET shown here is the anomaly
relative to the mean of the 256 simulations/ensembles. The mean values that have been subtracted are given in Table 3. Numbers noted above
the panels are the relative contribution of individual parameters to the total variation of FNET, estimated using a generalized linear model
(cf. Sect. 4.4). Red font means the contribution is statistically significant at the 95% confidence level. The upper row shows results obtained
from the AMIP simulations of Zhao et al. (2013) (cf. Sect 4.1). The lower row shows results from the ensemble simulations performed in
this study.

Fig. 10. Sensitivities of the global mean top-of-atmosphere net radiative flux (FNET, unit:
Wm−2) to the empirical parameters listed in Table 2. CAM5 simulations were carried out us-
ing 256 different model configurations corresponding to 256 sampling points drawn from the
16-dimentional parameter space (cf. Table 2 and Sect. 4.1). In each panel, the global mean
FNET corresponding to the 256 model configurations are sorted into 8 bins according to the
values of one perturbed parameter. The spread (minimum to maximum) of FNET within a bin
is shown by a vertical bar, while the mean value is indicated by a square mark. Note that the
FNET shown here is the anomaly relative to the mean of the 256 simulations/ensembles. The
mean values that have been subtracted are given in Table 3. Numbers noted above the panels
are the relative contribution of individual parameters to the total variation of FNET, estimated
using a generalized linear model (cf. Sect. 4.4). Red font means the contribution is statistically
significant at the 95 % confidence level. The upper row shows results obtained from the AMIP
simulations of Zhao et al. (2013) (cf. Sect 4.1). The lower row shows results from the ensemble
simulations performed in this study.
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Fig. 11. As in Fig. 10 but showing parametric sensitivities of the global mean (a) shortwave and (b) longwave cloud forcing (unit: W m−2).

Table 3. Global mean TOA net radiative flux (FNET), total cloud
forcing (CF), shortwave cloud forcing (SWCF), and longwave cloud
forcing (LWCF) in the parametric sensitivity simulations described
in Sect. 4. The numbers given are the average of 256 simula-
tions/ensembles ± one standard deviation (unit: W m−2).

Variable 4-yr average 12-member average at day 10

FNET -3.73 ± 2.36 -3.84 ± 2.63
CF -33.70 ± 5.64 -34.07 ± 7.07
SWCF -56.20 ± 2.13 -56.42 ± 2.12
LWCF 22.49 ± 2.14 22.35 ± 2.56

4.1 Reference simulations555

A recent study by Zhao et al. (2013) investigated the sen-
sitivity of TOA radiative fluxes in present-day climate sim-
ulations to the values of 16 parameters in CAM5. The 16
parameters included 5 adjustable constants related to strat-
iform cloud microphysics (indices 1–5 in Table 2), 3 pa-560

rameters related to the physical properties of aerosols (in-
dices 6–8 in Table 2), and 8 scale factors for aerosol emis-
sions (indices 9–16 in Table 2). To efficiently explore the
high-dimensional parameter space, the quasi-Monte Carlo
sampling method (Caflisch, 1998) was chosen for its good565

performance in terms of sample dispersion. From the 16-
dimensional parameter space, 256 sample points were drawn.
Each sample point corresponds to one set of values for the
16 parameters, which we refer to as a “parameter combina-
tion” in the following. For each parameter combination, an570

AMIP (Atmospheric Model Intercomparison Project, Gates
et al., 1998) simulation was conducted for the years 2000 to
2004. The average of the last 4 years (2001–2004) was used
in their sensitivity analysis to identify which parameters have
the largest impact on the model’s radiation budget.575

4.2 Short ensembles

In this study we demonstrate that it is possible to use short
ensembles to reproduce the results of Zhao et al. (2013). The
same 256 parameter combinations were used in our simula-

Fig. 11. As in Fig. 10 but showing parametric sensitivities of the global mean (a) shortwave and
(b) longwave cloud forcing (unit: Wm−2).
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