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Abstract. This paper explores the feasibility of an experi-
mentation strategy for investigating sensitivities in fast com-
ponents of atmospheric general circulation models. The ba-
sic idea is to replace the traditional serial-in-time long-term
climate integrations by representative ensembles of shorter5

simulations. The key advantage of the proposed method lies
in its efficiency: since fewer days of simulation are needed,
the computational cost is less, and because individual realiza-
tions are independent and can be integrated simultaneously,
the new dimension of parallelism can dramatically reduce the10

turnaround time in benchmark tests, sensitivities studies, and
model tuning exercises. The strategy is not appropriate for
exploring sensitivity of all model features, but it is very ef-
fective in many situations.

Two examples are presented using the Community Atmo-15

sphere Model version 5. In the first example the method is
used to characterize sensitivities of the simulated clouds to
time step length. Results show that 3-day ensembles of 20
to 50 members are sufficient to reproduce the main signals
revealed by traditional 5 yr simulations. A nudging tech-20

nique is applied to an additional set of simulations to help
understand the contribution of physics-dynamics interaction
to the detected time step sensitivity. In the second example,
multiple empirical parameters related to cloud microphysics
and aerosol lifecycle are perturbed simultaneously in order25

to find out which parameters have the largest impact on the
simulated global mean top-of-atmosphere radiation balance.
It turns out that 12-member ensembles of 10-day simulations
are able to reveal the same sensitivities as seen in 4 yr sim-
ulations performed in a previous study. In both cases, the30

ensemble method reduces the total computational time by a
factor of about 15, and the turnaround time by a factor of sev-
eral hundred. The efficiency of the method makes it partic-
ularly useful for the development of high-resolution, costly
and complex climate models.35
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1 Introduction

Climate, by definition, is the statistical characterization of the
state of the Earth’s atmosphere, land and ocean on time scales
longer than a few months (e.g., IPCC, 2013). Because of the40

strong natural variabilities resulting from nonlinear interac-
tions between relevant processes, atmospheric general circu-
lation models (AGCMs) used in sensitivities studies need to
be integrated for multiple years, usually decades, in order to
obtain statistically meaningful and robust signals. However,45

state-of-the-art AGCMs are computationally expensive to in-
tegrate when resolution is high, or when a large number of
simulations are needed. Recent examples of such studies in-
clude those of Wehner et al. (2013); Zhao et al. (2013); Yang
et al. (2012, 2013) and Qian et al. (2014), to name but a few.50

The high computational costs have motivated researchers
to look for alternative methods to facilitate extracting sig-
nals from noise in climate models. For example, Kooper-
man et al. (2012) showed that anthropogenic aerosol indirect
effects could be estimated from substantially shorter simu-55

lations if temperature and horizontal winds in the AGCM
are relaxed (nudged) towards prescribed conditions to reduce
variability in those fields, while allowing the model to calcu-
late the responses to aerosol emissions in cloud, water, and
aerosol fields. For more general applications, however, nudg-60

ing can hide sensitivities in the constrained fields, as well as
in feedbacks that involve these quantities.

In the climate modeling community, it has been widely
recognized that fast processes (those that produce a model
response to a perturbation on a timescale of days when sea65

surface temperature is fixed, such as those related to clouds)
are important sources of discrepancies between the observed
and simulated climate, and between the future climate pro-
jections provided by different models (Cess et al., 1990;
Colman, 2003; Soden and Held, 2006; Ringer et al., 2006;70
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Dufresne and Bony, 2008). In addition, it has been noticed
that when climate models are used in short-range weather
prediction experiments starting from realistic initial condi-
tions, many of the key model biases form within a very
short time period (hours to a few days, see, e.g., Phillips75

et al., 2004; Williamson et al., 2005; Boyle et al., 2005;
Rodwell and Palmer, 2007; Martin et al., 2010; Xie et al.,
2012; Ma et al., 2013, 2014; Klocke and Rodwell, 2013).
There has been increasing interests in running climate mod-
els in weather prediction mode to diagnose model errors.80

The most well-known examples include the Climate Change
Prediction Program – Atmospheric Radiation Measurement
(CCPP-ARM) Parameterization Testbed (CAPT) initiative of
the US Department of Energy (Phillips et al., 2004), and the
phase II experiment of the Transpose-Atmospheric Model In-85

tercomparison Project (Transpose-AMIP II, Williams et al.,
2013) that was run alongside phase 5 of the Coupled Model
Intercomparison Project (CMIP5, Taylor et al., 2012).

In this study we demonstrate that the important role of fast
processes in the climate system can be exploited in more gen-90

eral ways to provide an alternate strategy to efficiently carry
out model sensitivity experiments and tuning exercises. The
basic idea is to replace the traditional serial-in-time long-
term climate integrations by generating representative en-
sembles of shorter simulations. (Details are discussed in95

later sections). Significant gain in computational efficiency
can be expected for two reasons: first, unlike a serial-in-time
multi-year simulation, the ensemble of realizations can be
integrated simultaneously. This introduces an additional di-
mension of parallelism to better exploit modern supercom-100

puter systems that consist of order 105–106 cores, leading to
substantial reduction of the turnaround time in sensitivity ex-
periments. Second, in comparison to a long-term integration
which can be understood as an ensemble with auto-correlated
realizations, the use of independent members increases the105

effective sample size. One can thus expect equally robust
statistics to be obtained from a smaller number of simulation
days, resulting in an reduction of total CPU time.

While the Transpose-AMIP-type evaluation focuses on
comparison against observations to understand the initial de-110

velopment of model biases, in this study we are interested in
model sensitivities to parametric and structural changes near
the model’s equilibrium climate. Using the Community At-
mosphere Model version 5 (CAM5, Neale et al., 2010, cf.
Sect. 2), we present two examples to elaborate the ensem-115

ble strategy and evaluate its effectiveness (Sects. 3 and 4).
Further discussions and conclusions are given in Sect. 5.

2 Model and initial conditions

The climate model used here is CAM5.1 (Neale et al., 2010)
with a finite volume dynamical core that use the numerical120

schemes of Lin and Rood (1996) and Lin (2004) to repre-
sent the hydrostatic adiabatic fluid dynamics and large-scale

tracer transport. Deep convection is treated with the mass-
flux-type parameterization of Zhang and McFarlane (1995),
with further modifications by Richter and Rasch (2008) and125

Neale et al. (2008). Shallow convection is parameterized
as in Park and Bretherton (2009). Large-scale condensation
and stratiform cloud fraction are handled by the parameter-
ization of Park et al. (2014). The stratiform cloud micro-
physics is represented by a two-moment scheme that explic-130

itly calculates the mass and number concentrations of cloud
liquid, cloud ice, rain and snow (Morrison and Gettelman,
2008; Gettelman et al., 2008, 2010). The vertical transport
of heat, momentum, and moisture by turbulent eddies is rep-
resented following the work of Bretherton and Park (2009).135

Solar and terrestrial radiation calculations are performed us-
ing the Rapid Radiative Transfer Model for GCMs (RRTMG,
Iacono et al., 2008; Mlawer et al., 1997). The lifecycle of
aerosols is represented with a comprehensive module that de-
scribes the aerosol size distribution with 3 log-normal modes140

(MAM3, Liu et al., 2012). Land surface processes, includ-
ing hydrological and biogeochemical processes, dynamical
vegetation and biogeophysics, are handled by the Commu-
nity Land Model version 4 (CLM4, Lawrence et al., 2011).
A detailed description of the CAM5 model can be found in145

Neale et al. (2010). All simulations in the present paper used
the tropospheric version of CAM5 with 30 vertical layers, at
a horizontal resolution of 1.9◦ latitude × 2.5◦ longitude. The
default model time step for this configuration is 30 min.

As mentioned in the introduction, the motivation for ex-150

ploring a new experimentation strategy is to reduce the wall-
clock time and CPU time spent on model integration. We
thus intend to perform as few as possible simulations that are
as short as possible. This requires the ensemble members to
be appropriately sampled so that the ensemble average is rep-155

resentative of the long-term climate. Based on the viewpoint
that climate is the “average weather”, we initialize individual
realizations using atmospheric states representing different
synoptic patterns of the large-scale circulation. The source
of such initial conditions could be global weather analyses,160

as done in CAPT and Transpose-AMIP, which would require
interpolation and adjustments to take into account the differ-
ent grids and topography used for the analysis data and by
the CAM5 model. Initialization of the aerosol module would
remain an issue because detailed information about aerosol165

concentrations in different size ranges is not normally pro-
vided by the analyses. Considering that our focus here is
not to compare with observation, it is not necessary to have
a realistic initialization of model state variables that matches
particular meteorological events. We therefore chose to use170

initial conditions generated by the GCM itself using an in-
expensive model configuration. For the application exam-
ples discussed in the present paper, the CAM5 model was
integrated for 20 years at 1.9◦ latitude × 2.5◦ longitude res-
olution using the default choices for model parameters and175

model time step, driven by annually cycled monthly mean
climatological sea surface temperature distributions and sea
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(a)

(b)

Fig. 1. Total cloud cover (unit: %) in CAM5 simulations using
the default model time step (30 min). (a) 5 yr December–January–
February (DJF) average from a long-term climate simulation. (b)
50-member ensemble average of the first model day in a set of short
simulations. Further details are explained in Sect. 3.1.

ice concentrations. Emissions of aerosols and reactive gases
are specified at their year 2000 values following Lamarque
et al. (2010). Model state variables, including the meteoro-180

logical fields, aerosol concentrations, and land surface vari-
ables, are archived at 5 day intervals in the “native” format of
the initial condition files.

This initialization procedure requires minimal effort be-
cause output from a prior simulation can be used directly185

in the ensemble simulations, or conveniently interpolated
for studies that involve different spatial resolutions. Also,
the same archive can be used in different sensitivity studies.
When the model configuration (e.g., parameters, resolution,
or time step) changes, the simulated climate can change ac-190

cordingly, in which case the integrations starting from the
above-mentioned initial conditions will need some time to
adjust before entering the new quasi-equilibrium. Identifica-
tion of the spin-up phase is one of the issues we attempt to ad-
dress in the following sections, and we will demonstrate that195

the initial adjustment is indeed short in the examples shown
in Sects. 3 and 4.

3 Example I: time step sensitivity of clouds

In this section the utility of the ensemble approach is demon-
strated using simulations in which the model time step used200

in CAM5 is reduced from the default value of 30 min to
4 min. We focus on cloud and precipitation related model
variables. Our example is motivated by the desire (in a sep-
arate study with a focus on scientific issues) to characterize

(a)

(b)

(c)

Fig. 2. Differences in total cloud cover (unit: %) between simu-
lations using 4 min and 30 min time steps. (a) 5 yr DJF average
from a climate simulation performed in the traditional way; (b) 50-
member ensemble average of the first simulation day; (c) as in (b)
but for the third simulation day. Stippling in panels (b) and (c) in-
dicates where the differences are statistically significant at the 95 %
confidence level. Further details are explained in Sect. 3.2.

the time step sensitivities of the atmospheric water cycle in205

CAM5 and assess numerical convergence. Since we also
want to distinguish different climate regimes, the analysis
here focuses on a particular season (boreal winter) to avoid
the additional complexity introduced by seasonal variations
in geographic locations.210

For evaluation purposes, two simulations (with 30 and
4 min time steps respectively) were first performed for
5 years (plus 1 yr spin-up) in the conventional way. Sensitiv-
ities in the simulated climate were identified by by compar-
ing fields from the multi-year December–January–February215

(DJF) averages of the two simulations. This pair of simula-
tions are regarded hereafter as the reference simulations.

We also performed ensembles of short simulations with
the two time step lengths. Within an ensemble, all realiza-
tions were assigned a start time of 1 January using different220

initial conditions drawn from the 20 yr archive (cf. Sect. 2)
of dates in the DJF season that were at least 10 days apart,
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Table 1. Global mean values and pattern correlations of the atmospheric mean state in a multi-year climate integration and an ensemble
of short simulations. The 5 yr mean climatology of December–January–February (DJF) is compared to the 50-member mean of day one
average. All simulations are performed with a 30 min model time step. Further details are explained in Sect. 3.1.

Global Mean
Pattern Correlation

5-yr DJF Avg. Day 1 Ensemble Avg. Relative Difference

Sea level pressure (hPa) 1011.77 1011.76 −0.0 % 0.99
Planetary boundary layer height (m) 486.57 478.58 −1.6 % 0.98
10 m wind speed (m s−1) 5.98 5.96 −0.3 % 0.99
Temperature at reference height (K) 285.02 285.05 0.0 % 1.00
Relative humidity at reference height (%) 79.59 80.13 0.7 % 0.98
Total precipitable water (kg m−2) 24.34 24.30 −0.1 % 1.00
Vertically integrated total cloud fraction 0.65 0.66 1.3 % 0.96
Low-level cloud fraction 0.46 0.47 2.3 % 0.98
Mid-level cloud fraction 0.28 0.28 0.0 % 0.95
High-level cloud fraction 0.38 0.38 0.7 % 0.94
Liquid water path (g m−2) 42.24 41.92 −0.8 % 0.98
Ice water path (g m−2) 17.62 17.66 0.2 % 0.97
Shortwave cloud forcing (Wm−2) −54.00 −53.91 −0.2 % 0.98
Longwave cloud forcing (Wm−2) 23.08 23.06 −0.1 % 0.98
Large-scale precipitation rate (mmday−1) 0.89 0.88 −0.9 % 0.93
Convective precipitation rate (mmday−1) 2.06 2.07 0.2 % 0.98

in order to ensure independence and representativeness. The
same set of initial conditions were used for the 30 min and
4 min ensembles.225

Other aspects of the simulation set-up were identical for
the long-term and short ensemble simulations. For example,
both were forced by yearly cycled climatological sea surface
temperature and sea ice concentrations, as well as the year
2000 emissions for aerosols and their precursors (Lamarque230

et al., 2010).
In the analysis we concentrate on the geographical dis-

tribution and radiative properties of clouds. We focus on
whether:

I. ensemble averages of a moderate number of realizations235

can reasonably represent the long-term climate;

II. integrations of a few days are sufficient to get rid of the
spin-up phase;

III. responses to time step change detected with the ensem-
ble approach agree quantitatively well with those re-240

vealed by the conventional long-term simulations;

IV. there is a clear gain of computational efficiency.

For evaluation purposes, the ensemble simulations were in-
tegrated for a period of 20 days.

3.1 Representing the mean state245

Our evaluation of the ensemble strategy starts with question
(I) by examining the mean state simulated with the default
time step (30 min). Because the initial conditions were gen-
erated using the same model configuration and experimental

setup (in other words, sampled from the same climate), there250

is no spin-up issue here. The question is how many real-
izations do we need to average out the “weather noise” and
obtain the “climate signal”.

In Fig. 1, the vertically integrated total cloud amount is
shown for the two different experimentation methods, where255

the 5 yr DJF average in the long simulation is compared with
the day 1 average of a 50-member ensemble. The agreement
with the reference simulation is remarkable. High cloud
fractions associated with the Intertropical Convergence Zone
(ITCZ), the South Pacific Convergence Zone (SPCZ), mid-260

latitude storm tracks, and high latitude regions in the winter
hemisphere are well captured. Less frequent occurrences of
clouds over the subtropical ocean high pressure systems and
desert areas are also well represented. It is worth noting that
the moderately sized ensemble not only reproduces these ba-265

sic features of the geographical distribution, but also captures
the magnitude of total cloud amount quite well at most grid
points.

The same can be said for other key aspects of the model
climate, as can be seen in Table 1. Global mean values in270

the 5 yr simulation and the one-day ensemble differ only by
a few percent at most, and the pattern correlations are high
(> 0.9). This suggests that, at least for the default model
configuration, the ensemble average of very short integra-
tions is a good representation of the long-term climatology.275

In the following, we demonstrate that the ensemble simula-
tions are also able to accurately reproduce the response of
cloud-related fields to parameterization changes (in this case
time step length).



H. Wan et al.: Experimentation strategy for climate models 5

(a)

(b)

(c)

Fig. 3. (a) Zonally averaged, 5 yr DJF mean mass concentration
of stratiform cloud ice (unit: mgkg−1) simulated by CAM5 using
a 30 min time step. (b) 5 yr DJF mean cloud ice mass concentration
differences between simulations using 4 min and 30 min time steps
(unit: mgkg−1). (c) As in panel (b) but showing the 50-member
ensemble mean at day 3. Stippling in panel (c) indicates locations
where the differences are statistically significant at 95 % confidence
level. Further details are explained in Sect. 3.2.

3.2 Fast response of clouds280

Our ensemble simulations with 4 min time step are initialized
using snapshots of atmospheric and land-surface conditions
sampled from the model climate resulting from a 30 min time
step. Because cloud processes operate on short timescales,
we expect quick responses to changes in model time step.285

This is indeed observed in the simulations.

The 5 yr simulations indicate that a reduction from 30 to
4 min time step leads to an overall increase of total cloud
cover. The most prominent signals occur in the shallow cu-
mulus regions where the absolute changes range from about290

10 % to more than 40 % in boreal winter (Fig. 2a), corre-
sponding to typical relative changes from 20 % to more than
100 % (not shown). Such characteristic patterns are apparent
in the ensemble simulations in the first model day (Fig. 2b).
Although the differences are somewhat smaller than the 5 yr295

DJF averages, statistical tests suggest they are significant at
the 95 % confidence level. By the third day, the magnitudes
of the differences between 4 and 30 min simulations are close
to those seen in the 5 yr average.

The ensembles simulations can also capture changes in300

vertical structures. Figure 3 shows the zonally averaged
stratiform cloud ice mass concentration as an example.
According to the 5 yr simulations (Fig. 3b), shorter time
step leads to higher ice concentrations throughout the tropo-
sphere. The largest increases occur in the lower levels over305

the storm tracks, and in the tropical upper troposphere be-
tween 300 and 400 hPa where deep convection detrains con-
densate into the environment. There is a secondary center of
large increase near 150 hPa, corresponding to frequent ho-
mogeneous ice nucleation. The close resemblance between310

the 5 yr DJF average (Fig. 3b) and the day 3 average of the
ensemble results (Fig. 3c) indicates that the characteristic
distributions of cloud ice are well established within a couple
of model days.

We reinforce the conclusion of fast spin-up by showing315

the day-to-day variation of global mean cloud cover (Fig. 4a),
vertically integrated liquid and ice water path (LWP and IWP,
Fig. 4b–c), longwave and shortwave cloud forcing (LWCF
and SWCF, Fig. 4d–e) and large-scale precipitation rate
(PRECL, Fig. 4f) from the ensemble simulations. The 95 %320

confidence intervals of the ensemble averages are shown by
the filled boxes, with the ensemble mean indicated by the
horizontal bar in each box. Lower and upper ends of the
whiskers, corresponding to the 10th and 90th percentiles, de-
pict the ensemble spread. The 5 yr DJF and January averages,325

as well as the year-to-year variations, are shown in the right
part of each panel for comparison. Figure 4 indicates that
during the 20 day integration period of the ensemble simu-
lations, there is no obvious trend either in the 50-member
averages of the 30 min and 4 min ensembles or in their dif-330

ferences; in addition, the ensemble averages agree reason-
ably well with the 5 yr averages. Therefore, for detecting fast
changes in cloud properties and distribution, it is sufficient to
perform simulations that are only a few days in length. The
additional computing time spent on longer integration does335

not provide significantly more information.
Figure 4 also provides a quantification of the time step

sensitivity in the depicted variables with respect to their nat-
ural variability. Comparing differences between the 4 min
and 30 min ensemble averages with the ensemble spreads,340

one can conclude that the total cloud fraction, LWP and
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Fig. 4. Global mean values of some cloud-related variables from the 50-member ensembles and from the 5 yr climate simulations. Blue and
green indicate simulations performed with 30 min and 4 min time steps, respectively. Left part of each panel show the daily mean global
averages in the first 20 days of the ensemble simulations. Lower and upper ends of the whiskers denote the 10th and 90th percentiles. The
hinges in the middle indicate ensemble mean. The filled boxes show the 95 % confidence interval of the mean. In the right part of each panel,
the January and DJF averages of the 5 yr climate simulations are shown. The bottom and top of each box correspond to the minimum and
maximum January or DJF averages in the simulation period. Hinges in the middle indicate the 5 yr average. Further details are explained in
Sect. 3.2.

Fig. 5. Impact of ensemble size on the estimated (a) global mean ice water path, (c) global mean large-scale precipitation rate, and (b, d)
their sensitivity to model time step. In panels (a) and (c), blue and green correspond to simulations performed with 30 min and 4 min time
steps, respectively. The dots inside filled boxes are ensemble mean values averaged over the entire integration period (20 days). Top and
bottom of the boxes denote the maximum and minimum daily averages. Similarly, the 4 min/30 min differences are shown in panels (b) and
(d), except that all values are normalized by the 20 day average of the 180-member ensemble mean, in order to show the relative differences
among the estimates associated with different ensemble sizes. Further details are explained in Sect. 3.3.

IWP (Fig. 4a–c) are more sensitive to the time step change
than SWCF, LWCF and PRECL are (Fig. 4d–f). On the
other hand, although individual members from the 30 min
and 4 min ensembles can have the same globally averaged345

SWCF, LWCF, or PRECL, the 95 % confidence intervals of
the ensemble mean do not overlap on any day during the inte-
gration period, suggesting that the time step sensitivities are
nevertheless statistically significant.

3.3 Ensemble size350

So far we have shown the effectiveness of the short simu-
lations using results from 50-member ensembles. We now
demonstrate the robustness of the method and discuss the
choice of ensemble size. The essence of the experimenta-
tion method we propose in this paper is to approximate the355

long-term temporal average by the ensemble average over
a short period. The accuracy of this approximation naturally
depends on the ensemble size and properties of the state vari-
able in question.
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3.3.1 Global averages360

In Fig. 5 the accuracy of estimated global averages is an-
alyzed for the ice water path and large-scale precipitation
rate. Results are shown for 10, 20, 50, 90, and 180 ensemble
members. At each ensemble size, the day-to-day variability
of the ensemble mean daily average is indicated by the ver-365

tical extent of a filled box, with its top and bottom showing
the maximum and minimum values during the 20 day simu-
lation period. The 20 day averages are denoted by the black
dot in each box. Based on the conclusion drawn from Fig. 4
about fast spin-up, it is reasonable to assume when a suffi-370

ciently large number of realizations are obtained, the ensem-
ble mean values averaged over 20 days will indicate the long-
term climatological mean within a small uncertainty induced
by natural variability. Thus the vertical size of a colored box
in Fig. 5 can be used as a measure of approximation error in375

the global averages estimated from a single-day simulation at
the corresponding ensemble size. In panels Fig. 5b and d, the
4 min/30 min differences are normalized by the 20 day aver-
age of the 180-member ensemble mean, in order to indicate
the uncertainties in relative terms.380

Figure 5 conveys several messages. First, the 20 day av-
erages change very little with ensemble size (Fig. 5a and c),
suggesting that the sampling method is representative in cap-
turing the impact of time step change. Second, as the number
of independent realizations increases, variances in the daily385

average decrease, producing more accurate approximations
of the long-term climatology (Fig. 5a and c). Third, dif-
ferent model variables are associated with different variabil-
ity, thus require different numbers of realizations. Last but
not least, good estimates of the time step sensitivities can390

be obtained with rather small ensembles. With 20 indepen-
dent members, the global mean ∆IWP (∆PRECL) calcu-
lated from a one-day simulation agrees within 10 % (25 %)
with the 180-member 20 day average (Fig. 5b and d). Sim-
ilar accuracies are obtained in our experiments for the other395

variables shown in Fig. 4 for global averages. To capture
regional differences, some highly variable fields may need
more realizations, as discussed below.

3.3.2 Climate regimes

When assessing model sensitivities, it is often necessary to400

examine not only global averages, but also regional features
and climate regimes. Because clouds are highly variable in
their occurrence and properties, regional patterns are some-
times difficult to detect due to the low signal-to-noise ratio.
For example, Kooperman et al. (2012) showed that to get405

a clear signature of the anthropogenic aerosol indirect effect,
it is necessary to run CAM5 for multiple decades in conven-
tional climate simulations.

Figure 6 shows the SWCF changes (∆SWCF) caused
by a reduction of model time step in the 5 yr integrations410

(Fig. 6a) and at day 3 in the ensemble simulations (Fig. 6b

(a)

(b)

(c)

Fig. 6. Shortwave cloud forcing differences (unit: Wm−2) between
simulations using 4 min and 30 min time steps. (a) 5 yr DJF av-
erage from a climate simulation performed in the traditional way;
(b) day 3 average from ensemble simulations with 50 independent
members; (c) day 3 average from ensemble simulations with 360
independent members. In panels (b) and (c), stippled regions are
associated with differences significant at the 95 % confidence level.

and c). Both methods reveal a systematic increase of SWCF
in the trade cumulus regions, while the reduction of cloud
forcing in the ITCZ and SPCZ are more clearly seen in the
ensemble results. It is remarkable that the convergence zones415

emerge clearly in Fig. 6b with only 50 ensemble members,
a result attributable to our initialization method that uses the
same set of initial conditions for the 4 min and 30 min simula-
tions. In the early stage of the integration (first∼ 5 days), the
large-scale environmental conditions remain similar in each420

pair of ensemble members, resulting in the synoptic systems
and convective activities occurring at similar locations, thus
avoiding strong noise in ∆SWCF associated with synoptic
scale variabilities in the circulation.

In Fig. 6b, ∆SWCF in the shallow cumulus and deep con-425

vection regions have similar magnitudes, but those in the
latter regime do not pass the statistical test because of the
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Fig. 7. Shortwave cloud forcing (SWCF) associated with tropical
deep convection in simulations performed with 30 min (blue) and
4 min (green) time steps. The SWCF is averaged over tropical ocean
grid points where the daily mean convective precipitation rate ex-
ceeds 3mmday−1. Like in Fig. 4, horizontal bars in the middle
of filled boxes indicate the mean value of each ensemble. Lower
and upper ends of the whiskers correspond to the 10th and 90th per-
centiles, respectively. Filled boxes show the 95 % confidence inter-
val of the ensemble mean. Further details are explained in Sect. 3.3.

large natural variability of deep convection in the conver-
gence zones. The evaluation procedure can be made more ro-
bust using regime compositing, e.g., by assessing the SWCF430

changes over tropical (20◦ S–20◦ N) ocean grid points where
the convective precipitation is important, in this case de-
fined to be where the convective precipitation rate exceeds
3 mmday−1. Figure 7 indicates that for such a “deep con-
vection SWCF”, ensembles of 20 members are sufficient to435

distinguish the difference between the 4 min and 30 min sim-
ulations. For the purpose of verification, we performed ad-
ditional simulations and present them in Fig. 6c. The 360-
member results confirm that the ∆SWCF patterns and mag-
nitudes detected by the 50-member ensembles are not inci-440

dental.

3.4 Combining ensembles with nudging

The nudging technique has been repeatedly used in model
evaluation and intercomparison studies as a method for con-
straining model meteorology, reducing uncertainties induced445

by natural variability, and facilitating comparison with ob-
servations (e.g., Jeuken et al., 1996; Feichter and Lohmann,
1999; Machenhauer and Kirchner, 2000; Ghan et al., 2001;
Kooperman et al., 2012). Here we briefly show that nudging
can be applied in combination with ensembles to assess the450

contribution of physics-dynamics interaction to the model’s
time step sensitivity.

Two sets of ensemble simulations, each with 50 members,
were performed with the 30 min and 4 min time steps, re-
spectively, with the horizontal wind and temperature relaxed455

towards those from the unconstrained 30 min time step simu-
lations. Each pair of control (30 min time step) and sensitiv-

ity (4 min) experiments starting from the same initial condi-
tions were nudged to the same temperature and wind fields,
while different pairs were relaxed towards different large-460

scale conditions. As in Kooperman et al. (2012), a 6 h re-
laxation time was used.

Figure 8 compares the globally/regionally averaged to-
tal cloud fraction, IWP and SWCF in the free-running and
nudged simulations. SWCF in the deep and shallow convec-465

tion regions are presented separately because the two regimes
are associated with opposite sensitivities to time step (cf.
Fig. 6). As expected, the unconstrained and nudged 30 min
simulations give very similar results. The ensemble averages
are not distinguishable in a statistical sense, the 95 % con-470

fidence intervals are comparable, and the ensemble spreads
are also similar. The 4 min simulations, on the other hand,
are significantly different. When wind and temperature are
constrained, the differences between 4 min and 30 min sim-
ulations are reduced by about 30 % for the variables shown475

in the figure, suggesting that fast interactions (feedbacks) be-
tween resolved dynamics and parameterized physics increase
the time step sensitivity of the CAM5 model.

3.5 Computational efficiency

The results presented above provide clear answers to the480

questions posed at the beginning of this section. To detect
time step sensitivities in cloud-related fields, it is sufficient
to perform 20 to 50 independent 3 day simulations. The en-
semble method reveals signals that agree well with those de-
tected by 5 yr simulations performed in the traditional way,485

but costs substantially less total CPU time, and dramatically
less in terms of the experiment “completion time” in situa-
tions where there are more processors available than a single
job can use effectively, or is allowed to use without a long
queuing time, and many realizations can be run simultane-490

ously. Our experience showed that on the Yellowstone su-
percomputer (Computational and Information Systems Lab-
oratory, 2012) at the National Center for Atmospheric Re-
search (NCAR) Computational and Information System Lab
(CISL), a 5 yr simulation with 4 min time step typically takes495

about 4 to 7 days of wall-clock time to finish with 64 pro-
cesses running in parallel. (The actual duration depends on
the amount of model output as well as traffic in the queuing
system.) For the ensemble simulations, a set of fifty 3 day
simulations usually takes less than 20 min to finish, counting500

from the instant when the jobs are submitted till the point
when the last job is completed, resulting in a reduction of
turnaround time by a factor of several hundred. Such fast
turnaround will be particularly helpful when additional sim-
ulations are conducted with varied model configurations to505

identify the source of the time step sensitivity, and when even
smaller time steps are used to assess the convergence proper-
ties of the model behavior.

From the results above, we conclude that the ensemble
method as applied is both effective and efficient for the in-510
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Fig. 8. Comparison of the free-running (“F”) and nudged (“N”) simulations performed with 30 min (blue) and 4 min (green) time steps.
Meanings of the whiskers, boxes and hinges are the same as in Figs. 4 and 7. Each ensemble consists of 50 independent members. In the
nudged simulations, temperature and horizontal wind are relaxed towards those from the 30 min time step unconstrained simulations, using
a nudging time scale of 6 h. Panels (a) and (b) show the globally averaged, vertically integrated total cloud fraction and ice water path,
respectively. Panels (c) and (d) show the shortwave cloud forcing (SWCF) averaged over the shallow and deep convection regions. SWCF
associated with shallow convection is the average over ocean grid points between 30◦ N and 30◦ S where the frequency of occurrence of
shallow convection is larger than 0.5, and the daily mean convective precipitation rate is lower than 1mmday−1. SWCF associated with
deep convection is calculated in the same way as in Fig. 7 (cf. Sect. 3.3.2). All results are shown for the third simulation day.

Fig. 9. Time evolution of the global mean aerosol optical depth
(AOD, at 550nm wavelength) in the ensemble simulations de-
scribed in Sect. 4. The thick curve shows the AOD averaged over
256 ensembles that used different values for 16 empirical param-
eters in the CAM5 model (cf. Table 2). Vertical bars indicate the
spread (minimum to maximum) among the 256 ensembles.

vestigation of time step sensitivity. In the next section, we
use an additional example to show that the method can also
be very useful in other sensitivity studies.

4 Example II: parametric sensitivity of the global mean
top-of-atmosphere radiation balance515

The parameterization schemes of sub-grid scale processes
in AGCMs include various empirical, uncertain constants
whose values are often adjusted to obtain desired radiation
balance at the top of the model atmosphere (TOA), and to
achieve good fidelity when evaluated against observations520

(e.g., Mauritsen et al., 2012; Golaz and Levy, 2013). There
is a large volume of literature discussing the sensitivities of

model behavior to empirial parameters. In the context of
global climate change, there is also increasing interest in as-
sessing the impact of such parameters on the uncertainties in525

future climate projections (e.g., Murphy et al., 2004; Stain-
forth et al., 2005; Collins et al., 2006).

Because there are a large number of adjustable parameters
in AGCMs, and many of them have wide ranges of possi-
ble values, systematic investigations of model sensitivity in-530

evitably require numerous simulations. Earlier studies that
varied the value of one parameter at a time (e.g., Lohmann
and Ferrachat, 2010) only covered very small portions of the
full parameter space. In recent years, the use of advanced
sampling approaches such as Latin hypercube (McKay et al.,535

1979) and quasi-Monte Carlo method (Caflisch, 1998) have
allowed more extensive explorations of the parameter space
(e.g., Lee et al., 2012, 2013; Zhao et al., 2013). Perturbing
multiple parameters simultaneously not only allows for a dra-
matic reduction of the number of simulations needed for the540

sensitivity study, but also provides the opportunity to investi-
gate parameter interactions, leading to a more comprehensive
understanding of model sensitivity.

On the other hand, even with efficient sampling ap-
proaches applied, systematic investigations of parametric545

sensitivity are still inherently expensive because of the high
dimensionality of the parameter space. For instance, to
simultaneously perturbe O(101) parameters, one needs to
sampleO(102∼ 103) points from the parameter space to en-
sure sufficient coverage. Performing long-term climate sim-550

ulations with this many model configurations requires a sub-
stantial amount of computer time. In this section, we demon-
strate that there are circumstances in which a very good char-
acterization of the parametric sensitivity can be obtained with
small ensembles of short integrations, resulting in a signifi-555
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Table 2. Empirical parameters in the cloud microphysics and aerosol lifecycle parameterizations in CAM5 that are perturbed in the sensitivity
analysis descripbed in Sect. 4. Adapted from Table 1 in Zhao et al. (2013).

Index Parameter Description Unit Default value Investigated range

1 ai Fall-speed parameter for cloud ice s−1 700 350–1400
2 as Fall-speed parameter for snow m0.59 s−1 11.72 5.86–23.44
3 cdnl Lower bound of grid-box mean cloud droplet number m−3 0 0–1e7

concentration
4 dcs Size threshold assumed for the autoconversion of cloud µm 400 100–500

ice to snow
5 wsubmin Minimum sub-grid vertical velocity assumed for cloud m s−1 0.2 0–1

droplet activation
6 facti Solubility factor for the removal of cloud-borne – 1.0 0.5–1

aerosols in stratiform clouds
7 factic Solubility factor for the removal of interstitial aerosols – 0.4 0.2–0.8

in convective clouds
8 ref dust Imaginary part of the refractive index of dust in visible – 0.005 0.001–0.01

bands of the solar radiation
9 e dust Emission tuning factor for dust – 0.35 0.21–0.86
10 e sst Emission tuning factor for sea salt – 1.0 0.5–2.0
11 e soag Emission tuning factor for secondary organic aerosols – 1.5 0.5–2.0
12 e so2 Emission tuning factor for anthropogenic SO2 – 1.0 0–2
13 e bc Emission tuning factor for anthropogenic black carbon – 1.0 0–3
14 e pom Emission tuning factor for anthropogenic particulate – 1.0 0–3

organic matter
15 e acnum Emission tuning factor for aerosol number concen- – 1.0 0.3–5.0

tration in the accumulation mode
16 e so4f Tuning factor for the fraction of SO2 emitted as sulfate – 0.025 0–0.05

cant reduction in the computational cost.

4.1 Reference simulations

A recent study by Zhao et al. (2013) investigated the sen-
sitivity of TOA radiative fluxes in present-day climate sim-
ulations to the values of 16 parameters in CAM5. The 16560

parameters included 5 adjustable constants related to strat-
iform cloud microphysics (indices 1–5 in Table 2), 3 pa-
rameters related to the physical properties of aerosols (in-
dices 6–8 in Table 2), and 8 scale factors for aerosol emis-
sions (indices 9–16 in Table 2). To efficiently explore the565

high-dimensional parameter space, the quasi-Monte Carlo
sampling method (Caflisch, 1998) was chosen for its good
performance in terms of sample dispersion. From the 16-
dimensional parameter space, 256 sample points were drawn.
Each sample point corresponds to one set of values for the570

16 parameters, which we refer to as a “parameter combina-
tion” in the following. For each parameter combination, an
AMIP (Atmospheric Model Intercomparison Project, Gates
et al., 1998) simulation was conducted for the years 2000 to
2004. The average of the last 4 years (2001–2004) was used575

in their sensitivity analysis to identify which parameters have
the largest impact on the model’s radiation budget.

4.2 Short ensembles

In this study we demonstrate that it is possible to use short
ensembles to reproduce the results of Zhao et al. (2013). The580

same 256 parameter combinations were used in our simula-
tions, while each of their 4+1-year AMIP runs were replaced
by an ensemble of short simulations started in each month of
the year, so that the ensemble averages characterize the an-
nual averages examined in the reference study. As in Sect. 3,585

the initial conditions were taken from a prior long-term sim-
ulation. The same set of 12 initial conditions were used for
all 256 ensembles.

4.3 Spin-up time

It is worth noting that 11 out of the 16 perturbed parameters590

(indices 6 through 16 in Table 2) directly affect the concen-
trations of aerosols. How these aerosol-related parameters
affect the TOA radiative fluxes is a key question to be an-
swered by the sensitivity analysis. The AMIP simulations
of Zhao et al. (2013) were initialized with zero aerosol mass595

and number concentrations. Such an initialization in CAM5
usually requires a spin-up of several months (or longer) be-
fore the aerosol concentrations have evolved and approach
the climatological values. Therefore the first simulation year
was discarded in the study of Zhao et al. (2013).600
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Table 3. Global mean TOA net radiative flux (FNET), total cloud
forcing (CF), shortwave cloud forcing (SWCF), and longwave cloud
forcing (LWCF) in the parametric sensitivity simulations described
in Sect. 4. The numbers given are the average of 256 simula-
tions/ensembles ± one standard deviation (unit: Wm−2).

Variable 4 yr average 12-member average at day 10

FNET −3.73±2.36 −3.84±2.63
CF −33.70±5.64 −34.07±7.07
SWCF −56.20±2.13 −56.42±2.12
LWCF +22.49±2.14 +22.35±2.56

For our ensembles, all simulations were started with
aerosol concentrations that were spun-up under the default
model configuration and were consistent with the corre-
sponding meteorological fields. This set-up is expected to
require shorter spin-up than the zero-aerosol conditions. On605

the other hand, after the aerosol emissions, solubility factors,
and cloud parameters were perturbed (Table 2), we expect an
initial adjustment by at least a few days, considering that the
global mean aerosol lifetime is about 4 days in MAM3 (cf.
Tables 3, 5–8 in Liu et al., 2012). To get a quantitative assess-610

ment of the spin-up time, we monitored the time evolution of
the aerosol optical depth (AOD) in the ensemble simulations.
In Fig. 9 the global mean AOD is shown for the first 60 days.
The daily mean values averaged over the 256 ensembles are
indicated by the thick curve. Variations among the ensemble615

averages are shown by the vertical bars, with the lower and
upper ends indicating the minimum and maximum, respec-
tively. As expected, the globally averaged AOD of differ-
ent ensembles are similar at the beginning of the integration.
They quickly diverge in the next few days and then stabilize.620

After about 10 days, there is no substantial changes in either
the average or the spread of the 256 ensembles. We thus use
the day-10 average for the sensitivity analysis below. In other
words, we compare the parametric sensitivities derived from
the 12-member ensemble averages at day 10 with the results625

in Zhao et al. (2013) which were based on 4 yr averages.

4.4 Global mean radiation budget

Our analysis starts with the TOA net radiative flux (FNET).
To give a first sense of the model’s response to the parameter
perturbation, Table 3 lists the mean and standard deviation630

of the 256 simulations/ensembles. Similar statistics are pre-
sented in the same table for the total cloud forcing (CF), as
well as for the shortwave and longwave cloud forcing (SWCF
and LWCF). The mean FNET obtained with the two methods
differ by about 3 % (0.11 Wm−2), while the discrepancies in635

CF, SWCF and LWCF are smaller in terms of relative dif-
ferences. Variations among the 256 experiments tend to be
somewhat smaller in the 4 yr AMIP simulations, probably
because the substantially larger number of days involved in
the temporal average leads to a stronger smoothing effect.640

The sensitivities of global mean FNET to individual pa-
rameters are shown in Fig. 10. In each panel, the global
mean 4 yr averages (Fig. 10, upper row) or day-10 ensem-
ble averages (Fig. 10, lower row) corresponding to the 256
parameter combinations are sorted into 8 bins according to645

the value of one perturbed parameter. The square mark as-
sociated to each bin indicates the FNET anomaly (relative
to the average of 256 experiments) averaged within that bin.
The vertical bars depict the spread (minimum to maximum)
caused by the perturbation of other parameters.650

The 4 yr AMIP simulations (Fig. 10, upper row) indi-
cate that the global mean FNET increases with dcs (the
size threshold between cloud ice and snow) and factic
(solubility factor of aerosols in convective clouds). It de-
creases with ai (a fall-speed parameter for cloud ice),655

cdnl (the minimum concentration of cloud droplet num-
ber), wsubmin (the minimum sub-grid vertical velocity for
droplet activation), and e sst (tuning factor for sea salt
emission). FNET is less sensitive to the other parameters.

As discussed in Zhao et al. (2013), the detected sensitiv-660

ities in FNET are mainly attributable to clouds, while the
contribution of clear-sky areas is relatively small. Therefore,
in Fig. 11 we present the responses of SWCF and LWCF
to the parameter perturbation. The longwave cloud forcing
is primarily affected by cloud microphysics parameters ai,665

as, cdnl, and dcs. The shortwave cloud forcing is addi-
tionally affected by wsubmin, and the aerosol-related pa-
rameters factic (solubility factor of aerosols in convective
clouds) and e so2 (tuning factor for the emission of anthro-
pogenic SO2).670

Comparing the upper and lower rows of Figs. 10 and 11,
we see that not only the qualitative conclusions drawn in the
previous paragraphs, but also the quantitative details of the
functional relationships between FNET/SWCF/LWCF and
the perturbed parameters, are correctly reproduced by the675

short ensembles. Considering that the ensemble results used
to derive these relationships were averaged over only 12 re-
alizations and one model day, the agreement with the 4 yr
climate simulations is rather remarkable.

In Figs. 10 and 11, the relative contributions of individ-680

ual parameters to the total variation of FNET, SWCF and
LWCF are noted above the corresponding panels. These
numbers were obtained by applying the generalized linear
model (GLM) which assumes the relationships between the
output variables (i.e., FNET, SWCF and LWCF) and in-685

put parameters are polynomial functions that include linear,
quadratic, and interaction terms. Percentages given in red in
the figures are statistically significant at the 95 % confidence
level. Details of the GLM fitting are described in Sect. 2.3.3
in Zhao et al. (2013), and are not repeated in this paper.690

Here we only point out that the GLM provides a quantita-
tive way to rank the relative importance of the empirical pa-
rameters in determining the total variation in the output vari-
ables. The rankings derived from the 4 yr simulations and
the day-10 ensembles agree quite well. For example, dcs,695



12 H. Wan et al.: Experimentation strategy for climate models

✲�✁✂

✵✁✵

�✁✂

✽✁✄

❋
☎
✆
✝
✞✟

✠
✡☛
✮

✸☞✌ ✶✍✌✌

❛✎

✥✏✑✒

☞✺✓✔ ✷✸✺✍✍

❛✕

✖✏✗✒

✌ ✶✌

❝✘✙✚

✗✏✛✒

✶✌✌ ☞✌✌

✘❝✕

✜✖✏✖✒

✌ ✶

✇✕✢✣✤✎✙

✥✦✏✜✒

✌✺✷ ✌✺✓

❢❛❝✧✎❝

✖✖✏✥✒

✌✺☞ ✶✺✌

❢❛❝✧✎

★✏✑✒

✌✺✌✌✶ ✌✺✌✶

r✩❢✪✘✢✕✧

★✏✥✒

✌✺✷✶ ✌✺✓✔

✩✪✘✢✕✧

★✏★✒

✌✺☞ ✷✺✌

✩✪✕✕✧

✖✥✏✥✒

✌✺☞ ✷✺✌

✩✪✕❡❛✫

★✏✥✒

✌✺✌ ✷✺✌

✩✪✕❡✬

✜✏★✒

✌✺✌ ✸✺✌

✩✪✣❝

★✏✖✒

✌✺✌ ✸✺✌

✩✪✭❡✤

✥✏✑✒

✌✺✸ ☞✺✌

✩✪❛❝✙✢✤

✖✏✑✒

✌✺✌ ✌✺✌☞

✩✪✕❡✯❢

★✏✖✒

✲�✁✂

✵✁✵

�✁✂

✽✁✄

❋
☎
✆
✝
✞✟

✠
✡☛
✮

✸☞✌ ✶✍✌✌

❛✎

✦✏✦✒

☞✺✓✔ ✷✸✺✍✍

❛✕

★✏✰✒

✌ ✶✌

❝✘✙✚

✗✏✰✒

✶✌✌ ☞✌✌

✘❝✕

✜✗✏✑✒

✌ ✶

✇✕✢✣✤✎✙

✥✰✏✛✒

✌✺✷ ✌✺✓

❢❛❝✧✎❝

✑✏✑✒

✌✺☞ ✶✺✌

❢❛❝✧✎

★✏✛✒

✌✺✌✌✶ ✌✺✌✶

r✩❢✪✘✢✕✧

★✏✜✒

✌✺✷✶ ✌✺✓✔

✩✪✘✢✕✧

★✏✖✒

✌✺☞ ✷✺✌

✩✪✕✕✧

✱✏✱✒

✌✺☞ ✷✺✌

✩✪✕❡❛✫

★✏✥✒

✌✺✌ ✷✺✌

✩✪✕❡✬

✖✏★✒

✌✺✌ ✸✺✌

✩✪✣❝

★✏✖✒

✌✺✌ ✸✺✌

✩✪✭❡✤

✜✏✛✒

✌✺✸ ☞✺✌

✩✪❛❝✙✢✤

✥✏✜✒

✌✺✌ ✌✺✌☞

✩✪✕❡✯❢

★✏✖✒

Fig. 10. Sensitivities of the global mean top-of-atmosphere net radiative flux (FNET, unit: Wm−2) to the empirical parameters listed in
Table 2. CAM5 simulations were carried out using 256 different model configurations corresponding to 256 sampling points drawn from
the 16-dimensional parameter space (cf. Table 2 and Sect. 4.1). In each panel, the global mean FNET corresponding to the 256 model
configurations are sorted into 8 bins according to the values of one perturbed parameter. The spread (minimum to maximum) of FNET
within a bin is shown by a vertical bar, while the mean value is indicated by a square mark. Note that the FNET shown here is the anomaly
relative to the mean of the 256 simulations/ensembles. The mean values that have been subtracted are given in Table 3. Numbers noted above
the panels are the relative contribution of individual parameters to the total variation of FNET, estimated using a generalized linear model
(cf. Sect. 4.4). Red font means the contribution is statistically significant at the 95 % confidence level. The upper row shows results obtained
from the AMIP simulations of Zhao et al. (2013) (cf. Sect 4.1). The lower row shows results from the ensemble simulations performed in
this study.
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Fig. 11. As in Fig. 10 but showing parametric sensitivities of the global mean (a) shortwave and (b) longwave cloud forcing (unit: Wm−2).
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wsubmin, e sst and factic are identified by both meth-
ods as the most influential parameters for FNET. In terms of
the percentage contribution of individual parameters to the
total variance, the results derived from the 4 yr simulations
and the short ensembles are also similar. There are a few700

cases in which the percentage is regarded as significant in
the 4 yr simulations but insignificant in the ensembles (e.g.,
e soag for FNET, facti and e acnum for LWCF), but
these are typically associated with small contributions, thus
should not be considered as large discrepancies.705

4.5 Computational efficiency

The twelve 10 day simulations cost about 1/15 of the total
CPU time in comparison to the original 5 yr (4 years plus
1 year spin-up) simulations, a substantial reduction in com-
putational cost. As for the turnaround time, on Yellowstone710

at NCAR CISL, the 256×12 simulations submitted as sepa-
rate jobs finished within 8 h of wall-clock time. Typically the
queuing system allowed 50 to 100 jobs running in parallel.
These numbers were smaller than the total number of param-
eter combinations (256), therefore in this case, the reduction715

of turnaround time was mainly achieved from the smaller
number of simulation days required by the ensemble strategy.
On larger computing facilities that could allow more than
256 simultaneous jobs from a single user, it would be pos-
sible to make fuller use of the available resources using the720

ensemble strategy, but not with the long-term simulations.
On a dedicated system that could accommodateO(103) con-
current simulations, it would be possible to complete all our
ensemble simulations within an hour. Such fast turnaround
can be very useful in systematic sensitivity studies, where in-725

fluential parameters can be identified from a large number of
candidates within a reasonable time period, and more atten-
tion can subsequently be paid to the most important parame-
ters.

Furthermore, during the development of climate models, it730

is often necessary to adjust empirical parameters after major
updates of model components, so that the long-term global
mean TOA radiative flux stays close to zero. Since the global
mean FNET, SWCF and LWCF are among the most impor-
tant metrics for model tuning, our results suggest that short735

ensembles can be useful in such exercises as well.

5 Conclusions and discussion

We have demonstrated that ensembles of short simulations
can be used to estimate the fast responses of a climate model
to perturbations. The strategy can produce signatures that740

agree quantitatively and qualitatively with those produced
by traditional multi-year brute force simulation strategies, at
a fraction of the computational and wall-clock cost.

Our first example explored the response of simulated
clouds to a change in model time step. The results sug-745

gest that 3 day integrations are sufficient to reproduce the
time step sensitivities seen in the commonly used 5 yr cli-
mate simulations due to the rapid response in cloud fields.
For the global mean total cloud fraction, liquid water path
and ice water path, the time step induced changes can be750

clearly detected with 20 ensemble members. For the global
mean large-scale precipitation rate which has higher natural
variability, and for the regional features of cloud forcing, ro-
bust signals can be detected from ensembles of 50 members.
A combined use of ensemble and nudging led to the finding755

that interactions between the resolved dynamics and parame-
terized physics provide positive feedbacks that enhances the
model’s time step sensitivity.

The second example demonstrated that the strategy is ca-
pable of characterizing sensitivities of the global mean TOA760

radiation budget to 16 empirical parameters related to strat-
iform cloud microphysics and aerosol lifecycle. This type
of investigation is inherently expensive in terms of computa-
tional cost, because a large number of simulations are needed
to sufficiently sample the high-dimensional parameter space.765

Following a previous study by Zhao et al. (2013), we used
the quasi-Monte Carlo method to obtain 256 sample points
(parameter combinations) from the 16-dimensional parame-
ter space. For each parameter combination, ensemble sim-
ulations were conducted with one realization starting from770

each month of the year 2001. We showed that parametric
sensitivities of the global mean TOA net radiative flux and
cloud forcing derived from 12-member ensemble averages at
day 10 agree very well with results obtained by Zhao et al.
(2013) who used 4 yr AMIP simulations in their analysis.775

The short ensembles correctly identified the most influential
parameters for the net radiative flux and cloud forcing, and
successfully reproduced the functional relationships between
these quantities and the perturbed parameters.

These results indicates that although climate is by defini-780

tion a long-term average, and is associated with strong nat-
ural variability, there exist fast processes and robust features
that do not need very long simulations to characterize. This
fact is already widely known, and has formed the founda-
tion for the CAPT and Transpose-AMIP activities in which785

climate models are run in weather forecast mode to reveal
the biases with respect to observations. Here we have shown
that the philosophy behind the Transpose-AMIP-type evalu-
ation can be applied in more general ways to carry out sen-
sitivity studies. Using short ensembles instead of traditional790

multi-year climate simulations, sensitivity studies can be car-
ried out more efficiently, benefitting from a substantial reduc-
tion of the total CPU time spent on numerical integration, as
well as much faster turnaround in the investigation because
the independent ensemble members introduce an additional795

dimension of parallelism that can be exploited with current
flagship supercomputers.

The strategy discussed in this paper using few day sim-
ulations certainly has limitations. It cannot be used as for-
mulated here to investigate modes of climate variability or800
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feedback mechanisms that operate on time scales of months
to years, thus could not replace long-term simulations when
long time scales are important. For example, in the time step
sensitivity experiments discussed in Sect. 3, while the 5 yr
simulations reveal an increase of DJF precipitation in the805

South Pacific Convergence Zone (SPCZ) when time step is
shortened (not shown), the ensemble simulations do not in-
dicate statistically significant differences in this region. This
is probably because systematic changes in the SPCZ involve
feedbacks from the large-scale circulation that can not suffi-810

ciently spin-up in just a few days.
Nevertheless, since fast processes are important contribu-

tors to the sensitivities and uncertainties in current climate
models, short ensembles can help to obtain a first-order esti-
mates of rapid responses in the climate system rather quickly.815

Such economical, approximate answers can be useful in var-
ious situations. For example, in systematic studies of para-
metric uncertainties, short ensembles can be used in prelim-
inary investigations to pre-select influential parameters from
a large number of candidates, and to narrow down possible820

ranges of parameter values. In convergence studies, short
ensembles may be the only way to conduct simulations at
ultra-high spatial and/or temporal resolutions that would oth-
erwise be impractical to complete. As the climate modeling
community actively pursues higher resolutions, more physi-825

cally based parameterizations, and inclusion of new, highly
sophisticated processes, wide applications can be anticipated
for the experimentation method discussed here.

It should be noted that in this paper we are advocating the
ensemble method as a general strategy, not a recipe. As can830

be seen from the two examples, for different variables and
physical processes, one must generate ensembles differently,
and may need different spin-up time and/or ensemble sizes.
The most beneficial experimentation design for a particular
research question needs to be figured out on a case-by-case835

basis. Whenever affordable, one should first evaluate the
short ensembles against traditional climate simulations. If it
is impractical to do so, we recommend testing the experimen-
tal design using a range of integration lengths and ensemble
sizes, so as to obtain a better understanding of the robustness840

of the results.
An additional remark worth making here is that the def-

initions of fast and slow processes need to be understood
in relative terms. In this paper where an atmosphere-only
GCM was used, we considered time scales of a few days as845

“short”, and simulations of multiple years as “long”. In other
situations, fast and slow processes can be reclassified. For
example, if one were interested in identifying how seasonal
features such as the Asian summer monsoon responded to an-
thropogenic and natural forcings (e.g., Ganguly et al., 2012;850

Vinoj et al., 2014; Song et al., 2014), or to changes in model
formulation (e.g., Zhou and Li, 2002; Chen et al., 2010), it
might be possible to generate realizations of few month simu-
lations, and use ensemble averages to remove multi-year and
multi-decade scale noise that would otherwise require hun-855

dreds of years of simulations. As such, the ensemble strategy
may have much wider applications than demonstrated in the
present paper.
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