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Abstract 1 

EURO-CORDEX is an international climate downscaling initiative that aims to provide high-2 

resolution climate scenarios for Europe. Here an evaluation of the ERA-Interim-driven 3 

EURO-CORDEX regional climate model (RCM) ensemble is presented. The study 4 

documents the performance of the individual models in representing the basic spatio-temporal 5 

patterns of the European climate for the period 1989-2008. Model evaluation focuses on near-6 

surface air temperature and precipitation, and uses the E-OBS dataset as observational 7 

reference. The ensemble consists of 17 simulations carried out by seven different models at 8 

grid resolutions of 12 km (nine experiments) and 50 km (eight experiments). Several 9 

performance metrics computed from monthly and seasonal mean values are used to assess 10 

model performance over eight sub-domains of the European continent. Results are compared 11 

to those for the ERA40-driven ENSEMBLES simulations. 12 

The analysis confirms the ability of RCMs to capture the basic features of the European 13 

climate, including its variability in space and time. But it also identifies non-negligible 14 

deficiencies of the simulations for selected metrics, regions and seasons. Seasonally and 15 

regionally averaged temperature biases are mostly smaller than 1.5 °C, while precipitation 16 

biases are typically located in the +/- 40% range. Some bias characteristics, such as a 17 

predominant cold and wet bias in most seasons and over most parts of Europe and a warm and 18 

dry summer bias over southern and south-eastern Europe reflect common model biases. For 19 

seasonal mean quantities averaged over large European sub-domains, no clear benefit of an 20 

increased spatial resolution (12 km vs. 50 km) can be identified. The bias ranges of the 21 

EURO-CORDEX ensemble mostly correspond to those of the ENSEMBLES simulations, but 22 

some improvements in model performance can be identified (e.g., a less pronounced southern 23 

European warm summer bias). The temperature bias spread across different configurations of 24 

one individual model can be of a similar magnitude as the spread across different models, 25 

demonstrating a strong influence of the specific choices in physical parameterizations and 26 

experimental setup on model performance. Based on a number of simply reproducible 27 

metrics, the present study quantifies the currently achievable accuracy of RCMs used for 28 

regional climate simulations over Europe and provides a quality standard for future model 29 

developments. 30 

 31 

 32 
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1 Introduction 4 

Assessing the impacts of expected 21st century climate change and developing response 5 

strategies requires local to regional scale information on the nature of these changes, 6 

including a sound assessment of inherent projection uncertainties. Driven by a suite of IPCC 7 

assessment reports and accompanied by increasing public awareness of ongoing climate 8 

change, the past decades have seen a rapid development in the corresponding methods for 9 

climate scenario generation. Part of this evolution has been the development and the 10 

refinement of climate downscaling techniques which aim at translating coarse resolution 11 

information as obtained from global climate models (GCMs) into regional and local scale 12 

conditions (e.g., Hewitson and Crane, 1996; Wilby and Fowler, 2011). While statistical 13 

downscaling methods attempt to bridge the scale gap by applying empirically derived transfer 14 

functions between the coarse resolution climate model output and local weather conditions 15 

(e.g., Benestad et al., 2008; Fowler et al., 2007; Maraun et al., 2010; Themeßl et al., 2012; 16 

Widmann et al., 2003), dynamical downscaling employs high-resolution regional climate 17 

models (RCMs) nested into global model output (e.g., Giorgi, 2006; Laprise, 2008; 18 

McGregor, 1997; Wang et al., 2004). This technique allows for a considerably higher spatial 19 

resolution over the domain of interest and, hence, for a more realistic representation of 20 

important surface heterogeneities (such as topography, coast lines, and land surface 21 

characteristics) and of meso-scale atmospheric processes. Dynamical downscaling has 22 

originally been developed for the purpose of numerical weather prediction and was first 23 

applied in a climate context in the late 1980s and early 1990s (Dickinson et al., 1989; Giorgi, 24 

1990). Since then, considerable efforts were put into further methodological and technical 25 

developments, and ever increasing computational resources facilitated simulations of multi-26 

decadal length. Large collaborative research projects such as MERCURE (e.g., Hagemann et 27 

al., 2004), PRUDENCE (Christensen et al., 2007), NARCCAP (Mearns et al., 2009), and 28 

ENSEMBLES (van der Linden and Mitchell, 2009) constituted major milestones in both 29 

regional model development and the usage of regional climate scenarios by the climate 30 

impact, adaptation and vulnerability community. Dynamical downscaling of GCM output can 31 
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today be considered as a well-established standard technique for the generation of regional 1 

climate change scenarios. Recent climate scenario products tailored for use in climate impact 2 

assessment, such as (1) the CH2011 Swiss climate change scenarios (CH2011, 2011), (2) the 3 

German climate impacts and adaptation initiative (Jacob et al., 2008), (3) the German 4 

‘Consortium Runs’ (Hollweg et al., 2008), (4) the Styrian STMK12 scenarios in the Eastern 5 

Alps (Gobiet et al., 2012), (5) the French high-resolution climate scenarios (Lemond et al., 6 

2011; Vautard et al., 2013a), or (6) the climate change scenarios for the Netherlands (van den 7 

Hurk, 2007) are to large parts based on the analysis of RCM ensembles. Concerning the 8 

interplay between dynamical and statistical downscaling, recent climate impact applications 9 

suggest that a combination of the two approaches is optimal (e.g., Bosshard et al., 2013; 10 

Paeth, 2011). Apart from their role in climate scenario development, RCMs also became 11 

important tools to advance the understanding of regional-scale climate processes and 12 

associated feedbacks (e.g., Fischer and Schär, 2009; Hohenegger et al., 2009; Langhans et al., 13 

2013; Seneviratne et al., 2006). 14 

An integral part of regional model development is the evaluation and quantification of model 15 

performance by comparison against observation-based reference data. For this purpose, the 16 

standard procedure is to carry out evaluation experiments for the recent decades in a perfect 17 

boundary setting, i.e., applying re-analysis products as lateral boundary forcing for the 18 

regional model. Although atmospheric re-analyses, themselves, are based on imperfect 19 

models and considerable differences can exist between different re-analysis products with 20 

corresponding impacts on downscaling results (Brands et al., 2012) this technique allows to 21 

isolate model biases introduced by the nesting procedure and/or the RCM formulation from 22 

biases introduced by a potentially erroneous large-scale forcing. Model evaluation in a perfect 23 

boundary context is an important component of RCM development. It highlights areas of 24 

model deficiencies, without necessarily uncovering the physical reasons for the found biases 25 

though. It is furthermore the basis for model calibration efforts (e.g., Bellprat et al., 2012b) 26 

and can be used for weighting individual RCMs in multi-model ensembles (Christensen et al., 27 

2010, and further studies in that Climate Research special issue) or for excluding models with 28 

identifiable severe shortcomings. A proper and physically consistent representation of the 29 

present-day climate by RCMs is generally considered as a pre-requisite for their ability to 30 

capture the response of regional climates to enhanced greenhouse gas conditions. As such, 31 

model evaluation results are an important piece of information provided to end users of 32 

regional climate projections. 33 
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A large number of previous studies have been concerned with RCM evaluation. Both perfect-1 

boundary settings and GCM-driven setups, in which RCMs potentially inherit biases from the 2 

large-scale boundary forcing, were considered. Over Europe, comprehensive evaluations were 3 

carried out in the frame of large research projects such as PRUDENCE and ENSEMBLES. 4 

Similar but typically less comprehensive evaluation efforts have been conducted outside of 5 

Europe (e.g., Evans and McCabe, 2010; Kim et al., 2013; Lucas-Picher et al., 2013; Nikulin et 6 

al., 2012; Paeth et al., 2005). Various aspects of model performance were covered, including 7 

long-term mean climatological distributions of temperature and precipitation (the two main 8 

parameters required by climate impact modelers; e.g., Bergant et al., 2007; Böhm et al., 2008; 9 

Holtanova et al., 2012; Jacob et al., 2007; Jacob et al., 2012; Jaeger et al., 2008; Kotlarski et 10 

al., 2005), but also explicitly addressing meso-scale structures (Coppola et al., 2010) and 11 

frequency distributions of these two parameters (Déqué and Somot, 2010; Kjellström et al., 12 

2010; Warrach-Sagi et al., 2013) as well as temperature trends (Lorenz and Jacob, 2010) and 13 

temperature variability (Fischer et al., 2012; Vidale et al., 2007). Elevation dependencies of 14 

near-surface air temperature and precipitation were evaluated by Kotlarski et al. (2012). 15 

Given the high impact potential, further studies were concerned with the evaluation of 16 

extreme precipitation (Frei et al., 2006; Hanel and Buishand, 2012; Herrera et al., 2010; 17 

Lenderink, 2010; Maraun et al., 2012; Rajczak et al., 2013; Wehner, 2013) and temperature 18 

(Fischer et al., 2007; Vautard et al., 2013b) as well as extreme wind speeds and related loss 19 

potentials (Donat et al., 2010; Kunz et al., 2010). Menut et al. (2013) proposed an evaluation 20 

of the key climate parameters driving the onset of air pollution episodes. In order to enhance 21 

process understanding and to reveal potential reasons for biases in atmospheric quantities, 22 

also surface energy fluxes (Hagemann et al., 2004; Lenderink et al., 2007; Markovic et al., 23 

2008) and non-atmospheric state parameters such as terrestrial water storage (Greve et al., 24 

2013; Hirschi et al., 2007) and snow cover (Räisänen and Eklund, 2012; Salzmann and 25 

Mearns, 2012; Steger et al., 2013) have been evaluated. In Europe, several studies explicitly 26 

focused on RCM evaluation over the Alps, a region subject to a complex topography and a 27 

strong spatial variability of near-surface climates (Frei et al., 2003; Haslinger et al., 2013; 28 

Kotlarski et al., 2010; Prömmel et al., 2010; Smiatek et al., 2009; Suklitsch et al., 2008; 29 

Suklitsch et al., 2011). 30 

In summary, the mentioned studies show that current RCMs are able to reproduce the most 31 

important climatic features at regional scales, particularly if driven by perfect-boundary 32 

conditions, but that important biases remain. Some of these deficiencies are specific to 33 
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individual models. Others seem to be a common and more systematic feature across different 1 

RCMs, such as a dry and warm summer bias in south-eastern Europe (Hagemann et al., 2004) 2 

and an overestimation of interannual summer temperature variability in central Europe 3 

(Fischer et al., 2012; Jacob et al., 2007; Lenderink et al., 2007). Model biases typically 4 

depend on the region analyzed (Jacob et al., 2007; Jacob et al., 2012; Rockel and Geyer, 5 

2008), are partly related to parametric uncertainty and choices in model configuration (e.g., 6 

Awan et al., 2011; Bellprat et al., 2012a; de Elia et al., 2008; Evans et al., 2012) and can be 7 

affected by internal variability (de Elia et al., 2008; Roesch et al., 2008) as well as by 8 

uncertainties of the observational reference data themselves (Bellprat et al., 2012a; Kotlarski 9 

et al., 2005; Kyselý and Plavcová, 2010). For certain quantities and seasons a higher grid 10 

resolution seems to be associated with reduced biases (Déqué and Somot, 2008; Herrmann et 11 

al., 2011; Rauscher et al., 2010; Warrach-Sagi et al., 2013). Concerning the use of RCM 12 

projections for climate impact assessment, recent studies suggest a non-stationarity of model 13 

biases (Bellprat et al., 2013; Boberg and Christensen, 2012; Buser et al., 2009; Christensen et 14 

al., 2008; Ehret et al., 2012; Maraun, 2012), questioning the widely used constant-bias 15 

assumption when interpreting simulated climate change signals and challenging bias 16 

correction techniques. 17 

While RCM projections from projects such as PRUDENCE and ENSEMBLES are widely 18 

used by the climate impact community and are considered as state-of-the-art, the next 19 

generation of regional climate projections is already under way in the frame of the CORDEX 20 

initiative (Giorgi et al., 2009). CORDEX aims to provide an internationally coordinated 21 

framework to compare, improve and standardize regional climate downscaling methods, 22 

covering both dynamical and empirical-statistical approaches. As part of this effort, model 23 

evaluation activities in the individual modeling centers are harmonized and a new generation 24 

of regional climate projections for land-regions worldwide based on new CMIP5 GCM 25 

projections will be produced. First joint evaluations of CORDEX RCM experiments have 26 

recently been published by Nikulin et al. (2012) and Vautard et al. (2013b). EURO-27 

CORDEX, the European branch of CORDEX (Jacob et al., 2013), provides regional climate 28 

projections for Europe at grid resolutions of about 12 and 50 km, applying an ensemble of 29 

RCMs in their most recent versions, driven by the latest GCM projections, thereby 30 

complementing the already available PRUDENCE and ENSEMBLES data with 31 

unprecedented high resolution experiments. In its initial phase EURO-CORDEX focuses on 32 

model evaluation for present-day climate in a perfect boundary setting. Several aspects of 33 
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model performance are analyzed by project partners in a series of ongoing studies. The 1 

present work is primarily concerned with evaluating the “standard” variables near-surface air 2 

temperature (simply referred to as temperature hereafter) and precipitation on European scales 3 

and based on monthly and seasonal mean values. These two quantities are typically evaluated 4 

by the individual modeling centers in the course of model development and tuning, and 5 

European-scale observational reference data exist. Furthermore, temperature and precipitation 6 

change signals are used by many climate impact assessments, and the ability of RCMs to 7 

reproduce these quantities is a useful information for a wide range of end users. In order to 8 

include dynamical aspects, we additionally evaluate the representation of the large-scale mean 9 

sea-level pressure. Although simulations carried out at grid resolutions of both 12 and 50 km 10 

are analyzed, we do not specifically aim to investigate the added value of a higher resolution. 11 

This would require reliable observation-based datasets at European scale with equivalent 12 

resolution, which are not available. Added value assessments are therefore allocated to a suite 13 

of accompanying studies evaluating aspects such as extreme precipitation characteristics over 14 

sub-domains of the European continent where corresponding reference data exist (see Section 15 

5.1 for further details). The primary aims of the present study are (1) to document the skill of 16 

the EURO-CORDEX RCM ensemble in reproducing the present-day European temperature 17 

and precipitation climate when driven by realistic boundary conditions, (2) to quantify 18 

modeling uncertainties originating from model formulation, (3) to assess a possible progress 19 

with respect to the precursor project ENSEMBLES, and (4) to highlight areas of necessary 20 

model improvements. For this purpose, we will apply several evaluation metrics covering a 21 

range of aspects of model performance. Our study provides a general overview on model 22 

performance and is of rather descriptive nature; it does not aim to ultimately explain biases of 23 

individual models. We leave these more detailed investigations to a range of follow-up studies 24 

which will address specific aspects of model performance. 25 

The study is organized in the following way: After introducing the RCM ensembles and the 26 

observational reference data in Chapter 2, Chapter 3 outlines the evaluation methods applied 27 

and introduces the individual performance metrics. Chapter 4 then presents the evaluation 28 

results for the EURO-CORDEX ensemble and relates them to the previous ENSEMBLES 29 

experiments. The results are further discussed in Chapter 5, highlighting the basic model 30 

capabilities identified as well as remaining deficiencies in the simulation of the European 31 

climate. Chapter 6 finally concludes the study and provides an outlook on future evaluation 32 

activities in the EURO-CORDEX framework. 33 
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2 Data 1 

2.1 RCM data 2 

We evaluate a set of 17 RCM simulations carried out in the frame of EURO-CORDEX. In 3 

total, six different RCMs plus the global ARPEGE model were applied by nine different 4 

institutions at grid resolutions of about 12 km (0.11° on a rotated grid) and 50 km (0.44° on a 5 

rotated grid). Eight out of the nine 0.11° experiments have a corresponding partner at 0.44° 6 

grid spacing, carried out with the identical model version and the identical choice of 7 

parameterizations (with the exception of REMO, where rain advection is used for the 0.11° 8 

experiments but not for 0.44°). All simulations cover the period 1989-2008 and are driven by 9 

the ERA-Interim re-analysis (Dee et al., 2011), providing the required atmospheric lateral 10 

boundary conditions and sea surface temperatures and sea ice cover over ocean surfaces. The 11 

ERA-Interim boundary conditions can be considered to be of very high quality (Dee et al., 12 

2011), particularly in the Northern Hemispheric extratropics where re-analysis uncertainty is 13 

negligible (Brands et al., 2013). The prescribed surface forcing over land (e.g., topography, 14 

vegetation characteristics, soil texture) is model-specific and can differ between the 15 

experiments. For instance, three out of the nine RCM setups analyzed (CLMCOM, KNMI, 16 

SMHI) apply a considerable smoothing to surface orography in order to avoid steep 17 

orographic grid-cell-to-grid-cell gradients. The ensemble includes three different 18 

configurations of the WRF model that differ mainly in the choice of physical parameterization 19 

schemes for radiation transport, microphysics and convection (see Table 1). The individual 20 

regional model domains can slightly differ from each other, but all models fully cover the 21 

focus domain required for EURO-CORDEX experiments (Fig. 1) and apply an additional 22 

lateral sponge zone of individual width for boundary relaxation. A special case is CNRM’s 23 

ARPEGE model which is a global spectral model with a stretched horizontal grid. ARPEGE 24 

was applied here in a special regional setup in which the model runs freely within the 25 

common EURO-CORDEX domain (Fig. 1) at resolutions of about 12 km and 50 km, but is 26 

relaxed towards ERA-Interim outside of this domain. The EURO-CORDEX ARPEGE 27 

experiments can therefore be considered as RCM simulations with a global sponge zone. 28 

An overview on all models and all experiments is provided by Table 1. The set of analyzed 29 

experiments corresponds to the currently available ERA-Interim driven EURO-CORDEX 30 

ensemble, which might be subject to future extensions. Throughout this paper, the individual 31 

simulations will be identified by the acronym of the institution plus the horizontal grid 32 
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resolution (11 for 0.11° and 44 for 0.44°). For instance, the REMO 2009 experiment carried 1 

out at 0.11° by CSC will be referred to as CSC-11. The entire EURO-CORDEX 0.11° and 2 

0.44° ensembles, consisting of nine and eight different experiments, respectively, will be 3 

referred to as EUR-11 and EUR-44. Experiments that were not carried out on the standard 4 

0.11° and 0.44° rotated grids but with comparable grid spacings (e.g., CNRM-11 and CNRM-5 

44) were mapped onto the standard grids applying the nearest-neighbor interpolation method. 6 

For comparing the performance of the EURO-CORDEX ensembles to that of the precursor 7 

project ENSEMBLES we additionally consider 16 RCM experiments carried out within the 8 

frame of ENSEMBLES with a horizontal grid resolution of about 25 km (0.22° on a rotated 9 

grid). These experiments cover a similar domain and were driven by the ERA40 re-analysis 10 

(Uppala et al., 2005) for the period 1961-2000. In the present study only the 20-year period 11 

1981-2000 is considered, including the 12 years 1989-2000 that overlap with the EURO-12 

CORDEX ensembles. The application of different large-scale driving fields in ENSEMBLES 13 

(ERA40) and EURO-CORDEX (ERA-Interim) can be expected to introduce slight 14 

inconsistencies in the intercomparison. The overall effect, however, is presumably small (see 15 

Lucas-Picher et al., 2013 for an example over North America). Following the naming 16 

convention Institution-Model according to http://ensemblesrt3.dmi.dk/extended_table.html 17 

the 16 ENSEMBLES experiments considered are: C4I-RCA3, CHMI-Aladin, CNRM-Aladin, 18 

DMI-HIRHAM, EC-GEMLAM, ETHZ-CLM, HC-HadRM3Q0, HC-HadRM3Q3, HC-19 

HadRM3Q16, ICTP-RegCM, KNMI-RACMO, METNO-HIRHAM, MPI-REMO, 20 

OURANOS-CRCM, SMHI-RCA and UCLM-PROMES. This ensemble will be referred to as 21 

ENS-22 in the following.  22 

2.2 Observations 23 

As observational reference for evaluating simulated temperature and precipitation we use 24 

version 7 of the daily gridded E-OBS dataset (Haylock et al., 2008). E-OBS covers the entire 25 

European land surface and is based on the ECA&D (European Climate Assessment and Data) 26 

station dataset plus more than 2000 further stations from different archives. It is available at 27 

four different resolutions; we here use the rotated 0.22° version which applies the same grid 28 

rotation as most of the EURO-CORDEX and ENSEMBLES experiments. The E-OBS 0.22° 29 

grid corresponds to a horizontal resolution of about 25 km and exactly matches the grid of the 30 

0.22° ENSEMBLES simulations. Each E-OBS 0.22° grid cell contains four cells of the 31 

rotated 0.11° EURO-CORDEX grid, and four E-OBS 0.22° cells exactly match one rotated 32 
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0.44° EURO-CORDEX cell. Several previous studies have questioned the quality of E-OBS 1 

in regions of sparse station density, and in particular regarding daily extremes (Bellprat et al., 2 

2012a; Herrera et al., 2012; Hofstra et al., 2009; Hofstra et al., 2010; Kyselý and Plavcová, 3 

2010; Maraun et al., 2012; Rajczak et al., 2013) and its effective spatial resolution (e.g., Hanel 4 

and Buishand, 2011; Kyselý and Plavcová, 2010). Since the density of the station network is 5 

rather low over a considerable part of Europe, the gridding procedure tends to smooth the 6 

spatial variability of both temperature and precipitation, and over many regions the effective 7 

resolution of E-OBS is presumably lower than the nominal 0.22° grid spacing. For individual 8 

sub-regions of the European continent more accurate datasets might exist which are based on 9 

a larger number of observation stations. The clear advantage of E-OBS is its spatial (entire 10 

European land surface) and temporal (1950-2012) coverage, which makes it ideal for an 11 

approximate evaluation of RCM-simulated temperature and precipitation characteristics over 12 

Europe. As observational uncertainties are not explicitly considered here, potential 13 

inaccuracies of E-OBS should however be kept in mind when interpreting the evaluation 14 

results. In addition to the issues mentioned above, this applies also to E-OBS precipitation 15 

sums which do not reflect the systematic undercatch of rain gauge measurements (which on 16 

average can be of the order of 4% to 50% depending on the season and region; e.g. Frei et al., 17 

2003; Rubel and Hantel, 2001; Sevruk 1986) and very probably underestimate true 18 

precipitation. To account for this inaccuracy of the observational reference, we deliberately 19 

highlight precipitation biases between 0 and +25% in some of the analyses. Wet biases in this 20 

range could be explained by a mean systematic rain gauge undercatch of up to 20% of true 21 

precipitation (i.e., neglecting any seasonal and site-specific variation of the measurement 22 

error). Furthermore, note that E-OBS is only available at a maximum spatial resolution of 23 

0.22°. The 0.11° EURO-CORDEX experiments can therefore only be evaluated on the 24 

coarser E-OBS grid and an in-depth added-value analysis of the 0.11° experiments compared 25 

to the 0.44° simulations is not possible within this framework. For the evaluation of the 26 

spatial pattern of the simulated mean sea-level pressure, the driving re-analysis ERA-Interim 27 

itself is used as reference, i.e., the analysis reveals to what extent the individual RCMs distort 28 

the large-scale flow imposed by the boundary conditions. 29 
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3 Methods and metrics 1 

3.1 Regional analysis 2 

In order to capture the spatial variability of model performance over Europe, the individual 3 

evaluation metrics (see below) were applied to eight different sub-domains of the European 4 

continent (Fig. 1): The Alps (AL), the British Isles (BI), Eastern Europe (EA), France (FR), 5 

the Iberian Peninsula (IP), the Mediterranean (MD), Mid-Europe (ME), and Scandinavia 6 

(SC). These domains have been specified in the frame of the PRUDENCE project 7 

(Christensen et al., 2007) and have since then been widely used for RCM evaluation and 8 

analysis of climate change signals (e.g., Bellprat et al., 2012b; Christensen et al., 2008; 9 

Kotlarski et al., 2012; Lenderink, 2010; Lorenz and Jacob, 2010). They represent 10 

comparatively homogeneous climatic conditions, although pronounced climatic gradients can 11 

exist within individual sub-domains. The Alpine domain AL, for instance, covers both high-12 

elevation regions along the Alpine ridge and the low-lying Po Valley in northern Italy. Still, 13 

the decomposition of the EURO-CORDEX domain into these eight sub-domains allows 14 

representing important large-scale climatic gradients (e.g., the transition from maritime 15 

climates in the West to continental climates in the East). In the main part of this study the 16 

results for only four sub-domains are shown, sampling a wide range of climatic settings (EA, 17 

IP, ME, SC). For completeness, figures for the remaining sub-domains (AL, BI, FR, MD) are 18 

presented in Appendix B. 19 

3.2 Evaluation metrics 20 

Besides the analysis of seasonal mean biases at grid point scale for the EUR-11 ensemble and 21 

the entire EURO-CORDEX domain, we apply several evaluation metrics to monthly, seasonal 22 

(winter: DJF, spring: MAM, summer: JJA, autumn: SON) and annual mean values of 23 

temperature and precipitation for all experiments of the EUR-11, EUR-44 and ENS-22 24 

ensembles. These metrics are well-established distance measures that assess the quality of 25 

(regional) climate simulations by comparison against a gridded observational reference. They 26 

represent spatial and temporal bias characteristics and demonstrate the unavoidable spread of 27 

model performances in the reproduction of present-day regional climate. As our aim is not to 28 

produce an overall skill score that could be used for model weighting but to document 29 

different aspects of model performance, the metrics are presented individually and are not 30 

combined into some final performance score. The short evaluation period, leading to a sample 31 
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size of only 20 seasonal/annual means, also hampers a sound analysis of statistical robustness. 1 

We therefore explicitly refrain from assessing the statistical significance of the detected 2 

model biases and do also not address any trends of climate parameters. The following metrics 3 

are used (exact mathematical formulations are provided in Appendix A; the term 4 

“climatological” refers to mean values over the 20-year period 1989-2008): 5 

BIAS: The difference (model - reference) of spatially averaged climatological annual or 6 

seasonal mean values for a selected sub-region (relative difference for precipitation). 7 

95%-P: The 95th percentile of all absolute grid cell differences (model - reference) across a 8 

selected sub-region based on climatological annual or seasonal mean values (relative 9 

difference for precipitation).  10 

PACO: The spatial pattern correlation between climatological annual or seasonal mean values 11 

of model and reference data across all grid points of a selected sub-region. 12 

RSV: Ratio (model over reference) of spatial standard deviations across all grid points of a 13 

selected sub-region of climatological annual or seasonal mean values. 14 

TCOIAV: Temporal correlation of interannual variability between model and reference time 15 

series of spatially averaged annual or seasonal mean values of a selected sub-region.  16 

RIAV: Ratio (model over reference) of temporal standard deviations of interannual time series 17 

of spatially averaged annual or seasonal mean values of a selected sub-region.  18 

CRCO: Spearman rank correlation between spatially averaged monthly values of model and 19 

reference data of the climatological mean annual cycle of a selected sub-region. 20 

ROYA: Ratio (model over reference) of yearly amplitudes (differences between maximum 21 

and minimum) of spatially averaged monthly values of the climatological mean annual cycle 22 

of a selected sub-region. 23 

3.3 Regridding 24 

Several evaluation metrics require a grid-cell-by-grid-cell comparison between models and 25 

observations. Consequently, a remapping of either the EURO-CORDEX RCM output or of E-26 

OBS to a common reference grid was necessary prior to the analysis. In order to ensure a fair 27 

evaluation, our strategy was to always use the coarser grid as reference, except for mean sea-28 

level pressure (see below). This means that (1) the evaluation of the EUR-11 ensemble was 29 
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carried out on the coarser 0.22° E-OBS grid, and that (2) the EUR-44 experiments were 1 

evaluated on their native 0.44° model grid. In the first case, the model data were 2 

conservatively projected onto the 0.22° E-OBS grid. In the second case, E-OBS 0.22° was 3 

conservatively projected onto the 0.44° model grid (rather than directly applying the rotated 4 

0.44° version of E-OBS). Conservative projection in this context means that the value of a 5 

target grid cell is calculated by an area-weighted average of all overlapping grid cells of the 6 

original grid, conserving area mean values. In the special case where four EUR-11 grid cells 7 

exactly fit into one E-OBS 0.22° cell, and four E-OBS cells fill one EUR-44 grid cell the 8 

projection results in a simple arithmetic four-point-average of the finer grid. Additionally, an 9 

elevation correction was carried out for temperature assuming a uniform temperature lapse 10 

rate of 0.0064 K m-1, using the E-OBS topography as reference in the first case and the 11 

rotated 0.44° topography of the COSMO-CLM RCM as reference in the second case. For 12 

most experiments of the ENS-22 ensemble no regridding was necessary since both the RCM 13 

output and E-OBS are defined on the same rotated 0.22° grid. The few ENSEMBLES 14 

experiments that have not been carried out on the rotated 0.22° standard grid were 15 

conservatively remapped onto that grid. An elevation correction for temperature was applied 16 

in all cases. 17 

Because mean sea-level pressure has a large-scale structure and no quantitative grid cell 18 

metrics were calculated for this variable, the comparison between the EUR-11 simulations 19 

and the ERA-Interim reference data has also been carried out on the 0.22° E-OBS grid. For 20 

visualizing the spatial pattern of temporal mean biases, the coarser ERA-Interim geographic 21 

grid was therefore projected onto the finer (rotated) E-OBS grid. 22 

4 Results 23 

4.1 Spatial bias pattern 24 

Figures 2 to 4 provide an overview on the spatial distribution of the 20-year mean winter 25 

(DJF) and summer (JJA) model biases of the EUR-11 ensemble for temperature, precipitation 26 

and mean sea-level pressure. For temperature and in agreement with previous studies (see 27 

Chapter 1), this evaluation indicates a good reproduction of the spatial temperature variability 28 

by the RCMs, including the North-South temperature gradient and elevation effects (Fig. 2). 29 

Still, important biases can occur in individual experiments. In wintertime temperatures are 30 
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typically underestimated over large parts of the domain. Largest negative biases exceeding -3 1 

°C are found in north-eastern Europe (IPSL-INERIS, CRP-GL, CSC), in Norway (CNRM, 2 

KNMI) and along the Alpine ridge (IPSL-INERIS, CRP-GL, CNRM, CSC, SMHI, KNMI). 3 

Only two models show a strong warm bias of more than +3 °C over parts of Scandinavia 4 

(UHOH) and north-eastern Europe (CNRM). CSC and IPSL-INERIS overestimate winter 5 

temperatures in the South-East. For a number of RCMs the cold temperature bias, which is 6 

widespread in winter, is also found in summer (SMHI, KNMI, DMI). These cold biases, 7 

however, are generally less pronounced than in winter and most models have a tendency to 8 

overestimate summer temperature in the South-East. CLMCOM and CSC show a pronounced 9 

warm summer bias over most parts of southern Europe. A notable feature of the temperature 10 

evaluation is the fact that the bias range spanned by the three WRF experiments alone (IPSL-11 

INERIS, UHOH, CRP-GL) nearly corresponds to the bias range of the entire EUR-11 12 

ensemble. This is especially true in wintertime, but does not apply to the southern European 13 

warm summer biases which are largest in CLMCOM, CSC and DMI. A further conspicuous 14 

feature of Fig. 2 is the pronounced small-scale spatial variability of temperature biases in 15 

CNRM which is apparently related to orographic patterns.  16 

Concerning mean seasonal precipitation, the evaluation indicates a wet wintertime bias of 17 

most models over most parts of Europe (Fig. 3). Biases of more than 50% are obtained over 18 

the central and eastern regions. In contrast, winter precipitation amounts over parts of 19 

southern Europe (Portugal, northern Italy) are underestimated in most cases. CNRM shows a 20 

dry wintertime bias over large parts of the study area. In summer, most experiments 21 

overestimate precipitation sums in northern and north-eastern Europe, while three models 22 

show a pronounced dry bias in the Mediterranean region (CNRM, CLMCOM, DMI). Again, 23 

CNRM considerably underestimates precipitation over most of Europe and, as for 24 

temperature, the precipitation bias shows a pronounced variability in space. In contrast to 25 

temperature, the three WRF experiments mostly agree in their precipitation bias pattern in 26 

winter with a widespread overestimation. In summer, UHOH underestimates precipitation 27 

over parts of northern Europe and, hence, shows a slightly different behavior than CRP-GL 28 

and IPSL-INERIS which overestimate summer precipitation over the whole analysis domain. 29 

Southern European summer precipitation is considerably overestimated by all WRF 30 

experiments. A possible reason for the different behavior of UHOH compared to CRP-GL and 31 

IPSL-INERIS with respect to summer precipitation over parts of northern Europe is the 32 

choice of different microphysics schemes (two-moment scheme in UHOH, one-moment 33 
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scheme in IPSL-INERIS and CRP-GL). All models, except CNRM, show a pronounced wet 1 

bias along the eastern boundary which may indicate problems with the lateral boundary 2 

conditions of the limited area models (e.g., inconsistent velocity and humidity gradients 3 

between the RCMs’ regional solutions and the ERA-Interim boundary forcing in the lateral 4 

sponge zone). In contrast, CNRM uses a global grid and - per definition - a very large sponge 5 

zone with a comparatively weak relaxation which likely provides a smoother transition of the 6 

prescribed outer boundary conditions into the inner model domain and avoids spurious 7 

boundary effects. No difference in the spatial variability of precipitation biases between 8 

RCMs that apply a strong smoothing of surface orography (CLMCOM, KNMI, SMHI) and 9 

those applying a non-filtered orography (all others) can be identified. This might partly be 10 

related to the averaging of simulated precipitation at 0.11° to the 0.22° E-OBS grid prior to 11 

the analysis. 12 

To complete the overview on the spatial pattern of model biases and to provide a better handle 13 

on dynamical aspects of bias characteristics, Figure 4 presents an evaluation of mean winter 14 

and summer mean sea-level pressure. In both seasons the RCMs reproduce the large-scale 15 

pattern of mean sea-level pressure fairly well and biases typically do not exceed 3 hPa. The 16 

bias pattern is generally smooth and has a large-scale structure in most cases. Exceptions are 17 

(a) the SMHI model, which shows a small-scale but strong overestimation in the north-18 

western corner of the analysis domain and an underestimation over continental Europe in 19 

winter, leading to a reduced meridional pressure gradient, and (b) the WRF experiments 20 

(IPSL-INERIS, UHOH and CRP-GL) which underestimate mean sea-level pressure over 21 

continental Europe in both seasons and, in the case of UHOH, also in the north-western 22 

corner in summer. A particular feature of the WRF experiments is their agreement on a 23 

pronounced negative bias over mountainous terrain in winter (Scandinavian Alps, European 24 

Alps, Carpathians, Balkan Mountains) and the small-scale structure of the bias pattern, which 25 

is not found in the other models (except for positive summer biases over mountainous regions 26 

in CNRM and KNMI). This indicates a contribution of the model-specific method to reduce 27 

simulated surface pressure to mean sea level, and the pronounced biases in the mentioned 28 

regions should not be over-interpreted. Still, the underestimation of mean sea-level pressure 29 

by several hPa over large parts of continental Europe particularly in wintertime seems to be a 30 

robust feature of the WRF experiments and is also described by Mooney et al. (2013) in a 31 

sensitivity study of WRF in Europe. 32 
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4.2 Temporal and spatial means 1 

The regionally averaged biases in mean seasonal and annual temperature and precipitation of 2 

both the EUR-11 and the EUR-44 ensemble are summarized in Figures 5 and 6 (and Figures 3 

B1 and B2). For temperature the analysis reveals a cold bias of up to -2 °C for most models, 4 

most seasons and most sub-domains. Exceptions are the CSC simulations that mostly show a 5 

slight warm bias as well as the tendency of both ensembles to overestimate summer 6 

temperatures over southern and south-eastern Europe (sub-domains EA, IP and MD). While 7 

CNRM, KNMI and SMHI are mostly located at the cold end of the model range, temperatures 8 

in CLMCOM and CSC are in many cases higher than in the rest of the ensemble. No obvious 9 

benefit of the higher resolution (EUR-11 vs. EUR-44) is apparent. The 0.11° experiment of a 10 

given model performs worse or better than the corresponding 0.44° experiment depending on 11 

season and sub-domain. A systematic difference between both resolutions can be detected 12 

only for SMHI and KNMI where the higher resolution tends to produce lower temperatures in 13 

all seasons and regions compared to the coarse-resolution setup. 14 

A slightly different result is obtained for regionally averaged precipitation biases which are 15 

positive in most cases and, for many models, tend to be larger in the 0.11° experiments due to 16 

higher precipitation sums compared to the 0.44° versions. This is especially true for the SMHI 17 

model which shows a much stronger overestimation of precipitation at 0.11° grid resolution 18 

compared to 0.44° across all seasons and sub-domains. Special cases are the British Isles (BI) 19 

with a dry bias in many experiments in winter, summer and autumn (especially of the 0.44° 20 

versions) as well as sub-domains AL, EA, FR and IP with a dry summer bias in many 21 

experiments. The precipitation biases of the three WRF experiments (CRP-GL, IPSL-22 

INERIS, UHOH) are in many cases close to each other and do not sample the full range of 23 

model uncertainty. In general, the precipitation bias reaches from -40% to +80%. Only the 24 

UHOH model shows exceptionally high deviations larger than +140% in summer for regions 25 

IP and MD. Again, CNRM shows a special behavior and is often found at the dry end of the 26 

model range. For individual seasons and sub-domains, wet model biases are mostly smaller 27 

than 25% and could, in principle, be explained by an observational undercatch of up to 20% 28 

of true precipitation.  29 

As the BIAS metric represents model biases averaged over a given sub-region compensating 30 

effects might arise, i.e., a small BIAS value might be the result of large negative and large 31 

positive biases over different parts of a given sub-domain compensating each other. To 32 
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identify such effects, the 95%-P metric explores the 95th percentile of absolute biases at grid 1 

point scale within each sub-domain. For temperature (Figs. 7 and B3) this metric mostly lies 2 

within the 1 °C to 3 °C range. Larger values are obtained for the topographically more 3 

structured sub-domains SC and AL, which might partly be a result of the simplifying 4 

assumption of a temporally and spatially constant lapse rate used for elevation correction (see 5 

Section 3.3). The 95%-P metric does not strongly modify the ranking of the 6 

models/experiments, i.e., models/experiments that show a small (large) BIAS typically also 7 

show a small (large) 95%-P. Hence, the spatially averaged BIAS metric already provides a 8 

fairly good impression of model performance and is not too much affected by compensating 9 

effects. Again, an exception to this is CNRM-11 which typically shows a noticeable behavior 10 

with large 95%-P values, while the BIAS metric for this experiment is not as special (though 11 

it typically also shows the largest biases). No systematic improvement of the 0.11° 12 

experiments with respect to their 0.44° counterparts can be identified for 95%-P. In case of 13 

SMHI and CNRM the higher resolution models - representing stronger variations of 14 

topography - produce even larger peak deviations in sub-domains SC and AL than their 15 

coarser resolved counterparts. For precipitation (Figs. 8 and B4), 95%-P mostly lies in the 16 

50% to 100% range but can be considerably larger (up to 400%) for the southern European 17 

sub-domains IP and MD. The latter can be explained by the relative definition of 95%-P and 18 

the small precipitation sums in these regions especially during summer (cf. Fig. 3). This can 19 

lead to a large relative overestimation of precipitation by a particular model, although the 20 

absolute biases are small. Large 95%-P values are also obtained for the European Alps (AL) 21 

especially for DMI and SMHI, which is the result of a pronounced overestimation of 22 

precipitation along the Alpine ridge in combination with a strong dry bias over the low-lying 23 

Po valley south of the Alps (cf. Fig. 3). Especially for DMI these compensating effects of 24 

diverging precipitation biases within sub-domain AL are not apparent from the BIAS metric 25 

(Fig. B2) but only from 95%-P (Fig. B4). For all sub-domains, 95%-P values are typically 26 

larger than 25% and, in case these values correspond to wet model biases, cannot be 27 

explained by an observational undercatch of up to 20% of true precipitation.  28 

4.3 Spatial variability 29 

The performance of the EUR-11 and EUR-44 ensembles with respect to the spatial variability 30 

of mean winter and mean summer temperature and precipitation within individual sub-31 

domains (i.e., at grid box scale) is explored by the Taylor diagrams of Figures 9 and 10 (and 32 
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Figures B5 and B6 for the remaining sub-domains). The analysis for temperature (Figs. 9 and 1 

B5) indicates a high pattern correlation (PACO) for all experiments and most sub-domains, 2 

with values typically larger than 0.9. Smaller correlations down to 0.8 are obtained for sub-3 

domain ME in summertime mainly by simulations of the EUR-44 ensemble. Concerning the 4 

spatial standard deviation both ensembles have a clear tendency to an overestimation, 5 

particularly in summertime and by up to 50%. RSVs larger than 1.5 are obtained for CNRM 6 

and SMHI in a few cases. Wintertime RSVs are typically smaller and the spatial variability is 7 

often underestimated (RSV < 1). The systematic difference between summer and winter 8 

RSVs over many sub-domains leads to a clustering of the respective markers for summer 9 

(triangles) and winter (circles) in these regions (EA, IP, SC, FR). The pronounced 10 

overestimation of spatial temperature variability by CNRM-11 over most parts of Europe is 11 

very likely related to the large spatial variability of the mean seasonal model bias (cf. Section 12 

4.1). For most experiments and most sub-domains the centered root-mean-square difference 13 

between simulation and observational reference amounts to less than 50% of the observed 14 

spatial standard deviation. Overall systematic differences in model skill between the 0.11° and 15 

the 0.44° versions (filled markers compared to non-filled markers) are not found.  16 

Similarly to temperature, the spatial variability of mean winter and mean summer 17 

precipitation is typically overestimated by the experiments (Figs. 10 and B6), RSVs are 18 

mostly located between 1 and 2. A stronger overestimation is found for the Mediterranean 19 

sub-domain (MD) and in particular for the DMI model with RSVs of up to 4. Compared to 20 

temperature, the spatial pattern correlation of mean seasonal precipitation is much lower and 21 

PACO typically amounts to between 0.4 and 0.9 only. Whether a better performance is 22 

obtained for winter or summer (circles compared to triangles) considerably depends on the 23 

sub-domain. There is no apparent systematic difference in model skill between the high and 24 

the low resolution versions (filled compared to non-filled markers). The centered root-mean-25 

square difference between models and observations, expressed in units of the observed 26 

standard deviation, is typically found in the range between 50% and 200% (RSVs between 0.5 27 

and 2). 28 

4.4 Inter-annual variability 29 

The Taylor diagrams of Figures 11 and 12 (and Figures B7 and B8 for further sub-domains) 30 

combine the parameters TCOIAV and RIAV which assess the model performance with 31 

respect to the temporal (inter-annual) variability of mean winter and mean summer 32 
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temperature and precipitation, based on regional averages over each sub-domain. For winter 1 

temperature, temporal correlations are mostly larger than 0.9 while the results are worse for 2 

the summer season (Figs. 11 and B7). Summer TCOIAVs are typically larger than 0.6, but 3 

values down to 0.3 are obtained for the 0.11° WRF experiments (CRP-GL-11, IPSL-INERIS-4 

11, UHOH-11) in several sub-domains. Although we do not have a definite explanation, this 5 

could be linked to the high sensitivity of simulated summer temperatures to the selection of 6 

the convection scheme (Vautard et al., 2013b). CLMCOM and CNRM, on the other hand, 7 

show a very good performance in all seasons and all sub-domains (TCOIAVs mostly larger 8 

than 0.9). For CNRM, this particularity could again be related to the special setup of this 9 

global model. The large relaxation zone and the continuous nudging of the model’s solution 10 

towards ERA-Interim could help to maintain a correct chronology of synoptic events (i.e., of 11 

events that might partly be lost by limited area models due to their confined relaxation zone 12 

and an update of the boundary forcing at typically 6-hourly intervals only). Regarding the 13 

RIAV metric, both ensembles tend to overestimate the magnitude of inter-annual temperature 14 

variability, in particular during summertime. Except for Scandinavia (SC), where summer 15 

RIAVs are mostly smaller than 1, all sub-domains are affected and summer temperature 16 

variability is in some cases overestimated by more than 50% (RIAV larger than 1.5). For most 17 

cases, the centered root-mean-square difference between simulated and observed mean 18 

seasonal temperatures is smaller than the observed temporal standard deviation (normalized 19 

RMS distance smaller than 1). No systematic improvement of an increased resolution (EUR-20 

11 versus EUR-44 ensemble) is apparent; in some cases the switch from 0.44° to 0.11° can 21 

even deteriorate the model performance (compare non-filled and filled symbols of the same 22 

color and the same marker type). 23 

Similar to mean seasonal temperature, temporal correlations for precipitation are large in 24 

wintertime (mostly above 0.8) but systematically smaller in summer (Figs. 12 and B8). Again, 25 

a number of 0.11° WRF experiments show very low correlations in summertime. TCOIAVs 26 

are partly smaller than 0.3, suggesting inaccuracies in the representation of convective 27 

processes and their triggering mechanisms in this model. Concerning the inter-annual 28 

variability of precipitation, model performance shows a large spread. RIAV values are 29 

centered around 1 for sub-domains IP, SC and FR, but both ensembles typically overestimate 30 

the inter-annual precipitation variability in both seasons (AL, EA, MD, SC) or in summer 31 

only (ME). Only sub-domain BI shows a general underestimation of inter-annual precipitation 32 

variability (by up to 50%). As for temperature, the centered root-mean-square difference for 33 
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mean seasonal precipitation does typically not exceed the standard deviation of the 1 

observations (except AL) and, again, no obvious benefit of an increased grid resolution can be 2 

identified. 3 

4.5 Mean annual cycle 4 

The parameters CRCO and ROYA assess the model performance with respect to the mean 5 

annual cycle at monthly resolution, averaged over each sub-domain. Not astonishingly, the 6 

rank correlation for temperature (Fig. 13, left panel) is high in all experiments (CRCOs larger 7 

than 0.95) reflecting a proper representation of the temperature variation throughout the year 8 

by the RCMs, mainly driven by the annual cycle of air temperature and SST in the imposed 9 

large-scale forcing and of top-of-the-atmosphere incoming solar radiation. Concerning the 10 

ratio of amplitudes (Fig. 13, right panel) most experiments systematically overestimate the 11 

intensity of the mean annual cycle of temperature (ROYAs larger than 1). Exceptions are the 12 

British Isles where a majority of experiments underestimates the mean annual amplitude as 13 

well as the WRF experiments (CRP-GL, IPS-INERIS, UHOH) which systematically 14 

underestimate the annual amplitude over most parts of Europe. These results are closely 15 

related to the seasonal variability of the temperature bias in Figures 5 and B1. In most cases 16 

temperature biases are positive in summer and negative in winter (or less negative in summer 17 

than in winter), leading to an over-pronounced annual cycle. For SC, cold winter and cold 18 

summer biases are typically close to each other. This causes a negative shift of the annual 19 

cycle with only a minor influence on the annual variation. For sub-domain BI, in contrast, 20 

many simulations tend to underestimate summer temperatures more than winter temperatures, 21 

resulting in a flattening of the annual cycle. This is also the case for most regions in the WRF 22 

simulations, especially for IPSL-INERIS and UHOH. For ROYA, most outliers are members 23 

of the EUR-44 ensemble, i.e. an increased model resolution seems to be associated with a 24 

slightly better performance. For individual models and sub-domains this might, however, not 25 

be true. 26 

Regarding the mean annual cycle of precipitation, the model performance is generally worse 27 

than for temperature (Fig. 14). While most experiments show a rank correlation CRCO larger 28 

than 0.7 in sub-domains BI, IP, SC and MD, correlations are typically much lower in FR, ME, 29 

AL and EA. In ME and EA rank correlations close to zero or even negative are obtained, 30 

indicating a deficient representation of the mean annual cycle of precipitation. In these 31 

regions, the spread of the individual experiments is, however, very large and most simulations 32 
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actually have correlations larger than 0.5. Whether the annual amplitude of area-averaged 1 

precipitation is over- or underestimated (ROYA metric) strongly depends on the region and 2 

the experiment. While the annual amplitude is generally too small over the British Isles (BI), 3 

the majority of models overestimates the annual amplitude over France (FR), the Alps (AL) 4 

and the Mediterranean region (MD). No systematic difference in model skill between the 5 

EUR-11 and the EUR-44 ensemble can be identified. For SMHI, IPSL-INERIS and CRP-GL 6 

the ROYA values of the 0.11° simulations are generally larger than in the 0.44° case, but only 7 

better in three out of eight sub-domains. The high resolution experiments of KNMI and DMI 8 

show better ROYA values than their low resolution counterparts in seven regions whereas the 9 

CSC and CNRM simulations perform better in six regions at 0.44° grid spacing. With respect 10 

to CRCO six models perform better with the higher resolution in at least six regions. Again, 11 

CSC and CNRM produce a better skill in six regions with the coarser resolution. 12 

4.6 EURO-CORDEX versus ENSEMBLES 13 

The gray bars and markers in Figures 5 to 14 (and Figures B1 to B8) represent the ENS-22 14 

ensemble and allow relating the performance of EUR-11 and EUR-44 to the performance of 15 

the previous ENSEMBLES experiments. Note that the latter ensemble was driven by a 16 

different re-analysis (ERA40 instead of ERA-Interim), has been evaluated over a different 17 

period of time (1981-2000 instead of 1989-2008), has a larger ensemble size (16 instead of 9 18 

and 8 experiments for EUR-11 and EUR-44, respectively) and includes models that are not 19 

part of EUR-11 and EUR-44. 20 

For temperature, a comparison of the BIAS ranges (Figs. 5 and B1) indicates an improvement 21 

in EUR-11 and EUR-44 concerning the strong overestimation of summer temperatures over 22 

the southern and south-eastern parts of Europe (EA, IP, FR, MD), but also over central 23 

Europe (ME, AL). Regionally averaged summer temperature biases in EUR-11 and EUR-44 24 

are typically smaller than 1.5 °C compared to strong warm biases of some ENSEMBLES 25 

experiments. However, the cold biases of SMHI, KNMI and CNRM do partly exceed those of 26 

the ENSEMBLES models by some tenths of a degree (AL, BI, MD). Considering the larger 27 

ensemble size of ENS-22, the overall bias range seems to be comparable. As for temperature 28 

95%-P (Figs. 7 and B3), both EUR-11 and EUR-44 mostly improve on ENS-22 except for 29 

CNRM and partly SMHI, KNMI and CRP-GL which can be subject to strong biases on the 30 

grid cell scale in sub-domains EA, IP, SC, BI, MD and especially in AL. 31 

 21 



Due to some wet and dry outliers of the EUR-11 and EUR-44 ensembles in individual sub-1 

domains and seasons, the range and the magnitude of the precipitation BIAS of the EURO-2 

CORDEX simulations are partly larger than in ENS-22. This particularly concerns sub-3 

domains EA, ME, BI and FR. The same is true for precipitation 95%-P (Figs. 8 and B4). 4 

Some improvements with predominantly smaller values are apparent for sub-domain IP while, 5 

on the other hand, several EUR-11 and EUR-44 simulations show larger biases in sub-6 

domains ME, BI and FR compared to ENSEMBLES. 7 

Regarding the reproduction of the spatial variability of temperature (Figs. 9 and B5) and 8 

precipitation (Figs. 10 and B8), EUR-11 and EUR-44 often slightly improve on ENS-22 9 

(markers closer to the 1-1 location). Again, exceptions are CNRM and to some extent also 10 

SMHI which partly show a pronounced overestimation of the spatial standard deviation of 11 

temperature beyond the ENS-22 range. Some features like the higher spatial correlation of 12 

winter precipitation (Fig. 10) and the smaller spatial temperature variability (Fig. 9) in SC are 13 

concordantly reproduced by all three ensembles. The temporal variability of temperature 14 

(Figs. 11 and B7) is slightly improved with respect to ENSEMBLES in summertime, mainly 15 

due to a less pronounced overestimation of interannual variability (RIAVs closer to one in 16 

many sub-domains). No clear difference between EUR-11 and EUR-44 on one hand and 17 

ENS-22 on the other hand is obvious for metrics describing the interannual variability of 18 

precipitation (Figs. 12 and B8). Again, the seasonal separation/clustering - like for 19 

temperature in EA and FR and for precipitation in EA, IP, ME, SC and FR - is similar in all 20 

ensembles. 21 

The rank correlations of the mean annual cycle of temperature averaged over the individual 22 

sub-domains are large in all three ensembles (Fig. 13, left panel). For precipitation (Fig. 14, 23 

left panel), the performance of the EUR-11 and EUR-44 ensembles is comparable to ENS-22 24 

except for some poor-performing outliers in sub-domains BI (CNRM), FR (IPSL-INERIS) 25 

and ME (CNRM). It is worth mentioning that the regions with the largest range of CRCO in 26 

ENS-22 (ME and EA) present also the largest ranges in EUR-11 and EUR-44. The ranges in 27 

sub-domains IP, SC and MD are, however, considerably reduced in the EUR-11 and EUR-44 28 

ensembles. Regarding the ROYA metric, i.e. the ratio of amplitudes of the mean annual cycle 29 

(Figs. 13 and 14, right panels), EUR-11 and EUR-44 show a similar skill as ENS-22, but with 30 

a tendency towards an underestimation of the amplitude of the annual cycle by some 31 
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experiments in selected sub-domains (IPSL-INERIS and UHOH for temperature; UHOH, 1 

CLMCOM, CSC, SMHI for precipitation). 2 

5 Discussion 3 

5.1 The overall picture 4 

The evaluation of the EURO-CORDEX ensembles largely confirms RCM bias characteristics 5 

identified by previous studies based on the ENSEMBLES data. This concerns both the 6 

general magnitude as well as the sign of model biases. Improvements with respect to 7 

ENSEMBLES are a reduced overestimation of southern and south-eastern European summer 8 

temperatures, a less pronounced overestimation of interannual summer temperature variability 9 

as well as a slightly better representation of the spatial climatic variability within the sub-10 

domains. In some cases, however, individual EURO-CORDEX experiments are subject to 11 

bias magnitudes beyond the range found for ENSEMBLES. This especially concerns the 12 

CNRM model which is subject to a strong spatial variability of model biases on the grid cell 13 

level and a pronounced cold and dry bias over many parts of Europe. CNRM‘s summer dry 14 

bias, however, is not due to shortcomings in the physical parameterizations, but is a 15 

consequence of the specific design of the CNRM experiments. Further simulations in which 16 

the relaxation outside Europe is weaker (6 hours instead of 10 min e-folding time) do not 17 

show it. The reason might be an over-drying of the atmosphere in the relaxation area (the rest 18 

of the globe) where a permanent spin-up of temperature and moisture relating to the mismatch 19 

between ERA-Interim and ARPEGE physics is imposed on the model. CNRM’s cold bias 20 

over high mountains is to some extent related to the model’s snow scheme and a too persistent 21 

snow cover (Vautard et al., 2013b). 22 

The availability of different configurations of WRF allows comparison of the bias spread 23 

obtained for this particular model to the spread across different models. The fact that the 24 

temperature bias range of the three WRF-11 experiments often corresponds to the bias range 25 

of the entire ensemble illustrates the uncertainty introduced by the choice of parameterizations 26 

and parameter settings (e.g., Bellprat et al., 2012a; Mooney et al., 2013). This, however, is not 27 

apparent for precipitation biases where the different WRF setups approximately agree on sign 28 

and magnitude of their bias. In wintertime, the wet bias of WRF seems to be closely related to 29 

the distinct negative bias of mean sea-level pressure (compare Figures 3 and 4), indicating a 30 
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too high intensity of low pressure systems passing the continent. Circulation types and storm 1 

tracks, however, have not been analyzed in detail in the present study and possible relations 2 

between precipitation and mean sea-level pressure biases remain speculative. 3 

Mostly independent of the season and the sub-domain under consideration, the relative 4 

ranking of models with respect to seasonal mean temperature is stable, with CNRM, KNMI 5 

and SMHI showing coldest temperatures as opposed to warmer conditions in CLMCOM and 6 

CSC. For seasonally and regionally averaged precipitation sums the relative ranking is less 7 

fixed, although the high resolution versions of SMHI, CRP-GL and IPSL-INERIS are often 8 

found at the wet end while CNRM typically belongs to the driest models. 9 

For sub-domain mean values at seasonal resolution, no apparent benefit of a finer grid 10 

resolution is identified. For temperature and depending on sub-domain and season, the 0.11° 11 

experiments can be warmer or colder than their 0.44° counterparts and no systematic bias 12 

reduction in the high resolution experiments is found. This also holds for the 95th percentile of 13 

absolute temperature biases (95%-P). In case of precipitation, seasonal mean biases are 14 

typically larger in the EUR-11 ensemble as precipitation sums are generally overestimated by 15 

both ensembles and the increase of resolution is mostly associated with a further increase of 16 

precipitation. The latter might be related to stronger orographic gradients in the high 17 

resolution experiments due to a better resolved topography. Our analysis also highlights the 18 

potential of error compensation when restricting the analysis to mean values for relatively 19 

large sub-domains. Especially for precipitation a metric such as 95%-P can provide further 20 

insight into model biases on grid cell level in addition to the metrics PACO and RSV which 21 

measure the accuracy of horizontal distribution and spatial variation over a selected sub-22 

domain. 23 

The absence of obvious benefits of a finer grid resolution in our analysis does not rule out 24 

such an added value in general. The 0.22° resolution of the gridded observations, coarser than 25 

that of the 0.11° RCM simulations, allows conclusions concerning a lack of large-scale bias 26 

improvements by the 0.11° experiments, but hinders identification of benefits at smaller scale. 27 

In orographically structured terrain, we expect an added value of an increased spatial 28 

resolution for parameters such as meso-scale circulations, the precipitation intensity 29 

distribution at daily resolution or snow cover dynamics. These aspects have not been 30 

addressed in the current work, partly since this would require observational reference data 31 

with a better reliability than E-OBS at high temporal and spatial scales. Such data are 32 
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currently not available at a European level but only for smaller sub-regions (mostly individual 1 

countries), such as the REGNIE or HYRAS precipitation data for Germany (Rauthe et al., 2 

2013) or the SAFRAN re-analysis over France (Quintana-Segui et al., 2008). A detailed 3 

investigation of the added value of high resolution experiments based on such data will be the 4 

subject of upcoming studies, possibly applying dedicated added value metrics (e.g., 5 

Kanamitsu and DeHaan, 2011). Indeed, recent studies by Bauer et al. (2011), Prein et al. 6 

(2013a and 2013b) and Warrach-Sagi et al. (2013) indicate that an increase of RCM 7 

resolution (in their case to convection-permitting scales) bears added value, but this added 8 

value can cancel out by spatial and temporal averaging. 9 

Further cautionary notes concern the influence of (1) internal model variability, (2) 10 

uncertainties in the observational reference data, and (3) deficiencies of the driving re-analysis 11 

on the computed skill metrics. (1) can influence the simulated mean climatology even in 12 

decadal and multi-decadal RCM experiments that are subject to an identical boundary forcing 13 

(e.g., Bellprat et al., 2012a; Lucas-Picher et al., 2008; Roesch et al., 2008) in particular over 14 

large model domains as in our simulations. As the EUR-11 and EUR-44 ensembles consist of 15 

only one experiment for each setup, a quantification of the effect of internal variability on the 16 

model evaluation is not possible. Instead, slight nuances of bias characteristics should not be 17 

over-interpreted as they could, to some degree, result from internal random variability. A 18 

similar reasoning is true for uncertainties in the E-OBS observational reference. Finally, 19 

model evaluation has been carried out in a perfect boundary context and basically assumes a 20 

bias-free representation of the lateral atmospheric boundary forcing and of sea surface 21 

temperatures by the driving ERA-Interim re-analysis. Although the recent studies by Brands 22 

et al. (2012 and 2013) suggest a negligible re-analysis uncertainty for the Northern 23 

Hemispheric extratropics, a certain influence of a biased boundary forcing on the evaluation 24 

results cannot be ruled out. 25 

5.2 RCM deficiencies and capabilities 26 

One of the most prominent deficiencies across members of both the EUR-11 and EUR-44 27 

ensembles is the predominant cold bias in most seasons and for most sub-domains. The 28 

spatially averaged bias often reaches -1 to -2 °C but can be larger in individual cases. For 29 

some regions such as Norway and the Alpine ridge, this cold bias might partly be related to 30 

the pronounced topography of the respective region, associated with large elevation 31 

differences between the individual RCMs and the E-OBS reference at grid point level. This, 32 
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in turn, potentially amplifies inaccuracies of the assumption of a spatially and temporally 1 

uniform lapse rate for elevation correction (see Section 3.3). Exceptions to the general picture 2 

of a predominant cold model bias are the CSC model that mostly shows too high temperatures 3 

as well as the summer season in southern and south-eastern Europe where most models have a 4 

tendency to overestimate temperatures. This result is consistent with previous findings (e.g., 5 

Hagemann et al., 2004 for PRUDENCE, and Christensen et al., 2008 for ENSEMBLES) and 6 

is probably related to an underestimation of summertime precipitation (compare Figures 3 and 7 

4) and soil moisture-temperature coupling: In soil moisture-controlled evaporative regimes, 8 

low soil moisture contents (e.g., resulting from preceding precipitation deficits) limit the 9 

amount of energy used for the latent heat flux and increase the sensible heat flux, ultimately 10 

leading to an increase of air temperature (e.g., Seneviratne et al. 2010). This feedback is 11 

sensitive to all processes that interfere with the regional balances of water and energy, and 12 

this includes land-surface, boundary layer, convective and radiative processes. Related to this 13 

is the overestimation of inter-annual temperature variability in the summer season by both 14 

ensembles (RIAVs larger than 1). This widespread and systematic model bias has previously 15 

also been reported for the PRUDENCE and ENSEMBLES experiments (e.g., Fischer et al., 16 

2012; Lenderink et al., 2007; Vidale et al., 2007). The warm summer biases do not coincide 17 

with pronounced positive mean sea-level pressure biases (compare Figures 2 and 4) which 18 

indicates the dominant role of regional-scale land surface-atmosphere interactions and only a 19 

minor contribution of large-scale circulation biases (e.g., too persistent blocking regimes). 20 

The former were also identified as driving factors for the correct representation of summer 21 

heat waves in the EURO-CORDEX ensemble (Vautard et al., 2013b). 22 

Regarding regionally averaged precipitation biases, the most striking feature is a pronounced 23 

wet bias of both ensembles over most sub-domains and for most seasons (except CNRM and 24 

except the dry biases in southern and south-eastern Europe). As a consequence of a general 25 

tendency to higher precipitation sums with increased model resolution, this wet bias is 26 

typically more pronounced in the 0.11° experiments. Based on the restricted detail of our 27 

analysis, a full explanation of this bias is not possible at this point. Note that the E-OBS 28 

reference has not been corrected for the systematic undercatch of rain gauges (cf. Section 2.2). 29 

If one assumes a mean systematic undercatch of 20% of true precipitation, wet model biases 30 

can in some cases be explained by this shortcoming of the observational reference.  31 
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Another important deficiency of simulated precipitation are the low rank correlations (CRCO 1 

metric) of simulated and observed climatological monthly means in sub-domains FR, ME, AL 2 

and EA. Here, CRCOs are typically lower than 0.7 and partly close to zero or even negative, 3 

indicating a reversal of the observed annual cycle by the RCMs. When analyzing CRCO it has 4 

to be noted, though, that low or negative correlations are more likely in regions with a weak 5 

annual cycle of precipitation. A similar reasoning is true for model biases of the mean annual 6 

amplitude of precipitation (ROYA metric). As the numbers in the left panel of Figure 14 7 

(CRCO) indicate, the standard deviation of the mean annual cycle is smallest - only 13 to 8 

18% of the annual mean monthly precipitation - in sub-domains FR, ME and AL. The 9 

difference between maximal and minimal mean monthly precipitation is also smallest for 10 

these three sub-domains (right panel of Fig. 14, ROYA). It amounts to only 42 to 53% of the 11 

annual mean monthly precipitation. For sub-domains IP and MD this normalized difference is 12 

more than twice as large (131 and 113%, respectively), indicating a pronounced annual 13 

variation of precipitation in these regions. This is confirmed by the high values of the 14 

normalized standard deviation (44 and 31%; Figure 14 left panel) in these sub-domains. 15 

Hence, the bad model performance with respect to CRCO in FR, ME and AL and the 16 

considerable overestimation of ROYA in FR does not necessarily indicate a severe model bias 17 

but rather shows that the respective model cannot reproduce small monthly deviations from a 18 

rather uniform annual distribution of precipitation. This is, however, not the case for the 19 

partly weak mean annual correlation in EA. In particular CCLM and CNRM seem to have 20 

serious problems to correctly reproduce the annual cycle of precipitation in this eastern part of 21 

the model domain. 22 

Concerning the general overestimation of spatial temperature and precipitation variability 23 

within sub-domains (RSV metric), this deficiency does very probably not only reveal true 24 

model biases but also deficiencies of the E-OBS reference relating to the spatial smoothing 25 

and an effective resolution lower than 0.22° and 0.44°, respectively, in regions of a low 26 

network density (see Section 2.2). This effect would lead to an apparent overestimation of 27 

RSV by the model experiments, although the true spatial variability might actually be well 28 

represented. Sub-domains like ME with little orographic variability and, furthermore, a rather 29 

dense station network (cf. Haylock et al., 2009) would be less affected by this artifact and, 30 

indeed, show a better model performance with respect to RSV (Fig. 9). Unfortunately, not a 31 

single data set currently exists that provides homogenized climate data for the entire European 32 

continent with an effective spatial resolution equal or higher than the actual resolution of 33 
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modern RCMs used for long-term climate simulations. Hence, more detailed investigations of 1 

small-scale climatological features can be carried out only for specific sub-regions where 2 

appropriate high resolution reference data exist. 3 

When analyzing the temporal correlation between the simulated and observed seasonal mean 4 

values over the 20-year long evaluation period (metric TCOIAV), an obvious feature is the 5 

much better correlation for winter (mostly larger than 0.9 for both temperature and 6 

precipitation) compared to summer (often smaller than 0.6). The better performance for 7 

winter reflects the fact that European summer climate is much more controlled by local- to 8 

regional-scale processes, giving the RCMs a higher degree of freedom to alter the conditions 9 

imposed by the boundary forcing (e.g., Déqué et al., 2005). In contrast, winter climate in mid-10 

latitudes is more affected by the synoptic-scale transport of warm or cold and moist or dry air 11 

masses which couples the internal solution of the RCMs closer to the temporal evolution of 12 

the lateral boundary values. Comparing TCOIAV for temperature and precipitation, smaller 13 

correlations are typically obtained for precipitation, reflecting a weaker control of the large-14 

scale boundary conditions on sub-domain mean precipitation compared to sub-domain mean 15 

temperature. 16 

Despite the mentioned shortcomings in the representation of specific climatic features over 17 

the European continent, the evaluation indicates a considerable skill of the EUR-11 and EUR-18 

44 ensembles to reproduce larger-scale horizontal variability of climatological seasonal mean 19 

values (expressed, for instance, as differences of mean values between the individual sub-20 

domains). In most sub-domains, especially for temperature, also the shape and the amplitude 21 

of regionally averaged mean annual cycles are reproduced to a large extent (ROYA and 22 

CRCO metrics). The climatological fields of mean sea-level pressure as represented by the 23 

driving ERA-Interim re-analysis are mostly captured well and are only slightly distorted in 24 

some cases. 25 

For temperature the spatial variability within the individual sub-domains is fairly well 26 

captured (PACO mostly > 0.9). This good performance is, however, to some extent a simple 27 

result of the systematic elevation dependency of air temperature. As continental-scale 28 

gradients and biases thereof are not sampled by the sub-domains, high-elevation regions will 29 

typically have lower temperatures than their low-elevation counterparts in a given sub-30 

domain, both in the observations and in the models. As grid-scale topography can be assumed 31 

to be realistically represented by the models and as, additionally, an elevation correction is 32 
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carried out for temperature this will lead to high values of PACO. This effect will generally 1 

be less pronounced in sub-domains without strong orographic gradients (such as ME). In the 2 

case of precipitation, the spatial variability within sub-domains is simulated less accurately 3 

(PACO typically between 0.4 and 0.9). This partly reflects the fact that seasonal precipitation 4 

sums are also affected by topography, but on regional scales far less systematic than 5 

temperature. Instead, RCMs can suffer from considerable systematic biases of the spatial 6 

precipitation field in orographic terrain such as the windward-lee effect (overestimation of 7 

precipitation on the windward side, underestimation on the lee side; e.g., Warrach-Sagi et al., 8 

2013).  9 

6 Conclusions and outlook 10 

The present work evaluates the ERA-Interim driven RCM ensembles of the EURO-CORDEX 11 

initiative on a European scale. Our analysis mainly considers the standard parameters 2m 12 

temperature and precipitation and is based on monthly and seasonal mean values. Several 13 

simple and reproducible metrics covering a range of aspects of model performance are used to 14 

compare simulation results to the E-OBS observational reference. This enables a quantitative 15 

assessment of the newest generation of RCMs to simulate European climate conditions and a 16 

direct comparison with results of the previous ENSEMBLES simulations. The validation 17 

exercise serves as a quality standard for further simulations and future model developments. 18 

The added value of the high-resolution experiments (EUR-11) compared to their coarser 19 

resolution counterparts (EUR-44) is not specifically addressed in this study. 20 

The model evaluation highlights the general ability of today’s regional climate models to 21 

represent the basic spatio-temporal patterns of the European climate, but also indicates 22 

considerable deficiencies for selected metrics, regions and seasons. Some of these 23 

deficiencies, such as a predominant cold and wet bias in most seasons and over most of 24 

Europe, are found in the majority of experiments and reflect common model biases. 25 

Furthermore, many experiments are subject to a warm and dry summer bias over southern and 26 

south-eastern Europe. The latter had previously been identified for the ENSEMBLES 27 

experiments, but for this specific case the bias appears to be reduced in the EURO-CORDEX 28 

ensembles. However, neglecting the influence of slightly incompatible setups (different 29 

driving re-analysis, different simulation and, hence, evaluation period), no general 30 

improvements of the EURO-CORDEX simulations with respect to ENSEMBLES could be 31 
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identified for the temporal and spatial scales considered in the present work. In addition to 1 

common model deficiencies found across the range of different RCMs, a number of model-2 

dependent biases could be identified. Except for a few consistent outliers, these biases 3 

typically depend on the region and season under consideration. 4 

Identifying possible reasons for both common and model-specific bias characteristics and 5 

formulating specific recommendations for model development will require a deeper and 6 

dedicated analysis, including additional metrics and variables and explicitly taking into 7 

account uncertainties in the observational reference and the effect of RCM-internal climate 8 

variability. These aspects will be the subject of upcoming studies within the EURO-CORDEX 9 

community. The same is true for studies explicitly addressing the added value of an increased 10 

grid resolution. In terms of regionally and seasonally averaged quantities the present work 11 

could not identify such an added value. This does, however, not rule out benefits of an 12 

increased resolution, and we would expect such benefits for quantities such as daily 13 

precipitation intensities, small-scale spatial climate variability in topographically structured 14 

terrain or snow cover dynamics. These aspects still need to be investigated in more detail. 15 

Further analyses will consider (1) the relation between present-day model biases and 16 

simulated climate change signals, (2) the question of whether model biases are temporally 17 

stable and bias correction methods are feasible and can be reliably applied, (3) inter-18 

comparisons of the performance of different types of downscaling methodologies, as well as 19 

(4) the assessment of trends of simulated climatic parameters within the observed period. For 20 

the latter aspect the current 20-year long EURO-CORDEX evaluation experiments are not 21 

well suited, but extended simulations covering the full ERA-Interim period (1979  to present) 22 

are already under way and will be available for such analyses. Furthermore, applying the 23 

same quantitative metrics used in the present study to the EURO-CORDEX GCM-driven 24 

experiments would allow separating the contribution of the driving global climate model  25 

from the intrinsic RCM contribution to the overall bias structure. 26 
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Table 1. Overview on the models analyzed and their main characteristics. 1 
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Model Institution 
(abbreviation)  

Boundary 
forcing 

Horizontal 
resolution 

No. of 
vertical 
levels 

Radiation 
scheme 

Convection 
scheme 

Microphysics 
scheme 

Land-surface 
scheme Land use 

Planetary 
boundary 
layer 
scheme 

Soil initialization and 
spin-up 

ARPEGE 5.1 
Centre National de 
Recherches 
Météorologiques (CNRM) 

nudged towards 
ERA- Interim 
outside the 
EURO-CORDEX 
domain 

0.11°, 0.44° 31 Morcrette 
(1990)  

Bougeault 
(1985) 

Ricard and Royer 
(1993) 

Douville et al. 
(2000) 

ECOCLIMAP 
(Champeaux et 
al., 2003; 
Masson et al., 
2003) 

Ricard and 
Royer 
(1993) 

Year 1989 simulated twice 
after model cold start 
(i.e., one year spin-up) 

CCLM 4.8.17 CLM Community 
(CLMCOM) 

ERA- Interim 
directly 0.11°, 0.44° 40 Ritter and 

Geleyn (1992)  Tiedtke (1989)  
Doms et al.(2007), 
Baldauf and Schulz 
(2004) 

TERRA-ML: 
Doms et al.( 
2007) 

GLC2000 (Joint 
Research 
Centre, 
2003) 

Louis (1979)  

0.11°: Idealized profile for  
soil temperature and 
climatology for soil 
moisture 0.44°: 10-year 
spin-up with standard 
initialization (cold start) in 
1979) 

HIRHAM 5 Danish Meteorological 
Institute (DMI) 

ERA-Interim 
directly 0.11°, 0.44° 31 

Morcrette et 
al. (1986), 
Giorgetta and 
Wild (1995) 

Tiedtke (1989) Lohmann and 
Roeckner (1996) 

Hagemann 
(2002) 

Claussen et al. 
(1994) Louis (1979) 

Soil moisture initialized 
full, soil temperature 
climatology. One year 
spin-up 1988 

REMO 2009 Climate Service Center 
(CSC) 

ERA- Interim 
directly 0.11°, 0.44° 27 

Morcrette et 
al. (1986), 
Giorgetta and 
Wild (1995) 

Tiedtke (1989), 
Nordeng (1994), 
Pfeifer (2006)  

Lohmann and 
Roeckner (1996) 

Hagemann 
(2002), Rechid 
et al. (2009) 

USGS 
(Hagemann, 
2002) 

Louis (1979)  

Soil temperature and 
moisture are initialized 
using ERA-Interim (cold 
start) 

RACMO 2.2 
Royal Netherlands 
Meteorological Institute 
(KNMI) 

ERA- Interim 
directly 0.11°, 0.44° 40 

Fouquart and 
Bonnel (1980), 
Mlawer et al. 
(1997) 

Tiedtke (1989),  
Nordeng (1994), 
Neggers et al. 
(2009) 

Tiedtke (1993), 
Tompkins et al. 
(2007), ECMWF-
IFS (2007), 
Neggers (2009) 

Van den Hurk et 
al. (2000), 
Balsamo et al. 
(2009) 

ECOCLIMAP 
(Champeaux et 
al., 2003; 
Masson et al., 
2003) 

Lenderink 
and Holtslag 
(2004), 
Siebesma et 
al. (2007) 

Soil temperature and soil 
moisture initialized from 
ERA-Interim on 1st January 
1979 

RCA 4 
Swedish Meteorological 
and Hydrological Institute 
(SMHI) 

ERA- Interim 
directly 0.11°, 0.44° 40 

Savijärvi 
(1990), Sass et 
al. (1994) 

Kain and Fritsch 
(1990), Kain and 
Fritsch (1993) 

Rasch and 
Kristjánsson (1998) 

Samuelsson et 
al. (2006) 

ECOCLIMAP 
(Champeaux et 
al., 2003; 
Masson et al., 
2003) 

Cuxart et al. 
(2000) 

Soil temperature and soil 
moisture initialized with 
ERA-Interim in January 
1979 (10-year spin-up) 

WRF 3.3.1 University of Hohenheim 
(UHOH) 

ERA- Interim 
directly 0.11° 50 

CAM 3.0: 
Collins et al. 
(2004) 

Modified Kain-
Fritsch:  Kain 
(2004)  

Morrison 2-
moment scheme : 
Morrison et al. 
(2009)  
 

NOAH: Ek et al. 
(2003) IGBP-MODIS 30’’ YSU : Hong 

et al. (2006) 

Soil temperatures and soil 
moisture initialized on 1st 
January 1987 with ERA-
Interim, 2-year spin-up 

WRF 3.3.1 

Institut Pierre Simon 
Laplace / Institut National 
de l’Environnement 
Industriel et des Risques 
(IPSL-INERIS) 

ERA- Interim 
directly  0.11°, 0.44° 32 

RRTMG : 
Lacono et al. 
(2008) 

Grell and 
Devenyi (2002 ) Hong et al. (2004) NOAH: Ek et al. 

(2003) USGS Land Use YSU : Hong 
et al. (2006) 

Soil moisture and soil 
temperature initialized 
with ERA-Interim (cold 
start), no spin-up 

WRF 3.3.1 
Centre de Recherche 
Public Gabriel Lippmann 
(CRP-GL) 

ERA- Interim, 
CRP-GL-11 nested 
into CRP-GL-44 
(one-way double 
nesting) 

0.11°, 0.44° 50 
CAM 3.0: 
Collins et al. 
(2004) 

Modified Kain-
Fritsch:  Kain 
(2004) 

WSM 6-class: Hong 
and Lim (2006) 

NOAH: Ek et al. 
(2003) IGBP-MODIS 30’’ YSU : Hong 

et al. (2006) 

Soil moisture and soil 
temperature initialized 
with ERA-Interim (cold 
start), no spin-up 
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 1 

Figure 1. The common EURO-CORDEX analysis domain and location of the eight sub-domains 2 

used for model evaluation. The color represents the orography of the CLMCOM-11 setup [m]. 3 

4 
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 1 

Figure 2. Mean seasonal temperature bias [K] for all experiments of the EUR-11 ensemble and 2 

the period 1989-2008. Upper rows: winter (DJF), lower rows: summer (JJA). The upper left 3 

panel of each section shows the horizontal pattern of mean seasonal temperature as provided by 4 

the E-OBS reference [K].  5 

6 
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 1 

Figure 3. As Figure 2 but for the mean relative seasonal precipitation bias [%]. The upper left 2 

panel of each section shows the horizontal pattern of mean seasonal precipitation as provided by 3 

the E-OBS reference [mm month-1].  4 

5 
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 1 

Figure 4. As Figure 2 but for the mean seasonal mean sea-level pressure bias [hPa]. The upper 2 

left panel of each section shows the horizontal pattern of mean seasonal precipitation as provided 3 

by the ERA-Interim reference [hPa].  4 

5 
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 1 

Figure 5. Mean seasonal and annual temperature bias (BIAS) [K] for the EUR-11 (filled circles) 2 

and the EUR-44 ensemble (open circles) and for sub-domains EA, IP, ME and SC (see Figure 3 

B1 for sub-domains AL, BI, FR and MD). The gray bars denote the BIAS range of the ENS-22 4 

ensemble: entire range in light gray, inter-quartile range (corresponding to eight models) in dark 5 

gray and median as solid line. 6 

 7 
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Figure 6. As Figure 5 but for the mean seasonal and annual relative precipitation bias (BIAS) 1 

[%]. The numbers along the x-axis indicate mean seasonal [mm/season] and mean annual 2 

[mm/year] precipitation sums for the period 1989-2008 in the E-OBS reference. The blue 3 

shading indicates a bias range between 0 and +25%, corresponding to acceptable model biases in 4 

case of a systematic rain gauge undercatch of up to 20% of true precipitation. See Figure B2 for 5 

sub-domains AL, BI, FR and MD. 6 
7 
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 1 

Figure 7. 95th percentile of mean seasonal and annual absolute temperature biases (95%-P) [K] 2 

for the EUR-11 (filled circles) and the EUR-44 ensemble (open circles) and for sub-domains EA, 3 

IP, ME and SC (see Figure B3 for sub-domains AL, BI, FR and MD). The gray bars denote the 4 

95%-P range of the ENS-22 ensemble: entire range in light gray, inter-quartile range 5 

(corresponding to eight models) in dark gray and median as solid line. 6 

 7 
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Figure 8. As Figure 7 but for the 95th percentile of mean seasonal and annual relative 1 

precipitation biases (absolute values; 95%-P) [%]. The blue shading indicates a bias range 2 

between 0 and +25%, corresponding to acceptable wet model biases in case of a systematic rain 3 

gauge undercatch of up to 20% of true precipitation. See Figure B4 for sub-domains AL, BI, FR 4 

and MD. 5 

 6 
7 
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 1 

Figure 9. Spatial Taylor diagrams exploring the model performance with respect to the spatial 2 

variability of mean winter (circles) and mean summer (triangles) temperature within sub-3 

domains EA, IP, ME and SC (see Figure B5 for sub-domains AL, BI, FR and MD). Filled 4 

markers: EUR-11 ensemble, non-filled markers: EUR-44 ensemble, gray markers: ENS-22 5 

ensemble. The diagrams combine the spatial pattern correlation (PACO, cos(azimuth angle)) and 6 

the ratio of spatial variability (RSV, radius). The distance from the 1-1 location corresponds to 7 

the normalized and centered root-mean-square difference (which does not take into account the 8 

mean model bias), expressed as multiples of the observed standard deviation. Note the different 9 

number of underlying grid cells per sub-domain in the individual ensembles. 10 
11 
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 1 

Figure 10. As Figure 9 but for mean winter (circles) and mean summer (triangles) precipitation. 2 

See Figure B6 for sub-domains AL, BI, FR and MD. 3 

4 
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 1 

Figure 11. Temporal Taylor diagrams exploring the model performance with respect to the inter-2 

annual temporal variability of mean winter (circles) and mean summer (triangles) temperature as 3 

averages over sub-domains EA, IP, ME and SC (see Figure B7 for sub-domains AL, BI, FR and 4 

MD). Filled markers: EUR-11 ensemble, non-filled markers: EUR-44 ensemble, gray markers: 5 

ENS-22 ensemble. The diagrams combine the temporal correlation of interannual variability 6 

(TCOIAV, cos(azimuth angle)) and ratio of interannual variability (RIAV, radius). The distance 7 

from the 1-1 location corresponds to the normalized and centered root-mean-square difference 8 

(which does not take into account the mean model bias), expressed as multiples of the observed 9 

standard deviation. 10 
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 1 

Figure 12. As Figure 11 but for mean winter (circles) and mean summer (triangles) precipitation. 2 

See Figure B8 for sub-domains AL, BI, FR and MD. 3 

 4 
5 
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 1 

Figure 13. Model performance with respect to the mean annual cycle of temperature over each 2 

sub-domain as expressed by the climatological rank correlation (CRCO, left panel) and the ratio 3 

of yearly amplitudes (ROYA , right panel). The gray bars denote the CRCO and ROYA ranges 4 

of the ENS-22 ensemble: entire range in light gray, inter-quartile range (corresponding to eight 5 

models) in dark gray and median as solid line. 6 

 7 

 8 

 9 

Figure 14. As Figure 13 but for the mean annual cycle of precipitation. The numbers along the x-10 

axes indicate the standard deviation of the mean annual cycle (left panel) and the maximum 11 

difference between the climatological monthly means (right panel), both normalized by the 12 

annual mean monthly precipitation and based on average precipitation sums over the respective 13 

sub-domain in the E-OBS reference. 14 

15 
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Appendix A: Definition of evaluation metrics 1 

Let nkiM  and nkiR   be the annual, seasonal or monthly mean value of any variable of the model 2 

simulation (M) and the reference data (R) of year i at grid point n with 3 

,N...,n 1=  N = number of grid points of sub-region SR 4 

,K...,k 1=  K= number of analyzed periods per year:  5 

  K=12 for monthly, K =4 for seasonal, K =1 for yearly values  6 

,I...,i 1=  I = number of years (20 in this case) 7 

The simulated spatial mean of period k and year i across a sub-region SR is defined as:   8 

∑
∈

=
SRn

nkiki M
N

M 1ˆ   (A1) 9 

The climatological mean of period k at grid point  n is defined as: 10 

∑
=

=
I

i
M

I
M nkink

1

1  (A2) 11 

The climatological mean of period k averaged across a sub-region SR is then computed as: 12 

k

I

i
ki

SRn
nkk MM

I
M

N
M ˆˆ11ˆ

1
=== ∑∑

=∈

 (A3) 13 

The corresponding means for the reference data R are defined accordingly. Annual means are 14 

calculated by an unweighted average over 12 monthly means beginning with January. Seasonal 15 

means of year i are calculated by an unweighted average over three consecutive monthly means 16 

beginning with December of year i-1 for the winter season (DJF) and ending with November of 17 

year i for the fall season (SON). 18 

Using these definitions, the applied evaluation metrics are calculated as follows. 19 

 20 

Mean bias (BIAS) 21 

for climatological annual (k=1), seasonal (k=1,…,4) and monthly (k=1,…12) mean values 22 

averaged across a sub-region: 23 

kkk RMBIAS ˆˆ −=  (A4) 24 

For precipitation, the relative difference with respect to the reference data is used.  25 
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 1 

95% percentile of the absolute value of grid point differences (95%-P) 2 

N}|RMRank |SR nX|RM|P% nknknknkXnk 95.0|{max95 ≤−∈=−=−
∈

 (A5) 3 

For precipitation, relative differences with respect to the reference data are used.  4 

 5 

Pattern correlation (PACO) 6 

∑
∈ ⋅

−⋅−
−

=
SRn SRSM

knkknk
k

kk
σσ

)RR()MM(
N
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ˆˆ

1
1  (A6) 7 

with the spatial variances              8 
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 10 

Ratio of spatial variability (RSV) 11 

k

k

SR

SM
k σ

σ
RSV =  (A8) 12 

 13 

Temporal correlation of interannual variability (TCOIAV) 14 

∑
= ⋅

−⋅−
−
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with the temporal variances 16 
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  18 

Ratio of interannual variability (RIAV) 19 

k

k

TR

TM
k σ

σ
RIAV =   (A11) 20 
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 1 

Climatological rank correlation (CRCO) 2 

∑
=

−
−⋅

−=
12

1

2
2

ˆˆ
11212

61
k

kk )RRankM(Rank
)(
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 4 

Ratio of yearly amplitudes (ROYA) 5 
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ˆminˆmax ,...,for  k
)R()R(
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kk =
−

−
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 7 
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Appendix B: Evaluation for sub-domains AL, BI, FR and MD 1 

 2 

Figure B1. Mean seasonal and annual temperature bias (BIAS) [K] for the EUR-11 (filled 3 

circles) and the EUR-44 ensemble (open circles) and for sub-domains AL, BI, FR and MD (see 4 

Figure 5 for sub-domains EA, IP, ME and SC). The gray bars denote the BIAS range of the 5 

ENS-22 ensemble: entire range in light gray, inter-quartile range (corresponding to eight models) 6 

in dark gray and median as solid line. 7 

 8 
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Figure B2. As Figure B1 but for the mean seasonal and annual relative precipitation bias (BIAS) 1 

[%]. The numbers along the x-axis indicate mean seasonal [mm/season] and mean annual 2 

[mm/year] precipitation sums for the period 1989-2008 in the E-OBS reference. The blue 3 

shading indicates a bias range between 0 and +25%, corresponding to acceptable model biases in 4 

case of a systematic rain gauge undercatch of up to 20% of true precipitation. See Figure 6 for 5 

sub-domains EA, IP, ME and SC. 6 
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 1 

Figure B3. 95th percentile of mean seasonal and annual absolute temperature biases (95%-P) [K] 2 

for the EUR-11 (filled circles) and the EUR-44 ensemble (open circles) and for sub-domains AL, 3 

BI, FR and MD (see Figure 7 for sub-domains EA, IP, ME and SC). The gray bars denote the 4 

95%-P range of the ENS-22 ensemble: entire range in light gray, inter-quartile range 5 

(corresponding to eight models) in dark gray and median as solid line. 6 
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 1 

Figure B4. As Figure B3 but for the 95th percentile of mean seasonal and annual relative 2 

precipitation biases (absolute values; 95%-P) [%]. The blue shading indicates a bias range 3 

between 0 and +25%, corresponding to acceptable wet model biases in case of a systematic rain 4 

gauge undercatch of up to 20% of true precipitation. See Figure 8 for sub-domains EA, IP, ME 5 

and SC. 6 
7 
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 1 

Figure B5. Spatial Taylor diagrams exploring the model performance with respect to the spatial 2 

variability of mean winter (circles) and mean summer (triangles) temperature within sub-3 

domains AL, BI, FR and MD (see Figure 9 for sub-domains EA, IP, ME and SC). Filled markers: 4 

EUR-11 ensemble, non-filled markers: EUR-44 ensemble, gray markers: ENS-22 ensemble. The 5 

diagrams combine the spatial pattern correlation (PACO, cos(azimuth angle)) and the ratio of 6 

spatial variability (RSV, radius). The distance from the 1-1 location corresponds to the 7 

normalized and centered root-mean-square difference (which does not take into account the 8 

mean model bias), expressed as multiples of the observed standard deviation. Note the different 9 

number of underlying grid cells per sub-domain in the individual ensembles. 10 
11 
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 1 

Figure B6. As Figure B5 but for mean winter (circles) and mean summer (triangles) 2 

precipitation. See Figure 10 for sub-domains EA, IP, ME and SC. 3 
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 1 

Figure B7. Temporal Taylor diagrams exploring the model performance with respect to the inter-2 

annual temporal variability of mean winter (circles) and mean summer (triangles) temperature as 3 

averages over sub-domains AL, BI, FR and MD (see Figure 11 for sub-domains EA, IP, ME and 4 

SC). Filled markers: EUR-11 ensemble, non-filled markers: EUR-44 ensemble, gray markers: 5 

ENS-22 ensemble. The diagrams combine the temporal correlation of interannual variability 6 

(TCOIAV, cos(azimuth angle)) and ratio of interannual variability (RIAV, radius). The distance 7 

from the 1-1 location corresponds to the normalized and centered root-mean-square difference 8 

(which does not take into account the mean model bias), expressed as multiples of the observed 9 

standard deviation. 10 
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 1 

Figure B8. As Figure B7 but for mean winter (circles) and mean summer (triangles) 2 

precipitation. See Figure 12 for sub-domains EA, IP, ME and SC. 3 

 4 
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