
Manuscript prepared for Geosci. Model Dev.
with version 5.0 of the LATEX class copernicus.cls.
Date: 11 July 2014

On the sensitivity of 3D thermal convection codes to
numerical discretization: A model intercomparison
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Abstract. Fully 3D numerical simulations of thermal convection in a spherical shell have become

a standard for studying the dynamics of pattern formation and its stability under perturbations to

various parameter values. The question arises as to how does the discretization of the governing

equations affect the outcome and thus any physical interpretation. This work demonstrates the im-

pact of numerical discretization on the observed patterns, the value at which symmetry is broken,5

and how stability and stationary behavior is dependent upon it. Motivated by numerical simulations

of convection in the Earth’s mantle, we consider isoviscous Rayleigh-Bénard convection at infinite

Prandtl number, where the aspect ratio between the inner and outer shell is 0.55. We show that the

subtleties involved in development mantle convection models are considerably more delicate than

has been previously appreciated, due to the rich dynamical behavior of the system. Two codes with10

different numerical discretization schemes: an established, community-developed, and benchmarked

finite element code (CitcomS) and a novel spectral method that combines Chebyshev polynomials

with radial basis functions (RBF) are compared. A full numerical study is investigated for the fol-

lowing three cases. The first case is based on the cubic (or octahedral) initial condition (spherical

harmonics of degree `= 4). How variations in the behavior of the cubic pattern to perturbations in15

the initial condition and Rayleigh number between the two numerical discrezations is studied. The

second case investigates the stability of the dodecahedral (or icosahedral) initial condition (spherical

harmonics of degree `= 6). Although both methods converge first to the same pattern, this structure

is ultimately unstable and systematically degenerates to cubic or tetrahedral symmetries, depending

on the code used. Lastly, a new steady state pattern is presented as a combination of order 3 and 420

spherical harmonics leading to a five cell or a hexahedral pattern and stable up to 70 times the critical

Rayleigh number. This pattern can provide the basis for a new accuracy benchmark for 3D spherical
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mantle convection codes.

1 Introduction

For 3D Rayleigh-Bénard convection in a spherical shell at infinite Prandtl number, analytical stud-25

ies by Busse (1975); Busse and Riahi (1988, 1982), using weakly nonlinear perturbation theory,

predicted a set of solutions that exhibited steady-state polyhedral pattern formations that would also

persist into stronger nonlinear regimes. Later, these solutions were numerically verified by Bercovici

et al. (1989, 1991); Ratcliff and Schubert (1996); Machetel et al. (1986) for up to 100 times the crit-

ical Rayleigh number (Ra = 712) (such as the cubic symmetry test case - which forms the corner30

structure of an octahedron). Some studies, as Bercovici et al. (1991), have questioned the properties

of these steady-state solutions by considering the influence of the non-dominant spherical harmonic

modes on modifying boundary layer thickness as the Rayleigh number increased. However, the sta-

bility of these polyhedral patterns to perturbations in the initial conditions, i.e the dominant spher-

ical harmonic modes that actually define them remains unclear. Nor has the dynamical behavior of35

steady-state solutions with higher orders of polyhedral symmetry predicted by Busse (1975) (e.g.

dodecahedral symmetry) been examined. From a computational standpoint, each numerical scheme

will handle unstable steady-states, non-uniqueness in the solution, and bifurcations differently, de-

pending on how the continuous eigenvalue spectrum has been discretely represented when linearized

about the steady state.40

In this light, the goal of this paper is to illustrate the subtleties involved in the development of

numerical mantle convection models are considerably more delicate than has been previously ap-

preciated, due to the rich dynamical behavior of the system. For fully nonlinear large-scale systems

with millions of unknowns, as considered in this paper, using classical eigenvalue stability analysis

to understand the influence of numerical discretization is not an option as 1) the analytical solution45

and thus the continuous eigenvalue spectrum is not available and 2) calculating the eigenvalues for

such systems is computationally not feasible. Although recent advancements have been made in

developing iterative schemes to detect Hopf bifurcations in large-scale systems (Meerbergen and

Spence, 2010; Elman et al., 2012), the following study exhibits a much richer pattern of dynamical

instability and transitional behavior, leading to a variety of end-states. Therefore, we will perform an50

intensive computational investigation of the stationary behavior and stability of three different types

of symmetries to perturbations on the initial condition and as a function of Ra, observing how both

transitional and end states are strongly dependent on numerical discretization.

The numerical studies are done using two state-of-the-art models, CitcomS-3.1.1 (http://www.

geodynamics.org/cig/software/citcoms) and a pseudospectral radial basis function-Chebyshev model55

(Wright et al., 2010) (RBF-PS), with the former funded on a ongoing basis by the USA National

Science Foundation. Section 2 provides an overview of the system of PDEs to be solved and the
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computational methods used. Section 3 numerically studies the sensitivity of the steady state solution

to perturbations in the cubic initial condition for both low and higher Ra number. Section 4 explores

the stability regimes of a higher order initial spherical symmetry, studying the transition between60

steady states as a function of Ra. Section 5 introduces a new initial condition mode, leading to the

observation of a novel steady state pattern and future benchmark for assessing model performance.

2 Governing equations and computational models

The governing equations describe a Boussinesq fluid at infinite Prandtl number in a 3D spherical

shell that is heated from below and cooled from above:65

∇ ·u = 0 (continuity), (1)

∇ ·
[
η
(
∇u+ {∇u}T

)]
+ RaT r̂ =∇p (momentum), (2)

∂T

∂t
+u · ∇T =∇2T (energy), (3)

where u = (ur,uθ,uλ) is the velocity field in spherical coordinates (θ=latitude, λ=longitude), p is70

pressure, T is temperature, r̂ is the unit vector in the radial direction, η is the viscosity, and Ra is

the Rayleigh number defined below. The boundary conditions on the fluid velocity at the inner and

outer surfaces of the spherical shell are :

ur|r=Ri,Ro
= 0︸ ︷︷ ︸

impermeable

and (4)

r
∂

∂r

(uθ
r

)∣∣∣∣
r=Ri,Ro

= r
∂

∂r

(uλ
r

)∣∣∣∣
r=Ri,Ro

= 0︸ ︷︷ ︸
shear-stress free

, (5)75

where Ri = 11/9, the radius of the inner surface of the 3D spherical shell and Ro = 20/9 is the

radius of the outer surface as measured from r = 0. The boundary conditions on the temperature are

:

T (Ri,θ,λ) = 1 and T (Ro,θ,λ) = 0.80

Equations (1)-(3) are non-dimensionalized with the length scale chosen as the approximate thick-

ness of the mantle, ∆R=Ro−Ri = 1, the time-scale chosen as the thermal diffusion time of mantle

minerals, t= (∆R)2/κ (noting a non-dimensional time t= 1, corresponds to 265 billion years, i.e.

58 times the age of the Earth), and the temperature scale chosen as the difference between the tem-85

perature at the inner and outer boundaries, ∆T = 1. The fluid is treated as isoviscous, η =constant.

Thus, the dynamics of the fluid are governed entirely by the Ra, which can be interpreted as a ratio

of the destabilizing force due to the buoyancy of the heated fluid to the stabilizing force due to the

viscosity of the fluid and heat transfer by conduction.
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The initial condition for the temperature is specified as90

T (r,θ,λ) =
Ri(r−Ro)

r(Ri−Ro)
+ 0.01TP (θ,λ)sin

(
π
r−Ri

Ro−Ri

)
, (6)

with TP (θ,λ) =

Y m=0
` (θ,λ)︸ ︷︷ ︸

axisymmetric

+ εY m 6=0
` (θ,λ)︸ ︷︷ ︸

non−axisymmetric

 . (7)

The first term in (6) represents a purely conductive temperature profile, while the second term TP

is a perturbation to this profile, determining the final patterns of polyhedral symmetry. Y m` denotes95

the normalized spherical harmonic of degree ` and order m (equation 8) and the non-axisymmetric

perturbation ε will play an important role in studying transitional pattern formations in the cubic

case.

Y m` (θ,λ) =

√
(2`+ 1)(`−m)!

2π(1 + δm0)(`+m)!
Pm` (cosθ)cos(mλ) (8)

where Pm` are the (unnormalized) associated Legendre functions and δm0 is the Kronecker delta. It100

should be noted that the stability of preferred patterns in purely axisymmetric convective flows has

been studied by Zebib et al. (1980, 1983).

2.1 CitComS

CitcomS is a second-order finite element code written in C. Its purpose is to explore mantle con-

vection problems in 3D spherical geometry (Zhong et al., 2000; Tan et al., 2006). Developed from105

the software Citcom (Moresi and Solomatov, 1995; Moresi et al., 1996), a code structured for 3D

Cartesian geometry, CitcomS employs an Uzawa algorithm to solve the momentum equation coupled

with the incompressibility constraints (Ramage and Wathen, 1994). The energy equation is solved

with a streamline upwind Petrov Galerkin method (Brooks, 1981). We used version 3.1.1 available

from the Computational Infrastructure for Geodynamics (http://www.geodynamics.org/cig/software/110

citcoms).

The global mesh is obtained by first dividing the spherical shell into 12 caps of approximatively

equal size. Then each cap is divided into N ×N elements in the angular directions and M elements

in the vertical direction, forming a layered brick-like structure. For each 3D element, eight velocity

nodes with trilinear interpolation functions, and one constant pressure node are used. Per cap, we115

will be using 48 elements in each dimension, resulting in 12× 48× 48× 48 total elements.

2.2 RBF-PS

Here, an overview of the spectral RBF-PS model is given; for a detailed description of the numerical

method see (Wright et al., 2010). To spatially discretize the 3D spherical shell a “2(θ,λ) + 1(r)”

layered approach is used. In the radial direction, M + 2 Chebyshev nodes (corresponding to M120

interior points and 2 boundary points) and N “scattered” nodes (e.g. see Womersley and Sloan,
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2003/2007) are placed on each of the resulting M spherical surfaces. This gives a tensor product

structure between the radial and lateral directions, which allows the spatial operators to be com-

puted in O(M2N) +O(MN2) operations instead of O(M2N2). While all radial derivatives are

discretized using Chebyshev polynomials, differential operators in the latitudinal direction θ and125

longitudinal direction λ are approximated discretely on each spherical surface using RBFs. In a

given limit RBFs reproduce spherical harmonics (Fornberg and Piret, 2007, 2008). However, they

generally give higher accuracy than spherical harmonics for nonlinear systems of PDEs (Wright

et al., 2010; Flyer and Wright, 2007, 2009; Flyer and Fornberg, 2011; Flyer et al., 2012) (for exam-

ples of how to implement RBFs on spherical surfaces see Flyer and Wright (2007, 2009)). For all130

cases in the paper, N = 4096 nodes are used on each sphere with M = 43 Chebyshev nodes used in

the radial direction. The time discretization of the energy equation uses a semi-implicit method. All

terms that involve radial derivatives are time-stepped with a Crank-Nicolson method, while terms in-

volving latitudinal and longitudinal derivatives are time-stepped with a third-order Adams-Bashforth

method.135

3 Stability of cubic steady state to perturbations in the initial condition at varying Ra

The cubic initial condition temperature profile used in many 3D spherical convection studies such as

Ratcliff and Schubert (1996); Kameyama et al. (2008); Zhong et al. (2000); Yoshida and Kageyama

(2004); Stemmer et al. (2006); Choblet et al. (2007); Zhong et al. (2008); Kameyama et al. (2008),

is specified by letting Tp in (7) be equal to140

Tp(θ,λ) =

Y 0
4 (θ,λ) +

5

7
(1− δ)︸ ︷︷ ︸
ε

Y 4
4 (θ,λ)

 (9)

with δ = 0. A perturbation parameter δ has been introduced to allow us to slowly perturb the

amplitude of the non-axisymmetric mode. The θ−λ temperature dependence of (9) on a spherical

shell surface can be seen in Figure 1a for δ = 0. As δ increases the initial condition slowly tends145

to a pure Y 0
4 initial condition, with the amplitude of the four plumes along the equatorial region

decreasing and progressively merging together as seen in Figure 1b for δ = 0.30. It should be noted

here that δ = 0 does not correspond to perfect cubic symmetry, but has however become the standard

in modern geophysical and astrophysical simulations as those cited above. Indeed, the maximum

amplitude of the plumes in Figure 1a varies slightly between the poles and the equator. Perfect150

cubic symmetry, as predicted by Busse (1975), numerically discovered by Young (1974), with early

simulations by Machetel et al. (1986) and Bercovici et al. (1989), is obtained with ε=
√

5
7 instead

of 5
7 .

In the next two subsections, we examine how transitions from the cubic steady-state to axisym-

metric patterns of lower order occur as a function of perturbing the non-axisymmetric mode of the155
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initial condition, and more interestingly how these transitions differ depending on the numerical

discretization of the governing equations.

3.1 Sensitivity to amplitude perturbations in the initial condition at low Ra

At low Rayleigh number, 5000≤Ra≤ 10000, the cubic steady state pattern is stable for both models

up to δ = 0.30. That is, as long as the ratio of the spectral coefficients between the Y 0
4 mode and the160

Y 4
4 mode does fall below 1/2, the cubic pattern is maintained. This can be seen in Figure 2 that plots

the isosurfaces of residual temperature (see caption for further details as this is how 3D convection

will be illustrated in the paper) as a function of δ.

Incrementing δ by 0.01, the RBF-PS model displays a clear transition between the cubic steady

state and an order `= 4 axisymmetric pattern. In contrast, CitcomS converges to a transitional165

steady-state pattern for 0.31≤ δ ≤ 0.32, in which the four plumes along the equator grow and merge

together two by two, but the process is not completed. This is never observed with the RBF-PS

discretization (see Figure 2). At higher values of δ, CitcomS and RBF-PS method converge to the

same pattern. Thus, at the parameter value of destabilization (δ = 0.30), the numerical discretization

plays an important role as to what pattern emerges. Also, the transition point at which the Y 0
4170

spherical harmonic mode completely dominates and the Y 4
4 part of the initial condition no longer

influences the final pattern of convection differs between the two models.

Figure 3 shows the evolution of the volume-averaged temperature ( < T >) for both models at

Ra=7000. As just discussed, the figure illustrates that CitcomS converges to 3 different steady-

states, depending on the value of δ. In contrast, for δ > 0.30, the figure shows that the RBF-PS175

solution is attracted to the `= 4 axisymmetric mode. In either case, the solution, once destabilized,

transitions to patterns characterized by a higher < T >.

3.2 Sensitivity to amplitude perturbations in the initial condition at high Ra

As would be expected, at higher Ra, the cubic steady state is much more sensitive to small perturba-

tions in the initial condition. For Ra=70,000, the Y 4
4 mode of the initial condition was very slowly180

perturbed in increments of δ = 5×10−3, as shown in Figure 4. The cubic steady state is destabilized

at δ ≥ 0.065 for CitcomS and δ ≥ 0.070 for the RBF-PS method with different transitional patterns.

With CitcomS, the destabilization shows a transitional pattern between a cubic steady state to

an unsteady axisymmetric pattern at δ = 0.065 and δ = 0.007, characterized by two diametrically

opposed upwelling plumes in the equatorial region with a great circle of downwelling that encom-185

passes the polar regions. It develops by a two-by-two merging of upwelling plumes on the equator;

initial upwelling plumes at the poles are destabilized and migrate to the equatorial region. The end

state for perturbations of δ ≥ 0.75 is also an unsteady axisymmetric pattern. However, the pattern of

convection has been completely rearranged with upwelling now occurring at the polar regions and

downwelling at equatorial region, yielding a strong dominance of an oscillating `= 2 mode. The190
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quasi-uniform oscillation of this end state can be seen in the time traces of the outer Nu and vol-

ume averaged RMS velocity in Figure 5, where the region for t≥ 0.2 has been enlarged for better

viewing.

With the RBF-PS model, the cubic steady state also eventually evolves to an unsteady axisymmet-

ric pattern for δ ≥ 0.085, similar to that of the CitcomS as shown in Figure 4. However, the transi-195

tion between these two states is very different than what was observed with the CitcomS model. For

δ = 0.07, the cubic pattern is only partially destabilized. Two plumes on one side merge and begin

to pulsate. Although this structure is unsteady, it stays stable with no other changes in the general

pattern of convection observed. At 0.075< δ ≤ 0.08), the cubic geometry is fully destabilized and

the model begins to converge to the unsteady axisymmetric pattern.200

For the two methods, the stability of the cubic symmetry pattern as a function of the Rayleigh

number and the amount of perturbation δ to the initial condition is summarized in Figure 6. The

amount of perturbation needed to destabilize the steady-state cubic symmetry pattern begins to de-

crease rapidly after Ra≈ 20000. The shaded blue and pink regions depict where transition states are

observed for the CitcomS model and RBF-PS model respectively. Generally, the evolution of the205

transition is well defined using both methods. CitcomS shows a transitional pattern for all Rayleigh

numbers. A transitional pattern appears with RBF-PS only for Ra> 30000. In all cases, using

RBF-PS, the transition is not characterized by a single pattern, as in CitcomS, but by a progres-

sive transition as a function of the perturbation (δ). Surprisingly, this transitional regime broadens

for large Rayleigh numbers (see red shaded area with Ra≥ 50000), implying larger perturbations210

are required to fully diminish the influence of the `= 4 modes. These results clearly demonstrate

how numerical discretization impacts pattern formation and its interpretation in simulations of 3D

convective flow.

4 Stability at higher orders of symmetry: A dodecahedral initial condition

In Busse (1975), Busse predicts a steady-state higher-order convection pattern corresponding to215

dodecahedral symmetry. Here for the first time (to the authors’ knowledge), the stability of this

pattern for low Ra is studied, with surprising results on how the numerical discretization scheme

severely affects the interpretation of steady-state stability ranges. The initial condition is given by

equation (6) with

TP (θ,λ) =

[
Y 0
6 (θ,λ) +

√
14

11
Y 5
6 (θ,λ)

]
. (10)220

The θ−λ temperature dependence on a sphere is shown in Figure 7. It has twelve initial plumes

of upwelling, forming the faces of a dodecahedron, where the strongest downwelling (in dark blue)

occurs at the vertices of the pentagons.

The evolution of convection with a dodecahedral initial condition at a Ra=7000 is presented in225
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Figure 8. Both methods converge first to a steady-state dodecahedral pattern; however, this con-

vection pattern is unstable. The symmetry is broken at different times for RBF-PS and CitcomS

models. Plumes begin to merge after t= 0.7 with CitcomS, while for the RBF-PS model, plumes do

not merge until t= 2.7. Surprisingly, the final stable stationary state differs between the two numer-

ical discretizations: RBF-PS converges to a tetrahedral pattern, dominated by a `= 3 mode, while230

CitcomS reaches the cubic pattern studied in the previous section. In order to reduce the possible

effect of spatial discretization error, mesh resolution in CitcomS was increased by a factor of eight

to 12× 963 and doubled in the RBF-PS to 51(r)× 6561(θ,λ). The results are displayed in Figure

8. The same final patterns are observed, with the only difference being that the dodecahedral pattern

is maintained for a longer period. These results imply that there are at least two stable branches of235

solutions that correspond to these patterns; however, which branch manifests itself in simulations is

dependent on the numerical discretization. We will see more evidence of this later in the discussion.

For CitcomS, the mesh discretization shows a symmetrical effect. The shell is initially divided in

12 caps. Each cap is diametrically opposite to another one (Zhong et al., 2000). Thus during the

transition, we can observe that destabilization occurs in symmetrical pairs with respect to the caps.240

As a result it is reasonable to presume that mesh discretization and the cap divisions influence the

distribution of numerical errors and favor even modes. In these conditions, CitcomS won’t reproduce

the tetrahedral or the five-cell pattern observed with the RBF method, without adding an additional

initial perturbation representing these odd modes.

The stability of the dodecahedral steady state solution for 2000≤Ra≤ 10000 can also be seen245

in the time evolution of the volume-averaged root mean square velocity and the inner and outer

Nusselt numbers as given in Figure 9. In all cases of the Ra, the dodecahedral convection pattern is

initially observed and stationary. This pattern is identical in both methods, whether one considers

its geometry, the convergence of RMS velocity, average temperature or Nusselt Numbers before the

transition (Tab. 1). However, weakly unstable modes of lower spherical harmonic degree become250

excited and cause the solution to transition to second steady-state. When this transition occurs in the

time evolution is clearly dependent on the model. For instance at t= 2, CitcomS has already reached

a steady-state cubic pattern while RBF-PS is still in the weakly unstable steady-state dodecahedral

pattern.

As the Rayleigh number increases from 2000, the final stationary pattern observed varies greatly255

between the two models, also showing how preferred patterns of convection in numerical simulations

are dependent on the spatial discretization scheme. Figure 10 illustrates these end states for both

numerical methods, starting from the dodecahedral initial condition for 2000≤ Ra≤ 70000 for each

of the models. The RBF-PS model shows a clear transition from the dodecahedral pattern to a variety

of steady-states, depending on the Rayleigh number. For 3000≤Ra≤ 5750, end-state convection is260

dominated by the cubic steady state pattern discussed in the previous section. In CitcomS, this

pattern is not seen until Ra= 5000 and persists to Ra=7000. In fact, the regime between 5000≤Ra≤
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5750 is the only range where both the CitcomS and RBF-PS transition to the same final steady-state

convection pattern. At 5775≤Ra≤ 6025, a newly observed five-cell pattern emerges as the end

stationary state in the RBF-PS model. It results from a mixed-mode interaction between the `= 3265

and `= 4 modes, as will be discussed in the next section. For 6000≤Ra≤10000, the final pattern

of convection for RBF-PS is the tetrahedral pattern observed in Figure 8. In contrast, CitcomS

transitions to a stable steady-state axisymmetric `= 2 pattern. For Ra> 10000, the final patterns

become unsteady, yet maintain a resemblance to the axisymmetric and tetrahedral patterns seen in

CitcomS and RBF-PS, respectively.270

5 A new convection mode: 5 cells

At 5750≤Ra≤ 6050 with RBF-PS method, the weakly unstable dodecahedral pattern relaxed into

a steady-state five-cell convection pattern. This structure is characterized by five upwelling plumes:

two at the poles, each surrounded by a triangular region of downwelling and three along the equator,

each surrounded by a square region of downwelling. The pattern appeared for a narrow range of275

Rayleigh numbers, between the cubic pattern at lower Rayleigh number and the tetrahedral pattern

at higher Rayleigh number. This observation along with the fact that the convective regions of

descending motion are defined by both the vertices of a triangle in the polar regions (the case for the

tetrahedral pattern) and those of a square in the equatorial regions (the case for the cubic pattern)

leads us consider a mixed-mode interaction between the `= 3 and an `= 4 modes for an initial280

condition. Previous studies of mixed-mode patterns bifurcating from spherically symmetric ones

have been predicted in Busse and Riahi (1988) and numerically observed in Feudel et al. (2011).

However, these studied reported a seven cell pattern resulting from an interaction of a `= 4 and `= 5

modes. In Chossat and Beltrame (Submitted,18 Dec 2009, Last revised 12 Feb 2014), the authors

investigated `= 3,4 mode interactions in a context compatible with Rayleigh-Bénard convection285

without having highlighted the occurrence of a five cell structure. Here, we focus on the formation

of a steady-state five cell pattern that is stable to large Rayleigh number, Ra= 50000, approximately

70 times the critical Rayleigh number (Rac = 712, the onset of convection).

Through numerical experimentation, we discovered that a combination of Y 3
3 and Y 0

4 spherical

harmonics will yield a five cell pattern. However, in order to determine the volume-averaged spectral290

energies or variances between the two modes that yield the fastest stabilization on a five-cell steady-

state pattern, a parameter γ on the Y 0
4 mode is introduced. It will be varied slowly from γ equals 0

to 1, in increments of 10−2. The initial condition is now given by equation (6) with

TP (θ,λ) =
[
Y 3
3 (θ,λ) + γY 0

4 (θ,λ)
]
. (11)295

Figure 11 displays the initial conditions for two different values of γ that will lead to two different

steady states.

We begin at a low Rayleigh number, such as Ra=7000. However, the results hold for even lower
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Rayleigh numbers, down to Ra=1000, just above the onset of convection. Figure 12 shows the

evolution of the volume-averaged temperature and the final convection patterns (isosurfaces of δT =300

±0.15, yellow-ascending motion, blue-descending motion) as γ is varied. As can be seen, depending

on the value of γ, the model converges to three distinct steady-states. For γ ≤ 0.20, the `= 4 mode

has no influence and the models converge to a steady-state defined by the Y 3
3 spherical harmonic

mode. This pattern is similar to that found in Busse and Riahi (1988), except there is a merging

of the ascending motion in the polar regions. The steady-state five cell pattern, shown in Figure305

12e, manifests itself in both models for 0.2≤ γ < 0.3, with the fastest stabilization to this state for

γ = 0.5. As a result, this is what will be used when observing the stability of the five cell pattern

as a function of Rayleigh number. With the RBF-PS model, once the volume-averaged spectral

energies between the two modes is equal (i.e. γ = 1), the flow reverts to an axisymmetric steady-

state, dominated by the `= 4 mode. With the CitcomS model, the ratio of the modes have to only310

be within 10% of one another (i.e. γ = 0.9) for this to occur. Lastly, Figure 13 shows that this

convection pattern is not only steady but stable with respect to perturbing the Rayleigh number for

values at least up to Ra=50000, 70 times the critical Rayleigh number. Both models obtained this

result. Also, as the Rayleigh number increases, the boundary layer thickness decreases as would be

expected with increased convection.315

6 Conclusions

In time-dependent fully nonlinear systems, when numerical simulations are performed a great vari-

ety of complex spatiotemporal regimes can be observed depending on parameter values. However,

what this paper has illustrated is that what patterns are actually observed and at which parameter

values they manifest themselves is definitely impacted by the numerical discretization used. Since320

computation has become a third arm of physical understanding, along with experimentation and

analysis, it is important to highlight this fact so that a discretization scheme is not blindly applied

just because it is commonly used, as in the case of spherical harmonics.

Here, we have compared an RBF-Chebyshev discretization (RBF-PS), where RBF can reproduce

spherical harmonics but actually have been shown to perform better than them in spherical geome-325

tries, to a finite element discretization, a commonly used method in science and engineering. The

latter is a community based model called CitcomS, especially designed for studying thermal con-

vection in a 3D spherical shell. For simpler spherical symmetries as the cubic pattern (sometimes

referred to as the octahedral pattern), the results at low Rayleigh number were more similar between

the models, both destabilizing when the contribution of the non-axisymmetric `= 4 spherical har-330

monic mode in the initial condition fell below 50%. However, CitcomS showed a transition to 3

steady states as this mode was perturbed while RBF-PS went directly to the `= 4 axisymmetric

mode. At higher Rayleigh number, the difference in the transitional states manifested between the
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two models was more drastic.

The effect of the numerical discretization on pattern formation at higher orders of symmetry, such335

as dodecahedral symmetry where the initial condition is defined by a combination of `= 6 spherical

harmonic modes, was even more interesting. Although deemed a stable state by Busse (1975) for

Rayleigh numbers near the onset of convection (Rac =712), it was shown to be unstable (after a

long computational period - equivalent to 25 times the age of the Earth) for a Rayleigh number just

2.5 times Rac at extremely high resolutions for both models. However, regardless of the Rayleigh340

number, the convection evolved completely differently for each model, with the end steady state

also being very different. For example, at Ra=7000, the RBF-PS model evolved to a tetrahedral

symmetry while CitcomS to a cubic symmetry.

Another outcome of differences in numerical discretization can be the discovery of a stable con-

vection pattern (with regard to perturbations in the Rayleigh number) that does not seem to have been345

highlighted in the literature. In studying the dodecahedral convection pattern, in a narrow range of

the Rayleigh number, the RBF-PS model stabilized to a five cell steady state pattern that was never

seen in the CitcomS model regardless of the Rayleigh number. This lead the authors to investigate

its formation, discovering it is a strongly stable steady-state pattern of convection up to Ra=50000.

Both models agreed that it forms by the interaction of the Y 3
3 and Y 0

4 modes.350

As a general observation, both methods show a good match on the cubic and five cell steady state

patterns, and even for the stationary dodecahedral pattern before the transition. However, the above

in depth computational study strongly illustrates how numerical discretization can impact both the

resulting patterns of convection as well as the transitional states that occur. This is particularly true

when scientists have to rely on such simulations in cases of strongly nonlinear systems with over a355

million of unknowns. In such cases, eigenvalue stability analysis is just not an option. Furthermore,

we hope to have shed some light on cases of higher-order symmetry (as the dodecahedral case) as

well as non-symmetric cases as the five cell pattern discussed. Although these patterns of convection

are not expected to be found in the Earth, they can further aid the verification, validation and com-

parison of new numerical methods, algorithms, and codes, as applied to mantle convection in the360

Earth and other terrestrial planets. We also hope that this paper will stimulate further investigation

on how the type and order of numerical discretization affects pattern formation in the context on

benchmarking community codes.
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Table 1. Comparison between computational methods RBF and CitcomS for the dodecahedral stationnary

pattern at various Rayleign number. For CitcomS and a Ra=2000, the dodecahedral pattern does not satisfy

stationarity to estimate parameters value

〈T 〉 〈Vrms〉 Nut Nub

Ra RBF CitS RBF CitS RBF CitS RBF CitS

2000 0.2723 - 8.45 - 1.889 - 1.889 -

3000 0.2521 0.2535 12.97 13.07 2.411 2.413 2.411 2.422

4000 0.2403 0.2414 16.67 16.76 2.768 2.768 2.768 2.777

5000 0.2322 0.2331 19.93 20.01 3.043 3.042 3.043 3.052

6000 0.2261 0.2271 22.89 22.98 3.270 3.269 3.270 3.280

7000 0.2213 0.2223 25.62 25.65 3.465 3.465 3.465 3.476

8000 0.2174 0.2183 28.19 28.31 3.638 3.638 3.638 3.650

9000 0.2141 0.2151 30.62 30.74 3.794 3.793 3.794 3.807

10000 0.2112 0.2123 32.93 33.07 3.937 3.935 3.937 3.951

b)

-0.4 -0.2 0 0.2 0.4 0.6 0.8
TP

a)

Fig. 1. θ−λ temperature dependence of the cubic initial condition (equation 9) for δ = 0 (a) and δ = 0.30 (b).
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0.33 0.34

Cubic
steady state

Cubic
steady state

Transitional pattern
steady state

Axymmetric (  =4)
steady state

Axymmetric (  =4)
steady state

Fig. 2. Final convection patterns resulting from perturbations, δ, to the cubic initial condition as obtained

with CitcomS (up row) and the RBF-PS method (bottom row). Diagram is valid for 5000≤Ra≤ 10000. The

isosurfaces show the residual temperature δT = T (r,θ,λ)−〈T (r)〉 where 〈T (r)〉 is the horizontally average

temperature. Blue (downwelling - descending motion) and yellow (upwelling - ascending motion) isosurfaces

are for δT equal to - 0.15 and 0.15, respectively. The red solid sphere is the inner boundary.
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Fig. 3. Time trace of the volume-averaged temperature for the cubic initial conditions at Ra=7000 for 0≤ δ ≤

0.33. CitcomS shows transition to three steady-states while RBF-PS shows only two. See figure 2 for the final

pattern of convection associated with each model.

16



Axisymmetric
unsteady

Cubic steady state Axisymmetric
unsteady

δ

CitcomS

RBF-PS

Axisymmetric
unsteady

Cubic steady state

Ra=70,000

0.0 0.06 0.065 0.07 0.075 0.08 0.090.085

Transitional patterns
"Pulsating"

Fig. 4. Stability of the cubic steady state at Ra=70,000 with CitcomS (up row) and the RBF-PS method (bottom

row). The cubic steady state pattern is destabilized for δ ≥ 0.065 with CitcomS and δ ≥ 0.07 with RBF-PS.

The figure highlights transitional patterns between the two main geometries.
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for Ra=70000 and δ = 0.08 with CitcomS and δ = 0.09 with RBF. Both methods converge to an unsteady

oscillating axisymmetric pattern dominated by the `= 2 mode (see Figure 4)

.

18



P
er

tu
rb

at
io

n 
(δ

) Axisymmetric unsteady state

Ra=70000

5 100908070605040302010
0

0.1

0.2

0.3

0.4

0.5

Rayleigh number (x1000)

Ra=20000Ra=7000

Cubic steady state

Axisymmetric
(  = 4) steady state CitcomS

RBF-PS

Fig. 6. Stability domain of the cubic steady state pattern as a function of the perturbation to the initial condition,

δ, and the Rayleigh number. Shaded areas show the transitional domains for the CitcomS (blue) and RBF-PS
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Fig. 7. θ−λ temperature dependence of the dodecahedral initial condition (equation 10).

19



RBF-PS: 43x4096
RBF-PS: 51x6561
CitcomS: 12x48x48x48
CitcomS: 12x96x96x96

R
M

S
 V

el
oc

ity

time
0 1 2 3 4 5

0

10

20

30

40

50

45

35

25

15

5

0.5 1.5 2.5 3.5 4.5

Dodecahedron
unsteady state

Tetrahedron steady state

Cubic
steady state

Fig. 8. Time trace of the RMS velocity for both models at Ra=7000 for two different spatial resolutions.

20



Ra = 7,000
Ra = 8,000
Ra = 9,000

Ra = 3,000

Ra =10,000

Ra = 2,000

R
M
S
V
el
oc
ity

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

time
0 1 2 3 4

0

10

20

50

60

70

R
M
S
V
el
oc
ity

time

30

40

0 1 2 3 4 5 6 7 8 9
time

8

7

6

5

4

3

2

9

1

O
ut
er

N
u

O
ut
er

N
u

0 1 2 3 4
time

8

7

6

5

4

3

2

9

1

0 1 2 3 4
time

4.5

1.0

4.0

3.5

3.0

2.5

2.0

1.5

In
ne
r
N
u

4.5

1.0

4.0

3.5

3.0

2.5

2.0

1.5

In
ne
r
N
u

0 1 2 3 4 5 6 7 8 9
time

Ra = 4,000
Ra = 5,000
Ra = 6,000

10

10

10

RBF-PS

RBF-PS

RBF-PS CitcomS

CitcomS

CitcomS

Fig. 9. Transition between steady states, as evidenced by both the RBF-PS and CitComS models, in the 〈Vrms〉

(top panels), Nui (middle panels), and Nuo (bottom panels) for the dodecahedral initial condition.
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a) Ra=7000 b) Ra=10000 c) Ra=20000

d) Ra=30000 e) Ra=40000 f) Ra=50000

Fig. 13. Stability of steady state five cell convection pattern as a function of the Rayleigh, displayed by the

residual temperature for γ = 0.5 (a) Ra=7×103, (b) 104, (c) 2×104, (d) 3×104, (e) 4×104 and (f) 5×104.

25


	Introduction 
	Governing equations and computational models
	CitComS
	RBF-PS

	Stability of cubic steady state to perturbations in the initial condition at varying Ra
	Sensitivity to amplitude perturbations in the initial condition at low Ra
	Sensitivity to amplitude perturbations in the initial condition at high Ra

	Stability at higher orders of symmetry: A dodecahedral initial condition
	A new convection mode: 5 cells
	Conclusions 

