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Abstract

Computer models of ice sheet behavior are important tools for projecting future sea
level rise. The simulated modern ice sheets generated by these models differ markedly
as input parameters are varied. To ensure accurate ice sheet mass loss projections,
these parameters must be constrained using observational data. Which model param-
eter combinations make sense, given observations? Our method assigns probabilities
to parameter combinations based on how well the model reproduces the Greenland Ice
Sheet profile. We improve on the previous state of the art by accounting for spatial in-
formation, and by carefully sampling the full range of realistic parameter combinations,
using statistically rigorous methods. Specifically, we estimate the joint posterior prob-
ability density function of model parameters using Gaussian process-based emulation
and calibration. This method is an important step toward probabilistic projections of ice
sheet contributions to sea level rise, in that it uses observational data to learn about
parameter values. This information can, in turn, be used to make projections while
taking into account various sources of uncertainty, including parametric uncertainty,
data—model discrepancy, and spatial correlation in the error structure. We demonstrate
the utility of our method using a perfect model experiment, which shows that many
different parameter combinations can generate similar modern ice sheet profiles. This
result suggests that the large divergence of projections from different ice sheet models
is partly due to parametric uncertainty. Moreover, our method enables insight into ice
sheet processes represented by parameter interactions in the model.

1 Introduction

Accurate projections of future sea level rise are important for present-day adaptation
decisions. Global mean sea level has risen 0.2—0.3m over the last two to three cen-
turies (e.g. Church and White, 2006; Jevrejeva et al., 2008), and this rise is expected
to continue in the future (Meehl et al., 2007). A significant fraction of world population
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and built infrastructure lies near present-day sea level, and these people and resources
are at risk from sea level rise. Projections of sea level rise with sound characterization
of the associated uncertainties can inform the design of risk management strategies
(e.g., Lempert et al., 2012).

Here, we focus on the Greenland Ice Sheet component of future sea level rise, as
estimated by ice sheet models. Computer models of ice sheet behavior make up an
important member of a suite of methods for projecting sea level rise. Enhanced mass
loss from the Greenland Ice Sheet is just one component of overall sea level rise,
which also includes contributions from the Antarctic Ice Sheets, small glaciers, ther-
mal expansion of ocean water, and the transfer of water stored on land to the oceans.
However, the Greenland Ice Sheet is a large potential contributor to sea level rise, and
also a highly uncertain one; if this ice sheet were to melt completely, sea level would
rise by about 7m (Bamber et al., 2001, 2013; Lemke et al., 2007), and both the rate
of ice loss and its final magnitude are uncertain (Lenton et al., 2008). Present esti-
mates of future sea level rise are derived primarily from semi-empirical extrapolations
of tide gauge data (e.g., Rahmstorf, 2007; Grinsted et al., 2009; Jevrejeva et al., 2012)
and expert assessments of future ice sheet behavior (e.g., Pfeffer et al., 2008; Bamber
and Aspinall, 2013). Ice sheet models complement these methods, in that they provide
internally-consistent representations of the processes that are important to the growth
and decay of ice sheets. Although imperfect, such models have been the focus of in-
tense development effort since the fourth Intergovernmental Panel on Climate Change
assessment report (e.g., Bindschadler et al., 2013).

To yield accurate projections, ice sheet models must be started from an initial con-
dition that resembles the real ice sheet as closely as possible, both in terms of the
spatial distribution of ice and the temperature distribution within the ice body. Ice flow is
driven primarily by thickness and surface slope (e.g., Alley et al., 2010), and warm ice
deforms more easily than cold ice. Similarly, the melt rate of a patch of the ice sheet’s
surface is strongly sensitive to its elevation (Born and Nisancioglu, 2012). Thus, errors
in the initial condition used for ice sheet model projections will lead to inaccuracies in
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simulated future ice distributions and sea level rise contributions. In practice, all models
include simplifications that also affect projection accuracy (e.g., Kirchner et al., 2011),
perhaps more than initial condition errors. However, matching the modern ice sheet
is a frequently-recurring theme in the literature (e.g., Ritz et al., 1997; Greve, 1997;
Huybrechts, 2002; Stone et al., 2010; Greve et al., 2011; Pollard and DeConto, 2012).

The initial condition used in ice sheet models is a function of input parameter values,
as well as the spinup method. Because the thermal field within the ice sheet is incom-
pletely known, most modeling studies perform an initialization to bring the simulated ice
sheet to a state that is consistent with the present-day climatology (e.g., Stone et al.,
2010), climate model output (e.g., Fyke et al., 2011), or climate history estimated from
ice cores (e.g., Applegate et al., 2012). Most models allow the simulated ice sheet’s sur-
face topography to evolve during the spinup period; thus, the estimated initial condition
usually does not exactly match the observed ice sheet topography (Bamber et al., 2001,
2013). For example, many studies obtain a simulated modern Greenland ice sheet that
is larger than expected (e.g. Heimbach et al., 2008; Stone et al., 2010; Robinson et al.,
2010; Vizcaino et al., 2010; Greve et al., 2011; cf. Bamber et al., 2001, 2013). Ice sheet
models have many uncertain parameters that affect the softness of the ice, the speed
of basal sliding, and the intensity of surface melting, among other processes (Ritz et al.,
1997; Hebeler et al., 2008; Stone et al., 2010; Fitzgerald et al., 2011; Applegate et al.,
2012). Adjusting these parameters changes the simulated modern ice sheet (Stone
et al., 2010; Applegate et al., 2012).

Despite the importance of achieving a good match between ice sheet model output
and the present-day ice geometry, it remains unclear how to use data on the modernice
sheet to assess the relative plausibility of different model runs. The root-mean-squared
error (RMSE) is sometimes used for this purpose (e.g., Greve and Otsu, 2007; Stone
et al., 2010). However, it is unclear how to translate the RMSE values from a set of
model runs into probabilistic projections of ice volume change, as required for sea level
studies. Using a probability model that accounts for various uncertainties, as we do
here, helps overcome this limitation.
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Recent work by McNeall et al. (2013) and Gladstone et al. (2012) partly addresses
this challenge. McNeall et al. (2013) train a statistical emulator (e.g., Sacks et al.,
1989; Kennedy and O’Hagan, 2001) to relate input parameter combinations to highly-
aggregated metrics describing the Greenland ice sheet’'s geometry (volume, area,
and maximum thickness; Ritz et al., 1997; Stone et al., 2010), using a previously-
published ensemble of ice sheet model runs (Stone et al., 2010). The work of McNeall
et al. (2013) is groundbreaking in its application of a computationally-efficient statistical
emulator to an ice sheet model, allowing estimation of model output at many more de-
sign points than would have been possible with the model itself. However, the highly-
aggregated metrics used by McNeall et al. (2013) neglect information on the spatial
distribution of ice, which might further limit the parameter combinations that agree well
with the observed geometry of the modern ice sheet. Gladstone et al. (2012) proposed
a simple, but statistically robust, probabilistic approach for calibrating a flowline model
of Pine Island Glacier in West Antarctica, but their approach is applicable only when
the ice flow model is computationally cheap and the observational data include only
a small number of observations.

A second challenge involves characterizing the effects of input parameter choice on
the agreement between modeled and observed ice sheets. In an ensemble of Green-
land Ice Sheet model runs carried out by Applegate et al. (2012; described below), the
parameter combinations that agree well with the modern ice sheet’s volume are widely
distributed over parameter space, with no easily-discernable structure. This result may
arise from uncharacterized interactions among the model parameters. This outcome
also has strong implications for model projections of sea level rise from the ice sheet,
in that the model runs that agree well with the modern volume constraint give widely
diverging sea level rise projections (Applegate et al., 2012).

Finally, estimates of future sea level rise require projections of ice volume change
with well-characterized uncertainties. Perturbed-parameter ensembles (e.g., Stone
et al., 2010; Applegate et al., 2012) represent an important step toward this goal, but
the relatively small number of model runs that can be performed in a reasonable time
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(usually 10%-10°; Stone et al., 2010; Applegate et al., 2012) are insufficient to fully
explore model parameter space. As McNeall et al. (2013) demonstrate, statistical emu-
lators help overcome this dimensionality problem; however, some method for assigning
plausibility scores to the emulator output is also needed.

Here, we address these challenges using a Bayesian framework that combines
data, models, and prior beliefs about model input parameter values. Like McNeall
et al. (2013), we train an emulator on an ensemble of ice sheet model runs. However,
we build on their work by using an explicit likelihood function, and by incorporating in-
formation from a north-south profile of average ice thicknesses. Specifically, we use
a Gaussian process emulator to estimate the first 10 principal components of the zonal
mean ice thickness profile, following a recent climate model calibration study (Chang
et al., 2014). Further, we perform a perfect model experiment to investigate the interac-
tions between input parameters. Our approach recovers the correct parameter values
and projected ice volume changes from an “assumed-true” model realization, and the
multi-dimensional probability density function displays expected physical interactions
(Sect. 1.2, below). These interactions were not evident from the simple analysis em-
ployed by Applegate et al. (2012, their Fig. 1).

The paper proceeds as follows. In the remainder of the Introduction, we describe the
ensemble that we use to train the emulator. In Sect. 2, we outline our method for us-
ing a Gaussian process emulator to estimate the principal components of the zonally-
averaged ice thicknesses, and the setup of our perfect model experiment. Section 3
presents the results of the perfect model experiment. In Sect. 4, we conclude by point-
ing out the implications of our work, as well as its limitations and potential directions for
future research.

1.1 The ensemble

We train our emulator with a 100-member perturbed-parameter ensemble described in
Applegate et al. (2012). This ensemble uses the three-dimensional ice sheet model
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SICOPOLIS (Greve, 1997; Greve et al.,, 2011). Each model run spans the period
from 125000 years ago (125ka BP) to 3500, driven by surface temperature and sea
level histories derived from geologic data (Imbrie et al., 1984; Dansgaard et al., 19983;
Johnsen et al., 1997) and forced into the future with an asymptotic warming to ~5°C
above present values. SICOPOLIS is a shallow ice-approximation model, meaning that
it neglects longitudinal stresses within the ice body (Kirchner et al., 2011). Like most
ice sheet models, it also includes many simplifications in calculating the surface mass
balance, notably through its use of the positive degree-day method for relating sur-
face temperatures to melting (Braithwaite, 1995; Calov and Greve, 2005; van der Berg
et al., 2011). These simplifications improve SICOPOLIS’ computational efficiency rel-
ative to higher-order or full-Stokes models (e.g., Seddik et al., 2012), allowing it to be
run repeatedly over 10° yr time scales.

The parameter combinations in the Applegate et al. (2012) ensemble were chosen
by Latin hypercube sampling (McKay et al., 1979), following the earlier work of Stone
et al. (2010). Latin hypercube sampling distributes points throughout parameter space
more efficiently than Monte Carlo methods (Urban and Fricker, 2010). In their experi-
ment, Applegate et al. (2012) varied the ice flow enhancement factor, the ice and snow
positive degree-day factors, the geothermal heat flux, and the basal sliding factor (Ritz
et al., 1997; cf. Stone et al., 2010; Fitzgerald et al., 2011). These parameters control
the softness of ice, the rapidity with which the ice sheet’s surface lowers at a given
temperature, the amount of heat that enters the base of the ice sheet, and the speed
of sliding at a given stress (see Applegate et al., 2012, for an explanation of how each
parameter affects model behavior).

McNeall et al. (2013) trained their emulator using a perturbed-parameter ensemble
of ice sheet model runs published by Stone et al. (2010). Key differences between the
Applegate et al. (2012) ensemble and the Stone et al. (2010) ensemble involve the
parameters varied in the ensembles and the processes included in the simulations.
Stone et al. (2010) varied the lapse rate instead of the basal sliding factor adjusted by
Applegate et al. (2012). The model used by Stone et al. (2010; Glimmer v. 1.0.4; see

1911

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< |
] >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/1905/2014/gmdd-7-1905-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/1905/2014/gmdd-7-1905-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

Rutt et al., 2009) neglects basal sliding, a process included in the SICOPOLIS runs
presented by Applegate et al. (2012).

The results presented by Applegate et al. (2012) suggest that widely diverging ice
sheet model parameter values yield comparable modern ice sheets, but substantially
different sea level rise projections. Applegate et al. (2012) assessed the plausibility
of their model runs by comparing the simulated ice volumes in 2005 to the estimated
modern ice volume (Bamber et al., 2001; Lemke et al., 2007); those runs that yielded
modern ice volumes within 10 % of the estimated value were kept. These plausible
runs yielded a range of future sea level rise projections that was ~ 75 % of the median
estimate.

Moreover, the parameter combinations that agree well with the modern ice volume
constraint are widely distributed over parameter space. With the exception of the ice
positive degree-day factor, where only values less than ~ 15mm day‘1 °c satisfy the
ice volume constraint, no pattern emerges from the distribution of the successful runs
through parameter space. McNeall et al. (2013) make a similar point using their own
results. Statistically, this inability to learn about the plausibility of various parameter
combinations given observations is termed an “identifiability problem.”

1.2 Expected interactions among model input parameters

The apparently-structureless distribution of successful runs through parameter space
(Applegate et al., 2012, their Fig. 1) may stem from interactions among the param-
eters. The parameters can be loosely grouped into those that control the ice sheet’s
surface mass balance (the ice and snow positive degree-day factors) and those that
control ice movement (the ice flow enhancement factor, the basal sliding factor, and
the geothermal heat flux). Either group of parameters can cause mass loss from the
ice sheet to be high or low, given fixed values of the parameters in the other group.
For example, a high ice positive degree-day factor should be associated with a low
snow positive degree-day factor to produce the same amount of melt as a model run
with more moderate values of both parameters. This interaction is bounded, however,
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because the maximum snow positive degree-day factor is much lower than the max-
imum value for ice; also, at the peak of the ablation season, there is no snow left on
the lower parts of the ice sheet, so the ice positive degree-day factor dominates over
part of the year. Similarly, the same ice velocities can be produced by either a high flow
enhancement factor and a low basal sliding factor, or the reverse. Basal sliding can
be a much faster process than ice flow, so this parameter interaction is also bounded.
However, basal sliding operates only where the bed is thawed, and the geothermal
heat flux likely controls the fraction of the bed that is above the pressure melting point.

The relatively small number of design points in the ensemble presented by Apple-
gate et al. (2012) hinders mapping of the interactions among parameters over their
five-dimensional space. Coherent mapping requires many more design points, but per-
forming these additional runs with the full ice sheet model is impractical because of the
model’s high computational cost. This problem suggests a need for a computationally
efficient emulator to fill the gaps in parameter space between the existing model runs.

2 Methods

As described above, our goals are (1) to identify a method for quantifying the agree-
ment between ice sheet model output and observations that incorporates spatial infor-
mation, (2) to characterize the interactions among input parameters, and (3) to produce
illustrative projections of sea level rise from the Greenland Ice Sheet based on synthetic
data. In this section, we provide an outline of our methods for achieving these goals;
fuller descriptions appear in Chang et al. (2014) and in the Supplement.

We accomplish goal #1 through identifying a statistical model that results in a like-
lihood function. This statistical model compares ice sheet model output and observa-
tions to evaluate the plausibility of a vector of model input parameter values @ while
accounting for systematic discrepancies between the model output and the observa-
tions. The likelihood function for the ice thickness observations, denoted by Z, is based
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on the additive model
Z=Y@)+b6+¢ (1)

where Y () is the ice thickness output from SICOPOLIS model at the vector of input
parameter values @, & is the discrepancy between model output and observations
caused by structural problems in the model, and ¢ is the independent and identically
distributed observational noise. More details of the statistical model, and the resulting
likelihood function, are given in the Supplement.

To achieve goal #2, we perform a “leave-one-out” perfect model experiment with
a Gaussian process emulator, a computationally-cheap surrogate for the full ice sheet
model. As described above, the model output Y (8) is available only at a relatively small
number of points in parameter space, and therefore it is necessary to build an emulator
that approximates the model output Y (@) at any given 6.

Direct emulation of the full two-dimensional ice thickness grid is prohibitively ex-
pensive, due to the cost of performing operations on large covariance matrices (see
the Supplement and Chang et al., 2014, for details). To mitigate this computational
challenge, we take the mean of each row in the ice thickness grid, thereby obtaining
a 264-element vector of zonally-averaged ice thicknesses for each ice sheet model
run. We then apply principal component analysis to these mean ice thickness vectors.
The magnitudes of the first 10 principal components suffice to recover the mean ice
thickness vectors. Because the principal components are uncorrelated, we can con-
struct a separate emulator for the magnitude of each principal component. Note that
our likelihood formulation automatically penalizes the components with lower explained
variation.

Next, we train the emulator on all but one of the model runs. We refer to the output
(specifically, the zonal mean ice thickness profile and the ice volume change projection)
from this left-out model run as our “assumed truth”. We examined the robustness of
our methods by repeating our experiments using different model runs as the left-out
“assumed truth”; see the Supplement.
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Before using the mean ice thickness profile from our assumed-true model run in
our perfect model experiment, we contaminate it with spatially-correlated errors. These
spatially-correlated errors reflect the discrepancies that we would expect to see be-
tween model output and data in a “real” calibration experiment, due to missing or
parameterized processes in the model. In particular, we use spatially-correlated er-
rors with a moderate magnitude (standard deviation of 50 m) and a large-scale spatial
trend to represent a situation in which (i) the ice sheet model has reasonable skill in
reproducing the observed spatial pattern of modern ice thickness, and (ii) the discrep-
ancy pattern is notably different from patterns generated by the ice sheet model and
is therefore statistically identifiable (see the Supplement for more details). Note that
results from any probabilistic calibration method, including our approach, can be un-
informative if condition (i) is not met, or subject to serious bias if condition (ii) is not
met.

We then use Markov chain Monte Carlo (MCMC) to estimate the joint posterior prob-
ability distribution over the five-dimensional input parameter space. MCMC is a well-
established (Hastings, 1970), but complex, statistical technique; Brooks et al. (2011)
provide a book-length treatment. Briefly, the Metropolis—Hastings algorithm used in
MCMC constructs a sequence of parameter combinations, each of which is chosen ran-
domly from the region of parameter space surrounding the last point. Candidate param-
eter combinations are accepted if the posterior probability of the new point is greater
than at the previous one, or with a certain probability determined by the Metropolis—
Hastings acceptance ratio otherwise. If the candidate point is rejected, another candi-
date point is chosen at random according to a proposal distribution. Consistent with
McNeall et al. (2013), we match the emulator estimates to assumed-true model output
instead of observed ice thickness values (Bamber et al., 2001, 2013) because we ex-
pect that the simplifications involved in constructing the ice sheet model (e.g., Kirchner
et al., 2011) will cause problems in matching the modeled ice sheet to observed ice
thicknesses. The candidate points that are retained by the MCMC algorithm approxi-
mate the posterior probability distribution of the input parameter space. The candidate
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points from this algorithm therefore reflect various characteristics of the posterior dis-
tribution, including the marginal distributions of each of the parameters separately and
their joint distributions. Hence, we can use MCMC to summarize what we have learned
about the parameters from the model and observations while accounting for various
uncertainties and prior information.

Finally, to achieve goal #3, we use a separate Gaussian process emulator to interpo-
late between the ice volume change projections from all the model runs in the original
ensemble (Applegate et al., 2012), except the assumed-true realization. When applied
to the sample of the model input parameters that we obtained from Markov chain Monte
Carlo, this emulator yields a sample of ice volume changes, and thus sea level rise con-
tributions, between 2005 and 2100. We then used kernel density estimation to compute
the probability density of the projected sea level rise contributions. It should be noted
that these projections are based on synthetic data (not real observations), and do not
represent “real” projections of Greenland Ice Sheet mass loss over this century.

3 Results

Besides helping to diagnose interactions among ice sheet model parameters, our per-
fect model experiment allows us to test our overall procedure. We carry out several
checks.

1. If the trained emulator is given the parameter settings from the left-out model
realization, it should produce a close approximation to the actual output from that
realization.

2. The maximum of the multidimensional posterior probability function from our
Markov chain Monte Carlo analysis should lie close to the parameter settings
from the left-out model realization.

3. The mode of the probability density function of ice loss projections should be close
to the ice loss projection from the assumed-true model realization.
1916
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As detailed below, our methods pass all three of these checks.

Aggregating the ice thicknesses to their zonal means allows easy visual compari-
son of different emulator-estimated ice thickness vectors to the assumed-true model
realization (black curve, Fig. 1). Parameter combinations yielding zonally-averaged ice
thickness curves that lie close to the assumed-true model realization (e.g., the red
curve in Fig. 1) are more likely (more probable based on the posterior distribution) than
those with curves that lie farther from the assumed-true values (blue and green curves
in Fig. 1). Thus, our methods pass check #1, above.

The emulator, as trained on 99 of the model realizations from the Applegate
et al. (2012) ensemble, successfully recovers the ice thicknesses from the left-out
model realization (Fig. 2) when given the parameter combination for that left-out model
realization as input. Differences between the assumed-true and emulated zonally-
averaged ice thickness vectors are minor. Similarly, the conditional posterior density
functions (Fig. 3) have maxima near the assumed-true parameter values. We do not ex-
pect that the modes of the marginal posterior density functions (Fig. 4b) will fall exactly
at the assumed-true parameter values, because summing over one or more dimen-
sions often moves the marginal mode away from the maximum of the multidimensional
probability density function. In any case, the maximum posterior probability is close to
the assumed-true parameter combination. Thus, our methods pass check #2, above.
Some of the two-dimensional marginal probability density functions (Fig. 4b) show mul-
tiple modes and bands of high probability extending across the two-dimensional fields;
we discuss the significance of these features below.

For comparison, we also produced scatterplots of parameter combinations as pro-
jected onto two-dimensional slices through the five-dimensional parameter space
(Fig. 4a), following Applegate et al. (2012, their Fig. 1). As in Applegate et al. (2012),
the “successful” design points show no clustering around the assumed-true parameter
values.

Our method also successfully recovers the ice volume loss produced by the
assumed-true model realization (Fig. 5; see also Figs. S3, S4 in the Supplement),
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reflected by the close correspondence between the mode of the probability density
function produced by our methods and the vertical black line. Thus, our methods pass
check #3, listed above. As previously noted, these projections are based on synthetic
data; they are not “real” projections of Greenland Ice Sheet mass loss. For compari-
son, we also applied the windowing approach used by Applegate et al. (2012) to the
model runs. The 95 % probable interval produced by our methods is much smaller than
that estimated by Applegate et al. (2012), reflecting the utility of spatial information in
reducing projection uncertainties.

The prior density for the ice volume loss was constructed by assuming that all 99
design points used to train our emulator are equally likely. Interestingly, a uniform prior
for the input parameters results in a skewed and multimodal prior distribution for the
volume loss, indicating that the function that maps input parameters to projected ice
volume changes is highly non-linear and not smooth. These characteristics also cause
a small offset between the assumed-true projection and the mode of the posterior
density. The marginal plots for the volume loss projection surfaces are shown in Fig. S1
in the Supplement.

4 Discussion

As explained above, our goals for this work were to identify an objective function for
matching ice sheet models to spatially-distributed data (especially ice thicknesses),
map interactions among model input parameters, and develop methods for project-
ing future ice sheet mass loss, with well-characterized uncertainties. We demonstrated
that our emulator reproduces a vector of zonally-averaged ice thicknesses from a given
model run when trained on other members from the same ensemble (Fig. 2). We fur-
ther showed that the emulator can recover the appropriate parameter combinations for
an assumed-true model realization in a perfect model experiment (Figs. 3 and 4b). Fi-
nally, we produced illustrative projections of Greenland Ice Sheet mass loss, based on
synthetic data (Fig. 5; see also Figs. S3 and S4 in the Supplement). As noted above,
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our projections are for illustration only, and do not represent “real” projections of future
Greenland Ice Sheet mass loss.

The utility of our approach becomes clear in comparing the marginal posterior prob-
ability density functions (Fig. 4a) and projections (red probability density functions and
boxplots in Figs. 5 and S3, S4 in the Supplement) to results from simpler methods
(Fig. 4b; blue boxplots in Figs. 5 and S3, S4 in the Supplement; Applegate et al.,
2012). In Fig. 4b, there are distinct modes in the marginal densities, indicating regions
of parameter space that are more consistent with the assumed truth. These modes are
absent in the simpler graphic (Fig. 4a). Similarly, the 95 % probable interval of sea level
rise contributions is narrower using our methods than if a simple windowing approach
is applied (Fig. 5; see also Figs. S3 and S4 in the Supplement). Our results also show
the importance of including the discrepancy term (6 in Eq. 1) for recovering the appro-
priate parameter settings in our perfect model experiments (Fig. S2 in the Supplement).
If we leave this discrepancy term out, the marginal posterior density functions for each
parameter clearly miss the true value.

The parameter interactions identified in this experiment are generally consistent with
intuition (see Sect. 1.2 for descriptions of anticipated parameter interactions). Figure 4
shows inclined bands of high marginal posterior probability in the ice positive degree-
day vs. snow positive degree-day, geothermal heat flux vs. ice flow factor, and basal
sliding factor vs. flow factor panels. As expected, there are tradeoffs among each of
these parameter pairs; for example, a low ice positive degree-day factor must be com-
bined with a high snow positive degree-day factor to produce a reasonable match to
the assumed truth. Somewhat surprisingly, the tradeoff between the geothermal heat
flux and the ice flow factor is much stronger than that between the geothermal heat
flux and the basal sliding factor. The geothermal heat flux affects both ice deformation
(which is temperature-sensitive) and basal sliding (which operates only where there is
liquid water at the ice—bed interface). We hypothesize that the geothermal heat flux has
a stronger effect on ice flow than basal sliding because ice deformation happens over
a much larger fraction of the ice sheet’s basal area than does sliding.
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Multiple modes appear in the two-dimensional marginal density plots (Fig. 4), imply-
ing that standard methods for tuning of ice sheet models may converge to “incorrect”
parameter combinations. Ice sheet models are commonly tuned by manually adjusting
one parameter at a time until the simulated modern ice sheet resembles the real one
(e.g., Greve et al., 2011). This procedure is an informal variant of so-called gradient de-
scent methods, which search for optimal matches between models and data by moving
down a continuous surface defined by the model’s input parameters, the objective func-
tion, and the data. If the surface has multiple “peaks,” gradient descent methods can
converge to a point which produces a better match to the data than any adjacent point,
but is nevertheless far from the “true” parameter combination. This problem may partly
explain the wide variation in projections of sea level rise from the ice sheets, as made
with state-of-the-art ice sheet models (cf. Bindschadler et al., 2013): even if the models
had similar structures and reproduced the modern ice sheet equally well, we would
still expect their future projections to diverge because of differences in input parameter
choice.

Cautions and future directions

In this paper, we specifically avoid giving “real” projections of future Greenland Ice
Sheet volume change, for two reasons. First, we match only a two-dimensional profile
of zonally-averaged ice thicknesses from an assumed-true model run, rather than the
two-dimensional grid of observed ice thicknesses (Bamber et al., 2001, 2013; see also
McNeall et al., 2013). Second, the ensemble of ice sheet model runs (Applegate et al.,
2012) that we use to calibrate our emulator has several important limitations, including
the relative simplicity of the model used to generate the ensemble and the synthetic
climate scenario used to drive the ensemble members into the future. Most importantly,
this ensemble produced simulated modern ice sheets that are generally too thick in the
southern part of Greenland and too thin in the northern part of the island (Applegate
et al., 2012, their Fig. 7); other ice sheet modeling experiments have similar difficul-
ties in reproducing the modern ice sheet (e.g., Stone et al., 2010; Greve et al., 2011;
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Nowicki et al., 2013, their Fig. 2). Thus, the emulator discrepancy term, used to correct
for differences between model output and observations, would need to be large, and
the effects of this large discrepancy term on the projections are difficult to assess.

The long-term goal of this work is to compare ice sheet model runs to actual data,
thereby resulting in probabilistic projections of future ice sheet mass loss. To achieve
this goal, we plan to expand our method to treat the full, two-dimensional ice thickness
grid and take advantage of other spatially-distributed data sets (e.g., surface velocities;
Joughin et al., 2010), and to generate new ice sheet model ensembles that overcome
the limitations explained above.

5 Conclusions

In this paper, we presented an approach for probabilistic calibration of ice sheet models
using spatially-resolved ice thickness information. Specifically, we constructed a proba-
bility model for assigning posterior probabilities to individual ice sheet model runs, and
we used a Gaussian process emulator to interpolate between existing ice sheet model
simulations. We reduced the dimensionality of the emulation problem by reducing pro-
files of mean ice thicknesses to their principal components. Finally, we showed how the
posterior probabilities from the model calibration exercise can be used to make projec-
tions of future sea level rise from the ice sheets. In a perfect model experiment where
the “true” parameter settings and future contributions of the ice sheet to sea level rise
are known, our methods successfully recovered these values. The posterior probability
density function that resulted from this experiment shows tradeoffs among parameters
and multiple modes. The tradeoffs are consistent with physical expectations, whereas
the multiple modes may indicate that commonly-applied methods for tuning ice sheet
models can lead to calibration errors.
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Supplementary material related to this article is available online at
http://www.geosci-model-dev-discuss.net/7/1905/2014/
gmdd-7-1905-2014-supplement.pdf.
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Fig. 1. Profiles of zonal mean ice thicknesses from four different evaluations of the ice sheet
model SICOPOLIS (Greve, 1997; Greve et al., 2011). The solid black curve represents model
run #67 from Applegate et al. (2012), which we take to be the synthetic truth for our perfect
model experiments. The other curves represent examples of model runs used to construct the
emulator: one run produces a zonal mean ice thickness curve similar to the synthetic obser-
vations (dashed red curve), another is generally too thick (dotted green curve), and a third is
generally too thin (dot-dashed blue curve). As expected, our probability model assigns a greater
posterior probability to the model run represented by the red curve than to the model runs rep-
resented by the blue and green curves.
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Fig. 2. Comparison of zonal mean ice thickness transects from the assumed-true model run
(#67 from Applegate et al., 2012) and that generated by the trained emulator at the same
parameter combination as used in the assumed-true model run. In the top panel, the assumed-
true profile is shown by a solid black line, and the emulator output is shown by a dashed red
curve with circles. In the lower panel, each point stands for an individual latitude location. The
red circles in the top panel fall almost exactly on top of the black curve, and the points in the
lower panel fall almost exactly on a 1: 1 line connecting the lower left and upper right corners
of the plot. Thus, the emulator successfully recovers the ice thicknesses from an assumed-true
model realization when trained on the other model runs from the same ensemble.
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Exploratory analysis using ice volume (Applegate et a\ 2012) (b) Emulator + Bayesian calibration (this study)
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Fig. 4. Comparison between an exploratory data analysis, following Applegate et al. (2012),
and the results of our probabilistic calibration. (a) Scatterplots of parameter settings used to
train the emulator, as projected onto two-dimensional marginal spaces. Red dots, parameter
settings resulting in simulated modern ice volumes within 10 % of the synthetic truth (model run
#67 of Applegate et al., 2012); blue crosses, parameter settings that yield ice volumes more
than 10 % larger or smaller than the synthetic truth. (b) Two-dimensional marginal posterior
densities of all pairs of input parameters. Several of the marginal posterior density maps show
inclined bands of higher probability, indicating interactions among parameters; other panels
show multiple modes, representing potential “traps” for tuning of ice sheet models using simpler
methods. See text for discussion.
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lllustrative projections based on synthetic data
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Fig. 5. lllustrative (not “real”) ice volume change projections between 2005 and 2100, based N
on three different methods: (i) the prior density of the input parameters (dashed green line); 8 - -
(i) parameter settings that pass the 10 % ice volume filter used by Applegate et al. (2012)
(solid blue line); and (iii) the posterior density computed by our calibration approach (solid red - -
line). The vertical line shows the ice volume change projection for the assumed-true parameter  © ﬁ
setting. The horizontal lines and the parentheses on them represent the range and the 95% &
prediction intervals, respectively; the crosses indicate the median projection from each method. § g
The width of the 95 % projection interval from our methods is narrower than if simpler methods g
are applied (blue boxplot; Applegate et al., 2012). Similar results are obtained if different model - _
runs from the ensemble are left out (see Figs. S3 and S4 in the Supplement). See text for 5
discussion. ms.l.e., meters of sea level equivalent. D
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